
Z. Kiziltan and B. Hnich (Eds.)

Proceedings of the CP 2006
Doctoral Programme

The Doctoral Programme of the Twelfth International Conference
on Principles and Practice of Constraint Programming, CP 2006,
Nantes, France, September 24–29, 2006.

Preface

The Doctoral Programme is a forum held during the Constraint Programming
conference which provides an opportunity for a group of Ph.D. students to
achieve visibility and discuss their research interests and career objectives with
each other and established researchers in Constraint Programming and its re-
lated fields. After successful Doctoral Programmes in previous years, it is being
run again this year for the sixth time on September 24, 2006 in Nantes, France.

The aims of the Doctoral Programme are the following:

– to provide a forum for Ph.D. students to present their current research, and
receive feedback from other students and senior researchers;

– to promote contacts among Ph.D. students and senior researchers working
in the same area;

– to exchange research experience;
– to support Ph.D. students with information and advice on academic, research

and industrial careers;
– and to financially support its participants.

This year, 38 students are participating to the Doctoral Programme 30 of
which also receive complimentary conference registration and accommodation.

The programme consist of presentations of the students who do not have any
paper/poster accepted at the main technical programme, and tutorials given by
senior researchers in the field. In addition, each student is matched to a mentor
who is a senior researcher with similar research interests and who can advise the
student on his/her research progress. Finally, a doctoral dinner is organised to
bring together the students in an informal gathering.

The editors would like to take the opportunity and thank all the authors who
submitted a paper to this volume, the members of the organizing committee, the
CP 2006 conference chairs Frédéric Benhamou and Narendra Jussien for their
help in the organization of the Doctoral Programme, as well as our generous
sponsors for their financial support.

We hope that the present volume is useful for anyone interested in the current
PhD topics and new trends in Constraint Programming and its related fields.

July 2006 Z. Kiziltan and B. Hnich

Organization

Doctoral Programme Chairs

Zeynep Kiziltan D.E.I.S. Universita di Bologna, Italy
Brahim Hnich Faculty of Computer Science, Izmir University of Economics, Turkey

Organizing Committee

Roman Barták Charles University, Czech Republic
Hadrien Cambazard Université de Nantes, France
Mats Carlsson SICS, Sweden
Ian Miguel University of St. Andrews, U.K.
Javier Larrosa Universitat Politecnica de Catalunya, Spain
Gilles Pesant École Polytechnique de Montréal, Canada
Steven Prestwich University College Cork, Ireland
Francesca Rossi Universitá di Padova, Italy
Meinolf Sellmann Brown University, U.S.A.
Peter van Beek University of Waterloo, Canada
Pascal van Hentenryck Brown University, U.S.A.
Toby Walsh University of New South Wales, Australia

Sponsoring Institutions

ACP (Association of Constraint Programming)
Nantes Métropole
Ilog
Ecole des Mines de Nantes
Région Pays de Loire
LINA (Laboratoire d’Informatique de Nantes-Atlantique)
Université de Nantes
Conseil Général de Loire Atlantique
IISI
4C (Cork Constraint Computation Centre)
Association Française de Programmation par Contraintes

Table of Contents

Resolution-based rules for the Max-SAT problem . 1
Federico Heras, Javier Larrosa

Suffix arrays and weighted CSPs . 7
Matthias Zytnicki

Symmetric Component Caching . 13
Matthew Kitching, Fahiem Bacchus

Retroactive Ordering for Dynamic Backtracking . 19
Roie Zivan, Moshe Zazone, Uri Shapen, Amnon Meisels

A Simple Distribution-Free Approach to the Max k-Armed Bandit
Problem . 25
Matthew Streeter, Stephen Smith

Improving the Performance of Ant Algorithms using Constraint
Programming . 31
Broderick Crawford, Carlos Castro

Inferring Variable Conflicts for Local Search . 37
Magnus Ågren, Pierre Flener, Justin Pearson

Improvements on the Applicability of Nonlinear Constraint Solvers 42
Leslie De Koninck, Bart Demoen

Mini-bucket Elimination with Bucket Propagation . 48
Emma Rollon

Preprocessing QBF . 54
Jessica Davies, Horst Samulowitz, Fahiem Bacchus

A Global Constraint for Computing Exact Buffer Stock Levels in
Stochastic Inventory Control . 60
Roberto Rossi, Steven Prestwich

Mixed CSP Techniques Applied to Embodiment Design 66
Raphael Chenouard, Laurent Granvilliers, Patrick Sébastian

The Portfolio Selection Problem: Opportunities for constrained–based
metaheuristics . 72
Giacomo di Tollo

IX

The Art and Virtue of Symbolic Constraint Propagation 78
Björn Hägglund, Anders Haraldsson

The Modelling Language Zinc . 84
Reza Rafeh, Maria Garcia de la Banda, Kim Marriott, Mark Wallace

Interleaved Search in DCOP for Complex Agents . 90
David A. Burke, Kenneth N. Brown

A New Algorithm for Sampling CSP Solutions Uniformly at Random 96
Vibhav Gogate, Rina Dechter

Reasoning on bipolar preference problems . 102
Maria Silvia Pini, Francesca Rossi

A Case Study on Earliness/Tardiness Scheduling by Constraint
Programming . 108
Jan Kelbel, Zdenek Hanzalek

Limited Full Arc Consistency . 114
Josef Zlomek, Roman Barták

Overview of An Open Constraint Library . 120
Marco Correia, Pedro Barahona

A Hybrid Formulation for CSP . 126
Tony Lambert, Eric Monfroy, Frédéric Saubion

A CP-based column generation approach to scheduling for Wireless
Mesh Networks . 132
Stefano Gualandi

BlockSolve: a Bottom-Up Approach for Solving Quantified CSPs 138
Guillaume Verger, Christian Bessiere

A constraint programming application for allocating sensors and
improving the diagnosability of a system . 144
Rafael Ceballos, Victor Cejudo, Rafael M. Gasca, Carmelo Del Valle

Symmetry Breaking in Subgraph Pattern Matching 150
Stéphane Zampelli, Yves Deville, Pierre Dupont

Adversarial Constraint Satisfaction plays sHex . 156
David Stynes, Kenneth N. Brown

The importance of Relaxations and Benders Cuts in Decomposition
Techniques: Two Case Studies . 162
Alessio Guerri, Michela Milano

X

Backdoors, Backbones and Clause Learning: Towards Direct Backdoor
Search . 168
Peter Gregory, Derek Long, Maria Fox

New propagators for the SPREAD Constraint . 174
Pierre Schaus, Jean-Noël Monette, Yves Deville, Pierre Dupont

Supervision of robot tasks planning by constraint networks acquisition . . . 180
Paulin Mathias, Sallantin Jean

A Specialised Binary Constraint for the Stable Marriage Problem with
Ties and Incomplete Preference Lists . 186
Chris Unsworth

Automatic Generation of Alternative Representations and their
Channelling Constraints . 191
Bernadette Mart́ınez-Hernández, Alan Frisch

The Effect of Constraint Representation on Structural Tractability 197
Christopher Houghton, David Cohen

Combining BDDs with Cost-Bounding Constraints for Interactive
Configuration . 203
Tarik Hadzic, Henrik Reif Andersen

High-Level Nondeterministic Abstractions in C++ 209
Laurent Michel, Andrew See, Pascal Van Hentenryck

A Comparison of Time-Space Schemes . 215
Robert Mateescu

Encoding Binary Quantified CSPs as Quantified Boolean Formulae 221
Peter Nigtingale

Author Index . 227

Resolution-based rules for the Weighted Max-SAT
problem

Student: Federico Heras
Advisor: Javier Larrosa

fheras@lsi.upc.edu, larrosa@lsi.upc.es

UPC
Abstract. In this paper we present a set of useful inference rules for solving the
weighted Max-SAT problem. They are based on the resolution rule for Max-SAT
described in [9]. All of them are special cases of Max-SAT resolution that allows a
DPLL-based solver to compute better lower bounds and to prune more values. We
study the relation of our work with previous approaches and finally we perform
an empirical comparison. Our results on several domains show that the resulting
algorithm can be orders of magnitude faster than state-of-the-art Max-SAT and
Weighted CSP solvers.

1 Introduction

Max-SAT is an optimization version of the SAT problem and it is known that many
important problems can be naturally expressed as Max-SAT such as Maximum cut,
maximum clique, combinatorial auctions, bayesian networks, etc. In recent years, there
has been a considerable effort in finding efficient solving techniques [6, 12, 15, 11]. In
all these works the core algorithm is a simple depth-first branch-and-bound and their
contributions are good quality lower bounds. In [6] the Max-SAT problem, modelled as
a WCSP ([8, 10]), is transformed and simplified at every node of the search tree. The
other approaches compute a lower bound by counting inconsistencies between clauses
without transforming the problem. In [9, 7], the WCSP framework is presented as a logi-
cal framework for Max-SAT. In previous works, the authors described the lower bounds
in a procedural way. Now, the lower bounds and transformations can be explained with
transformation rules. They are easier to understand than procedures. In this paper we
present a set of inference rules that have been shown to be effective empirically and we
study their relation to previous works. In particular, we introduce three new inference
rules, all of them expressable as particular cases of resolution or hyper-resolution. We
provide experimental results in different domains. The experiments indicate that our
algorithm is orders of magnitude faster than any competitor.

2 Preliminaries

In the sequel X = {x, y, z, ...} is a set of boolean variables taking values over the
set {t, f}, which stands for true and false, respectively. A literal is either a variable
(e.g. x) or its negation (e.g. x̄). We will use l, h, q, ... to denote literals and var(l)
to denote the variable related to l (namely, var(x) = var(x̄) = x). If variable x is
instantiated to t, literal x is satisfied and literal x̄ is falsified. Similarly, if variable
x is instantiated to f , literal x̄ is satisfied and literal x is falsified. An assignment is
an instantiation of a subset of X . The assignment is complete if it instantiates all the
variables (otherwise it is partial). A clause C = l1 ∨ l2 ∨ . . . ∨ lk is a disjunction of

1

literals such that ∀1≤i,j≤k, i6=j var(li) 6= var(lj). The size of a clause, noted |C|,
is the number of literals that it has. var(C) is the set of variables that appear in C

(namely, var(C) = {var(l)|l ∈ C}). An assignment satisfies a clause iff it satisfies
one or more of its literals. A formula in conjunctive normal form (CNF) is a conjuction
of different clauses, normally expressed as a set. A satisfying complete assignment is
called a model. Given a CNF formula, the SAT problem consists in determining whether
there is any model for it or not.

The empty clause, noted �, cannot be satisfied. Consequently, when a formula con-
tains � it does not have any model and we say that it contains an explicit contradiction.
Sometimes it is convenient to think of clause C as its equivalent C ∨ �.

A weighted clause is a pair (C, w) such that C is a classical clause and w is the cost
of its falsification. In this paper we assume costs being natural numbers. A weighted
formula in conjunctive normal form (CNF) is a set of weighted clauses. The cost of an
assignment is the sum of weights of all the clauses that it falsifies.

Consider a weighted clause (A∨l ∨ C, w) where |A| >= 0 and |C| >= 1. Negated
weighted clauses are transformed into clausal form with the following recursion:

(A ∨ l ∨ C, w) ≡ {(A ∨ C̄, w), (A ∨ l̄ ∨ C, w)}

We assume without loss of generality the existence of a known upper bound > of the
optimal solution (> is a strictly positive natural number). A model is a complete as-
signment with cost less than >. A Max-SAT instance is a pair (F ,>) and the task of
interest is to find a model of minimum cost, if there is any. Observe that any weight
w ≥ > indicates that the associated clause must be necessarily satisfied. Thus, we can
replace w by > without changing the problem. Consequently, we can assume all costs
in the interval [0..>]. The sum of costs is defined as,

a ⊕ b = min{a + b,>}

in order to keep the result within the interval [0..>]. Let u and w two costs such that
u ≥ w. Their subtraction is defined as,

u 	 w =

{

u − w : u 6= >
> : u = >

Essentially, 	 behaves like the usual subtraction except in that > is an absorbing ele-
ment. A clause with weight > is called mandatory (or hard). A weighted CNF formula
may contain (�, w). Since � cannot be satisfied, w is added to the cost of any assign-
ment. Therefore, w is an explicit lower bound of the optimal model. When the lower
bound and the upper bound have the same value (i.e., (�,>) ∈ F) the formula does not
have any model and we call this situation an explicit contradiction. In [9] is presented
the Max-DPLL algorithm that is an extension of the DPLL [4].

2.1 Lower bounds based on counting inconsistencies and simplification rules

An inconsistency is a set of clauses such that at least one of them is always violated by
any assignment. Various authors presented lower bounds assuming all clauses with cost
one but they can be easily generalized: the weight associated to the inconsistency is the
minimum weight of all the clauses involved in it. For each inconsistency, the involved
clauses are marked as visited to avoid reusing clauses to detect other inconsistencies. It

2

ensures an admissible lower bound. Lower bounds based on counting inconsistencies
are calculated from scratch at each node of the search tree. The following three lower
bound functions were proposed:

– LB1 is the number of unsatisfied clauses by the current partial assignment (see [3]).
– LB2 computes LB1 and it increases by 1 the lower bound for every pair of clauses

(l, 1), (l̄, 1) (see [13]).
– LB3 computes LB2 and it increases by 1 the lower bound for every three clauses
{(l ∨ h, 1), (l̄, 1), (h̄, 1)} (see [1, 12]).

– LB4 computes LB1 and for each unit clause (l̄, 1), apply unit propagation until an
inconsistency is detected (see [11]). Then, the clauses involved in the inconsistency
are marked as visited and the lower bound can be increased by 1 safely.

Current solvers apply some simplifications rules as a preprocessing step. The most
widely used is the almost equivalent clause rule presented in [2]. Given two clauses
(x∨C, 1) and (x̄∨C, 1), it replaces them by (C, 1). It is used as a preprocessing in [1,
12, 11].

Let LBi(F) denote the result of computing LBi in formula F . It will be used for
comparison purposes.
3 Max-RES: The Resolution rule for Max-SAT

As shown by [9], the notion of resolution can be extended to weighted formulas as
follows,

{(x ∨ A, u), (x̄ ∨ B, w)} ≡























(A ∨ B, m),
(x ∨ A, u 	 m),
(x̄ ∨ B, w 	 m),
(x ∨ A ∨ B̄, m),
(x̄ ∨ Ā ∨ B, m)























where A and B are arbitrary disjunctions of literals and m = min{u, w}. The effect
of Max-RES, as in classical resolution, is to infer (namely, make explicit) a connection
between A and B. However, there is an important difference between classical resolu-
tion and Max-RES. While the former yields the addition of a new clause, Max-RES is a
transformation rule. Namely, it requires the replacement of the left-hand clauses by the
right-hand clauses. The reason is that some cost of the left hand clauses must be sub-
tracted in order to compensate the new inferred information. Consequently, Max-RES
is better understood as a movement of knowledge in the formula.

Consider TRANSFORM(F ,r1, r2, . . . , rk), where r1, r2, . . . , rk are transformation
rules based on Max-RES. It denotes the lower bound computed by the algorithm that
transform the formula F by applying the rules r1, r2, . . . , rk until a fix point is reached.

4 Max-DPLL with Inference

Similarly to what happens to plain DPLL [4], Max-DPLL does not seem to be very
effective in practice. However, its performance can be improved dramatically if it is
armed with more sophisticated solving techniques. One possibility is to let Max-DPLL
perform a limited form of resolution at every search. Such process will presumably
facilitate the posterior task of Max-DPLL.

3

4.1 Neighbourhood Resolution

An example suggested in [9] is Neighbourhood Resolution (NRES), which is Max-RES
restricted to the A = B case,

{(x ∨ A, u), (x̄ ∨ A, w)} ≡ {(A, m), (x ∨ A, u 	 m), (x̄ ∨ A, w 	 m)}

with m = min{u, w}. Let NRESk be NRES restricted to |A| = k.

Remark 1 NRES is equivalent to the ’almost equivalent clause rule’ presented in [2].

Remark 2 Given a formulaF , the lower bound computed by TRANSFORM(F ,NRES0)
is the same as LB2(F).

4.2 Hyper Resolution

In SAT, hyper resolution is a well known concept that refers to the compression of
several resolution steps into one single step. We denote k-RES the compression of k

resolution steps. NRES is beneficial because it derives smaller clauses. Pushing further
this idea, we identify two situations where a small number of resolution steps derive
smaller clauses. The first case corresponds to Triangle-Resolution (Tri-RES with 2 steps
of resolution, similar to 2-RES in [7]):

{(l ∨ h ∨ A, u), (l̄ ∨ q ∨ A, v), (h̄ ∨ q ∨ A, w)} ≡

{

(q ∨ A, m), (h ∨ q ∨ A, m1 	 m), (h̄ ∨ q ∨ A, w 	 m), (l ∨ h ∨ A, u 	 m1)
(l̄ ∨ q ∨ A, v 	 m1), (l ∨ h ∨ q̄ ∨ A, m1), (l̄ ∨ h̄ ∨ q ∨ A, m1)

}

where m = min{u, v, w}. Note that (q ∨ A, m) is smaller than any original clause.
The second case corresponds to 3-RES presented in [7]. We have extended it to a

(k + 1)-ary case (k + 1 steps of resolution) and we restrict it to binary clauses due to
space limitations. We will refer to it as Chain-RES:

{(h0∨h1, w1), (h1∨h2, w2), (h2∨h3, w3), . . . , (hk−1∨hk, wk), (h0, v1), (hk, v2)} ≡







(h0 ∨ h1, w1 	 m), (h1 ∨ h2, w2 	 m), (h2 ∨ h3, w3 	 m), . . . , (hk−1 ∨ hk, wk 	 m),

(h0 ∨ h1, m), (h1 ∨ h2, m), (h2 ∨ h3, m), . . . , (hk−1 ∨ hk, m),

(h0, v1 	 m), (hk, v2 	 m), (�, m)







where m = min{w1, w2, w3, . . . , wk−1, v1, v2} and k ≥ 1.

Remark 3 Given a formulaF , lower bounds computed by TRANSFORM(F ,NRES0 ,CHAIN-
RES) is the same as LB3(F) if k = 1.

4.3 Hyper Resolution with Hard clauses

When clauses are hard, it may be advantageous applying hyper resolution because it
does not generate new clauses. In fact, they are subsumed by the hard clauses. Consider:

Bin(l1, l2, . . . , lk) ≡















(l1 ∨ l2,>), (l1 ∨ l3,>), . . . , (l1 ∨ lk,>),

(l2 ∨ l3,>), (l2 ∨ l4,>), . . . , (l2 ∨ lk,>),
, . . . ,

(lk−1 ∨ lk,>)















4

 10

 100

 1000

 420 430 440 450 460 470 480 490 500

cp
u

tim
e

n. of edges (x 2 = n. of clauses)

(a) Max-CUT, 60 vars

LB4a
Max-DPLL

 10

 100

 1000

 10000

 500 600 700 800 900 1000

cp
u

tim
e

n. of clauses

(b) Max-2-SAT, 150 vars

UP
Max-DPLL

 1

 10

 100

 1000

 20 22 24 26 28 30

cp
u

tim
e

n. of variables

(c) Max-CSP

Medac
Max-DPLL

Fig. 1. Results on (a) Max-CUT , (b) Max-2-SAT and (c) Max-CSP. Note the logarithmic scale.

We have detected two typical cases where this situation appears: The first one is
called Hard-RESa:

{(l1 ∨ l2 ∨ . . . ∨ lk,>), Bin(l1, l2, . . . , lk), (l1, u1), (l2, u2), . . . (lk, uk)} ≡

{(�, m), (l1∨l2∨. . .∨lk,>), Bin(l1, l2, . . . , lk), (l1, u1	m), (l2, u2	m), . . . (lk, uk	m)}

where m = min{u1, . . . , uk} and k ≥ 2.
The second one is called Hard-RESb:

{(l1∨ l2∨ . . .∨ lk,>), Bin(l1, l2, . . . , lk), (h∨ l1, u1), (h∨ l2, u2), . . . , (h∨ lk, uk)} ≡

{

(h, m), (l1 ∨ l2 ∨ . . . ∨ lk,>), Bin(l1, l2, . . . , lk),
(h ∨ l1, u1 	 m), (h ∨ l2, u2), . . . , (h ∨ lk, uk 	 m)

}

where m = min{u1, u2, . . . , uk} and k ≥ 2.
We noticed that Hard-RESa and Hard-RESb are very effective in WCSP problems

with non-binary domains modelled as Max-SAT problems using direct encoding [14].
Note that in both cases the number of resolution steps is k.

5 Experimental Results

In this Section we evaluate the performance of Max-DPLL enhanced with the new infer-
ence rules against some state-of-the-art Max-SAT solvers. Our current implementation
only takes into account clauses of arity less than or equal to two (the number of such
clauses is O(n2) where n is the number of variables) for rules NRES0, NRES1, Tri-
RES and Chain-RES. Finally, NRESk, Hard-RESa and Hard-RESb with k > 1 are
applied as a preprocessing step. We compared our implementation, that we call MAX-
DPLL, with the following solvers: MAXSOLVER [15], LB4A [12], UP [11], MEDAC

[5]. Note that MEDAC and Max-DPLL enhanced with NRES0, NRES1, Chain-RES rule
(with k = 1, 2) introduced in this paper are deeply related. Hence, we will focus our
experiments in the novel rules binary Tri-RES, Chain-RES (with k > 2), Hard-RESa

and Hard-RESb.

