MICROPROCESSORS AND

MICROSYSTEMS

ELSEVIE Microprocessors and Microsystems 25 (2001) 75-83

www_elsevier.nl/locate/micpro

Middleware services for interoperability in open mobile agent systems

Paolo Bellavista®™®, Antonio Corradi?, Cesare Stefanelli®

Dip. Elettronica, Informatica Sistemistica, Universita di Bologna, 40136 Bologna, Italy
°Dip. Ingegneria, Universita di Ferrara, 44100 Ferrara, Italy

Received 30 January 2001; accepted 1 February 2001

Abstract

Despite the design and implementation of several mobile agent (MA) platforms, widely diffused services based on the MA programming
paradigm are still lacking. Apart from the security challenges imposed by the MA technology, the paper claims that interoperability between
MAs, legacy systems and heterogeneous MA platforms is a major obstacle to the MA diffusion. The paper discusses solutions to permit the
interworking between MA platforms and other systems, even non-MA-based, via compliance with either accepted or emerging interoper-
ability standards. In particular, it focuses on compliance with CORBA, the accepted standard for object-oriented components, but also with
MASIF and FIPA, respectively, the OMG specification for the support of agent mobility and management, and the framework for standard
agent platforms and communication languages. The discussed solutions have guided the design and implementation of the middleware
interoperability service in the secure and open mobile agents (SOMA) programming framework. The SOMA interoperability service is
structured in a layered and modular way: its components can be dynamically distributed and installed only where and when needed. The
paper also presents an application scenario in the area of network, systems and service management, where the interoperability components
permit the interworking of SOMA agents, SNMP-compliant elements, legacy resources, and non-SOMA MA platforms. © 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Mobile agents; Standards; Interoperability; Middleware; CORBA

1. Introduction

The widespread popularity of the web and the ubiquitous
availability of internet access points stimulate the idea of
global network as an open distributed system for the design,
implementation and deployment of services. These services
are the result of the dynamic composition and interworking
of networked components, and force us to consider a
scenario where distribution, dynamic modifications, hetero-
geneity and openness are basic requirements.

The provision of globally available web services has
stimulated the research on several emerging programming
paradigms. Some of them (remote evaluation, code on
demand and mobile agents (MAs) [1-4]) move from the
consideration that the traditional client/server (C/S) model
is not flexible enough for the new scenario. They extend the
expressive capacity of the C/S paradigm by giving the possi-
bility of transferring the code over the network at run-time.
In particular, the MA paradigm permits location-aware
executing entities to migrate from one network host to

* Corresponding author. Tel.: +39-051-2093087; fax: +39-051-
2093073.
E-mail address: pbellavista@deis.unibo.it (P. Bellavista).

another while in execution, by carrying with them both
code and required execution state [1].

MAs are supposed to provide attractive solutions in many
application areas, as presented extensively in Ref. [5]. Till
date, however, while there are several different MA
systems, there are still only a few MA-based commercial
services, and most of them are limited case studies. What is
currently slowing the MA diffusion in commercial applica-
tions is the impression of immaturity still around the MA
technology. On the one hand, the large number of different
MA systems induces a sense of uncertainty. System diver-
sity is important but can produce incompatibility and
discourage related investments. On the other hand, the
MA paradigm certainly imposes to solve specific and new
security issues: MAs are untrusted pieces of code that
execute on possibly untrusted hosts over a possibly
untrusted network used to migrate and communicate.
Many flexible solutions to MA security problems have
been recently investigated and deployed [6,7]. A still unre-
solved issue is to find, for any specific application, the most
suitable trade-off between contrasting requirements, such as
security levels and run-time performance.

We claim that both the necessary degree of interoper-
ability and the proper level of security are key challenges

0141-9331/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0141-9331(01)00100-4

76 P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83

to widen the application opportunities of MA programming
frameworks. These requirements should force designers of
MA systems to provide a wide set of middleware services in
order to simplify the deployment of secure and interoperable
MA-based application components [8,9].

Another contribution in this special number discusses and
proposes solutions for MA security issues [10]. This paper,
instead, specifically focuses on middleware solutions for
MA interoperability. Interoperability is greatly simplified
by a large acceptance of standard interfaces and guidelines.
In the area of distributed object-oriented systems, the Object
Management Group (OMG) has proposed the common
object request broker architecture (CORBA) [11].
CORBA permits to integrate distributed and heterogeneous
application components, including legacy ones, indepen-
dently of implementation languages and running operating
systems.

