IBM ILOG Solver User's Manual > The Basics > Constraint Programming with IBM ILOG Solver > Solve > Search space

Solver looks for a solution in the search space. The search space is all possible combinations of values. For this simple problem, the search space is shown in Table 1.1. One way to find a solution would be to explicitly study each combination of values until a solution was found. Even for this simple problem, this approach is obviously time-consuming and inefficient. For a more complicated problem with many variables, the approach would be unrealistic.

Table 1.1 Search space
x=5, y=2 
x=6, y=2 
x=7, y=2 
x=8, y=2 
x=9, y=2 
x=10, y=2 
x=11, y=2 
x=12, y=2 
x=5, y=3 
x=6, y=3 
x=7, y=3 
x=8, y=3 
x=9, y=3 
x=10, y=3 
x=11, y=3 
x=12, y=3 
x=5, y=4 
x=6, y=4 
x=7, y=4 
x=8, y=4 
x=9, y=4 
x=10, y=4 
x=11, y=4 
x=12, y=4 
x=5, y=5 
x=6, y=5 
x=7, y=5 
x=8, y=5 
x=9, y=5 
x=10, y=5 
x=11, y=5 
x=12, y=5 
x=5, y=6 
x=6, y=6 
x=7, y=6 
x=8, y=6 
x=9, y=6 
x=10, y=6 
x=11, y=6 
x=12, y=6 
x=5, y=7 
x=6, y=7 
x=7, y=7 
x=8, y=7 
x=9, y=7 
x=10, y=7 
x=11, y=7 
x=12, y=7 
x=5, y=8 
x=6, y=8 
x=7, y=8 
x=8, y=8 
x=9, y=8 
x=10, y=8 
x=11, y=8 
x=12, y=8 
x=5, y=9 
x=6, y=9 
x=7, y=9 
x=8, y=9 
x=9, y=9 
x=10, y=9 
x=11, y=9 
x=12, y=9 
x=5, y=10 
x=6, y=10 
x=7, y=10 
x=8, y=10 
x=9, y=10 
x=10, y=10 
x=11, y=10 
x=12, y=10 
x=5, y=11 
x=6, y=11 
x=7, y=11 
x=8, y=11 
x=9, y=11 
x=10, y=11 
x=11, y=11 
x=12, y=11 
x=5, y=12 
x=6, y=12 
x=7, y=12 
x=8, y=12 
x=9, y=12 
x=10, y=12 
x=11, y=12 
x=12, y=12 
x=5, y=13 
x=6, y=13 
x=7, y=13 
x=8, y=13 
x=9, y=13 
x=10, y=13 
x=11, y=13 
x=12, y=13 
x=5, y=14 
x=6, y=14 
x=7, y=14 
x=8, y=14 
x=9, y=14 
x=10, y=14 
x=11, y=14 
x=12, y=14 
x=5, y=15 
x=6, y=15 
x=7, y=15 
x=8, y=15 
x=9, y=15 
x=10, y=15 
x=11, y=15 
x=12, y=15 
x=5, y=16 
x=6, y=16 
x=7, y=16 
x=8, y=16 
x=9, y=16 
x=10, y=16 
x=11, y=16 
x=12, y=16 
x=5, y=17 
x=6, y=17 
x=7, y=17 
x=8, y=17 
x=9, y=17 
x=10, y=17 
x=11, y=17 
x=12, y=17