Remark 4 Given a formula F , the lower bound computed by TRANSFORM(F ,NRES0

, NRES1 ,CHAIN-RES,TRI-RES,HARD-RESa ,HARD-RESb) is better than the one
computed by LB3(F).

We show the results of Max-DPLL and the second best solver for each comparison:

5

– Figure 1.a: MAX-CUT problems with 60 variables and varying the number of
edges. Max-DPLL is one order of magnitude faster than the second best solver
LB4a. In these problems, Tri-RES improves a lot the performance of our solver.

– Figure 1.b: Random MAX-2-SAT problems with 150 variables and varying the
number of clauses. Max-DPLL is two orders of magnitude faster than the second
best solver UP. The reason for the speed up are both Tri-RES and binary k-RES.

– Figure 1.c: Random Max-CSP sparse-tight problems modelled as Max-SAT using
direct encoding [14]. Hard-RESa and Hard-RESb improve a lot the performance of
Max-DPLL. The second best solver is Medac two orders of magnitude slower.

Remark 5 Given a formula F , lower bounds computed by TRANSFORM(F , NRES0

, NRES1 ,CHAIN-RES,TRI-RES, HARD-RESa ,HARD-RESb) and LB4(F) are in-
comparable.
In spite of the previous remark, we noticed that the first lower bound was usually better
than the second one empirically or that the overhead to compute the second one was not
worthwhile. However, we know that both techniques are powerful and complementary.
Hence, these two methods can be applied together: Given a Formula F1 the new hybrid
applies TRANSFORM(F1 ,NRES0 ,NRES1 ,CHAIN-RES,TRI-RES,HARD-RESa ,HARD-
RESb) until a fix point is reached. Let be F2 the transformed formula. Then it applies
LB4(F2). We have not tested it because a new implementation with efficient structures
for both methods is needed.

6 Conclusions and Future Work
In this paper we have introduced inference rules based on the resolution rule for Max-
SAT and we have studied their relation to previous works. The performance of a DPLL-
like algorithm has been dramatically improved by applying them at each node of the
search tree. While the current work was focussed in detecting specific cases where
resolution should be applied, we plan to investigate sophisticated methods for detecting
by themselves when applying resolution is profitable.

References
1. T. Alsinet, F. Manyà, and J.Planes. A max-sat solver with lazy data structures. In IBERAMIA, pages 334–342, 2004.
2. N. Bansal and V. Raman. Upper bounds for maxsat: Further improved. In ISAAC, pages 247–258, 1999.
3. B. Borchers and J. Furman. A two-phase exact algorithm for max-sat and weighted max-sat problems. J. Comb. Optim.,

2(4):299–306, 1998.
4. M. Davis, G. Logemann, and G. Loveland. A machine program for theorem proving. Communications of the ACM,

5:394–397, 1962.
5. S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting closer to full arc consistency in

weighted csps. In Proc. of the 19th IJCAI, 2005.
6. S. de Givry, J. Larrosa, P. Meseguer, and T. Schiex. Solving max-sat as weighted csp. In Proc. of the 9th CP, pages

363–376, Kinsale, Ireland, 2003. LNCS 2833. Springer Verlag.
7. F. Heras and J. Larrosa. New inference rules for efficient max-sat solving. In Proc. of the 21th AAAI, 2006.
8. J. Larrosa. Node and arc consistency in weighted csp. In Proceedings of the 18th AAAI, pages 48–53, 2002.
9. J. Larrosa and F. Heras. Resolution in max-sat and its relation to local consistency for weighted csps. In Proc. of the

19th IJCAI, 2005.
10. J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc-consistency. Artificial Intelligence, 159(1-2):1–26,

2004.
11. Chu Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation to compute lower bounds in branch and bound

max-sat solvers. In CP, pages 403–414, 2005.
12. H. Shen and H. Zhang. Study of lower bounds for max-2-sat. In Proceedings of the 19th AAAI, 2004.
13. F. Manya T. Alsinet and J. Planes. Improved branch and bound algorithms for max-sat. In SAT03, pages 408–415,

2003.
14. T. Walsh. Sat v csp. In CP-2000, pages 441–456, 2000.
15. Z. Xing and W. Zhang. Maxsolver: An efficient exact algorithm for (weighted) maximum satisfiability. Artificial

Intelligence, 164(1-2):47–80, 2005.

6

Suffix arrays and weighted CSPs

Student: Matthias Zytnicki
Supervisors: Christine Gaspin, Thomas Schiex

INRA Toulouse – BIA

Abstract. In this paper, we describe a new constraint that uses some
interesting data structure, the suffix array, well-known in pattern match-
ing. We show how it helps answering the question of non-coding RNA
detection in bio-informatics, and more precisely, finding the best hybrid
with a duplex constraint.

1 Introduction

Thanks to the recent major advances in molecular biology, the problem of the
detection of non-coding RNA (ncRNA) is now a hot topic in bio-informatics
(cf. [1] for review). A ncRNA is usually represented by a sequel of letters, or
nucleotides : A, C, G and T. An ncRNA also contains interactions —mainly A–T
and C–G— that are essential to its biological function. In this paper, we will
suppose we know the signature of a ncRNA family. The signature is the general
shape of all the ncRNAs that share a common biological function. Our aim is
the following: how can I get all the candidates matching a given signature, in a
sequence that may contains several billions of nucleotides?

Among the proposed formalisms used to solve this problem, one of the most
famous one uses statistical information in a context-free grammar that describes
this signature [5]. However, some complex ncRNA families cannot be described
within this formalism and [6] showed that only NP-complete formalisms may
correctly describe them. This favors a CSP model of the problem and such a
work has been been done in [7].

However, usual queries give hundred of thousands of solutions and, in prac-
tice, it is impossible to exploit this huge amount of solutions. Obviously, by look-
ing more carefully at the solutions, some are better than others and it would be
useful to give only the best ones to the user. This is why we used the weighted
CSP formalism to solve the ncRNA detection problem.

One interesting element of signature that we would like to model is the du-
plex. It is the ability from the ncRNA to hybridize, i.e. to develop a stretch
of interactions with a DNA strand, or another RNA. We would like to embed
this element of signature into a global constraint. Many formalisms have been
proposed (cf. [2] for review) to compute the underlying algorithm. Most of them
are based on a dynamic programming algorithm that computes a kind of edit

distance between a word and the factors of a long sequence. To save time and
space, these algorithms have been ported to different structures, such as the

7

suffix tree. This structure makes it possible to focus the search on the most
promising regions and dramatically speeds up the search. Recently, some pa-
pers [3, 4] also proposed the suffix array to solve this kind of problem, with an
enhancement that provides several advantages compared with the suffix tree,
with no drawback.

In this paper, we present a new global constraints that checks with a suffix
array whether there exists a word that matches (with possible errors) a factor
in a given long sequence.

2 The WCSP model

The weighted CSP (WCSP) [8] framework is an extension of the CSP, that makes
it possible to express preferences amoung solutions thanks to soft constraints.
It has already been applied in resource allocation, scheduling, combinatorial
auction, CP networks and probabilistic reasoning.

The valuation structures S = 〈E,⊕,≤〉 is the algebraic object that specifies
costs, where: E = [0..k] ⊆ N is the set of costs, k, which is the highest cost, can
possibly be∞, and it represents an inconstency; ≤ is the usual operator on N, ⊕,
the addition on E, is defined by ∀(a, b) ∈ N

2, a⊕ b = min{a + b, k}. A WCSP is
a tuple P = 〈S,X ,D, C〉, where: S is the valuation structure, X = {x1, . . . , xn}
is a set of n variables, D = {D(x1), . . . , D(xn)} is the set possible values of each
variable, or domains, and the size of the largest one is d, C = {c1, . . . , ce} is the
set of e soft constraints.

An assignment t on the set of variables Y ⊆ X is a function that associates to
each variable of Y one of its possible value: t = (y1 ← v1, . . . , ym ← vm). A soft
constraint ci involves a list of ri variables var(ci) = (y1, . . . , yri

) (ri is the arity

of ci), and it associates to every assignment t of the involved variables a cost ci(t)
in E. Given a constraint ci and an assignment t of var(ci), ci(t) = k means that
the constraint forbids the corresponding assignment. Another cost means the
assignment is permitted by the constraint with the corresponding cost. Given
an assignment t on the set Y of variables and another set X of variables such
that X ⊆ Y , the projection of t w.r.t. X , noted t|X , represents the assignment
of the variables of X to the values given by t. The cost of a total assignment
(i.e. of all the variables) t = (v1 ← x1, . . . , vn ← xn), noted V(t), is the sum
over all the cost functions: V(t) =

⊕
ci∈C

ci(t|var(ci)). A total assignment t is
consistent if V(t) < k. Finding a total consistent assignment with minimum cost
is a NP-hard problem. Observe that, if k = 1, a WCSP reduces to classic CSP.

In our model, as described in [7], the variables represent the positions on
the sequence of the elements of signature. The initial domain of the variables,
unless otherwise stated, will therefore be equal to the size of the sequence. The
constraints enforce the presence of the wished elements of signature between the
specified variables. Within this model, a solution is a position for each variable,
such that all the elements of signature specified by the constraints can be found.
Our aim is to find all the solutions of the problem, given a maximum cost k.

8

We will not describe here all the constraints used, and we will focus on the
duplex constraint. This constraints ensures that there exists a set of interactions
between our sequence (the main sequence) and another given sequence (the tar-

get sequence). It has four parameters: the target sequence, the minimum and
maximum sizes of the duplex, and the maximum number of errors in the inter-
action set. Similarly to the edit distance, the number of errors of a hybridization
is the number of nucleotides that does not interact with any other nucleotide,
plus the number of pair of nucleotides associated through a non-allowed inter-
action. The duplex constraint involves four variables: xi, xj , yk and yl. The x

variables represent positions on the main sequence, and the y variables, positions
on the target sequence. To solve the problem, we use a depth-first branch-and-
bound algorithm that maintains a extension of 2B-consistency adapted to soft
constraints, called bound arc consistency (BAC*, [9]).

In our implementation, the duplex constraint remains idle until the x variables
are assigned, and BAC* is only enforced on the y variables. In other words,
when the word on the main sequence is known, we have to find the minimum
cost of the constraint, when the y variables are assigned to their minimum and
maximum values of their domains. Thus, our aim will be to design a algorithm
that efficiently finds the minimum number of errors between a word and the
factors of a given subsequence bounded by the y variables.

3 Suffix arrays

The suffix tree is a tree with edges labeled with words and this data structure has
been widely used in pattern matching algorithms. Given a text, the paths from
the root node of its suffix tree and its terminal nodes enumerate all the suffixes
of this text (cf. Fig. 1(a)). It is a particularly convenient data structure, since
it requires linear space w.r.t. the size of the text, takes linear time to build, and
searching whether a word is contained in this text requires time proportionnal
to this word (and is independent in the size of the text).

However, given a sequence T of size m, its suffix array S also requires a linear
time to build, takes as much time to find a word, but requires a bit less space,
and lead to less cache misses, thanks to the array structure [4]. Basically, a suffix
array is an array where all the suffixes of a text are sorted through lexicographic
order (cf. Fig. 1(b)). Of course, only the position suf [i] of the first letter of each
suffix i is stored. Additional information is also stored on each line of the array.
First, the size of the longest common prefix (noted lcp) between the suffix of line
i and line i− 1 is inserted on line i (by convention, lcp[0] = 0).

(i, j) is called a l-interval iff: lcp[i] < l, ∀k ∈ (i, j], lcp[k] ≥ l, ∃k ∈ (i, j], lcp[k] =
l, and lcp[j+1] < l. These l-intervals can be compared with the nodes of the suf-
fix tree. It is an interior node if i 6= j, and it is a leaf if i = j. Using linear space,
we can build in linear time a function that, given a l-interval, gets their child
l′-intervals (i′, j′). With this function in hand, we can simulate a suffix tree with
our suffix array. Using the same notations, we will note letters(i, j) the factor
T [suf [i]..suf [i]+l], and letters((i, j)→ (i′, j′)) the factor T [suf [i]+l..suf [i]+l′].

9

C

TACCTACC

TAA

(a) the suffix tree

ATAC

AC

C

TAC

TATAC

i

1

2

3

4

5

3

1

4

2

0

0

1

0

0

suf lcp text

1

2
2

(b) the suffix array

Fig. 1. Two representations of TATAC

4 An algorithm for approximate matching

4.1 First algorithm

This algorithm takes as an input a word w of size n and a maximum edit distance
maxErr. It returns the minimum distance between w and the set of factors of T ,
or maxErr + 1 if this distance is greater than maxErr. It uses a hybridization
cost matrix chyb, that, given two nucleotides, returns the hybridization penalty
(0 being a perfect hybridization). cins is the penalty cost for a non-hybridized
nucleotide.

Let us explain first the function getCandidates(). It gets two strings, w and
b, of size s and t respectively, and try to hybridize them. It also takes maxErr

as a parameter, which gives the maximum allowed distance between w and b.
Basically, it is a simple Needleman-Wunsch dynamic programming algorithm.
The only difference is that it returns a list containing all the solutions with a
cost less than nbErr that are located on the last row or on the last column
of the dynamic programming matrix. If it is on the last row, then b has been
totally matched with a prefix of w; if it is on the last column, w has been totally
matched with a prefix of b. Each element of the solution list contains the number
of matched letters of the prefix, the score of the match, and a boolean that states
whether the solution is on the last row or on the last column.

The main function, getApproximateWord(), works as follows. On line 1, we
consider a l-interval, between the lines i and j in the array. We suppose that we
have matched prefw letters of w so far, and we have encountered nbErr errors.

The function getChildren() returns in constant time all the child intervals of
(i, j). The line 3 checks whether the considered child l′-interval is an interior node
or a leaf. In the former case, we try to match letters((i, j) → (i′, j′)) with the
remaining unmatched letters of w through the function getApproximateWord() on
line 4. If the flag f of an element returned by this function is set to true (line 5),
then all the letters of w have been matched and we may have a solution. If not
(line 6), then we have to continue the exploration. For that, we store the current
configuration (including the bounds and the lcp of the current interval, and the

10

Algorithm 1: Functions used for approximate search

Function getCandidates(string w, string b, int maxErr): list (int, int,bool)
for i ∈ [0..s] do mat[i][0] = i ; for j ∈ [1..t] do mat[0][j] = j ;
for i ∈ [1..s] do for j ∈ [1..t] do

mat[i][j]← min

8

<

:

mat[i− 1][j − 1] + chyb(w[i− 1], b[j − 1]),
mat[i− 1][j] + cins,

mat[i][j − 1] + cins

;

for j ∈ [0..t] do if (mat[s][j] ≤ maxErr) then list.add(j, mat[s][j], true) ;
for i ∈ [0..s] do if (mat[i][t] ≤ maxErr) then list.add(i, mat[i][t], false) ;
return list ;

Function getApproximateWord(string w, int maxErr): list(int, int, int)
stack.push(0, n− 1, 0, 0) ; min← maxErr + 1 ;
while (¬stack.empty()) do

(i, j, prefw, nbErr)← stack.pop() ;1

for (i′, j′) ∈ getChildren(i, j) do2

if (i′ 6= j′) then3

list← getCandidates(letters((i, j)→4

(i′, j′)), w[prefw..m − 1], maxErr − nbErr) ;
while (¬list.empty()) do

(len, score, f)← list.pop() ;
if (f) then min← min{nbErr + score, min} ;5

else stack.push(i′, j′, prefw + len, nbErr + score) ;6

else

list← getCandidates(letters((i, j)→7

(i′, i′)), w[prefw..m− 1], maxErr− nbErr);
while (¬list.empty()) do

(len, score, f)← list.pop() ;
if (f) then min← min{nbErr + score, min} ;8

return min ;

number of errors found so far) in a stack, that we will examine afterwards. If the
current child interval is a leaf (line 7), then there is only one possibility to match
the remaining unmatched letters of w. Thus, we simply call getCandidates() and
only keep the solutions that match all the letters of w on line 8.

4.2 Optimizations

Furthermore, we have implemented several optimizations. First, we observed
that the exploration often visits several times the same l-intervals with exactly
the same configuration, or even with less interesting configurations (they contain
more errors, with the same number of matched letters). Obviously, some work is
unnecessarily done. To avoid it, without using too much space, we store at each
node the last configuration that visited it.

11

Second, we propagate information between the y variables. For example, if
we have some information about the yk variable, then we may shrink the domain
of the yl variable, knowing the size of w, and the number of allowed errors.

Then, we tried to take advantage of the information given by the WCSP. For
instance, the solver might have reduced the bounds of the yk variable (which
states the beginning of the duplex in the target sequence), and this information
should be used to prune some branches of the suffix array. To achieve this dy-
namical pruning, we added on each l-interval (i, j) the smallest interval of S that
contains the factor letters(i, j), so that the values of yk that have been deleted
by the WCSP solver will never be explored by the suffix array.

A first, rough, evaluation of the worst time complexity of our algorithm
is (2m + maxErr)m+maxErr+1σmaxErrmmaxErr+2, where σ is the size of the
alphabet. On real life examples, where the main and the target sequences contain
several millions of nucleotides, enforcing this constraint usually takes not more
than a few seconds in the whole execution of the program. This is all the more
encouraging as our program finds all the solutions of the problem.

5 Conclusions and future work

In this paper we have presented a new constraint, dedicated to bio-informatics
problems (or, more generally, to text-based problems), that uses suffix arrays,
in an attempt of combining constraints with pattern matching algorithms. In
the future, we would like to compare our method with other existing ones, and
provide for an empirical evaluation of our approach.

References

1. Eddy, S.: Non-coding RNA genes and the modern RNA world. Nature Reviews 2

(2001)
2. Gusfield, D.: Algorithms On Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge Univ. Press (1997)
3. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: The enhanced suffix array and its appli-

cation to genome analysis. In: Second Workshop in Algorithms in Bioinformatics.
(2002)

4. Abouelhoda, M., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms (2004) 53–86

5. Eddy, S., Durbin, R.: RNA sequence analysis using covariance models. Nucleic
Acids Research 22 (1994) 2079–88

6. Vialette, S.: On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science 312 (2004) 223–249

7. Thébault, P., de Givry, S., Schiex, T., Gaspin, C.: Combining constraint processing
and pattern matching to describe and locate structured motifs in genomic sequences.
In: 5th Workshop On Modelling and Solving Problems With Constraints. (2005)

8. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc-consistency. Ar-
tificial Intelligence 159 (2004) 1–26

9. Zytnicki, M., Schiex, T., Gaspin, C.: A new local consistency for weighted CSP
dedicated to long domains. In: SAC 2006. (2006)

12

Symmetric Component Caching

Student:Matthew Kitching
Supervisor: Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada.
[kitching fbacchus]@cs.toronto.edu

1 Introduction

Caching is a powerful technique for improving the efficiency of backtracking search.
It involves remembering (caching) information at some previously visited nodes in the
search tree and using that information to prune nodes from the remaining search space.
In the context of CSPs formula caching corresponds to remembering the subproblem
that was solved at each previously visited node, and then using the cache to avoid solv-
ing the same subproblem more than once.

In [1] it is proved that formula caching can improve the worst case behavior of
backtracking from to where is the number of variables
and is the treewidth of the CSP graph. This can be a significant improvement in
practice. An alternate way of achieving an worst case bound is to perform search
with decomposition.

Caching can be easily combined with decomposition, we simply cache the compo-
nents encountered and solved during search. With caching we can improve the worst
case bound from to [2, 1].

In this paper we explore the use of component caching, i.e., search with decom-
position and caching, for solving constraint optimization problems (COPs). A number
of features make our approach an innovation over previous works. First, we develop
a technique that imposes no restriction on the variable ordering strategy used during
search. Second, we develop some new techniques and data structures for minimizing
the overhead of utilizing dynamic variable orderings during search. Third, we provide
a deeper integration between caching and branch and bound, used when solving COP.
And fourth, we show how the data structures we have developed for components al-
low us to also exploit symmetries. In particular, employing the techniques of [6] we
automatically detect and exploit component symmetries.

2 Background
Constraint Optimization Problems (COPs). A COP is specified by a tuple ,
where is a set of variables, is a domain of values for each variable (

), and is a set of constraints. Each constraint is a function defined over a
subset of , called the . maps every instantiation of the variables in its scope
to a real number. A solution to a COP is an assignment to the variables in such that

is maximized, where is the subset of consisting of
the assignments to the variables in . Hard constraints are accommodated by
assigning violating assignments . The value of a COP , is simply the
value that is achieved by a solution.

13

Reduced COPs. During backtracking we explore nodes that have been reached by mak-
ing assignments to some set of variables. At node where the set of assignments has
been made, the search must solve a sub-problem that is the reduction of the original
COP by . Let be the original COP, be the set of variables
assigned in , and be the set of constraints that have been fully instantiated
by . The reduction of by , , is a new COP with ,
i.e., the variables not assigned by , and , i.e., the
reduction of the constraints not fully instantiated by . The reduction of an individual
constraint by , , is the new constraint whose scope is and
whose value on a set of assignments is .

Components. A component of a COP is a COP formed
from a subset of the variables and constraints of , i.e., and . Its essential
property is that it is disjoint from the rest of . In particular, .
A component is itself a COP and thus it has a set of optimal solutions. Since shares
no constraints with the rest of , the optimal solutions of consist of pairs of optimal
solutions: an optimal solution of and an optimal solution to the rest of . Thus we
can solve independently of the rest of .