The paper argues that MAs and CORBA are suitable and
complementary technologies to provide services in an open
and global scenario such as the Internet. We pursue the
integration of the two technologies, and, in particular, the
achievement of interoperability between heterogeneous MA
platforms and between MAs and non-MA-based compo-
nents via compliance with CORBA-based standards in the
MA area.

Our ideas of interoperability and security have led to the
implementation of an MA programming framework called
SOMA' (secure and open mobile agents), implemented by
using the Java 2 Platform [9,12]. From the interoperability
point of view, the SOMA system provides application
designers with facilities to simplify the implementation of
agents acting as CORBA clients and servers. In addition,
SOMA is compliant with the OMG mobile agent system
interoperability facility (MASIF) that standardizes the
basic functions of MA frameworks for agent management
and transfer to external systems, whether MA-based or not
[13]. MASIF is not the only CORBA-based standardization
effort in the agent area: from a different perspective, the
Foundation for Intelligent Physical Agents (FIPA) proposal
mainly focuses on the definition of a standard architecture
for agent platforms (APs) and of interoperable communica-
tion protocols/languages [14]. SOMA also provides a partial
implementation of the FIPA specifications to answer the
interoperability issues not covered by MASIF, such as
message exchange between heterogeneous agents.

The SOMA interoperability service has a layered
architecture consisting of three add-on modules (CORBA
C/S, MASIFBridge and FIPABridge) that can be dynami-
cally deployed only in the network nodes where (and when)
their specific functionality is needed. The different intero-
perability modules are extensively exploited in a presented
application scenario in the area of network, systems and
service management, where they permit the interworking

' The SOMA platform is available at: http:/lia.deis.unibo.it/Research/
SOMA/.

of SOMA agents, SNMP-compliant network elements,
legacy resources/systems and non-SOMA MA platforms,
such as Grasshopper [15].

2. CORBA-based solutions for interoperability in MA
environments

MAs are computing entities that act on behalf of a
principal (user, group, organization) and can autonomously
migrate during the execution from one host to another one to
continue their operations there. Agents can dynamically
decide when and where to move, and can return results
asynchronously, thus permitting to face critical situations
where network connections are unreliable, bandwidth is
scarce and even temporarily unavailable. In addition, MAs
can work jointly and cooperate to provide distributed co-
ordinated services.

These features suggest the adoption of the MA technol-
ogy in several application areas, as more extensively
described in Ref. [5]. For instance, systems management
applications benefit from the fact that MAs can automati-
cally perform management tasks on behalf of remote/
disconnected administrators, possibly by migrating locally
to managed resources. MA-based management components
can report only significant events (e.g. the overcoming of
even complex monitored thresholds) to the remote central
authority without requiring a continuous exchange of moni-
toring information [12,16]. The management application
domain particularly stresses the necessity of interoperation
with heterogeneous components. The management of open
systems/services imposes to monitor, control and possibly
reconfigure distributed components independently of their
implementation technology.

Several recent research activities recognize the
importance of facing the complexity of service deployment
in global distributed systems by providing layered architec-
tures of standardized middleware components, called distrib-
uted processing environments (DPEs) [8,12,17]. These DPEs
often use CORBA as the integration infrastructure.

CORBA provides a DPE where distributed objects can
transparently interact according to the C/S model. CORBA
simplifies the realization of C/S distributed applications, by
hiding implementation and location of server objects from
requesting clients. CORBA not only permits designers of
distributed services to abstract from the details related to
platform heterogeneity and object distribution, but also
allows to integrate already implemented software compo-
nents, independently of their possibly heterogeneous
technologies. These legacy systems can be simply wrapped
with an Interface Definition Language interface that
describes their behavior. This possibility represents a non-
negligible factor in the CORBA industrial success [18].

CORBA and MA technologies are different under several
perspectives. The most notable one is object mobility.
CORBA tends to assume objects allocated once and for

P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83 77

all at a fixed location before their registration at the object
request broker (ORB), while MAs can dynamically and
autonomously migrate during execution depending on run-
time conditions.

Another difference is MA location awareness. MAs
generally have visibility of their current locations and of
the position of needed resources. This visibility is required
to allow informed dynamic decisions about migration. At
the opposite, CORBA tends to hide physical locations of
server objects when answering client invocations.
Obviously, the ORB should keep trace of the allocation of
registered objects, but this information is typically trans-
parent to client objects and application designers.

CORBA and MA technologies widely differ also in
diffusion. CORBA has reached a wide acceptance and has
a large base of compliant resources, systems and service
components. This is demonstrated by the recent implemen-
tation of several bridging gateways to enable the inter-
working of Microsoft ActiveX/COM components with
CORBA objects [19]. On the contrary, the novelty of the
MA programming paradigm has led to a great variety of
different and non-interoperable MA platforms.