3 Component Caching Search (CCS) with Branch and Bound
When we solve a COP we provide a bound . We require that , so
we can abort the computation of whenever we determine that it is less than or
equal to . For any branching variable the value of is the maximum value that
we can achieve over all possible assignments to . Each assignment yields some
immediate value from the constraints that are fully instantiated by the assignment,
along with some collection of components that have to be recursively solved. These
components must yield more than in value for to be viable. Given
upper bounds on the value that each component can achieve, we have that each individ-
ual component must yield at least sum of the upper bounds of the other
components. Hence, we can pass this new lower bound to the recursive computation
the component. This computation might improve the bounds on the component’s value,
so after we return we can utilize these improved bounds in the bound we pass to the
next component. Similarly, if the value we compute for is greater than , we
can update to this higher value: there is no point in trying another assignment that
yields a lower value than .

Our innovation for achieving a full integration of branch and bound with caching is
to cache two values with every component , a lower bound, and an upper bound

with . The first time we encounter in the search we
can initialize these bounds to problem specific values. If the computation of ’s value is
aborted by detecting that it cannot achieve the value we need in this context, we might
still be able to improve the bounds on ’s value. Our caching scheme allows us to retain
this improved information so that the next time we encounter , we can continue the
computation of its value with its new better lower bound thus improving the efficiency
of the new computation. The new computation might again be aborted, but we can
again update the cached bound with information gathered from the new computation.
This process stops if we eventually compute the component’s exact value.

14

3.1 Component Templates

There are two operations in CCS+BBwhich have a non-trivial impact on the cost of pro-
cessing each node of the search tree. These are breaking up into components, which
can be done with a depth-first search over its CSP graph, and cache, which naively
requires searching among fairly complex reduced COP structures.

With unrestricted variable ordering, as employed here, we have to find alternate
ways of implementing these operations efficiently. Here, we accomplish this by clus-
tering related components into groups, and representing the entire group, along with a
cache specific to the group, in a component template.

The key idea is that of a dependency set. Consider a component of the original
COP created after some variable assignments have been made. contains some vari-
ables and the set of reduced constraints. Each constraint of is a constraint of that
has been reduced by some set of instantiated variables. We define the dependency set
of , , to be the set of assigned variables that reduced its constraints.

Assigning the dependency variables caused the component to be created. Once we
have a component we can observe that any instantiation of its dependency variables will
create a component over the same set of variables. All such components have the same
dependency set, and they all contain the same set of variables.

A component template is used to store such groups of structurally similar compo-
nents. We call the components covered by a template the instances of the template, and
use to indicate that the component is an instance of template . A compo-
nent template, , consists of four items. (1) The set of component variables common
to all of its instances, , (2) the set of dependency variables, , com-
mon to all of its instances, (3) the set of constraints of the original COP that contain a
variable from in their scope, , and (4) a cache used to store
the upper and lower bounds of template’s instances, .

Let the component be an instance of the template , , and let be
the set of assignments to that uniquely determines . We note two things.
First, reduced by are precisely the set of reduced components in , and
second once we have the template we can access ’s bounds by using to index into

: . Thus cache lookup is reduced to array indexing, just as in
the approaches that utilize restricted variable ordering. The only thing we need to do is
first find the template .

We say that a template is triggered when one of its instances appears in the reduced
COP at a node of the search tree. The template cannot be triggered until all of its de-
pendency variables are assigned, and this event can be efficiently detected using watch
variable techniques that monitor the status of a single watch variable from the depen-
dency set of each stored component template. When a variable is assigned, we check
all of the templates it is watching, either updating their watches or testing to see if all
of their component variables are unassigned. If by this check we efficiently detect that

has all of its dependency variables and none of its component variables assigned,
then we can trigger . Once a template is triggered we know that one of its instances
is a component of the current reduced COP, and we can retrieve the bounds for this
component by indexing with the current assignments to .

15

CCS+BB(,LB,) /* Template version */
1. if return(0,0)
2. := select variable from [] to branch on
3. CompTs := all component templates triggered by assigning
4. rest := with all variables and constraints in CompTs removed

then remove from [rest] and add it to [rest]
5. NewCompTs := Break rest into new component templates, and

place each component into the permanent template store
6. CompTs := NewCompTs CompTs
7. foreach
8. :=
9. Constraint Propagation
10. cv := sum of the values of all constraints C of

that have become fully instantiated by line 9.
11. foreach CompT CompsT := [CompT][]
12. foreach CompT CompsT
13. if LB-cv &&
14. LB := LB-cv-

15. ():= CCS+BB CompT , (LB ,),
16. (,) = (cv,cv) +
17. LB := (LB,)
18. (,) =
19. [][] := (,)
20. return(,)

Fig. 1. Component Caching Search with Branch and Bound and Templates

When search starts we detect components using depth-first search creating new tem-
plates for each component we detect. Each template can then be used during the rest
of the search to efficiently detect the appearance of any of its instances. Thus, when
faced with solving , we first find all triggered templates. Each triggered template dis-
connects its variables from . Now we only have to use depth-first search to detect
components in the remaining part of , which is more efficient than searching all of .

Lines 3-6 realize the template triggering method outlined above. Given that we
know we are about to instantiate , we can find all triggered templates. The instances
of these templates that will be created and processed in lines 7-17 will depend on the
value assigned to , but the triggering of the template is independent of ’s assign-
ment. Hence, we can find all triggered templates outside of the iteration over ’s val-
ues. Each of these triggered templates will have component variables that are a subset
of , dependency sets that are a subset of , and con-
straints that are a subset of : the instances of these templates are compo-
nents of instances of reduced by assignments to . We can then use depth-first
search over rest, the remaining constraints of , where is the reduction

16

of by making an assigned variable. That is is with removed from
and added to . This search breaks rest into disjoint templates.

3.2 Symmetric Caching

The final part of our contribution is to develop a technique for utilizing symmetry in
caching. Specifically, we develop a method where the cached bounds of a component
(i.e., a template instance) can be reused as bounds for a symmetric version of the com-
ponent. To accomplish this we adapt the techniques proposed in [6] to find symmetries
between templates.

Each template contains a subset of the constraints of the original COP. The vari-
ables in the scope of these constraints are either dependency variables or component
variables of . That is, . Using
the techniques described in [6] we can, for each template, build a coloured graph repre-
senting the constraints, dependency variables, and component variables of the template,
along with the original domains of these variables. Then using graph automorphism
software (in our case NAUTY [5]) we can quite efficiently detect if two templates
and are isomorphic when viewed as COPs. If they are then this means that every
assignment of the variables in can be mapped to an assign-
ment of the variables in such that these two assignments
have identical values in the COPs specified by and .

Once we have method for constructing a representation graph for each template,
we further restrict the graph so that dependency variables are given a different colour
from component variables. This forces any isomorphism between two templates to map
dependency variables to dependency variables. With such a formulation, it can easily
be shown that we can lookup bounds on instances of in ’s symmetric cache:

.
To utilize this idea in CCS+BB we add some extra information to each template.

At the time we build a new template we also construct its graph representation. We
then search the previously stored templates to see if any of them are isomorphic. If an
isomorphic template is found, we compute , the isomorphism between assignments
to the dependency variables of the new template to assignments to the dependency
variables of the old template. Finally, the cache interface of the new template is set so
that it first applies then accesses the cache of the old template.

4 Empirical Results

We have implemented our approach and have tried it on the Maximum Density Still Life
problem. For a full description of the problem, and the state of the art on this problem,
see [4].

We solved Maximum Density Still Life using five different algorithms, all adapted
from the EFC [3] solver, always using GAC as our constraint propagation algorithm.
All experiments were run on a 2.2 GHz Pentium IV with 6GB of memory.

The algorithms we tested were. (1) a standard Branch and Bound algorithm (BB)).
(2) Component Branch and Bound (C+BB). This version searches for components and

17

Size SCCS+BB CCS+BB T+BB C+BB BB
nodes time nodes time nodes time nodes time nodes time

4 1205 0 1739 0 1807 0 1806 0 899 0

5 7325 0 7555 0 8358 0 18632 0.24 6337 0

6 56044 0.5 105442 1.1 219546 2.0 189815 2.5 193757 1.5

7 739337 8.2 824354 9.2 1.7* 16.9 2.3* 34.33 5.3* 42.1

8 3.4* 39.4 6.6* 73.8 2.7* 254.6 2.3* 332.2 3.1* 2207

9 7.1* 915.7 9.7* 1234.0 5.0* 5581.9 4.2* 6951.2 NA

10 1.7* 2505.0 5.6* 7845.4 NA NA NA

Table 1. Nodes Searched and Time taken in CPU secs.

solves them separately. C+BB does not used templates, nor does it employ a cache.
(3) Template Branch and Bound (T+BB) is a template version of C+BB. Its only im-
provement over C+BB is the use of templates to improve component detection. (4)
Component Caching Search + Branch and Bound (CCS+BB) extends T+BB by acti-
vating the template cache. (5) Symmetric Component Caching Search + Branch and
Bound (SCCS+BB) extends CCS+BB by allowing symmetric caching.

We see that decomposition (C+BB) yields significant improvements over standard
branch and bound (BB) decreasing the size of the search tree. Since T+BB does not
employ caching, it does not reduce the size of C+BB’s search tree (except for heuristic
reasons), but T+BB is able to use template triggering to improve the efficiency of de-
tecting components. CCS+BB makes a further improvement by activating the template
caches, which results in a significant decrease in the size of the search space over T+BB.
Finally, SCCS+BB makes an improvement by allowing symmetric caching which pro-
vides another significant decrease in the size of the search space.

5 Conclusions

We have presented an algorithm which incorporates search with decomposition, caching,
and symmetric use of the cache, while mitigating much of the computational cost asso-
ciated with such techniques.

References

1. F. Bacchus, S. Dalmao, and T. Pitassi. Algothims and complexity results for sat and bayesian
inference. FOCS 2003, pages 340–351, 2003.

2. Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126:5–41, 2001.
3. G. Katsirelos. Efc constraint solver, 2004. http://www.cs.toronto.edu/gkatsi/efc.
4. J. Larrosa, E. Morancho, and D. Niso. On the practical applicability of bucket elimination:

Still-life as a case study. Journal of Artificial Intelligence Research, 23:412–440, 2005. In
Workshop on Preferences and Soft Constraints, 2005.

5. Brendan D. McKay. Nauty. available at http://cs.anu.edu.au/people/bdm/nauty/.
6. Jean-Francois Puget. Automatic detection of variable and value symmetries. In International

Conference on Principles and Practice of Constraint Programming, pages 475–489, 2005.

18

Retroactive Ordering for Dynamic Backtracking

Students: Roie Zivan, Moshe Zazone, Uri Shapen
Supervisor: Amnon Meisels,

{zivanr,moshezaz,shapenko,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Dynamic Backtracking (DBT) is a well known algorithm for solving
Constraint Satisfaction Problems. In DBT , variables are allowed to keep their
assignment during backjump, if they are compatible with the set of eliminating
explanations. A previous study has shown that when DBT is combined with
variable ordering heuristics it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) [1]. The special feature of DBT , keeping valid
elimination explanations during backtracking, can be used for generating a new
class of ordering heuristics. In the proposed algorithm, the order of already as-
signed variables can be changed. Consequently, the new class of algorithms is
termed Retroactive DBT.
The proposed algorithm exploits the fact that a newly assigned variable can have
a smaller current domain than variables which were assigned before it. The newly
assigned variable can be moved to a position in front of assigned variables with
larger domains and as a result prune the search space more effectively. The ex-
perimental results presented in this paper show an advantage of the new class of
heuristics and algorithms over standard DBT and over CBJ. All algorithms tested
were combined with forward-checking and used a Min-Domain heuristic.

1 Introduction

Conflict directed Backjumping (CBJ) is a technique which is known to improve the
search of Constraint Satisfaction Problems (CSP s) by a large factor [4, 7]. Its efficiency
increases when it is combined with forward checking [8]. The advantage of CBJ over
standard backtracking algorithms lies in the use of conflict sets in order to prune un-
solvable sub search spaces [8]. The down side of CBJ is that when such a backtrack
(back-jump) is performed, assignments of variables which were assigned later than the
culprit assignment are discarded.

Dynamic Backtracking [5] improves on standard CBJ by preserving assignments
of non conflicting variables during back-jumps. In the original form of DBT, the cul-
prit variable which replaces its assignment is moved to be the last among the assigned
variables. In other words, the new assignment of the culprit variable must be consistent
with all former assignments.

Although DBT saves unnecessary assignment attempts and therefore was proposed
as an improvement to CBJ , a later study by Baker [1] has revealed a major drawback of
DBT . According to Baker, when no specific ordering heuristic is used, DBT performs

19

better than CBJ . However, when ordering heuristics which are known to improve the
run-time of CSP search algorithms by a large factor are used [6, 2, 3], the performance
of DBT is slower than the performance of CBJ . This phenomenon is easy to explain.
Whenever the algorithm performs a back-jump it actually takes a variable which was
placed according to the heuristic in a high position and moves it to a lower position.
Thus, while in CBJ , the variables are ordered according to the specific heuristic, in
DBT the order of variables becomes dependent on the algorithm’s behavior [1].

In order to leave the assignments of non conflicting variables without a change
on backjumps, DBT maintains a system of eliminating explanations (Nogoods) [5].
As a result, the DBT algorithm maintains dynamic domains for all variables and can
potentially benefit from the Min-Domain (fail first) heuristic.

The present paper investigates a number of improvements to DBT that use radical
versions of the Min-Domain heuristic. First, the algorithm avoids moving the culprit
variable to the lowest position in the partial assignment. This alone can be enough to
eliminate the phenomenon reported by Baker [1].

Second, the assigned variables which were originally ordered in a lower position
than the culprit variable can be reordered according to their current domain size.

Third, a retroactive ordering heuristic in which assigned variables are reordered
is proposed. A retroactive heuristic allows an assigned variable to be moved upwards
beyond assigned variables as far as the heuristic is justified.

If for example the variables are ordered according to the Min-Domain heuristic, the
potential of each currently assigned variable to have a small domain is fully utilized.
We note that although variables are chosen according to a Min-Domain heuristic, a
newly assigned variable can have a smaller current domain than previously assigned
variables. This can happen because of two reasons. First, as a result of forward-checking
which might cause values from the current variables’ domain to be eliminated due to
conflicts with unassigned variables. Second, as a result of multiple backtracks to the
same variable which eliminate at least one value each time. Therefore, the exploitation
of the heuristic properties can be done, not only by choosing the next variable to be
assigned, but by placing it in its right place among the assigned variables after it is
assigned successfully.

The combination of the three ideas above was found to be successful in the empirical
study presented in the present paper.

2 Retroactive Dynamic Backtracking

We assume in our presentation that the reader is familiar with both DBT following [1]
and CBJ [8].

The first step in enhancing the desired heuristic (Min-Domain in our case) for DBT
is to avoid the move forward in the resulting order, of variables that the algorithm back-
tracks to (i.e. culprit variables). One way to do this is to try to replace the assignment
of the culprit variable and leave the variable in the same position.

The second step is to reorder the assigned variables that have a lower order than the
culprit assignment which was replaced. This step takes into consideration the possibility
that the replaced assignment of a variable that lies higher in the order has the potential
to change the size of the current domains of the already assigned variables that are
ordered after it. The simplest way to perform this step is to reassign these variables
using a Min-Domain heuristic.

20

Retroactive FC DBT
1. var list← variables;
2. assigned list← φ;
3. pos← 1;
4. while (pos < N)
5. next var← select next var(var list);
6. var list.remove(next var);
7. assign(next var);
8. report solution;

procedure assign(var)
10. for each (value ∈ var.current domain)
11. var.assignment← value;
12. consistent← true;
13. forall (i ∈ var list)

and while consistent
14. consistent← check forward(var, i);
15. if not (consistent)
16. nogood← resolve nogoods(i);
17. store(var, nogood);
18. undo reductions(var, pos);
19. else
20. nogood← resolve nogoods(pos);
21. lastVar← nogood.RHS variable;
21. newPos← select new pos(var, lastVar);
22. assigned list.insert(var, newPos);
23. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
24. check forward(var, var 1);
25. update nogoods(var, var 1);
26. forall (var 2 ∈ var list)
27. update nogoods(var, var 2);
28. pos← pos+1;
29. return;
30. var.assignment← Nil;
31. backtrack(var);

procedure backtrack(var)
32. nogood← resolve nogoods(var);
33. if (nogood = φ)
34. report no solution;
35. stop;
36. culprit← nogood.RHS variable;
37. store(culprit, nogood);
38. culprit.assignment← Nil;
39. undo reductions(culprit, pos culprit);
40. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
41. undo reductions(var 1, pos var 1);
42. var 1.assignment← Nil;
43. var list.insert(var 1);
44. assigned list.remove(var 1);
45. pos← pos culprit;

procedure update nogoods(var 1, var 2)
46. for each (val ∈

{var 2.domain - var 2.current domain})
47. if not (check(var 2, val, var 1.assignment))
48. nogood← remove eliminating nogood

(var 1, val);
49. if not (∃var 3 ∈ nogood and

pos var 3 < pos var 1)
50. nogood← 〈var 1.assignment→

var 2 6= val〉;
51. store(var 2, nogood);

Fig. 1. The Retroactive FC DBT algorithm

The third step derives from the observation that in many cases the size of the current
domain of a newly assigned variable is smaller than the current domains of variables
which were assigned before it.

Allowing a reordering of assigned variables enables the use of heuristic information
which was not available while the previous assignments have been performed. This
takes the Min-Domain heuristic to a new level and generates a radical new approach.
Variables can be moved up in the order, in front of assigned variables of the partial
solution. As long as the new assignment is placed after the most recent assignment
which is in conflict with one of the variable’s values, the size of the domain of the
assigned variable is not changed.

In the best ordering heuristic proposed by the present paper, the new position of
the assigned variable in the order of the partial solution is dependent on the size of
its current domain. The heuristic checks all assignments from the last up to the first

21

assignment which is included in the union of the newly assigned variable’s eliminating
Nogoods. The new assignment will be placed right after the first assigned variable with
a smaller current domain.

Figures 1 presents the code of Retroactive Forward Checking Dynamic Backtrack-
ing (Retro FC DBT).

Introducing Forward Checking into Retroactive DBT is more complicated than in
the case of standard DBT . After an assignment is performed all inconsistent values
must be removed not only from the domains of unassigned variables but also from the
domains of assigned variables with a lower priority than the new assignment.

2.1 Correctness of Retroactive DBT

For lack of space we only present an outline of the correctness proof of the Retroactive
DBT algorithm. We first assume the correctness of the standard DBT algorithm (as
proven in [5]) and prove that after the changes made for forward checking and for
retroactive heuristics, it is still sound, complete and it terminates.

Soundness is immediate since after each successful assignment the partial solution
is consistent. Therefore, when the partial solution includes an assignment for each
variable the search is terminated and a consistent solution is reported. �

To prove the algorithm is complete we prove that the set of Nogoods which can be
generated by Retroactive DBT is included in the set of Nogoods generated by DBT.

Last, we need to prove that the algorithm terminates. In order to do so, it is enough
to show that the same partial solution cannot be generated twice.

3 Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to mea-
sure time in logical steps to eliminate implementation and technical parameters from
affecting the results. The number of constraints checks serves as the measure in our
experiments [9, 7].

Experiments were conducted on random CSPs of n variables, k values in each do-
main, a constraints density of p1 and tightness p2 (which are commonly used in exper-
imental evaluations of CSP algorithms [10]). Two sets of experiments were performed.
In the first set the CSPs included 15 variables (n = 15) and in the second set the CSPs
included 20 variables (n = 20). In all of our experiments the number of values for each
variable was 10 (k = 10). Two values of constraints density were used, p1 = 0.3 and
p1 = 0.7. The tightness value p2, was varied between 0.1 and 0.9, in order to cover all
ranges of problem difficulty. For each of the pairs of fixed density and tightness (p1, p2),
50 different random problems were solved by each algorithm and the results presented
are an average of these 50 runs.

Three algorithms were compared, Conflict Based Backjumping (CBJ), Dynamic
Backtracking (DBT) and Retroactive Dynamic Backtracking (Retro DBT). In all of
our experiments all the algorithms use a Min-Domain heuristic for choosing the next
variable to be assigned. In the first set of experiments, the three algorithms were imple-
mented without forward-checking.

Figure 2 (a) presents the number of constraints checks performed by the three al-
gorithms on low density CSPs (p1 = 0.3). The CBJ algorithm does not benefit from
the heuristic when it is not combined with forward-checking. The advantage of both

22

(a) (b)
Fig. 2. CCs performed by DBT, CBJ and Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7.

(a) (b)
Fig. 3. CCs performed by FC DBT, FC CBJ and FC Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7.

versions of DBT over CBJ is therefore large. Retroactive DBT improves on standard
DBT by a large factor as well. Figure 2 (b) present the results for high density CSPs
(p1 = 0.7). Although the results are similar, the differences between the algorithms are
smaller for the case of higher density CSPs..

In our second set of experiments, each algorithm was combined with Forward-
Checking [8]. This improvement enabled testing the algorithms on larger CSPs with
20 variables

Figure 3 (a) presents the number of constraints checks performed by each of the
algorithms. It is very clear that the combination of CBJ with forward-checking im-
proves the algorithm and makes it compatible with the others. This is easy to explain
since the pruned domains as a result of forward-checking enable an effective use of the
Min-Domain heuristic. Both FC CBJ and Retroactive FC DBT outperform FC DBT.
Retroactive FC DBT performs better than FC CBJ. Figures 3 (b) presents similar re-
sults for higher density CSPs. As before, the differences between the algorithms are
smaller when solving CSPs with higher densities.

23

4 Discussion

Variable ordering heuristics such as Min-Domain are known to improve the perfor-
mance of CSP algorithms [6, 2, 3]. This improvement results from a reduction in the
search space explored by the algorithm. Previous studies have shown that DBT does
not preserve the properties of variable ordering heuristics since it dynamically places
variables during backtracking in a different position than the original position which
was selected by the heuristic. As a result, DBT was found to perform poorly compared
to CBJ [1]. The Retroactive DBT algorithm, presented in this paper, combines the
advantages of both previous algorithms by preventing the placing of variables in a po-
sition which does not support the heuristic and allowing the reordering (or reassigning)
of assigned variables with lower priority than the culprit assignment after a backtrack
operation.

We have used the mechanism of Dynamic Backtracking which by maintaining elim-
inating Nogoods, allows variables with higher priority to be reassigned while lower pri-
ority variables keep their assignment. These dynamically maintained domains enable to
take the Min-Domain heuristic to a new level. Standard backtracking algorithms use
ordering heuristics only to decide on which variable is to be assigned next. Retroactive
DBT enables the use of heuristics which reorder assigned variables. Since the sizes
of the current domains of variables are dynamic during search, the flexibility of the
heuristics which are possible in Retroactive DBT enables a dynamic enforcement of
the Min-Domain property over assigned and unassigned variables.

The ordering of assigned variables requires some overhead in computation when
the algorithm maintains consistency by using Forward Checking. This overhead was
found by the experiments presented in this paper to be worth the effort since the overall
computation effort is reduced.

References

[1] Andrew B. Baker. The hazards of fancy backtracking. In Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI ’94), Volume 1, pages 288–293, Seattle, WA,
USA, July 31 - August 4 1994. AAAI Press.

[2] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency processing.
Constraint Processing (LNCS 923), pages 157–169, 1995.

[3] R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfaction problems.
Artificial Intelligence, 136:2:147–188, April 2002.

[4] Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
[5] M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:25–46,

1993.
[6] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence, 14:263–313, 1980.
[7] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algorithms.

Artificial Intelligence, 21:365–387, 1997.
[8] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intel-

ligence, 9:268–299, 1993.
[9] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction prob-

lems. Artificial Intelligence, 81:81–109, 1996.
[10] B. M. Smith. Locating the phase transition in binary constraint satisfaction problems. Arti-

ficial Intelligence, 81:155 – 181, 1996.

24

A Simple Distribution-Free Approach to the
Max k-Armed Bandit Problem

Student: Matthew J. Streeter1

Supervisor: Stephen F. Smith2

Computer Science Department and
Center for the Neural Basis of Cognition1 and

The Robotics Institute2

Carnegie Mellon University
Pittsburgh, PA 15213

{matts,sfs}@cs.cmu.edu

Abstract. The max k-armed bandit problem is a recently-introduced
online optimization problem with practical applications to heuristic search.
Given a set of k slot machines, each yielding payoff from a fixed (but un-
known) distribution, we wish to allocate trials to the machines so as to
maximize the maximum payoff received over a series of n trials. Previ-
ous work on the max k-armed bandit problem has assumed that payoffs
are drawn from generalized extreme value (GEV) distributions. In this
paper we present a simple algorithm, based on an algorithm for the clas-
sical k-armed bandit problem, that solves the max k-armed bandit prob-
lem effectively without making strong distributional assumptions. We
demonstrate the effectiveness of our approach by applying it to the task
of selecting among priority dispatching rules for the resource-constrained
project scheduling problem with maximal time lags (RCPSP/max).

1 Introduction

In the classical k-armed bandit problem one is faced with a set of k slot machines,
each having an arm that, when pulled, yields a payoff drawn independently at
random from a fixed (but unknown) distribution. The goal is to allocate trials to
the arms so as to maximize the cumulative payoff received over a series of n trials.
Solving the problem entails striking a balance between exploration (determining
which arm yields the highest mean payoff) and exploitation (repeatedly pulling
this arm).

In the max k-armed bandit problem, the goal is to maximize the maximum
(rather than cumulative) payoff. This version of the problem arises in practice
when tackling combinatorial optimization problems for which a number of ran-
domized search heuristics exist: given k heuristics, each yielding a stochastic
outcome when applied to some particular problem instance, we wish to allocate
trials to the heuristics so as to maximize the maximum payoff (e.g., the maximum
number of clauses satisfied by any sampled variable assignment, the minimum
makespan of any sampled schedule). Cicirello and Smith (2005) show that a max

25

k-armed bandit approach yields good performance on the resource-constrained
project scheduling problem with maximum time lags (RCPSP/max).

1.1 Motivations

All previous work on the max k-armed bandit problem has assumed that pay-
offs are drawn from generalized extreme value (GEV) distributions. A random
variable Z has a GEV distribution if

P[Z ≤ z] = exp

(
−
(

1 +
ξ(z − µ)

σ

)− 1
ξ

)

for some constants µ, σ > 0, and ξ. The assumption is justified by the Extremal
Types Theorem [5], which singles out the GEV as the limiting distribution of
the maximum of a large number of independent identically distributed (i.i.d.)
random variables.

In this work, we do not assume that the payoff distributions belong to any
specific parametric family. Roughly speaking, our approach will work best when
the following two criteria are satisfied.

1. There is a (relatively low) threshold tcritical such that, for all t > tcritical,
the arm that is most likely to yield a payoff > t is the same as the arm most
likely to yield a payoff > tcritical. Call this arm i∗.

2. As t increases beyond tcritical, there is a growing gap between the probability
that arm i∗ yields a payoff > t and the corresponding probability for other
arms. Specifically, if we let pi(t) denote the probability that the ith arm
returns a payoff > t, the ratio pi∗ (t)

pi(t)
should increase as a function of t for

t > tcritical, for any i 6= i∗.

Figure 1 illustrates a set of two payoff distributions that satisfy these as-
sumptions.

1.2 Related Work

The classical k-armed bandit problem was first studied by Robbins [10] and
has since been the subject of numerous papers; see Berry and Fristedt [2] and
Kaelbling [6] for overviews.

The max k-armed bandit problem was introduced by Cicirello and Smith
[3, 4], whose experiments with randomized priority dispatching rules for the
RCPSP/max form the basis of our experimental evaluation in §4.

2 Chernoff Interval Estimation

In this section we present and analyze a simple algorithm, Chernoff Interval Es-
timation, for the classical k-armed bandit problem. In §3 we use this approach
as the basis for Threshold Ascent, an algorithm for the max k-armed bandit

26

0

0.2

0.4

0.6

0.8

1

t

P
r[

p
a
y
o

ff
 >

 t
]

Arm 1

Arm 2

growing gap

tcritical

Fig. 1. A max k-armed bandit instance on which Threshold Ascent should perform
well.

problem. Chernoff Interval Estimation is simply the well-known interval estima-
tion algorithm [6, 7] with confidence intervals derived using Chernoff’s inequality.
Despite its simplicity, the algorithm’s regret bound is state of the art. In par-
ticular, when the mean payoff returned by each arm is small (relative to the
maximum possible payoff) our algorithm has much better performance than the
recent algorithm of [1], which is identical to our algorithm except that confidence
intervals are derived using Hoeffding’s inequality.

We assume we are given a budget of n pulls and that there are k arms, each
of which returns payoffs between 0 and 1. We denote by µi the (unknown) mean
payoff returned by the ith arm, and define µ∗ = max1≤i≤k µi.

Procedure ChernoffIntervalEstimation(n, δ):
1. Initialize xi ← 0, ni ← 0 ∀i ∈ {1, 2, . . . , k}.
2. Repeat n times:

(a) î← arg maxi U(µ̄i, ni), where µ̄i = xi

ni
and

U(µ, n) =

{
µ + α+

√
2nµα+α2

n if n > 0
∞ otherwise

where α = ln
(

2nk
δ

)
.

(b) Pull arm î, receive payoff R, set xî ← xî + R, and set
ni ← ni + 1.

Lemma 1. During a run of ChernoffIntervalEstimation(n, δ) it holds with prob-
ability at least 1 − δ

2 that for all arms i ∈ {1, 2, . . . , k} and for all n repetitions
of the loop, U(µ̄i, ni) ≥ µi.

Proof. Omitted. ut

27

Lemma 2. During a run of ChernoffIntervalEstimation(n, δ) it holds with prob-
ability at least 1− δ that each suboptimal arm i (i.e., each arm i with µi < µ∗)
is pulled at most 3α

µ∗
1

(1−√yi)2
times, where yi = µi

µ∗ and α = ln
(

2nk
δ

)
.

Proof. Omitted. ut

Theorem 1. The expected regret incurred by ChernoffIntervalEstimation(n, δ)
is at most

2
√

3µ∗n(k − 1)α + δµ∗n

where α = ln
(

2nk
δ

)
.

Proof. Omitted. ut

3 Threshold Ascent

To solve the max k-armed bandit problem, we use Chernoff Interval Estimation
to maximize the number of payoffs that exceed a threshold T that varies over
time. Initially, we set T to zero. Whenever s or more payoffs > T have been re-
ceived so far, we increment T . We refer to the resulting algorithm as Threshold
Ascent. The code for Threshold Ascent is given below. For simplicity, we assume
that all payoffs are integer multiples of some known constant ∆.

Procedure ThresholdAscent(s, n, δ):
1. Initialize T ← 0 and nR

i = 0, ∀i ∈ {1, 2, . . . , k}, R ∈
{0,∆, 2∆, . . . , 1−∆, 1}.

2. Repeat n times:
(a) While

∑k
i=1 Si(T) ≥ s do:

T ← T + ∆

where Si(t) =
∑

R>t nR
i is the number of payoffs > t

received so far from arm i.
(b) î← arg maxi U

(
Si(T)

ni
, ni

)
, where ni =

∑
R nR

i and

U(µ, n) =

{
µ + α+

√
2nµα+α2

n if n > 0
∞ otherwise

where α = ln
(

2nk
δ

)
.

(c) Pull arm î, receive payoff R, and set nR
i ← nR

i + 1.

The parameter s controls the tradeoff between exploration and exploitation.
To understand this tradeoff, it is helpful to consider two extreme cases.

Case s = 1. ThresholdAscent(1, n, δ) is equivalent to round-robin sampling.
When s = 1, the threshold T is incremented whenever a payoff > T is ob-
tained. Thus the value Si(T)

ni
calculated in 2 (b) is always 0, so the value of

28

U
(

Ii(T)
ni

, ni

)
is determined strictly by ni. Because U is a decreasing function of

ni, the algorithm simply samples whatever arm has been sampled the smallest
number of times so far.

Case s =∞. ThresholdAscent(∞, n, δ) is equivalent to ChernoffIntervalEstima-
tion (n, δ) running on a k-armed bandit instance where payoffs > T are mapped
to 1 and payoffs ≤ T are mapped to 0.

4 Evaluation on the RCPSP/max

Following Cicirello and Smith [3, 4], we evaluate our algorithm for the max k-
armed bandit problem by using it to select among randomized priority dispatch-
ing rules for the resource-constrained project scheduling problem with maximal
time lags (RCPSP/max). We consider the five randomized priority dispatching
rules in the set H = {LPF, LST,MST,MTS,RSM}. See Cicirello and Smith
[3, 4] for a complete description of these heuristics.

Briefly, in the RCPSP/max one must assign start times to each of a number
of activities in such a way that certain temporal and resource constraints are
satisfied. Such an assignment of start times is called a feasible schedule. The
goal is to find a feasible schedule whose makespan is as small as possible, where
makespan is defined as the maximum completion time of any activity. For a more
complete description, see [9].

4.1 Results

We evaluate our approach on a set I of 169 RCPSP/max instances from the
ProGen/max library [11]. For each instance I ∈ I, we ran each heuristic h ∈ H
10,000 times, storing the results in a file. Using this data, we created a set K
of 169 five-armed bandit problems (each of the five heuristics h ∈ H represents
an arm). After the data were collected, makespans were converted to payoffs by
multiplying each makespan by −1 and scaling them to lie in the interval [0, 1].

For each instance K ∈ K, we ran three max k-armed bandit algorithms,
each with a budget of n = 10, 000 pulls: Threshold Ascent with parameters
n = 10, 000, s = 100, and δ = 0.01, the QD-BEACON algorithm of Cicirello
and Smith [4], and an algorithm that simply sampled the arms in a round-robin
fashion. Cicirello and Smith describe three versions of QD-BEACON; we use
the one based on the GEV distribution. For each instance K ∈ K, we define
the regret of an algorithm as the difference between the minimum makespan
(which corresponds to the maximum payoff) sampled by the algorithm and the
minimum makespan sampled by any of the five heuristics (on any of the 10, 000
stored runs of each of the five heuristics). Table 1 summarizes our results.

Examining Table 1, we see that of the eight max k-armed bandit strategies
we evaluated (Threshold Ascent, QD-BEACON, round-robin sampling, and the
five pure strategies), Threshold Ascent has the least regret and achieves zero
regret on the largest number of instances.

29

Table 1. Performance of eight heuristics on 169 RCPSP/max instances.

Heuristic Σ Regret P[Regret = 0]

Threshold Ascent 188 0.722
Round-robin sampling 345 0.556
LPF 355 0.675
MTS 402 0.657
QD-BEACON 609 0.538
RSM 2130 0.166
LST 3199 0.095
MST 4509 0.107

Acknowledgment. The work reported in this paper was sponsored in part
by the National Science Foundation under contract #9900298 and the CMU
Robotics Institute.

References

1. Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47:235–256, 2002a.

2. Donald. A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation of
Experiments. Chapman and Hall, London, 1986.

3. Vincent A. Cicirello and Stephen F. Smith. Heuristic selection for stochastic search
optimization: Modeling solution quality by extreme value theory. In Proceedings of
the 10th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 197–211, 2004.

4. Vincent A. Cicirello and Stephen F. Smith. The max k-armed bandit: A new model
of exploration applied to search heuristic selection. In Proceedings of AAAI 2005,
pages 1355–1361, 2005.

5. Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer-
Verlag, London, 2001.

6. Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press, Cambridge,
MA, 1993.

7. Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit prob-
lem. The Annals of Statistics, 15(3):1091–1114, 1987.

8. Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz. Solving
project scheduling problems by minimum cut computations. Management Science,
49(3):330–350, 2003.

9. Klaus Neumann, Christoph Schwindt, and Jürgen Zimmerman. Project Scheduling
with Time Windows and Scarce Resources. Springer-Verlag, 2002.

10. Herbert Robbins. Some aspects of sequential design of experiments. Bulletin of
the American Mathematical Society, 58:527–535, 1952.

11. C. Schwindt. Generation of resource–constrained project scheduling problems with
minimal and maximal time lags. Technical Report WIOR-489, Universität Karl-
sruhe, 1996.

30

Improving the Performance of Ant Algorithms
using Constraint Programming

Student: Broderick Crawford1,2 and Supervisor: Carlos Castro2

1 Engineering Informatic School, Pontifical Catholic University of Valparáıso, Chile
2 Informatic Department, Federico Santa Maŕıa Technical University, Chile

broderick.crawford@ucv.cl

Abstract. In this paper, we focus on the resolution of Crew Pairing
Optimization formulated as Set Partitioning Problem. We try to solve
it with Ant Colony Optimization algorithms and Hybridizations of Ant
Colony Optimization with Constraint Programming techniques. We rec-
ognize the difficulties of pure Ant Algorithms solving strongly constrained
problems. Therefore, we explore the addition of Constraint Programming
mechanisms in the construction phase of the ants so they can complete
their solutions. Computational results solving some test instances of the
problem are presented showing the advantages to use this kind of hy-
bridization.

Key words. Ant Colony Optimization (ACO), Constraint Programming
(CP), Crew Pairing Optimization, Arc Consistency (AC), Set Partition-
ing Problem (SPP).

1 Introduction

The Crew Pairing Optimization has been investigated for many years and this
problem continues challenging both scientists and software engineers. The basic
problem is to partition a given schedule of airline flights into individual flight
sequences called pairings. The pairing problem can be formulated as Set Parti-
tioning Problem (SPP) or equality-constrained Set Covering Problem (SCP) [2].
In this work, we solve some test instances of Airline Flight Crew Scheduling
with Ant Colony Optimization (ACO) algorithms and some hybridizations of
ACO with Constraint Programming (CP). There exist problems for which the
effectiveness of ACO is limited, among them the SPP [13]. The best performing
metaheuristic for SPP is a genetic algorithm due to Chu and Beasley [4]. There
already exists some first approaches applying ACO to the SCP [11]. More recent
works [10, 12, 9] apply Ant Systems to the SCP and related problems. Trying to
solve larger instances of SPP with ACO derives in a lot of unfeasible labeling
of variables, and the ants can not obtain complete solutions using their classic
transition rule. In this paper, we propose the addition of a lookahead mechanism
in the construction phase of ACO thus only feasible partial solutions are gener-
ated. The lookahead mechanism allows the incorporation of information about
the instantation of variables after the current decision. The idea differs from that
proposed by [15] and [8], these authors propose a look ahead function evaluating

31

the pheromone in the Shortest Common Supersequence Problem and estimating
the quality of a partial solution of a Industrial Scheduling Problem respectively.

This paper is organised as follows: Section 2 is dedicated to the presentation
of the problem. In Section 3, we describe the applicability of the ACO algo-
rithms for SPP. In Section 4, we present the basic concepts to adding Constraint
Programming techniques to ACO. In Section 5, we present results solving some
benchmarks available in the OR-Library of Beasley [3]. Finally, in Section 6 we
conclude the paper and give some perspectives for future research.

2 Problem Description

The resource planning in airlines is a very complex task, and without consid-
ering the fuel costs, the most important direct operating cost is the personnel.
The planning and scheduling of crews is usually considered as two optimization
problems: the crew pairing problem and the crew assignment problem (or roster-
ing problem) [1]. In this paper we focus on the pairing problem modelled under
the assumption that the set of feasible pairings and their costs are explicitly
available, and can be expressed as a Set Partitioning Problem. SPP is the NP-
complete problem of partitioning a given set into mutually independent subsets
while minimizing a cost function defined as the sum of the costs associated to
each of the eligible subsets. In the SPP matrix formulation we are given a m×n
matrix A = (aij) in which all the matrix elements are either zero or one. Ad-
ditionally, each column is given a non-negative cost cj . We say that a column
j can cover a row i if aij = 1. Let J denotes the set of the columns and xj a
binary variable which is one if column j is chosen and zero otherwise. The SPP
can be defined formally as follows:

Minimize f(x) =
n∑

j=1

cj × xj (1)

Subject to
n∑

j=1

aij × xj = 1; ∀i = 1, . . . ,m (2)

In this formulation, each row represents a flight leg that must be scheduled. The
columns represent pairings. Each pairing xj is a sequence of flights to be covered
by a single crew over a 2 to 3 day period. It must begin and end in the base city
where the crew resides. The optimization problem is to select the partition of
the minimum cost from a pool of candidate pairings.

3 Ant Colony Optimization for Set Partitioning Problems

The basic idea of ACO algorithms comes from the capability of real ants to find
shortest paths between the nest and food source. From a Combinatorial Opti-
mization point of view the ants are looking for good solutions. Real ants cooperate
in their search for food by depositing pheromone on the ground. An artificial ant

32

colony simulates this behavior implementing artificial ants as parallel processes
whose role is to build solutions using a randomized constructive search driven by
pheromone trails and heuristic information of the problem. An important topic
in ACO is the adaptation of the pheromone trails during algorithm execution to
take into account the cumulated search experience: reinforcing the pheromone
associated with components in good solutions and considering the evaporation
of the pheromone over time in order to avoid premature convergence. ACO can
be applied in a very straightforward way to SPP. The columns are chosen as
the solution components and have associated a cost and a pheromone trail [6].
Each column can be visited by an ant only once and until a final solution has
to cover all rows. A walk of an ant corresponds to the iterative addition of
columns to the partial solution obtained so far. Each ant starts with an empty
solution and adds columns until all rows are covered. A pheromone trail τj and
a heuristic information ηj are associated to each eligible column j. A column to
be added is chosen with a probability that depends of its pheromone trail and
the heuristic information [6, 12]. The most common form of the ACO decision
policy (Transition Rule Probability) when ants work with components is:

pk
j (t) =

τj ∗ ηβ
j∑

l/∈Sk

τl[ηl]β
if j /∈ Sk (3)

where Sk is the partial solution of the ant k. The β parameter controls how
important is η in the probabilistic decision. Setting good pheromone quantity
is not a trivial task [11], iteratively the initial pheromone deposited in each
component will be increased in relation to the frequency of the component in the
ants solutions and decreased by evaporation over time. In this work we divided
this frequency by the number of ants obtaining better results. In this paper we
use a dynamic heuristic information that depends on the partial solution of an
ant. It can be defined as ηj = ej

cj
, where ej is the so called cover value, that

is, the number of additional rows covered when adding column j to the current
partial solution, and cj is the cost of column j [6]. In other words, the heuristic
information measures the unit cost of covering one additional row.

But to determine if a column actually belongs or not to the partial solution
(j /∈ Sk) is not good enough. The traditional ACO decision policy, Equation 3,
does not work for SPP because the ants, in this traditional selection process of
the next columns, ignore the information of the problem constraints. And in the
worst case, in the iterative steps is possible to assign values to some variable
that will make impossible to obtain complete feasible solutions.