The above considerations suggest that CORBA and MA
can complement very well. In fact, a flexible framework for
the provision of globally available Web services can benefit
from both agent mobility and transparent remote agent
interaction. It should provide different degrees of local/
remote resource visibility. Finally, it needs to support the
integration of heterogeneous and legacy service components
via standard interfaces, in order to work in an open distrib-
uted environment.

The opportunity of integrating CORBA and MA is also
demonstrated by the standardization efforts emerged to
achieve interoperability between heterogeneous MAs. In
fact, even if coming from different research communities
and different scientific backgrounds, both the MASIF and
FIPA proposals adopt CORBA as the standard bridge to
overcome heterogeneity.

2.1. OMG MASIF

Interoperability among heterogeneous MA platforms
requires identifying the aspects of the MA technology
subject to standardization. The OMG has worked on the
specification of MASIF, an agent interoperability standard,
built within the CORBA framework, mainly to support
agent mobility and management.

The idea behind the MASIF standard solution is to
achieve interoperability between MA platforms of different
manufacturers without enforcing radical platform modifica-
tions. In fact, MASIF does not require building new MA
systems. Instead, its specifications should guide the design
and implementation of an ‘add-on’ module to plug into
already existing MA platforms. The standard includes
CORBA IDL specifications that support agent transport,
management and localization. It is worth stating that agent

transport between different MA systems is not fully enabled
through the given specifications. The transport capability
requires additional mutual agreement between MA system
implementers on the supported common format for agent
exchange.

MASIF does not suggest standardization of local agent
operations such as agent interpretation, serialization,
execution and deserialization, because these actions are
application-specific, and there is no reason to limit MA
system implementations. Instead, MASIF only proposes
standardization for agent and agent system names, for
agent system types and for location syntax. It specifies
two interfaces: the MAFAgentSystemn interface provides
operations for the management and transfer of agents,
whereas the MAFFinder interface supports the localiza-
tion of agents and MA systems in the scope of an adminis-
tered locality.

As part of any MASIF-compliant agent system, the
MAFAgentSystem object interacts internally with plat-
form-specific services while it provides the associated
CORBA interface to external users. In this way, it is possi-
ble to communicate with an agent system either in a
MASIF-compliant way (using the MAFAgentSystem
interface and the CORBA ORB) or in a platform-specific
way (using platform-specific interfaces that may provide
additional functionality not handled by MASIF).

2.2. FIPA

FIPA specifies the interfaces of the different components
of APs to support the interaction with final users, other
agents, non-agent software and the physical world. Being
mainly proposed from the intelligent agent area, FIPA puts
emphasis on the standardization of agent communication
and proposes a dedicated Agent Communication Language
(ACL) to support interoperable communication between
heterogeneous FIPA-compliant agents.

The FIPA specification provides the normative frame-
work for agents to exist and operate. It proposes the concept
of an AP by offering three basic services. These services are
namely the agent management system (AMS), the directory
facilitator (DF) and the agent communication channel
(ACC). Agents may offer their services to other agents
and make their services searchable in a yellow pages
manner by the DF. Registration on a DF is optional, while
registering on the AMS is mandatory on any AP. Finally, the
ACC enables communication between agents of possibly
heterogeneous platforms with a message forwarding
service. Reachability between platforms is gained by
publishing the forward service over the CORBA ORB
whose integration is considered mandatory for any FIPA-
compliant MA platform. Agent messages are transferred via
CORBA IIOP.

The AMS and DF services provide functionality similar
to the MASIF MAFAgentSystem and MAFFinder. A
peculiar characteristic of the FIPA standardization proposal

78 P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83

is the concept of agent communication by means of a special
ACL. Agents have predictable behavior by common seman-
tics defined in a common language interpretation, based on
the concept of communication acts. For instance, the agent
registration to an AMS is realized as a communication act of
the action registration. This communication act clearly
defines the roles of the agent and the AMS, and the reactions
of each party are determined by the state of the AP. For
instance, if the agent is already registered, the specification
blocks any further registration, and a corresponding answer
message must be yielded to the agent.

FIPA proposes the implementation of an ACC per agent
system to forward ACL messages between agents. As plat-
form local communication may find any MA implementa-
tion, the simplest solution for local communication between
agents is obviously realized by the platform native commu-
nication protocol. FIPA-based inter-platform communica-
tion, that means communication between agents on
different and possibly heterogeneous platforms, requires
an implementation via a message forwarding service over
CORBA.