In this work, we use two instances of ACO: Ant System (AS) and Ant Colony
System (ACS) algorithms, the original and the most famous algorithms in the
ACO family [6]. In this paper we explore the addition of a lookahead mecha-
nism in the construction phase of ACO, the technique that we used is one of the
two basic techniques of Constraint Programming: Constraint Propagation. Also
called Local Consistency, Consistency Enforcing, Filtering or Narrowing Domain
Algorithms. Constraint Propagation is an efficient inference mechanism based on

33

the use of the information in the constraints. The two basic techniques of Con-
straint Programming are Constraint Propagation and Constraint Distribution.
The problem cannot be solved using constraint propagation alone, Constraint
Distribution or Search is required to reduce the search space until constraint
propagation is able to determine the solution. Constraint distribution splits a
problem into complementary cases once constraint propagation cannot advance
further. By iterating propagation and distribution, propagation will eventually
determine the solutions of a problem.

4 ACO with Constraint Programming

Recently, some efforts have been done in order to integrate Constraint Program-
ming techniques to ACO algorithms [14, 7]. An hibridization of ACO and CP
can be approached from two directions: we can either take ACO or CP as the
base algorithm and try to embed the respective other method into it. A form
to integrate CP into ACO is to let it reduce the possible candidates of the not
yet instantiated variables participating in the same constraints that the actual
variable. A different approach would be to embed ACO within CP. The point
at which ACO can interact with CP is during the labeling phase, using ACO
to learn a value ordering that is more likely to produce good solutions. In this
work, ACO uses CP in the variable selection (when adding columns to partial
solution). The CP algorithm used in this paper is Forward Checking with Back-
tracking. The algorithm is a combination of Arc Consistency Technique and
Chronological Backtracking [5]. It performs Arc Consistency between pairs of a
not yet instantiated variable and an instantiated variable, i.e., when a value is
assigned to the current variable, any value in the domain of a future variable
which conflicts with this assignment is removed from the domain. Adding For-
ward Checking to ACO for SPP means that columns are chosen if they do not
produce any conflict with the next column to be chosen. This reduces the search
tree and the overall amount of computational work done. But it should be noted
that in comparison with pure ACO algorithm, Forward Checking does additional
work when each assignment is intended to be added to the current partial so-
lution. Arc consistency enforcing always increases the information available on
each variable labeling.

5 Experiments and Results

Table 1 presents results when adding Forward Checking to the basic ACO algo-
rithms for solving test instances taken from the OR-Library [3]. The algorithms
has been run with the following parameters setting: influence of pheromone (al-
pha)=1.0, influence of heuristic information (beta)=0.5 and evaporation rate
(rho)=0.4 as suggested in [11, 12, 6]. The number of ants has been set to 120
and the maximum number of iterations to 160, so that the number of gener-
ated candidate solutions is limited to 19.200. For ACS the list size was 500 and

34

1 Procedure ACO+CP_for_SPP
2 Begin
3 InitParameters();
4 While (remain iterations) do
5 For k := 1 to nants do
6 While (solution is not completed) and TabuList <> J do
7 Choose next Column j with Transition Rule Probability
8 For each Row i covered by j do /* constraints with j */
9 feasible(i):= Posting(j); /* Constraint Propagation */
10 EndFor
11 If feasible(i) for all i then AddColumnToSolution(j)
12 else Backtracking(j); /* set j uninstantiated */
13 AddColumnToTabuList(j); /* TabuList = columns in partial solution or conflict*/
14 EndWhile
15 EndFor
16 UpdateOptimum();
17 UpdatePheromone();
18 EndWhile
19 Return best_solution_founded
20 End.

Fig. 1. ACO+CP ALGORITHM FOR SPP

Qo=0.5. Algorithms were implemented using ANSI C, GCC 3.3.6, under Mi-
crosoft Windows XP Professional version 2002. The effectiveness of Constraint
Programming improving the performance of Ant Algorithms is shown to the SPP.
Because the SPP is so strongly constrained the stochastic behavior of ACO was
improved with lookahead techniques in the construction phase, so that almost
only feasible partial solutions are induced.

Problem Rows(Constraints) Columns(Variables) Optimum Density AS ACS AS+FC ACS+FC
sppnw06 50 6774 7810 18.17 9200 9788 8160 8038
sppnw08 24 434 35894 22.39 X X 35894 36682
sppnw09 40 3103 67760 16.20 70462 X 70222 69332
sppnw10 24 853 68271 21.18 X X X X
sppnw12 27 626 14118 20.00 15406 16060 14466 14252
sppnw15 31 467 67743 19.55 67755 67746 67743 67743
sppnw19 40 2879 10898 21.88 11678 12350 11060 11858
sppnw23 19 711 12534 24.80 14304 14604 13932 12880
sppnw26 23 771 6796 23.77 6976 6956 6880 6880
sppnw32 19 294 14877 24.29 14877 14886 14877 14877
sppnw34 20 899 10488 28.06 13341 11289 10713 10797
sppnw39 25 677 10080 26.55 11670 10758 11322 10545
sppnw41 17 197 11307 22.10 11307 11307 11307 11307

Table 1. ACO WITH FORWARD CHECKING RESULTS. Table shows Problem code, Number of
rows (constraints), Number of columns (decision variables), Best known solution, Density, and Costs
obtained when applying AS and ACS with FC. An entry of ”X” in the table means no feasible
solution was found.

6 Conclusions and Future Directions

We have successfully combined Constraint Programming and ACO for the prob-
lem of set partitioning solving benchmarks of data sets. Our main conclusion
from this work is that we can improve ACO with CP. We have shown that it is
possible to add Arc Consistency to any ACO algorithms and the computational

35

results confirm that the performance of ACO is possible to improve with this
type of hibridization. Future versions of the algorithm will study the pheromone
treatment representation and the incorporation of available techniques in order
to reduce the input problem (Pre Processing) and improve the solutions given by
the ants (Post Processing). We also plan to extend our hybridization to improve
the ants solutions by other local search methods like Hill Climbing, Simulated
Annealing or Tabu Search.

References

1. E. Andersson, E. Housos, N. Kohl and D. Wedelin. Crew Pairing Optimization. In
Yu G.(ed.) Operations Research in the Airline Industry, Kluwer Academic Pub-
lishing, 1998.

2. E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, vol 18, pp
710–760, 1976.

3. J. E. Beasley. OR-Library:Distributing test problem by electronic mail. Journal
of Operational Research Society, vol 41(11), pp 1069–1072, 1990.

4. P. C. Chu and J. E. Beasley. Constraint handling in genetic algorithms: the set
partitoning problem. Journal of Heuristics, vol 4, pp 323–357, 1998.

5. R. Dechter and D. Frost. Backjump-based Backtracking for Constraint Satisfac-
tion Problems. Artificial Intelligence, vol 136, pp 147–188, 2002.

6. M. Dorigo and T. Stutzle. Ant Colony Optimization. MIT Press, USA, 2004.
7. F. Focacci, F. Laburthe and A. Lodi. Local Search and Constraint Programming.

In Handbook of metaheuristics, Kluwer, 2002.
8. C. Gagne, M. Gravel and W.L. Price. A Look-Ahead Addition to the Ant Colony

Optimization Metaheuristic and its Application to an Industrial Scheduling Prob-
lem. In J.P. Sousa et al., eds., Proceedings of the fourth Metaheuristics Interna-
tional Conference MIC’01, pp 79–84, 2001.

9. X. Gandibleux, X. Delorme and V. T’Kindt. An Ant Colony Algorithm for the
Set Packing Problem. In M. Dorigo et al., editor, Proceedings of ANTS 2004, vol
3172 of LNCS, pp 49–60. Springer, 2004.

10. R. Hadji, M. Rahoual, E. Talbi and V. Bachelet. Ant colonies for the set covering
problem. In M. Dorigo et al., editor, Proceedings of ANTS 2000, vol 1838 of LNCS,
pp 63–66. Springer, 2000.

11. G. Leguizamón and Z. Michalewicz. A new version of Ant System for subset
problems. In Proceedings of Congress on Evolutionary Computation CEC’99, pp
1459–1464, Piscataway, NJ, USA, 1999. IEEE Press.

12. L. Lessing, I. Dumitrescu and T. Stutzle. A Comparison Between ACO Algorithms
for the Set Covering Problem. In M. Dorigo et al., editor, Proceedings of ANTS
2004, vol 3172 of LNCS, pp 1–12. Springer, 2004.

13. V. Maniezzo and M. Milandri. An Ant-Based Framework for Very Strongly Con-
strained Problems. In M. Dorigo et al., editor, Proceedings of ANTS 2002, vol
2463 of LNCS, pp 222–227. Springer, 2002.

14. B. Meyer and A. Ernst. Integrating ACO and Constraint Propagation. In
M. Dorigo et al., editor, Proceedings of ANTS 2004, vol 3172 of LNCS, pp 166–177.
Springer, 2004.

15. R. Michel and M. Middendorf. An Island model based Ant system with lookahead
for the shortest supersequence problem. In Proceedings of PPSN 1998, vol 1498
of LNCS, pp 692–701. Springer, 1998.

36

Inferring Variable Conflicts for Local Search?

Student: Magnus Ågren
Supervisors: Pierre Flener and Justin Pearson

Department of Information Technology, Uppsala University, Sweden
{agren,pierref,justin}@it.uu.se

Abstract. For efficiency reasons, neighbourhoods in local search are of-
ten shrunk by only considering moves modifying variables that actually
contribute to the overall penalty. These are known as conflicting vari-
ables. We propose a new definition for measuring the conflict of a vari-
able in a model and apply it to the set variables of models expressed in
existential second-order logic extended with counting (∃SOL+). Such a
variable conflict can be automatically and incrementally evaluated. Fur-
thermore, this measure is lower-bounded by an intuitive conflict measure,
and upper-bounded by the penalty of the model. We also demonstrate
the usefulness of the approach by replacing a built-in global constraint
by an ∃SOL+ version thereof, while still obtaining competitive results.

1 Introduction

In local search, it is often important to limit the size of the neighbourhood
by only considering moves modifying conflicting variables, i.e., variables that
actually contribute to the overall penalty. See [4, 6, 8], for example.

We address the inference of variable conflicts from a formulation of a con-
straint. After giving necessary background information in Section 2, we propose
in Section 3 a new definition for measuring the conflict of a variable and ap-
ply it to the set variables of models expressed in existential second-order logic
extended with counting (∃SOL+) [5]. Such a variable conflict can be automat-
ically and incrementally evaluated. The calculated value is lower-bounded by
an intuitive target value, namely the maximum penalty decrease of the model
that may be achieved by only changing the given variable, and upper-bounded
by the penalty of the model. We demonstrate the usefulness of the approach
in Section 4 by replacing a built-in constraint by an ∃SOL+ version, while still
obtaining competitive results.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉, where X
is a finite set of variables, D is a finite set of domains, each Dx ∈ D containing
the set of possible values for x ∈ X , and C is a finite set of constraints, each
being defined on a subset of X and specifying their valid combinations of values.
? This research was partially funded by EuroControl project C/1.246/HQ/JC/04.

37

A variable S ∈ X is a set variable if its corresponding domain DS is 2U ,
where U is a common finite set of values of some type, called the universe.

Local search iteratively makes a small change to a current assignment of val-
ues to all variables (configuration), upon examining the merits of many such
changes, until a solution is found or allocated resources have been exhausted.
The configurations examined constitute the neighbourhood of the current con-
figuration, crucial guidance being provided by penalties and variable conflicts.

Definition 1. Let P = 〈X ,D, C〉 be a CSP. A configuration for P (or X) is a
total function k : X → ⋃

D∈D D. We use K to denote the set of all configurations
for a given CSP or set of variables, depending on the context. A neighbourhood
function for P is a function n : K → 2K. The neighbourhood of P with respect
to (w.r.t.) a configuration k ∈ K and n is the set n(k). The variable neigh-
bourhood for x ∈ X w.r.t. k is the subset of K reachable from k by changing
k(x) only: nx(k) = {` ∈ K | ∀y ∈ X : y 6= x → k(y) = `(y)}. A penalty
function of a constraint c ∈ C is a function penalty(c) : K → N such that (s.t.)
penalty(c)(k) = 0 if and only if (iff) c is satisfied w.r.t. k. The penalty of c w.r.t.
k is penalty(c)(k). A conflict function of c is a function conflict(c) : X ×K → N
s.t. if conflict(c)(x, k) = 0 then ∀` ∈ nx(k) : penalty(c)(k) ≤ penalty(c)(`). The
conflict of x w.r.t. c and k is conflict(c)(x, k).

Example 1. Let P = 〈{S, T}, {DS , DT }, {S ⊂ T}〉 where DS = DT = 2U and
U = {a, b, c}. A configuration for P is given by k(S) = {a, b} and k(T) = ∅,
or equivalently by k = {S 7→ {a, b}, T 7→ ∅}. The neighbourhood of P w.r.t. k
and the neighbourhood function for P that moves an element from S to T is
the set {ka = {S 7→ {b}, T 7→ {a}}, kb = {S 7→ {a}, T 7→ {b}}. The variable
neighbourhood for S w.r.t. k is the set nS(k) = {k, k1 = {S 7→ ∅, T 7→ ∅}, k2 =
{S 7→ {a}, T 7→ ∅}, k3 = {S 7→ {b}, T 7→ ∅}, k4 = {S 7→ {c}, T 7→ ∅}, k5 = {S 7→
{a, c}, T 7→ ∅}, k6 = {S 7→ {b, c}, T 7→ ∅}, k7 = {S 7→ {a, b, c}, T 7→ ∅}}. Let the
penalty and conflict functions of S ⊂ T be defined by:

penalty(S ⊂ T)(k) = |k(S) \ k(T)|+
(

1, if k(T) ⊆ k(S)

0, otherwise

conflict(S ⊂ T)(Q, k) = |k(S)\k(T)|+

8
><
>:

1, if Q = T and k(T) ⊆ k(S)

1, if Q = S and k(T) ⊆ k(S) and k(S) 6= ∅
0, otherwise

We have that penalty(S ⊂ T)(k) = 3. Indeed, we may satisfy P w.r.t. k by,
e.g., adding the three values a, b, and c to T . We also have that conflict(S ⊂
T)(S, k) = 2 and conflict(S ⊂ T)(T, k) = 3. Indeed, by removing the values a
and b from S, we may decrease the penalty of P by two. Similarly, by adding
the values a, b, and c to T , we may decrease the penalty of P by three.

We use existential second-order logic extended with counting (∃SOL+) for
modelling set constraints [1]. In the BNF below, the non-terminal symbol 〈S〉
denotes an identifier for a bound set variable S such that S ⊆ U , while 〈x〉 and
〈y〉 denote identifiers for bound variables x and y such that x, y ∈ U , and 〈a〉
denotes a natural number constant:

38

〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉
〈Formula〉 ::= (〈Formula〉) | (∀ | ∃)〈x〉 〈Formula〉

| 〈Formula〉 (∧ | ∨) 〈Formula〉 | 〈Literal〉
〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉

| 〈x〉 (< | ≤ | = | 6= | ≥ | >) 〈y〉
| |〈S〉| (< | ≤ | = | 6= | ≥ | >) 〈a〉

As a running example, consider the constraint S ⊂ T of Ex. 1. This may be
expressed in ∃SOL+ by Ω = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T))∧ (∃x(x ∈ T ∧ x /∈ S))).

We proposed a penalty function for ∃SOL+ formulas in [1], which was inspired
by [9]. For example, the penalty of a literal x ∈ S w.r.t. a configuration k is 0
if k(x) ∈ k(S) and 1, otherwise. The penalty of a conjunction (disjunction) is
the sum (minimum) of the penalties of its conjuncts (disjuncts). The penalty of
a universal (existential) quantification is the sum (minimum) of the penalties of
the quantified formula where the occurrences of the bound variable are replaced
by each value in the universe.

Example 2. Recall k = {S 7→ {a, b}, T 7→ ∅} of Ex. 1. Then penalty(Ω)(k) = 3.

3 Variable Conflicts of an ∃SOL+ Formula

The notion of abstract conflict measures the maximum possible penalty decrease
obtainable by only changing the value of the given variable. It is uniquely deter-
mined by the chosen penalty function:

Definition 2. Let P = 〈X ,D, C〉 be a CSP and let c ∈ C. The abstract conflict
function of c w.r.t. penalty(c) is the function abstractConflict(c) : X × K → N
s.t. abstractConflict(c)(x, k) = max{penalty(c)(k) − penalty(c)(`) | ` ∈ nx(k)}.
The abstract conflict of x ∈ X w.r.t. c and k ∈ K is abstractConflict(c)(x, k).

Example 3. The function conflict(S ⊂ T) of Ex. 1 gives abstract conflicts.

Similarly to our penalty function in [1], it is important to stress that the
calculation of the variable conflict defined next is automatable and feasible in-
crementally [3], as it is based only on the syntax of the formula and the semantics
of the quantifiers, connectives, and relational operators of ∃SOL+, but not on
the intended semantics of the formula.

Definition 3. Let F ∈ ∃SOL+, let S ∈ vars(F), and let k be a configuration
for vars(F). The conflict of S w.r.t. F and k is defined by:
(a) conflict(∃S1 · · · ∃Snφ)(S, k) = conflict(φ)(S, k)
(b) conflict(∀xφ)(S, k) =

P
u∈U

conflict(φ)(S, k ∪ {x 7→ u})
(c) conflict(∃xφ)(S, k) =

max{0} ∪ {penalty(∃xφ)(k)−
(penalty(φ)(k ∪ {x 7→ u})− conflict(φ)(S, k ∪ {x 7→ u})) | u ∈ U}

(d) conflict(φ ∧ ψ)(S, k) =
P{conflict(γ)(S, k) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(e) conflict(φ ∨ ψ)(S, k) = max{0} ∪ {penalty(φ ∨ ψ)(k)−
(penalty(γ)(k)− conflict(γ)(S, k)) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(f) conflict(|S| ≤ c)(S, k) = penalty(|S| ≤ c)(k)
(g) conflict(x ∈ S)(S, k) = penalty(x ∈ S)(k)

39

We only show cases for subformulas of the form |S| ♦ c and x 4 S where
♦ ∈ {≤} and 4 ∈ {∈}. The other cases are defined similarly.

Example 4. Recall once again k = {S 7→ {a, b}, T 7→ ∅} of Ex. 1. According to
Def. 3, we have that conflict(Ω)(S, k) = 2 and conflict(Ω)(T, k) = 3, i.e., the
same values as obtained by the handcrafted conflict(S ⊂ T) of Ex. 1.

The novelty of Def. 3 compared to the one in [8] lies in rules (c) and (e) for
disjunctive formulas, due to the different abstract conflict that we target (see [3]
for more details). The following example clarifies these rules in terms of (e).

Example 5. Consider F = (|S| = 5 ∨ (|T | = 3 ∧ |S| = 6)) and let k1 be a
configuration s.t. |k1(S)| = 6 and |k1(T)| = 4. Then penalty(F)(k1) = 1 and we
have conflict(|S| = 5)(S, k1) = 1 and conflict(|T | = 3 ∧ |S| = 6)(S, k1) = 0.
Rule (e) applies for calculating conflict(F)(S, k1), which, for each disjunct, gives
the maximum possible penalty decrease one may obtain by changing k1(S). This
is 1 for the first disjunct since we may decrease penalty(F)(k1) by 1 by changing
k1(S) as witnessed by penalty(F)(k1) − (penalty(|S| = 5)(k1) − conflict(|S| =
5)(S, k1)) = 1 − (1 − 1) = 1. It is 0 for the second disjunct since we cannot
decrease penalty(F)(k1) by changing k1(S) as witnessed by penalty(F)(k1) −
(penalty(|T | = 3∧|S| = 6)(k1)−conflict(|T | = 3∧|S| = 6)(S, k1) = 1−(1−0) = 0.
The maximum value of these is 1 and hence conflict(F)(S, k1) = 1.

Consider now k2 s.t. |k2(S)| = 4 and |k2(T)| = 4. Then penalty(F)(k2) = 1
and conflict(|T | = 3 ∧ |S| = 6)(T, k2) = 1. The maximum possible penalty
decrease one may obtain by changing k2(T) in the only disjunct for T is −1 as
witnessed by penalty(F)(k2)−(penalty(|T | = 3∧|S| = 6)(k2)−conflict(|T | = 3∧
|S| = 6)(T, k2) = 1−(3−1) = −1. But we may not have a negative conflict, hence
the union with {0} in (e). Indeed, we cannot decrease penalty(F)(k) by changing
k2(T) since even if we satisfy |k2(T) = 3|, the conjunct |k2(S) = 6| implies a
penalty larger than 1 which is the minimum penalty of the two disjuncts.

We now state some properties of variable conflicts compared to the abstract
conflict of Def. 2 and the formula penalty [1]. The proofs can be found in [3].

Proposition 1. Let F ∈ ∃SOL+, let k be a configuration for vars(F), and let
S ∈ vars(F). Then abstractConflict(F)(S, k) ≤ conflict(F)(S, k) ≤ penalty(F)(k).

Corollary 1. The function induced by Def. 3 is a conflict function w.r.t. Def. 1.

4 Practical Results and Conclusion

The progressive party problem [7] is about timetabling a party at a yacht club,
where the crews of certain boats (the guest boats) party at other boats (the
host boats) over a number of periods. The crew of a guest boat must party at
some host boat in each period. The spare capacity of a host boat is never to
be exceeded. The crew of a guest boat may visit a particular host boat at most
once. The crews of two distinct guest boats may meet at most once.