3. The SOMA programming framework

We have designed and implemented the SOMA program-
ming framework to offer a flexible MA environment with a
rich infrastructure of middleware services. SOMA services
include basic agent functions and more complex features
suitable for the design and development of MA-based
Web applications. The SOMA infrastructure is open also
because it permits to extend dynamically the programming
framework with new agent-based services, possibly built on
the already provided functions.

Fig. 1 depicts the SOMA infrastructure consisting of two
service layers. The lower layer, which provides the basic
functionality for SOMA agents, includes:

e The naming service. It maintains and permits to access
the information about the current state of any (possibly
mobile) entity in the SOMA distributed middleware. A
basic identification mechanism dynamically assigns tags
to any entity in the system (agents, resources, service

Service Network, Systems & Mobile Multimedia
Layer Service Management Computing Distribution

[SOMA-b

O
S

l
&
y

Middleware)
Layer

Other DPE

SOMA LLF

et "
Network
Element L Z_f
Layer

Fig. 1. The SOMA layered architecture of middleware services.

components and principals, i.e. users/organizations
responsible for agent execution). These globally unique
identifiers do not change even after entity migration.
They are the basis for the realization of the SOMA
naming service that puts together a set of different
naming systems (e.g. DNS- and LDAP-compliant
[20,21]).

o The communication service. It provides tools for commu-
nication and coordination between possibly mobile
entities. When hosted in the same execution locality,
agents interact by means of shared objects, such as black-
boards and tuple spaces for tight cooperation. Otherwise,
agents can perform coordinated tasks by exchanging
asynchronous messages that are delivered also in case
of migration of the target entity.

e The migration service. It supports the transport of one
entity that requests to change its allocation. Entities
capable of reallocation are represented by agents,
which can move in the network either via MA native
migration methods or via standard interfaces such as
MASIF over CORBA IIOP. Reallocated entities can be
traced also in their new locations by any entity in need of
their services.

On the basis of this first level of middleware services,
SOMA provides also an upper layer of MA-based general-
purpose facilities:

e The QoS monitoring and adaptation service. The service
is in charge of observing resource properties, from disk
free space to effectively available network bandwidth,
from CPU usage to heap memory allocated by any
thread. This is achieved via the integration with the
Java virtual machine profiler interface [22] and with plat-
form-dependent monitoring modules via the Java native
interface [23]. Any authorized mobile service can access
the monitored properties, and, depending on this infor-
mation, can decide a strategy suitable for adapting to the
current environment conditions, without suspending
service provision (e.g. for dynamically modifying the
properties of distributed multimedia streams [12]).

e The security service. It aims to protect both MAs and
hosting execution localities. Authentication is based on
standard certificates and on a public key infrastructure.
Authorization extends the Java standard mechanisms for
access control. Secrecy is achieved by integrating the
cryptographic libraries furnished by external providers.
Integrity has required the development of MA-specific
protocols for the protection of MAs from the execution
environment.

o The interoperability service. It allows SOMA agents to
interwork with existing software and hardware compo-
nents via compliance with CORBA. SOMA implements
the MASIF interface to enable the interaction of its
agents with other MASIF-compliant MA platforms, and
the FIPA ACC to support interoperable communication

P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83 79

CORBA
..
-

Domain B

Fig. 2. SOMA locality abstractions.

of SOMA agents with agents of other platforms. A more
detailed description of the SOMA interoperability
service is presented in the following section.

In addition to providing this service infrastructure for
MAs, SOMA offers locality abstractions to describe any
kind of interconnected system, ranging from simple Intranet
LANSs to the Internet (see Fig. 2). Any node hosts at least
one place for agent execution; several places are grouped
into domain abstractions that correspond to network local-
ities. In each domain, a default place is in charge of inter-
domain routing functionality and integration with legacy
components via CORBA. The mobile place is the locality
abstraction used to support mobile devices: it enhances the
normal place with specific features for automatic recon-
figuration when changing domain of attachment [24].

Other details about the design and implementation of the
SOMA programming framework are presented elsewhere
[9,12] and are out of the scope of this paper that, in the
following, specifically focuses on the SOMA interoper-
ability service.