40

We use the same set-based model and local search algorithm as we did in [2].
The model includes AllDisjoint(X)(k) constraints that hold iff no two distinct
set variables in X = {S1, . . . , Sn} overlap. Assuming that this global constraint
is not built-in, we may use the following ∃SOL+ version instead:

∃S1 · · · ∃Sn∀x ((x /∈ S1 ∨ (x /∈ S2 ∧ · · · ∧ x /∈ Sn)) ∧
(x /∈ S2 ∨ (x /∈ S3 ∧ · · · ∧ x /∈ Sn)) ∧ · · · ∧ (x /∈ Sn−1 ∨ x /∈ Sn))

We have run the same classical instances as we did in [2], on a 2.4GHz/512MB
Linux machine. The following table shows the results for the ∃SOL+ and built-in
versions of the AllDisjoint constraint (mean run time in seconds of successful
runs out of 100 and the number of unsuccessful runs, if any, in parentheses).

∃SOL+ AllDisjoint Built-in AllDisjoint

H/periods (fails) 6 7 8 9 10 6 7 8 9 10

1-12,16 1.3 3.5 42.0 1.2 2.3 21.0
1-13 16.5 239.3 7.0 90.5
1,3-13,19 18.9 273.2 (3) 7.2 128.4 (4)
3-13,25,26 36.5 405.5 (16) 13.9 170.0 (17)
1-11,19,21 19.8 186.7 10.3 83.0 (1)
1-9,16-19 32.2 320.0 (12) 18.2 160.6 (22)

The run times for the ∃SOL+ version are only 2 to 3 times higher, though it
must be noted that efforts such as designing penalty and conflict functions as
well as incremental maintenance algorithms for AllDisjoint were not necessary.
Note also that the robustness of the local search algorithm does not degrade for
the ∃SOL+ version, as witnessed by the number of solved instances.

To conclude, we proposed a new definition for inferring the conflict of a vari-
able in a model and proved that any inferred variable conflict is lower-bounded
by the targeted value, and upper-bounded by the inferred penalty. The search is
indeed directed towards interesting neighbourhoods, as a built-in constraint can
be replaced without too high losses in run-time, nor any losses in robustness.

References

1. M. Ågren, P. Flener, and J. Pearson. Incremental algorithms for local search from
existential second-order logic. Proceedings of CP’05. Springer-Verlag, 2005.

2. M. Ågren, P. Flener, and J. Pearson. Set variables and local search. Proceedings of
CP-AI-OR’05. Springer-Verlag, 2005.

3. M. Ågren, P. Flener, and J. Pearson. Inferring variable conflicts for local search.
Tech. Rep. 2006-005, Dept. of Information Technology, Uppsala University, 2006.

4. P. Galinier and J.-K. Hao. A general approach for constraint solving by local search.
Proceedings of CP-AI-OR’00, 2000.

5. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
6. L. Michel and P. Van Hentenryck. A constraint-based architecture for local search.

Proceedings of OOPSLA’02, 2002.
7. B. M. Smith et al. The progressive party problem: Integer linear programming and

constraint programming compared. Constraints, 1:119–138, 1996.
8. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, 2005.
9. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-based combinators for local

search. Proceedings of CP’04. Springer-Verlag, 2004.

41

Improvements on the Applicability of Nonlinear

Constraint Solvers

Student: Leslie De Koninck?

Supervisor: Bart Demoen

Department of Computer Science, K.U.Leuven, Belgium

Abstract. Nonlinear constraints over the real numbers appear in many
application domains, like chemistry, economics or computer graphics.
Their use in Constraint Logic Programming environments have thusfar
been quite limited, because of a combination of performance issues and
commercial considerations. This research aims at improving the practical
applicability of nonlinear constraints in a CLP environment. We focus
in particular on interval-based constraint solving techniques. This paper
presents our research goals, our current results and ideas for future work.

1 Introduction

Constraint (Logic) Programming is nowadays an established method for solving a
wide variety of combinatorial problems. These are problems in which the problem
variables take a value from a finite domain of possibilities. Solving constraints
over other constraint domains is much less common practice. This is in particular
true for constraints over the real numbers R. For linear constraints over R,
algorithms from the Operations Research community are often used.

Nonlinear constraints over R appear in many practical applications, amongst
others in chemical engineering [12, 8], economics [25] and computer graphics [16].
These constraints can be solved by methods like cylindrical algebraic decompo-
sition [15], homotopy continuation [17] and most notably using techniques from
interval analysis [1]. Only the latter is able to support the incremental nature of
Constraint Logic Programming well.

Although much progress has been made in this area over the past decades,
the constraint domain R has not reached the same general acceptance as do
finite domain constraints. Reasons include the unpredictable nature of constraint
solving in R (both with respect to time complexity and with respect to reachable
solution precision) as well as the closed source nature of established nonlinear
Constraint Programming systems like ILOG Solver [20] or ECLiPSe [26].

The aim of this research is to improve the usability of nonlinear constraints
over a continuous domain, both by improving the solving techniques and by im-
proving the public availability of nonlinear systems. We focus on the integration

? Research Funded by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)

42

of nonlinear solving techniques in a Constraint Logic Programming environment,
in particular SWI-Prolog.

In Section 2 we present Constraint Handling Rules, a language designed for
implementing Constraint Logic Programming systems. In Section 3, we briefly
present interval-based techniques for nonlinear constraint solving. Section 4 gives
an overview of our current results and finally, Section 5 gives some directions for
future work.

2 Constraint Handling Rules

Constraint Handling Rules [7] is a rule-based language that was originally de-
signed for the implementation of Constraint Logic Programming systems. Over
the years, CHR has been used more and more as a general purpose programming
language, supported by the result that every algorithm can be implemented in
CHR in optimal time complexity [24]. CHR is now also available outside of its
original Prolog context, in languages like Haskell, Java [27] or Curry [10].

CHR is particularly suitable for symbolic constraint processing, as it al-
lows simplifying a conjunction of constraints and propagation of redundant con-
straints. The latter have proven useful in speeding up numerical constraint pro-
cessing techniques. CHR takes care of bookkeeping issues like constraint store
representation and marking which propagation rules have been tried already.
Finally, Constraint Handling Rules have been successfully used to combine dif-
ferent constraint solvers into a more powerful system.

Because of these advantages, we have chosen to focus our research on the
implementation of a nonlinear CLP system using CHR. This turns part of the
research into a strong proof of concept for CHR. We also take a look at how
certain disadvantages of CHR can be eliminated.

3 Interval-based Nonlinear Constraint Solving

In this section, we give a high level description of how interval arithmetic can be
used to solve nonlinear Constraint Programming problems. An interval x = [x, x]
is the closed set of reals {x ∈ R | x ≤ x ≤ x}. We denote the set of all intervals
by IR. In practice, we only consider intervals with floating point bounds.

3.1 Interval Extensions

An interval extension of a function f : R
n → R is an interval function F :

IR
n → IR satisfying ∀x ∈ x : f(x) ∈ F (x). In other words, it forms an outer

approximation of the function. An interval extension of a constraint c ⊆ R
n is

an interval constraint C ⊆ IR
n satisfying c(x) =⇒ C(x) for all real vectors x

and interval vectors x satisfying x ∈ x.
The most basic type of interval extensions is the natural interval extension.

It is formed by replacing each variable by its interval domain and replacing each
primitive operator or function by its interval arithmetic equivalent.

43

In general, different arithmetic expressions that denote the same real func-
tion, do not necessarily denote the same interval function. This is because interval
arithmetic does not have the same properties as real arithmetic. For instance,
although x − x = 0 for all real x, in interval arithmetic x − x = [0, 0] only if x

is an interval of zero width. Therefore, it is sometimes useful to rewrite a real
arithmetic expression into an equivalent one so as to get a more precise interval
extension. Often, so-called center forms are used for this. For example, using the
first order Taylor approximations gives us the Taylor interval extension.

Interval extensions are used to check constraint satisfaction for a whole range
of points. In this way, we can create a discretization of the continuous search
space into a finite number of intervals of a given precision. One can also use
interval extensions to create safe versions of iterative root-finding algorithms
like the Newton-Raphson method.

3.2 Consistency Techniques

Nonlinear constraint programming systems make use of local consistency tech-
niques, similar to the well known arc consistency or bounds consistency for finite
domain constraints. Constraint solving then consists of checking whether all con-
straints are consistent and if this is not the case, narrowing the domains of the
constraint variables until consistency is reached. Two often used consistencies
are box consistency and hull consistency [4]. They are described below.

Hull Consistency An n-ary constraint c is hull consistent with respect to variable
xi ∈ xi if its domain xi is the interval hull of the set

{xi ∈ xi | ∃x1, . . . , ∃xi−1, ∃xi+1, . . . , ∃xnc(x1, . . . , xn)}

Hull consistency can only be computed for constraints in which each variable
occurs only once. Other constraints are first decomposed by introducing new
variables for every variable occurrence and linking them by other constraints.
This weakens the strength of hull consistency because it is a local consistency
technique. We can use constraint inversion with respect to a variable that occurs
only once in a constraint to create a weaker form of hull consistency that is more
precise than using the decomposition [3].

Box consistency An n-ary constraint c is box consistent with respect to variable
xi ∈ xi if its domain xi = [xi, xi] satisfies the interval constraints

C(x1, . . . ,xi−1, xi,xi+1, . . . ,xn)

and

C(x1, . . . ,xi−1, xi,xi+1, . . . ,xn)

Box consistency is equivalent to hull consistency for constraints in which each
variable occurs only once. It is stronger than hull consistency on the decomposi-
tion of constraints in which variables occur more than once. On the other hand,
domain narrowing is considerably more expensive for box consistency compared
to hull consistency.

44

4 Current Results and Work in Progress

In this section, we give an overview of our results so far and of the topics that
we are currently working on.

4.1 INCLP(R)

Our first achievement is a new nonlinear CLP system called INCLP(R) [14],
available at [13] and which will soon be incorporated into the popular open
source Prolog distribution SWI-Prolog [28]. The main ideas on which the system
is based, with amongst others box consistency and the Taylor interval extension,
come from the Newton system [11] which also forms the basis for the nonlinear
solver of ILOG.

The INCLP(R) system combines box consistency with a form of hull consis-
tency based on constraint inversion, similar to the approach taken in [2]. De-
velopment versions offer different interval extensions. The system is the first
nonlinear CLP system built using Constraint Handling Rules. The system scales
well on typical benchmarks from the interval analysis community and improves
on ECLiPSe on benchmarks for which the constraint decomposition created by
hull consistency causes too little domain reduction.

4.2 Practical Implementation of Interval Extensions

There are many interval extensions which have nice theoretical properties, but
are very expensive to compute. An example is the slope interval extension [22, 21,
18]. Its implementation by Rump [22] uses intersections with the natural interval
extension of subterms to create an interval extension that is at least as good as
the natural interval extension and often better. The main disadvantage is that
it is computationally very expensive to calculate both forms for each subterm
and this decreases its practical usability considerably.

We can already reduce the computational cost by using the natural interval
extension alone for terms in which each variable occurs only once. In those
terms the so-called dependency problem does not occur and the natural interval
extension is optimal.1 We currently investigate how we can reduce the number
of interval evaluations even more without knowing the domains of the involved
variables and without reducing the precision of the interval extension.

4.3 Search Strategies in CHR

Another aspect that we work on is the implementation of different search strate-
gies using a Prolog CHR implementation. Prolog imposes its left to right depth
first search order on CHR implementations based on it. We have designed a

1 The dependency problem denotes the effect of overly wide interval extensions that
is caused by treating dependent terms as independent

45

source to source transformation to create a different execution order, in partic-
ular breadth first. In this transformation, we use the nonbacktrackable global
variables facility of SWI-Prolog to store changes to the CHR execution state so
that expensive computations do not have to be redone when changing between
branches. We have also extended the Refined Operational Semantics so that
different search strategies are supported.

5 Future Work

We plan to investigate further improvements on amongst others interval exten-
sions, other representations connected to interval arithmetic like affine arithmetic
[5], scheduling algorithms and search heuristics. We have already started to work
on the two aspects described below.

The INCLP(R) system uses an interval as the domain for its variables. An
alternative is to use unions of intervals. This allows us to store the effects of
domain splitting caused by division and even root extraction. The main difficulty
here is to avoid an exponential increase in the number of intervals. It has been
shown that this increase is not that drastic in practice because the constraint
that all intervals should be mutually exclusive becomes more difficult to satisfy
as the number of intervals increases [23].

Local consistency techniques like box consistency and hull consistency are of-
ten not able to do much domain pruning because they only look at one constraint
at a time. Higher order consistencies like bound consistency [4] can overcome this
problem, but are often computationally too expensive to be used in practice. We
are working on a consistency technique whose strength lies in between box con-
sistency and bound consistency and that can be made stronger or weaker by
using a technique similar to weak box consistency [9].

References

1. Frédéric Benhamou. Interval constraint logic programming. In Podelski [19].
2. Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois

Puget. Revising hull and box consistency. In ICLP, pages 230–244, 1999.
3. Martine Ceberio and Laurent Granvilliers. Solving nonlinear systems by constraint

inversion and interval arithmetic. In AISC, volume 1930 of Lecture Notes in Com-

puter Science. Springer, 2000.
4. Hélène Collavizza, François Delobel, and Michel Rueher. Comparing partial con-

sistencies. Reliable Computing, 5(3), 1999.
5. Luiz Henrique de Figueiredo and Jorge Stolfi. Affine arithmetic: concepts and

applications. Numerical Algorithms, 37(1-4), Dec 2004.
6. Michael Fink, Hans Tompits, and Stefan Woltran, editors. Proceedings of the

20th Workshop on Logic Programming. INFSYS Research Report 1843-06-02 (TU
Wien), 2006.

7. Thom W. Frühwirth. Constraint Handling Rules. In Podelski [19].
8. Chao-Yang Gau and Mark A. Stadtherr. Nonlinear parameter estimation using

interval analysis. AIChE Symp. Ser., 94(304), 1999.

46

9. Laurent Granvilliers, Frédéric Goualard, and Frédéric Benhamou. Box consistency
through weak box consistency. In ICTAI, 1999.

10. Michael Hanus. Adding Constraint Handling Rules to Curry. In Fink et al. [6].
11. Pascal Van Hentenryck, Laurent Michel, and Frédéric Benhamou. Newton - con-

straint programming over nonlinear constraints. Sci. Comput. Program., 30(1-2),
1998.

12. James Z. Hua, Joan F. Brennecke, and Mark A. Stadtherr. Reliable computation
of phase stability using interval analysis: Cubic equation of state models. Comput.

Chem. Eng., 20, 1996.
13. Leslie De Koninck. The INCLP(R) website.

http://www.cs.kuleuven.be/˜leslie/INCLPR/.
14. Leslie De Koninck, Tom Schrijvers, and Bart Demoen. INCLP(R) - Interval-based

nonlinear constraint logic programming over the reals. In Fink et al. [6].
15. Scott McCallum. Solving polynomial strict inequalities using cylindrical algebraic

decomposition. Comput. J., 36(5), 1993.
16. Don P. Mitchell. Robust ray intersection with interval arithmetic. In Proceedings

on Graphics interface, 1990.
17. Alexander Morgan and Andrew Sommese. Computing all solutions to polynomial

systems using homotopy continuation. Appl. Math. Comput., 24(2), 1987.
18. Humberto Muñoz and Ralph Baker Kearfott. Slope intervals, generalized gradients,

semigradients, slant derivatives, and csets. Reliable Computing, 10(3), 2004.
19. Andreas Podelski, editor. Constraint Programming: Basics and Trends, Châtillon

Spring School, Châtillon-sur-Seine, France, May 16 - 20, 1994, Selected Papers,
volume 910 of Lecture Notes in Computer Science. Springer, 1995.

20. Jean-François Puget. A C++ implementation of CLP. In Proceedings of the 2nd

Singapore Conference on Intelligent Systems, 1994.
21. Dietmar Ratz. A nonsmooth global optimization technique using slopes — the one

dimensional case. Journal of Global Optimization, 14(4), 1999.
22. Siegfried M. Rump. Expansion and estimation of the range of nonlinear functions.

Math. Comput., 65(216), 1996.
23. Rony Shapiro, Yishai A. Feldman, and Rina Dechter. On the complexity of interval-

based constraint networks. In MISC’99 Workshop on Applications of Interval

Analysis to Systems and Control, 1999.
24. Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and

complexity of Constraint Handling Rules. In Proceedings of the 2nd Workshop on

Constraint Handling Rules, October 2005.
25. John B. Taylor and Harald Uhlig. Solving nonlinear stochastic growth models: a

comparison of alternative solution methods. NBER Working Papers 3117, National
Bureau of Economic Research, Inc, 1990.

26. Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe: A platform for
constraint logic programming. ICL Systems Journal, 12(1), 1997.

27. Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-
friendly, flexible and efficient CHR system for Java. In Proceedings of the 2nd

Workshop on Constraint Handling Rules, October 2005.
28. Jan Wielemaker. An overview of the SWI-Prolog programming environment. In

Proceedings of the 13th International Workshop on Logic Programming Environ-

ments, December 2003.

47

Mini-bucket Elimination with Bucket

Propagation

Student: Emma Rollon
Supervisor: Javier Larrosa

Universitat Politecnica de Catalunya,
Jordi Girona 1-3, 08034 Barcelona, Spain

erollon@lsi.upc.edu, larrosa@lsi.upc.edu

Abstract. In this paper we introduce a new propagation phase that
Mini-bucket Elimination (MBE) should execute at each bucket. The pur-
pose of this propagation is to jointly process as much information as
possible. As a consequence, the undesirable lose of accuracy caused by
MBE when splitting functions into different mini-buckets is minimized.
We demonstrate our approach in scheduling and combinatorial auction,
where the resulting algorithm MBEp gives important percentage incre-
ments of the lower bound (typically 50% and up to 1566%) with only
doubling the cpu time.

1 Introduction

A soft CSP is a triplet (X ,D,F) where X is the set of variables, D is the set
of finite domain values and F is the set of functions. Each function f ∈ F
specifies how good is each different partial assignment of var(f). The usual task
of interest is to find a complete assignment t with minimum cost, if there is any.

Bucket elimination (BE) [1] is the reference algorithm to solve soft CSP
by complete inference. When problems are too difficult to be solved exactly,
approximation methods become the best option. Mini-bucket elimination (MBE)
[2] is arguably one of the best-known general approximation algorithms for soft
CSPs. It uses a control parameter z that allow us to trade time and space for
accuracy. The time and space complexity of MBE is exponential in z and it is
important to note that, with current computers, it is the space, rather than the
time, what prohibits the execution of the algorithm beyond certain values of z.

In this paper, we introduce a new propagation phase that MBE must execute
at each bucket. In this phase, mini-buckets are structured into a tree and costs
are moved along branches from the leaves to the root. As a result, the mini-
bucket root accumulates costs that will be processed together, while classical
MBE would have processed them independently. It is important to note that the
new propagation phase does not increase the complexity with respect classical
MBE. Our experiments on scheduling and combinatorial auctions show that
the addition of this propagation phase increases the quality of the lower bound
provided by MBE quite significant.

48

2 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) [1] works in two phases. In the first phase, the algorithm
selects a variable xi, sums all the functions mentioning xi (i.e., the bucket of
xi), and projects xi from the resulting function, eliminating the variable from
the problem. BE process each variable in turn, until no variable remains. The
outcome of the first phase is the optimal cost of the problem. The second phase
generates an optimal assignment of variables using the set of buckets that were
computed in the first phase. The time and space complexity of BE is exponential
in a structural parameter called induced width. In practice, it is the space and
not the time what makes the algorithm unfeasible in many instances.

Mini-bucket elimination (MBE) [2] is the approximation version of BE. Given
a control parameter z, MBE partitions buckets into smaller subsets called mini-
buckets such that their arity is bounded by z +1. Each mini-bucket is processed
independently. The outcome of the algorithm is a lower bound of the problem
optimum. In the second phase MBE computes a (non-necessarily optimal) assign-
ment t. The time and space complexity of MBE is exponential in z. Parameter
z allows us to trade time and space for accuracy, because greater values of z

increment the number of functions that can be included in each mini-bucket.
Therefore, the bounds will be presumably tighter. MBE constitutes a powerful
yet extremely general mechanism for lower bound computation.

3 Mini Buckets with Propagation

In this Section we define a refinement of MBE. It consists on performing an
arrangement of costs in each bucket before processing it. It has been shown that
in fair soft constraint frameworks, costs can be subtracted from one function
if they are properly summed to another in order to preserve the equivalence of
the problem [3, 4]. We incorporate this idea into MBE, at the bucket level. We
propose to transfer costs between minibuckets in order to accumulate as much
information as possible into one of them. This process is based on the concept of
function subtraction: Let f and h be two functions such that var(h) ⊆ var(f)
and ∀t, f(t) ≥ h(t). Their subtraction, denoted (f − h), is a new function with
scope var(f) defined as, (f − h)(t) = f(t) − h(t).

Let f and g be two arbitrary functions. The transfer of costs from f to g,
denoted M(f, g), is done sequentially in three steps:

h := f [var(f) ∩ var(g)]; f := f − h; g := g + h;

In words, function h contains costs in f that can be captured in terms of the
common variables with g. Hence, they can be kept either in h or in f . Then, this
costs are moved from f to g.

The following example illustrates and motivates the idea of moving costs in-
side MBE. Suppose that MBE is processing a bucket containing two functions f

and g, each one forming a mini-bucket. Variable xi is the one to be eliminated.

49

ix

f
f
t
t

x j

f
t
f
t

5
4
1
6

x i

t
t
f
f

xk

t
f
t
f

5

2
3
4

ix

f
f
t
t

x j

f
t
f
t

7
6
5
10

x i

t
t
f
f

xk

t
f
t
f 0

1
0
1

ixg

f
t

x j

4
1

ixf

f
t

xk

3
2

ixg

f
t

x j ixf

f
t

xk

(a)

g: f: g: f:

(b) (c) (d)

5
6

0
1

Fig. 1. Example of functions.

Standard MBE would process independently each minibucket, eliminating vari-
able xi in each function. Actually, that independent elimination of xi from each
mini-bucket causes the lose of accuracy from the lower bound of MBE. Ideally, f

and g should be processed together, but their information is split into two pieces
for complexity reasons. We propose to transfer costs from f to g (or conversely)
before processing the mini-buckets. The purpose is to put as much information as
possible in the same mini-bucket, so that all this information is jointly processed
as BE would do. Consequently, the pernicious effect of splitting the bucket into
mini-buckets will presumably be minimized.

Figure 1 depicts a numerical illustration. Consider functions f and g from
Figure 1 (a). If variable xi is eliminated independently, we obtain the functions
in Figure 1 (c). If the problem contains no more functions, the final lower bound
will be 3. Consider now the functions in Figure 1 (b) where costs have been moved
from f to g. Note that as f and g only share variable xi then h = f ↓ xk is defined
as h(false) = 2 and h(true) = 4. If variable xi is eliminated independently, we
obtain the functions in Figure 1 (d), with which the lower bound is 5.

The previous example was limited to two mini-buckets containing one func-
tion each. Nevertheless, the idea can be easily generalized to arbitrary mini-
bucket arrangements. First, we extend the concept of movement of costs to
deal with sets of functions. Let F and G be two sets of costs functions. Let
var(F) = ∪f∈F var(f), var(G) = ∪g∈Gvar(g) and Y = var(F) ∩ var(G). The
movement of costs from F to G is done sequentially in three steps:

h := (
∑

f∈F

f)[Y]; F := F ∪ {−h}; G := G ∪ {h};

where −h means that costs contained in h are to be subtracted instead of
summed, when evaluating costs of tuples on F .

At each bucket B, we construct a propagation tree T = (V, E) where nodes
are associated with mini-buckets and edges represent movement of costs along
branches from the leaves to the root. Each node waits until receiving costs from
all its children. Then, it sends costs to its parent. This flow of costs accumulates
and propagates costs towards the root.

The refinement of MBE that incorporates this idea is called MBEp. MBEp

(Figure 2) and MBE are very similar and, in the following, we discuss the main
differences. After partitioning the bucket into mini-buckets (line 3), MBEp con-

50

function MBEp
(z)

1. for each i = n..1 do

2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . ,Pk} := Partition(B, z);

5. (V, E) := PropTree({P1, . . . ,Pk});
6. Propagation((V, E));

7. for each j = 1..k do gj := ((

∑

f∈Pj

f) − hj) ↓ xi;

8. F := (F ∪ {g1, . . . , gk}) − B;

9. endfor

10. return(g1);

endfunction

procedure Propagation((V,E))

11. repeat

12. select a node j s.t it has received the messages from all its children;

13. hj := (

∑

f∈Pj

f)[var(Pj) ∩ var(Pparent(j))];

14. Pj := Pj ∪ {−hj};
15. Pparent(j) := Pparent(j) ∪ {hj};

16. until root has received all messages from its children;

endprocedure

Fig. 2. Mini-Bucket Elimination with Propagation. Given a WCSP (X ,D,F), the al-
gorithm returns a zero-arity function g1 with a lower bound of the optimum cost.

structs a propagation tree T = (V, E) with one node j associated to each mini-
bucket Pj . Then, costs are propagated (lines 6, 11-16). Finally, line 7 sums the
functions in the mini-buckets and eliminates variable xi. The resulting func-
tions are added to the problem in replacement of the bucket (line 8). Note that
procedure Propagation moves costs between mini-buckets preserving the set of
original functions.

Theorem 1. The time and space complexity of MBEp is O(dz+1) and O(dz),
respectively, where d is the largest domain size and z is the value of the control

parameter.

The success of the propagation phase of MBEp greatly depends on the flow
of information, which is captured in the propagation tree. Two ideas lead to
heuristically good propagation trees:

First observation: it seems more appropriate to move costs to a mini-bucket
where the costs go to a higher mini-bucket, so they have more chances to prop-
agate useful information. We associate to each mini-bucket Pj a binary number
Nj = bnbn−1 . . . b1 where bi = 1 iff xi ∈ Pj . We say that mini-bucket Pj is
smaller than Pk (noted Pj < Pk) if Nj < Nk.

Second observation: the number of common variables determines the arity
of the function that is used as a bridge in the cost transfer. The narrower the
bridge, the less information can be captured.

In accordance with the two previous observations, we construct the propaga-
tion tree as follows: the parent of mini-bucket Pu will be a mini-bucket Pw such
that Pu < Pw and they share a maximum number of variables. This strategy
combines the two criteria discussed above.

51

Instance z MBE(z) MBEp

r
(z) MBE

p

h
(z)

Lb. Time(sec.) % Time(sec.) % Time(sec.)

20 184247 827.63 1.6 1628.93 29.8 1706.6

1506 15 163301 25.43 -5.5 51.48 30.6 51.39

10 153274 1.33 -13.7 2.65 21.5 2.64

20 181184 814.55 7.1 1702.82 59.6 1919.48

1403 15 162170 27.82 7.3 55.94 57.3 56.9

10 146155 1.3 10.9 2.58 60.2 2.6

20 191258 1197.06 0.5 2537.64 42.3 2622.88

1405 15 169233 33.88 -2.3 93.88 54.9 81.17

10 142206 1.7 -25.3 3.51 64.7 3.5

20 191342 1415.91 -4.0 2935.78 53.8 3008.78

1407 15 166298 47.44 3.5 94.17 60.1 102.78

10 144264 2.03 13.8 4.19 68.6 4.23

20 5212 51.19 19.1 75.39 19.3 72.5

408 15 5200 2.11 18.7 3.29 19.3 3.41

10 2166 0.11 38.1 0.2 139.0 0.2

Fig. 3. Experimental results on Spot5 instances.

4 Experimental Results

The purpose of the experiments is to evaluate the effectiveness of the propagation
phase and the impact of the propagation tree on that propagation. To that end,
we compare the lower bound obtained with three algorithms: standard MBE,
MBE with bucket propagation using as a propagation tree a chain of mini-
buckets randomly ordered (i.e., MBEp

r), and MBE with bucket propagation
using a propagation tree heuristically built as shown in Section 3 (i.e., MBE

p
h).

For our first experiment, we consider instances from Spot5 satellite [5]. Some
instances include in their original formulation an additional capacity constraint
that we discard on this benchmark. Figure 3 shows the results1. Columns fifth
and sixth indicates for MBEp

r the percentage increment of the lower bound
measured as ((LbMBE

p

r
−LbMBE)/LbMBE)∗100 and its execution time. Columns

seventh and eighth reports the same information for MBE
p
h. The first thing

to be observed is that MBE
p
h increases the lower bound obtained with MBE

for all the instances. Moreover, when both MBEp
r and MBE

p
h increase the

lower bound, MBE
p
h is always clearly superior. Therefore, it is clear that an

adequate propagation tree impacts on the bounds obtained. Regarding MBE
p
h,

its percentage increment is up to 139% (e.g. instance 408). The mean percentage
increment is 54%, 38%, and 28% when the value of the control parameter z is
10, 15, and 20, respectively. Note that the effect of the propagation is higher
for lower values of z because, as we increase the value of z, the propagated
information decreases and the effect of the propagation is diminished. Moreover,
the lower bounds obtained with MBE

p
h(z = 10) outperforms the ones obtained

with MBE(z = 20) in almost all the instances. Regarding cpu time, MBE
p
h

is from 2 to 3 times slower than MBE. The reason is that cost functions are
evaluated twice. However, it is important to note that it is the space and not
the time what bounds the maximum value of z that can be used in practice.

1 For space reasons, we only report the results on some instances since the behavior
of the others is the same.

52

Instance z MBE MBE
p

r
MBE

p

h
Lb. % %

brock200-1 18 66 30.3 48.4
10 51 52.9 78.4

brock200-2 18 55 67.2 103.6
10 29 200 268.9

brock200-4 18 63 36.5 65.0
10 41 121.9 131.7

brock400-1 18 79 100 141.7
10 46 256.5 273.9

brock400-2 18 75 114.6 157.3
10 44 261.3 277.2

brock400-4 18 76 106.5 160.5
10 47 248.9 289.3

brock800-1 18 71 336.6 454.9
10 41 675.6 773.1

brock800-2 18 63 395.2 520.6
10 37 748.6 875.6

brock800-3 18 68 352.9 483.8
10 44 604.5 706.8

brock800-4 18 71 343.6 460.5
10 36 758.3 902.7

c-fat200-1 18 71 32.3 78.8
10 62 27.4 112.9

Instance z MBE MBE
p

r
MBE

p

h
Lb. % %

p-hat1000-1 15 85 380 654.1
10 63 577.7 873.0

p-hat1000-2 15 57 589.4 821.0
10 36 1013.8 1325

p-hat1500-1 15 69 802.8 1292.7
10 82 686.5 1021.9

p-hat1500-2 15 64 812.5 1112.5
10 45 1226.6 1566.6

p-hat1500-3 15 79 624.0 706.3
10 54 924.0 1111.1

p-hat300-1 18 62 112.9 195.1
10 48 187.5 306.2

p-hat300-2 18 61 121.3 168.8
10 38 247.3 328.9

p-hat500-1 18 74 170.2 301.3
10 50 330 524

p-hat500-2 18 75 178.6 248
10 39 407.6 556.4

p-hat500-3 18 93 125.8 169.8
10 50 300 338

p-hat700-1 15 66 340.9 581.8
10 52 482.6 711.5

Fig. 4. Experimental results on maxclique instances.

Therefore, the constant increase in time is not that significant as the space
complexity remains the same.

For our second experiment, we consider maxclique problems from the dimacs
benchmark [6]. Figure 4 reports the results for some representative instances (the
remaining instances follow the same pattern). As the behaviour of the cpu time is
the same as for the previous benchmark, we do not report this information. The
best results are obtained with MBE

p
h which obtains a percentage of increment of

1566% (see instance p-hat1500-2). In this case, the increase ranges from 14.6%
to 1566% when z is set to 10, and from 17.6% to 1292% for the highest value
of z. It is important to note that the bound obtained with MBE

p
h is always

higher than that of MBEp
r . For some instances, the percentage of increment of

MBE
p
h is more than 4 times higher the one obtained with MBEp

r (e.g. instance
c-fat200-1). Therefore, it is clear that an adequate propagation tree impacts on
the propagation phase and, as a consequence, on the bounds obtained.

References

1. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113 (1999) 41–85

2. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal
of the ACM 50 (2003) 107–153

3. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Arti-
ficial Intelligence 159 (2004) 1–26

4. Cooper, M.: High-order consistency in valued constraint satisfaction. Constraints
10 (2005) 283–305

5. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3) (1999) 293–299

6. Johnson, D.S., Trick, M.: Second dimacs implementation challenge: cliques, col-
oring and satisfiability. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. AMS 26 (1996)

53

Preprocessing QBF

Students: Jessica Davies and Horst Samulowitz
Supervisor: Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada.
[jdavies

�
horst

�
fbacchus]@cs.toronto.edu

Abstract. In this paper we investigate the use of preprocessing when solving
Quantified Boolean Formulas (QBF). Many different problemscan be efficiently
encoded as QBF instances, and there has been a great deal of recent interest and
progress in solving such instances efficiently. Here we showthat QBF instances
can be simplified using techniques related to those used for preprocessing SAT.
These simplifications can be performed in polynomial time, and are used to pre-
process the instance prior to invoking a worst case exponential algorithm to solve
it. We develop a method for preprocessing QBF instances thatis empirically very
effective. That is, the preprocessed formulas can be solvedsignificantly faster,
even when we account for the time required to perform the preprocessing. Our
preprocessor, Prequel, significantly improves the efficiency of a range of state-
of-the-art QBF solvers. Furthermore, Prequel is able to completely solve some
instances just by preprocessing, including some instancesthat to our knowledge
have never been solved before by any QBF solver.
An extended version of this paper was appears in the technical programme of CP
2006.

1 Introduction

QBF is a powerful generalization of SAT in which the variables can be universally
or existentially quantified (in SAT all variables are implicitly existentially quantified).
Current QBF solvers are typically limited to problems that are about 1-2 orders of mag-
nitude smaller than the instances solvable by current SAT solvers. Nevertheless, QBF
solvers continue to improve. Furthermore, many problems have a much more compact
encoding when quantifiers are available, so a quantified solver can still be useful even
if it can only deal with much smaller instances than a traditional solver.

In this paper we present a new technique for improving QBF solvers based on a
modification of techniques already used in SAT. Namely we preprocess the input for-
mula, without changing its meaning, so that it becomes easier to solve. As we demon-
strate below our technique can be extremely effective, sometimes reducing the time it
takes to solve a QBF instance by orders of magnitude.

2 QBF
A quantified boolean formula has the form� �� , where

�
is a propositional formula

expressed in CNF and� is a sequence of quantified variables (�� or ��). We require
that no variable appear twice in� and that the set of variables in

�
and� be identical

(i.e.,
�

contains no free variables, and� contains no extra or redundant variables).

54

A quantifier block �� of � is a maximal contiguous subsequence of� where every
variable in�� has the same quantifier type. We order the quantifier blocks bytheir se-
quence of appearance in� : ��	
 � �
 iff ��	 is equal to or appears before��
 in � .
Each variable� in

�
appears in some quantifier block�� �� �, and the ordering of the

quantifier blocks imposes the following ordering on the variables. For two variables
� and� we say that�
 � � iff �� �� �
 �� �� �. Note that the variables in the same
quantifier block are unordered while the ordering with respect to the different quanti-
fier blocks defines a partial order. We also say that� is universal (existential) if its
quantifier in� is � (�).

For example,��	�
 ��� 	�
 ���� �� ���	 � ��
 � �
 � �� �� ��� 	 � ��� � is a QBF with� �
��	�
 ��� 	�
 ������ and

�
equal to the two clauses��	 � ��
 � �
 � �� � and ��� 	 � ��� �.

The quantifier blocks in order are��	�
, �� 	�
, and����� , and we have, e.g., that,
�	 � � ��, �	 � � �� , � 	 is universal, and�� is existential.

A QBF instance can be reduced by assigning values to some of its variables. The
reduction of a formula� �� by a literal � (denoted by� �� ���) is the new formula
�� �� � where

� � is
�

with all clauses containing� removed and the negation of�, ��,
removed from all remaining clauses, and� � is � with the variable of� and its quantifier
removed. For example,��� ��� ���� � � � � � � ��� � � � �� ! � �� ��� ��� � � �.

Semantics.A SAT-model" # of a CNF formula
�

is a truth assignment$ to the
variables of

�
that satisfies every clause in

�
. In contrast a QBF-model (QBF-model)

" % of a quantified formula� �� is a tree of truth assignments in which the root is the
empty truth assignment, and every node& assigns a truth value to a variable of

�
not yet

assigned by one of& ’s ancestors. The tree" % is subject to the following conditions:

1. For every node& in " % , & has a sibling if and only if it assigns a truth value to a
universal variable�. In this case it has exactly one sibling that assigns the opposite
truth value to�. Nodes assigning existentials have no siblings.

2. Every path$ in " % ($ is the sequence of truth assignments made from the root to
a leaf of" %) must assign the variables in an order that respects
�. That is, if&
assigns� and one of& ’s ancestors assigns� then we must have that�
 � �.

3. Every path$ in " % must be a SAT-model of
�

.

Thus a QBF-model has a path for every possible setting of the universal variables of
� , and each of these paths is a SAT-model of

�
. We say that a QBF� �� is QSAT iff it

has a QBF-model. The QBF problem is to determine whether or not � �� is QSAT.
The advantage of our “tree-of-models” definition is that it makes two key observa-

tions more apparent. These observations can be used to provethe correctness of our
preprocessing technique.

A. If
� � has the same SAT-models as

�
then� �� will have the same QBF-models as

� �� �.
B. A QBF-model preserving (but not SAT-model preserving) transformation that can

be performed on� �� is universal reduction. A universal variable� is called a
tailing universalin a clause' if for every existential variable� (' we have that
� � � �. The universal reduction of a clause' is the process of removing all tailing
universals from' [5]. Universal reduction preserves the set of QBF-models.

We call two QBF formulasQ-equivalent iff they have exactly the same QBF-models.

55

3 HyperBinary Resolution for SAT
The foundation of our polynomial time preprocessing technique is the SAT method of
reasoning with binary clauses using hyper-resolution developed in [1, 2]. This method
reasons with CNF SAT theories using the following “HypBinRes” rule of inference:

Given a single&-ary clause' � �)	 �)
 � ����)* �, + a subset of', and the set of
binary clauses,�� � �)� -) (+ ., infer the new clause� � �' / + � 0 ,� . if � is
either binary or unary.

For example, from�1 � � � ' � 2�, �3 � �1�, �3 � �'� and �3 � �2�, we infer the new binary
clause�3 � ��. The advantage of HypBinRes inference is that it does not blow up the
theory (it can only add binary or unary clauses to the theory)and it can discover a lot of
new unit clauses. These unit clauses can then be used to simplify the formula by doing
unit propagation which in turn might allow more applications of HypBinRes. Applying
HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)
uncoversall failed literals. That is, in the resulting reduced theory there will be no literal
� such that forcing� to be true followed by unit propagation results in a contradiction.
This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform
equality reductions. In particular, if we have two clauses��� � � � and �� � �� � we can
replace all instances of� in the formula by� (and �� by ���. This might result
in some tautological clauses which can be removed, and some clauses which are re-
duced in length because of duplicate literals. This reduction might yield new binary
or unary clauses which can then enable further HypBinRes inferences. Taken together
HypBinRes and equality reduction can significantly reduce aSAT formula removing
many of its variables and clauses [2].

4 Preprocessing QBF
Given a QBF� �� we could apply HypBinRes, unit propagation, and equality reduction
to

�
until closure. This would yield a new formula

� �, and the QBF� � �� � where�� is
� with all variables not in

� � removed. Unfortunately, there are two problems with this
approach. One is that the new QBF� � �� � might not be Q-equivalent to� �� , so that
this method of preprocessing is not sound. The other problemis that we miss out on
some important additional inferences that can be achieved through universal reduction.
We elaborate on these two issues and show how they can be overcome.

The reason why the straightforward application of HypBinRes, unit propagation
and equality reduction to the body of a QBF is unsound, is thatthe resulting formula

� �
does not have exactly the same SAT-models as

�
, as is required by conditionA above.

In particular, the models of
� � do not make assignments to variables that have been

removed by unit propagation and equality reduction. Hence,a QBF-model of�� �� �
might not extendable to a QBF-model of� �� . For example, if unit propagation forced
a universal variable in

�
, then�� �� � might be QSAT, but� �� is not (no QBF-model

of � �� can exist since the paths that set the forced universal to itsopposite value will
not be SAT-models of

�
). However, it is easy to fix this problem. Making unit propaga-

tion sound for QBF simply requires that we regard the unit propagation of a universal

56

variable as equivalent to the derivation of the empty clause(i.e. false). This fact is well
known and applied in all search-based QBF solvers.

Ensuring that equality reduction is sound for QBF is a bit more subtle. A sound
version of equality reduction must respect the variable ordering. That is, if we detect
that � and � are equivalent and� � � � then we always remove� from the theory
replacing it by�. In addition, the case when� is universal must be considered equivalent
to deriving the empty clause. We call this (�� preferred) equality reduction.

Although applying HypBinRes, unit propagation (where propagating a universal
is like deriving False) and (�� preferred) equality reduction will be sound, this ap-
proach does not fully utilize the power of universal reduction (conditionB above). So
instead we use a more powerful approach that is based on the following modification
of HypBinRes that “folds” universal reduction into the inference rule. We call this rule
“HypBinRes+UR”:

Given a single&-ary clause' � �)	 �)
 � ����)* �, + a subset of', and the set
of binary clauses,�� � �)� -) (+ ., infer the universal reduction of the clause
�' 4 + � 0 ,� . if this reduction is either binary or unary.

For example, from' � �� 	 � �� � �� � �5 � �6 � �7 �, ��
 � ��7 �, ��
 � ��5 � and ��
 � ��� � we
infer the new binary clause�� 	 � �
 � when �	
 � �

 � ��
 � ��
 � �5
 �
�6
 � �7 . This example shows that HypBinRes+UR is able to derive clauses that
HypBinRes cannot. Since clearly HypBinRes+UR can derive anything HypBinRes can,
HypBinRes+UR is a more powerful rule of inference.

In addition to using universal reduction inside of HypBinRes we must also use it
when unit propagation is used. For example, from the two clauses��	 � �
 � �� � �� � ��5 �
and ��5 � (with �	 � � � 8) unit propagation by itself can only derive��	 � �
 � � � � �� �, but
unit propagation with universal reduction can derive��	 �.