4. The SOMA interoperability service

Fig. 3 depicts the modular architecture of the CORBA-
Bridge component that implements the SOMA inter-

E] SOMA Agents as CORBA Clients MASIF Interoperability

SOMA Agents as CORBA Servers E] FIPA Agent Comm. Channel

Mobile
Computing
Network, Systems & Ml.l]tlmedla
Service Management Dlsmbullon

[SOMA-based Applications

. [r’@w

A
S\eiea | [fMasiF 5] | “Forea |7corBa\/ .~
...... iggel U 7| Bridge 7 [server o] gliemt COREA Bty
e MASIF (% %
[MA DPE CORBA DPE SOMA DPE

Fig. 3. The modules of the SOMA interoperability service.

operability service. The different modules of the
CORBABridge face four different interoperability
challenges:

1. A SOMA agent may call external CORBA objects
(SOMA agents as CORBA clients).

2. A SOMA agent may publish its interface to the CORBA
ORB (SOMA applications as CORBA servers).

3. SOMA can manage and accept MASIF-compliant
heterogeneous agents, and SOMA agents can be mana-
ged and transferred towards MASIF-compliant heteroge-
neous MA systems (interoperability between SOMA,
other MASIF-compliant MA platforms, and CORBA
management components).

4. A SOMA agent may send/receive messages to/from any
FIPA-compliant AP via the ACC forward service (inter-
operable communication between heterogeneous FIPA
agents).

The CORBA C/S module provides the first two interoper-
ability features: agents can play the role of CORBA clients,
and can register as CORBA servers to offer access points to
applications outside the SOMA system. There is no concep-
tual problem in an MA that registers as a CORBA server.
However, we currently grant this possibility only to SOMA
agents that do not migrate during their lifetime (stationary
agents) to avoid the overhead of registering/unregistering to
the CORBA ORB (and possibly to the CORBA naming and
trading services) at any migration.

The third feature is a more complex issue and SOMA
addresses it via compliance with the MASIF standard
(MASIFBridge module). Any external system can control
remote agents of a MASIF-compliant MA platform via the
MAFAgentSystem interface: MASIF defines methods for
suspending/resuming/terminating agents and for migrating
agents from one MA platform to another one. The intero-
peration is significant only when the two interworking
systems present a compatibility base, that is the same imple-
mentation language, or compatible externalization mechan-
isms. Agent tracking functions permit the tracing of agents
registered with MAFFinder, introduced to provide an MA
name service, because the CORBA naming service is not
suitable for entities that are intrinsically and frequently
mobile.

At the moment SOMA agents can communicate via
proprietary mechanisms and protocols, but can also decide
to exploit the CORBA middleware to coordinate via shared
CORBA objects. In addition, because agent communication
is outside the MASIF scope, we have decided to integrate
an additional interoperability module (FIPABridge) that
mainly implements the FIPA ACC to support interoperable
communication between heterogeneous agents. The FIPA-
Bridge ACC is available as a place facility that SOMA
agents exploit to convert messages into the corresponding
ACL format and vice versa, with an approach similar to the
one followed in the Jade project [25]. The FIPA AMS and

80 P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83

" DomainA

..........

R —
_ DomainB

Fig. 4. The SOMA interoperability service as the composition of plug-in
modules.

DF facilities are implemented by mapping them into the
analogous functionality for agent management and registra-
tion already available, respectively, in the SOMA MAF-
AgentSystem and MAFFinder modules.

The SOMA programming framework provides a modular
implementation of the CORBABridge, with the different
specific interoperability modules that can be even installed
at run-time. At their creation, SOMA places are configured
with the minimal SOMA distribution, e.g. without any
support for interoperability. System administrators may
decide dynamically to upgrade a subset of SOMA places
with the CORBA C/S module (see Fig. 4). For instance, an
administrator can specify a management policy to command
the automatic installation of the CORBA C/S in all the
SOMA places that include legacy systems with CORBA
interfaces (registered either in the global directory or in
the local discovery services [24]). Specialized installation
agents are able to extend SOMA places with the CORBA C/
S component, without imposing any service suspension.

In addition, other SOMA agents are able to mount
dynamically also the MASIFBridge and the FIPABridge
modules on any SOMA place that already hosts the
CORBA C/S component. On the one hand, the MASIF-
Bridge extends the SOMA default places that need to inter-
act with other non-SOMA MA platforms compliant with
MASIF. Only default places can host the MASIFBridge,
since MASIF implementation increases significantly the
code size and it is natural to provide it only in the place
responsible for inter-domain routing functionality. On the
other hand, the FIPABridge is added only where adminis-
trators decide to enable interoperable communication
between heterogeneous agents (sending/receiving FIPA-
compliant messages).

5. Interoperability solutions at work: SOMA for
heterogeneous network/systems management

Since the first MA research activities, the domain of
network, systems and service management has attracted
much interest because of the potential advantages of the

MA technology application, e.g. in terms of agent
autonomy, asynchronicity and capacity to migrate locally
to the managed resources. In addition, recent management
applications tend to provide solutions suitable for geo-
graphically distributed systems, which are open and intrin-
sically heterogeneous. Therefore, the management domain
has represented an ideal workbench to put our MA intero-
perability solutions at work.

The simple network management protocol (SNMP) is
certainly the most diffused and simple solution for the moni-
toring and control of network elements. MAs can signifi-
cantly improve the performance of SNMP management, in
terms of both reducing network traffic and of minimizing the
time to trigger control actions [26]. However, management
applications often need to control also heterogeneous legacy
systems that do not host the execution of SNMP agents. In
this case, a viable and pragmatic solution is to encapsulate
legacy components into CORBA wrappers, thus providing a
CORBA-based point of access for their control. In addition,
the CORBA integration is often the approach followed to
manage network elements that adopt management protocols
and models different from SNMP. A notable example is the
case of components supporting the OSI common manage-
ment information protocol (CMIP); several vendors have
implemented gateways to integrate CMIP-compliant
resources via CORBA interfaces [27].

To address these issues, we have designed and implemen-
ted a SOMA-based management tool that is able to monitor
and control several types of networked systems and service
components. The main idea is to exploit agent mobility to
migrate intelligent monitoring entities locally to the
resources to be managed. Fig. 5 depicts a usage scenario
where our management tool exploits a hierarchical organi-
zation of SOMA agents to aggregate monitoring informa-
tion about SNMP elements, CMIP components, CORBA
legacy systems and other resources belonging to non-
SOMA locality domains (in particular, Grasshopper
regions). The distribution and organization of manager/
slave agents is similar to the one presented in Ref. [26].

O SOMA/Grasshopper place SOMA SOMA
Maniger Slave
O SOMA/Grass, default place agent

agent

CORBA

SOMA Domain B

CORBACMIF

Managed Regions

Fig. 5. The SOMA-based management application at work on hetero-
geneous distributed resources.

P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83 81

We have started our work with the implementation of
SOMA agents that use the SNMPv3 protocol for monitoring
SNMP-compliant components located in SOMA domains.
These components are visible because of their registration to
the SOMA naming service; management agents can search
the naming service and, on the basis of the query results, can
migrate either locally or in proximity to the SNMP-compli-
ant devices to control.

Our goal is to provide the widest possible coverage of
heterogeneous resources to manage, without addressing
only SNMP-compliant systems. Thus, our tool exploits
SOMA components to manage:

1. networked resources that publish a CORBA interface;
2. networked resources located in regions under the control
of non-SOMA MA platforms.

The first type of resources can include legacy systems
encapsulated into CORBA wrappers, CORBA native
components and CMIP-compliant systems accessed via
the CORBA/CMIP gateway integrated in the SOMA-
based management tool [12]. Fig. 5 shows SOMA agents
that move to the CORBA resources and monitor/control them
by exploiting the CORBA C/S interoperability module.

The second case addresses the management of compo-
nents belonging to any MA platform, provided that the
platform is conforming to either the MASIF or the FIPA
specifications. Fig. 5 depicts a scenario that includes one
region hosting the Grasshopper MA system, which is
compliant to both MASIF and FIPA. The Grasshopper
resources to be managed are registered to the MAFFinder
object published by the Grasshopper domain. On the one
hand, Grasshopper components can be managed by migrat-
ing SOMA agents to their locality. This is possible via the
receive_agent() method of the MAFAgentSystem object
of the target Grasshopper domain. On the other hand, our
management tool permits also to delegate monitoring and
control operations to known Grasshopper management
agents running in that locality. SOMA agents can remotely
exchange monitoring data and control commands by
exploiting the interoperable communication mechanisms
provided by the FIPA ACC and implemented in SOMA
by the FIPABridge module, as illustrated in Fig. 5.

6. Emerging trends in MA interoperability

Despite the number of approaches in the design and imple-
mentation of MA systems, some trends are clearly emerging,
as presented in Ref. [5]. Interpreter-based programming envir-
onments represent the common basis for most MA frame-
works. In particular, Java is frequently chosen not only for
portability, fast prototyping and easy integration with the
Web, but also for its security features, such as type checking
and fine-grained flexible control of resource access. In
addition, security has attracted deep interests in the MA

community: several MA platforms provide at least a subset
of the security services required to implement MA-based
applications in open untrusted environments.

Interoperability, instead, has not received yet the due
attention, and a definite common trend on how to achieve
it is still unclear in the MA research area. Some MA
platforms provide wide accessibility to their MA-based
applications and to their development/management tools.
For instance, Voyager [29] permits agents to be activated
via an applet interface; it additionally allows access from
and to external objects via CORBA. Similarly, SOMA
provides a Web interface to securely launch, monitor and
control agent state/position in any SOMA place that activates
applet-control over SSL. communication. IBM Aglets [30]
provide an additional package for running an Aglet context
(the analogous of a SOMA place) on an HTTP-browser.

Accessibility, however, is only the first basic step towards
complete interoperability, to enable full interaction between
heterogeneous systems, whether MA-based or not, and to
support cooperation between all existing components in the
provision of flexible network-centric services.

A few MA frameworks have already approached the issue
of interoperability with other systems and applications.
Those proposals promote CORBA as the standard integra-
tion technology. For instance, Jumping Beans [28]
implement their agents by extending standard CORBA
objects with proprietary mobility mechanisms. Whenever
a Jumping Beans agent decides to migrate, however, it is
forced to move to a single server that becomes a centraliza-
tion point, thus severely limiting the scalability of the
system. Finally, Grasshopper [15] is today the commercial
MA platform that most completely addresses interoper-
ability: in addition to Web connectivity, it allows interaction
with non-MA-based objects via CORBA, and is currently
the only MA programming framework fully compliant to
both MASIF and FIPA.

7. Conclusions and current work

The design, implementation and deployment of Internet-
centric services motivate the adoption of new flexible
programming paradigms, capable of moving data and
behavior dynamically. The paper integrates two solution
directions, MAs and CORBA, which are sometimes consid-
ered diverging and in contrast.

On the one hand, global network systems force to distri-
bute responsibilities to a plurality of components, able to
operate autonomously and in need of coordinating flexibly
with each other. In this context, the MA technology repre-
sents a clean and uniform approach to a wide spectrum of
application areas, from network and systems management to
mobile computing, from distributed information retrieval to
electronic commerce. On the other hand, in large and open
intra-/inter-corporate networks, which are intrinsically
heterogeneous, CORBA is already the accepted integration

82 P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83

technology to deal with network, platform and program-
ming language diversity.

The integration of MAs with CORBA and CORBA-based
standards plays a central role to achieve interoperability by
providing standard bridges among proprietary MA imple-
mentations. Along this guideline, the SOMA interoperabil-
ity service offers a wide spectrum of modular solutions to
overcome the different barriers that limit the current applic-
ability of the MA technology. The CORBABridge modular
implementation demonstrates not only the feasibility of the
MA-CORBA integration, even in terms of introduced
overhead [9], but also the possibility to provide extremely
flexible and configurable interoperability supports,
composed by layers of dynamically installable modules.

In addition to the presented utilization of SOMA agents in
network, systems and service management, we are working
on other application domains that particularly stress the MA
interoperability issues. We have implemented a SOMA-
based middleware prototype to support user, terminal and
resource mobility, by reconnecting transparently mobile
entities to their needed resources and services, indepen-
dently of current location and implementation heterogeneity
[24]. Finally, we are developing an MA-based information
retrieval service where agents can autonomously and locally
filter distributed heterogeneous museum data, and can present
query results in an XML-based interoperable format.

Acknowledgements

Investigation supported by the Italian Ministero dell’ Uni-
versita e della Ricerca Scientifica e Tecnologica (MURST)
in the framework of the Project ‘QoS Infrastructure for
Web-based Multimedia Services with Heterogeneous
Accessibility’, the Italian ‘Consiglio Nazionale delle
Ricerche’ in the framework of the Project ‘Global Applica-
tions in the Internet Area: Models and Programming Envir-
onments’ and by the University of Bologna (Funds for
Selected Research Topics: ‘An Integrated Infrastructure to
Support Secure Services’).

References

[1] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility,
IEEE Transactions on Software Engineering 24 (5) (1998).

[2] J.W. Stamos, D.K. Gifford, Remote evaluation, ACM Transaction on
Programming Languages and Systems 12 (4) (1990).

[3] D.B. Lange, D. Milojicic (Eds.), First International Symposium on
Agent Systems and Applications and Third International Symposium
on Mobile Agents (ASAMA’99) IEEE Computer Society Press, Palm
Springs, CA, 1999.

[4] M. Wooldridge, K. Decker, Special section on agents on the Net,
IEEE Internet Computing 4 (2) (2000).

[S] A.R. Tripathi, T. Ahmed, N.M. Karnik, Experiences and future
challenges in mobile agent programming, Microprocessors and
Microsystems 25 (2) (2001).

[6] G. Vigna (Ed.), Mobile Agents and Security Lecture Notes in Compu-
ter Science, vol. 1419, Springer, Berlin, 1998.

[7] U.G. Wilhelm, S.M. Staamann, L. Buttyan, A pessimistic approach to
trust in mobile agent platforms, IEEE Internet Computing 4 (5) (2000).

[8] J. Bolliger, T. Gross, A framework-based approach to the develop-
ment of network-aware applications, IEEE Transactions on Software
Engineering 24 (5) (1998).

[9] P.Bellavista, A. Corradi, C. Stefanelli, Protection and interoperability
for mobile agents: a secure and open programming environment,
IEICE Transactions on Communications E83-B (5) (2000).

[10] N. Dulay, R. Montanari, C. Stefanelli, Microprocessors and Micro-
systems 25 (2) (2001).

[11] CORBA/IIOP Rev 2.2, OMG Document formal/98-07-01, Object
Management Group, February 1998. http://www.omg.org/library/.

[12] P. Bellavista, A. Corradi, C. Stefanelli, An integrated management
environment for network resources and services, IEEE Journal on
Selected Areas in Communication 18 (5) (2000).

[13] Mobile Agent Facility Specification, Joint Submission supported by
Crystaliz Inc., General Magic Inc., the Open Group, OMG TC Docu-
ment orbos/98-03-09, GMD FOKUS, IBM Corp., September 1998.
ftp://ftp.omg.org/pub/docs/orbos/98-03-09.pdf.

[14] FIPA 2000 Specifications, Foundation for Intelligent Physical Agents.
http://www fipa.org/.

[15] IKV++, Grasshopper: the Agent Platform. http://www.grasshopper.de/
index.html.

[16] A. Karmouch (Ed.), Special Section on Mobile Agents, IEEE
Communications 36 (7) (1998).

[17] TINA DPE Architecture, Telecommunications Information Network-
ing Architecture Consortium, March 1998. http://www.tinac. com/.

[18] K. Seetharaman (Ed.), Special Section on CORBA, ACM Commu-
nications 41 (10) (1998).

[19] Web + Object Integration, Object Services and Consulting Inc., August
2000. http://www.objs.com/survey/web-object-integration.htm.

[20] P. Albitz, C. Liu, DNS and BIND, 3rd ed., O’Reilly & Associates, 1998.

[21] T. Howes, M. Smith, LDAP: Programming Directory — Enabled
Applications with Lightweight Directory Access Protocol, Mac-
millan, New York, 1997.

[22] Java Virtual Machine Profiler Interface (JVMPI), Sun Microsystems.
http://java.sun.com/products/jdk/1.3/docs/guide/jvmpi/jvmpi.html.

[23] R. Gordon, Essential Java Native Interface, Prentice-Hall, Englewood
Cliffs, NJ, 1998.

[24] P. Bellavista, A. Corradi, C. Stefanelli, A mobile agent infrastructure
for terminal, user and resource mobility, in: Proceedings of the IEEE/
IFIP Network Operations and Management Symposium (NOMS
2000), Honolulu, HI, April 2000.

[25] Jade, CSELT. http://sharon.cselt.it/projects/jade/.

[26] D. Gavalas, D. Greenwood, M. Ghanbari, M. O’Mahony, Mobile
software agents for decentralised network and systems management,
Microprocessors and Microsystems 25 (2) (2001).

[27] The UHC CORBA/CMIP Gateway, UH Communications ApS. http://
www.uhc.dk/.

[28] Jumping Beans, Ad Astra Engineering Inc. http://www.Jumping
Beans.com/.

[29] Voyager, ObjectSpace. http://www.objectspace.com/.

[30] Aglets SDK1.1, IBM Japan. http://www.trl.ibm.co.jp/ aglets/.

Paolo Bellavista received his Laurea in electronic engineering from
University of Bologna, Italy, in 1997. He is currently pursuing a PhD in
computer science engineering at the Department of Electronics,
Computer Science and Systems of the same university. His research
interests include distributed computing, distributed objects, mobile
agents, network and systems management, adaptive multimedia
systems and distance learning. He is a student member of the IEEE,
ACM and AICA (Italian Association for Computing).

P. Bellavista et al. / Microprocessors and Microsystems 25 (2001) 75-83 83

Antonio Corradi received his Laurea in electronic engineering from
the University of Bologna, Italy, in 1979, and his MS in electrical
engineering from Cornell University in 1981. He is currently an Associ-
ate Professor of computer science at the University of Bologna. His
scientific interests include distributed systems, object and agent
systems, network management and distributed and parallel architec-
tures. He is a member of the IEEE, ACM and AICA.

Cesare Stefanelli received his Laurea in electronic engineering
from the University of Bologna, Italy, in 1992 and the PhD degree
in computer science in 1996. He is currently an Associate Profes-
sor of operating systems at the University of Ferrara. His research
interests include distributed and mobile computing, mobile code,
network and systems management, network security. He is a
member of the IEEE and AICA.