It turns out that in addition to gaining more inferential power, universal reduction
also allows us to obtain the unconditionally sound preprocessing we would like to have.

Proposition 1 Let
� � be the result of applying HypBinRes+UR, unit propagation, uni-

versal reduction and (�� preferred) equality reduction to
�

until closure, where we
always apply universal reduction before unit propagation.Then the QBF-models of
�� �� � are in 1-1 correspondence with the QBF-models of� �� .

This result can be proved by showing that universal reduction generates the empty
clause whenever a universal variable is to be unit propagated or removed via equality
reduction.

Proposition 2 Applying HypBinRes+UR, unit propagation, universal reduction and
(�� preferred) equality reduction to� �� until we reach closure can be done in time
polynomial in the size of

�
.

Prequel modifies� �� exactly as described in Proposition 1. It applies HypBinRes+UR,
unit propagation, universal reduction, and (�� preferred) equality reduction to

�
until

it reaches closure. It then outputs the new formula� � �� �. Proposition 1 shows that this
modification of the formula is sound. In particular, this preprocessing does not change
the QSAT status of the formula.

To implement Prequel we adapted the algorithm presented in [2] which exploits
a close connection between HypBinRes and unit propagation.In particular, this al-

57

Solver Skizzo Quantor Quaffle Qube SQBF
no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

Instances 311 351 262 312 226 238 213 243 205 239
Time on common instances9,748 9,595 10,384 2,244 36,38220,18841,10723,19646,14725,554
Time on new instances - 12,756 - 16,829 - 9,579 - 9,707 - 2,421

Table 1. For each solver we show its number of solved instances among all tested benchmark
families with and without preprocessing, the total CPU time(in seconds) required to solve the
preprocessed and un-preprocessed instances taken over the“common” instances (instances solved
in both preprocessed and un-preprocessed form), and the total CPU time required by the solvers
to solve the “new” instances (instances that can only be solved in preprocessed form).

gorithm uses trial unit propagations to detect new HypBinRes inferences. The main
changes required to make this algorithm work for QBF were adding universal reduc-
tion, modifying the unit propagator so that it performs universal reduction prior to any
unit propagation step, and modifying equality reduction toensure it respects the quan-
tifier ordering.

5 Empirical Results
We considered all of the non-random benchmark instances from QBFLib (2005) [6]
(508 instances in total). We discarded the instances from the benchmark families von
Neumann and Z since these are all very quickly solved by any state of the art QBF solver
(less than 10 sec. for the entire suite of instances). We alsodiscarded the benchmark
families Jmc and Jmc-squaring. None of these instances (with or without preprocessing)
can be solved within our time bounds by any of the QBF solvers we tested. This left
us with 468 remaining instances from 19 different benchmarkfamilies. We tested our
approach on all of these instances.

All tests were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time
limit for each run of any of the solvers or the preprocessor was set to 5,000 seconds.

We studied the effect Prequel has on the performance of five state of the art QBF
solversQuaffle [9] (version as of Feb. 2005),Quantor [4] (version as of 2004),Qube
(release 1.3) [7],Skizzo(v0.82, r355) [3] andSQBF [8]. Quaffle, Qube and SQBF are
based on search, whereas Quantor is based on variable elimination. Skizzo uses mainly
a combination of variable elimination and search, but it also applies a variety of other
kinds of reasoning on the symbolic and the ground representations of the instances.

A summary of our results is presented in Table 1. The second row of the table shows
the total time required by each solver to solve the instancesthat could be solved in both
preprocessed and unpreprocessed form (the “common instances”). The data demon-
strates that preprocessing provides a speedup for every solver. Note that the times for the
preprocessed instancesincludethe time taken by Prequel. On these common instances
Quantor was 4.6 times faster with preprocessing, while Quaffle, Qube and SQBF were
all approximately 1.8 times faster with preprocessing. Skizzo is only slightly faster on
the preprocessed benchmarks (that it could already solve).

The first row of Table 1 shows the number of instances that can be solved within
the 5000 sec. time bound. It demonstrates that in addition tospeeding up the solvers on
problems they can already solve, preprocessing also extends the reach of each solver,

58

allowing it to solve problems that it could not solve before (within our time and memory
bounds). In particular, the first row shows that the number ofsolved instances for each
solver is significantly larger when Prequel is applied. The increase in the number of
solved instances is 13% for Skizzo, 19% for Quantor, 5% for Quaffle, 14% for Qube
and 17% for SQBF.

The time required by the solvers on these new instances is shown in row 3. For
example, we see that SQBF was able to solve 34 new instances. None of these instances
could previously be solved in 5,000 sec. each. That is, 170,000 CPU seconds were
expended in 34 failed attempts. With Prequel all of these instances could be solved in
2,421 sec. Similarly, Skizzo expended 200,000 sec. in 40 failed attempts which with
preprocessing could all be solved in 12,756 seconds.

In total, these results demonstrate that our preprocessingtechnique offers robust
improvements to all of these different solvers, even thoughsome of them are utilizing
completely different solving techniques.

6 Conclusions
We have shown that preprocessing can be very effective for QBF and have presented
substantial and significant empirical results to verify this claim. Nearly all of the pub-
licly available instances are taken into account, and five different state of the art solvers
are compared. Preprocessing with Prequel offers robust improvements across the dif-
ferent solvers among all tested benchmark families. The achieved improvement also
includes almost 20 instances that to our knowledge have never been solved before.

References

1. Fahiem Bacchus. Enhancing davis putnam with extended binary clause reasoning. InEigh-
teenth national conference on Artificial intelligence, pages 613–619, 2002.

2. Fahiem Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equality
reduction. InSixth International Conference on Theory and Applicationsof Satisfiability
Testing (SAT 2003), Lecture Notes in Computer Science 2919, pages 341–355, 2003.

3. M. Benedetti. skizzo: a QBF decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03, 2004.

4. A. Biere. Resolve and expand. InSeventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), pages 238–246, 2004.

5. H. K. Büning, M. Karpinski, and A. Flügel. Resolution for quantified boolean formulas.Inf.
Comput., 117(1):12–18, 1995.

6. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfiability
library (QBFLIB), 2001. http://www.qbflib.org/.

7. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding quantified
boolean formulas satisfiability. InInternational Joint Conference on Automated Reasoning
(IJCAR), pages 364–369, 2001.

8. H. Samulowitz and F. Bacchus. Using SAT in QBF. InPrinciples and Practice of
Constraint Programming, pages 578–592. Springer-Verlag, New York, 2005. available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

9. L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfaction in quantified
boolean satisfiability solver. InPrinciples and Practice of Constraint Programming (CP2002),
pages 185–199, 2002.

59

Global Chance-Constraints: an Application to
Stochastic Inventory Control

Student: Roberto Rossi
Supervisor: Steven Prestwich

Cork Constraint Computation Centre, University College, Cork, Ireland
{r.rossi,s.prestwich}@4c.ucc.ie

Abstract. Inventory theory provides methods for managing and con-
trolling inventories under different constraints and environments. We
consider a class of production/inventory control problems that has a
single product and a single stocking location, when a stochastic demand
with a known non-stationary probability distribution is given. A control
policy for this type of inventory system is the one where the objective
is to find the optimal number of replenishments, their timings and their
respective order-up-to-levels that meet customer demands to a required
service level. Two different models have been presented so far to solve
this problem to optimality: a MIP model and an efficient CP model. In
both these models negative orders are not allowed, so that if the actual
stock exceeds the order-up-to-level for that review, this excess stock is
carried forward and not returned to the supply source. Since this event is
assumed to be rare, in both the models its effect is ignored. We present a
global chance-constraint that lets us to compute exact buffer stock levels
for the CP model by considering the effect that carrying excess stock has
on the service level in each period of our planning horizon. An extended
version of this paper hasn’t been submitted to the technical programme.

1 Introduction

We consider the class of production/inventory control problems that refers to
the single-location, single-product case under non-stationary stochastic demand.
In this problem the following inputs are given: a planning horizon of N periods;
and a demand dt for each period t ∈ {1, . . . , N}, which is a random variable
with probability density function gt(dt). We will assume without loss of gener-
ality that these variables are normally distributed and that the demand occurs
instantaneously at the beginning of each time period. The demand we consider
is non-stationary, that is it can vary from period to period, and demands in
different periods are assumed to be independent. A fixed delivery cost a is con-
sidered for each order and also a linear holding cost h is considered for each unit
of product carried in stock from one period to the next. We assume that it is
0 This work was supported by Science Foundation Ireland under Grant No.

03/CE3/I405 as part of the Centre for Telecommunications Value-Chain-Driven Re-
search (CTVR) and Grant No. 00/PI.1/C075.

60

not possible to sell back excess items to the vendor at the end of a period. As
a service level constraint we require the probability that at the end of each and
every period the net inventory will not be negative set to be at least a given
value α. Our aim is to minimize the expected total cost (ordering costs and
holding costs) over the N -period planning horizon, satisfying the service level
constraints.

Different inventory control policies [4] can be adopted to cope with the de-
scribed problem. A policy states the rules to decide when orders have to be placed
and how to compute the replenishment lot-size for each order. One of the possi-
ble policies that can be adopted is the replenishment cycle policy (R,S). Under
the non-stationary demand assumption this policy takes the non-stationary form
(Rn, Sn), where Rn denotes the length of the nth replenishment cycle, and Sn

the order-up-to-level values for each replenishment. In order to provide a solu-
tion for our problem under the (Rn, Sn) policy we must populate both the sets
Rn and Sn.

The first complete solution method for this problem was introduced by Tarim
& Kingsman [2], who proposed a certainty-equivalent Mixed Integer Program-
ming (MIP) formulation for computing (Rn, Sn) policy parameters. In [1] a
more compact and efficient Constraint Programming (CP) formulation of the
same problem has been introduced.

Both the MIP and the CP formulation assume that negative orders are not
allowed, so that if the actual stock exceeds the order-up-to-level for that review,
this excess stock is carried forward and not returned to the supply source, but
since this event is assumed to be rare, in both the models its effects are ignored:

– The cost of carrying excess stock is ignored, therefore the actual cost of a
policy can be higher than the one provided by the model

– The event of carrying excess stock can have a significant impact on the
service level of the next periods, in particular it could be possible to exploit
excess stock to provide the required service level keeping lower buffer stocks

This paper extends the CP model presented in [1] by expressing its service
level constraint as a global chance-constraint able to dynamically compute exact
buffer stock levels during the search. It has to be noticed that while in CP the
former assumption can be relaxed using a dedicated global chance-constraint,
this is not possible in MIP, where buffer stocks have to be pre-computed. CP
is therefore not only a more efficient way than MIP for dealing with stochastic
inventory control as shown in [1], but it is also a mandatory choice if we want
to compute the optimal solution for the (Rn, Sn) policy. The paper is organized
as follows. In Section 2 we describe the CP model for the (Rn, Sn) policy. In
Section 3 we introduce our global chance-constraint. In Section 4 we show the
effectiveness of our approach.

2 A CP model

In this section we review the CP formulation for the (Rn, Sn) policy proposed
in [1]. For a detailed discussion of Constraint Programming see [5]. The CP

61

formulation presented in [1] for the (Rn, Sn) policy is as follows:

min E{TC} =

N∑
t=1

(
aδt + hĨt

)
(1)

subject to, for t = 1 . . . N

Ĩt + d̃t − Ĩt−1 ≥ 0 (2)

Ĩt + d̃t − Ĩt−1 > 0 ⇒ δt = 1 (3)

Pr{Ĩt ≥ 0} ≥ α (4)

Ĩt ∈ Z
+ ∪ {0}, δt ∈ {0, 1} (5)

Each decision variable Ĩt represents the expected inventory level at the end of
period t. The binary decision variables δt state whether a replenishment is fixed
for period t (δt = 1) or not (δt = 0). The objective function (1) minimizes the
total expected cost over the given planning horizon. Two terms contribute to
the overall expected cost: ordering costs and inventory holding costs. Constraint
(2) enforces a no-buy-back condition, which means that received goods cannot
be returned to the supplier. As a consequence of this the expected net inventory
at period t must be no less than the expected net inventory in period t + 1 plus
the expected demand in period t. Constraint (3) expresses the replenishment
condition. We have a replenishment if the expected net inventory at period t is
greater than the expected net inventory in period t+1 plus the expected demand
in period t. This means that we received some extra goods as a consequence of
an order. Chance-constraint (4) enforces the required service level α. In [1] such
a constraint is expressed by means of pre-computed buffer stock levels for each
possible replenishment cycle. The net inventory at the end of each replenishment
cycle is therefore forced to be greater or equal to the respective minimum buffer
stock. This means that the effect that excess stock from former periods has
is not taken into account (Fig. 1). It is not possible to compute a-priori such

Fig. 1. Effect of excess stock: the buffer stock computed a-priori assures a 95% service
level, but the combined effect of excess stocks from former periods produces a higher
actual service level

an effect, because for each buffer stock it directly depends on the length of
former replenishment cycles. In order to take this effect into account we can
implement a global chance-constraint that dynamically computes buffer stock
levels depending on the current partial assignment of the δi variables.

62

3 A new service level global chance-constraint

In this section, in order to describe our global chance-constraint, we will exploit
the following property of buffer stocks.

Property 1. The buffer stock for any replenishment cycle depends only on the
length of former replenishment cycles and not on subsequent cycle lengths.

We will consider now a two replenishment cycle case (Fig. 1) in an N period
planning horizon, then we will extend the idea in a recursive fashion to the case
of M subsequent replenishment cycles.

The planning horizon is made up of two consecutive replenishment cycles, let
us call them R1 and R2. Let Oi be the opening inventory level for Ri. We assume
that O1 is known (Property 1). We define P (H) as the probability of the event
”observing a demand higher than O1−O2 during R1”. P (Dx) is the probability
of the event ”observing a demand less or equal to x, where x ∈ {0, ..., O1 −O2},
during R1”. Sy is the service level at the end of R2 if a buffer stock y is hold.
Then the correct buffer stock for R2 can be computed as the minimum value b
s.t.

P (H) · Sb +

O1−O2∑
i=0

(P (Di)− P (Di−1)) · Sb+O1−O2−i ≥ α (6)

where O2 = d̃2 + b. For the two replenishment cycles case, this can be rewrit-
ten using the following extended form

(1−G
−1

(
Q

σ1
)) ·G−1

(
b

σ2
) +

Q∑
i=−d1

(G
−1

(
i

σ1
)−G

−1
(
i− 1

σ1
)) ·G−1

(
b− (i−Q)

σ2
) ≥ α (7)

where Q = O1 −O2 − d̃1, G−1 is the inverse normal cumulative distribution
function, σi is the standard deviation of the demand for the replenishment cycle
i. Notice that if the opening inventory level of R1 is smaller than the opening
inventory level of R2, obviously the former cycle has no influence on the buffer
stock and Condition 6 becomes Sb ≥ α. Furthermore, if the computed b is s.t.
R2 ≤ R1 − d̃1, we just set the buffer stock to the minimum value allowed, that
is R1 − d̃1 − d̃2. Finally we should observe that, since we are using the standard
normal distribution function and not the truncated one, we have to use the
following normalized term in condition 6.

(1− P (H))∑O1−O2
i=0

(P (Di)− P (Di−1))
·

O1−O2∑
i=0

(P (Di)− P (Di−1)) · Sb+O1−O2−i

We now define a global chance-constraint serviceLevel(Ĩ , δ, d, α), where
Ĩ and δ are arrays of decision variables, d is an array of random variables with
probability density function g(d) and α is the required service level. This con-
straint assures for each replenishment period that, at the end of each and every

63

time period, the probability the net inventory will not be negative is at least α.
It is therefore semantically equivalent to Constraint 4 for t = {1, . . . , N} and it
can be used to express these constraints in the CP model. It has to be noticed
that the global view provided by this constraint lets us to consider joint proba-
bilities during the search, which are ignored instead when the same condition is
expressed by means of many independent constraints as shown in [1]. In order
to propagate this constraint at each node of the search tree if at least a decision
variable δi, i ∈ {1, ..., N} that has not been assigned yet exists we don’t enforce
any service level constraint; otherwise if ∃δi s.t. δi = 1, we know that a replenish-
ment cycle starts in period i and it covers subsequent periods till the minimum
j, j ≥ i s.t. δj+1 = 1 or j + 1 > N . Property 1 assures that we can consider
replenishment cycles in our planning horizon in a sequential fashion. Therefore
we can generate the buffer stock for the first replenishment cycle, which is not
affected by any other replenishment period, then we can generate the buffer
stock for the second, which is only affected by the first one, etc. Each time we
compute the buffer stock level b for a replenishment cycle we can remove from
the domain of It, where t is the last period in the replenishment cycle, every
value smaller than b.

In order to present the general case of M replenishment cycles it has to be
noticed that the buffer stock of a replenishment cycle Rj is affected only by
former replenishment cycles {Ri, . . . , Rj−1}, where i, i ≤ j, is the max value
s.t. Oi−1 < Oi. If i = j no former replenishment cycle affects Rj . Now P (H) is
the probability of the event ”observing an inventory level that is less or equal to
Oj in period j − 1”, while P (Ox) is the probability of the event ”observing an
inventory level that is equal to x in period j − 1”, where x ∈ {Oj + 1, ..., Oi}.
Since we know the distribution of the demand in periods {i, . . . , j} and since
former buffer stocks in periods {i, . . . , j − 1} have been already set (Property
1), it is easy to recusively compute such probabilities by using a scenario based
approach. We can therefore extend Condition 6 to compute the buffer stock b
for Rj .

P (H) · Sb +
(1− P (H))∑Oi

x=Oj+1
P (Ox)

·

Oi∑
x=Oj+1

P (Ox) · Sb+x−Oj
≥ α (8)

4 An example

Let us compare the solution provided when our global chance-constraint is used
and the one provided by the original CP model. We assume an initial null in-
ventory level and a normally distributed demand with a coefficient of variation
σt/d̃t for each period t ∈ {1, . . . , 4}. The expected values for the demand in
each period are {120, 70, 50, 40}. The other parameters are a = 150, h = 1,
σt/d̃t = 0.4, α = 0.8(zα=0.8 = 0.8414). In Table 1 the optimal solution found
when our global chance-constraint is used to dynamically generate buffer stock
levels is compared with the one obtained by using a pre-computed matrix. It is

64

Original buffer stock computation Dynamic buffer stock computation
Policy cost: 548 Policy cost: 542

I1 117 δ1 1 Service 99.2 I1 117 δ1 1 Service 99.2
I2 47 δ2 0 Service 80.4 I2 47 δ2 0 Service 80.4
I3 62 δ3 1 Service 100 I3 59 δ3 1 Service 99.8
I4 22 δ4 0 Service 82.8 I4 19 δ4 0 Service 80.1

Table 1. Optimal solution comparison

possible to see that by computing correct buffer stock levels we obtained a less
costly policy, still meeting the required service level of 80%. In fact were able to
keep lower stocks in the last two periods exploiting the effect of excess stocks
carried on from former periods.

5 Conclusions

In [1] it has been shown that CP is a more natural and efficient way, compared
to MIP, for expressing constraints for lot-sizing under the (Rn, Sn) policy. In
this paper we showed that in CP it is also possible to dynamically consider
during the search the effect of excess stocks from former replenishment cycles
on the optimal buffer stock of a given period. When the service level constraint
is expressed using the global chance-constraint we presented, the CP model
can provide a better solution than the one produced by the MIP model or by
the original CP model. As a future extension we aim to incorporate cost-based
filtering methods in order to let our approach scale.

References

1. S. A. Tarim, B. Smith. Constraint Programming for Computing Dynamic (R,S)
Inventory Policy With Non-Stationary Stochastic Demand Under Service Level
Constraints. Cork Constraint Computation Center, UCC, Ireland, 2005.

2. S. A. Tarim, B. G. Kingsman. The Stochastic Dynamic Production/Inventory Lot-
Sizing Problem With Service-Level Constraints. International Journal of Produc-
tion Economics 88:105–119, 2004.

3. H. M. Wagner, T. M. Whitin. Dynamic Version of the Economic Lot Size Model.
Management Science 5:89–96, 1958.

4. R. Peterson, E. Silver, D. F. Pyke. Inventory Management and Production Plan-
ning and Scheduling. John Wiley and Sons, New York, 1998.

5. K. Apt. Principles of Constraint Programming. Cambridge University Press, Cam-
bridge, UK, 2003.

6. A. Charnes, W. W. Cooper. Chance-Constrainted Programming. Management Sci-
ence 6(1):73–79, 1959.

7. L. Fortuin. Five Popular Probability Density Functions: a Comparison in the Field
of Stock-Control Models. Journal of the Operational Research Society 31(10):937–
942, 1980.

8. I. J. Lustig, J.-F. Puget. Program Does Not Equal Program: Constraint Program-
ming and its Relationship to Mathematical Programming. Interfaces 31:29–53,
2001.

65

Mixed CSP Techniques Applied to Embodiment

Design

Student: Raphaël Chenouard2

Advisors: Laurent Granvilliers1 and Patrick Sebastian2

raphael.chenouard@bordeaux.ensam.fr, laurent.granvilliers@univ-nantes.fr,
patrick.sebastian@bordeaux.ensam.fr

1 University of Nantes, Laboratoire d'Informatique de Nantes Atlantique, CNRS, BP
92208, F-44322 Nantes Cedex 3

2 ENSAM Bordeaux, TRansferts Ecoulements FLuides Energétique, CNRS, F-33405
Talence Cedex

1 Embodiment Design

Design of new products in industry requires the investigation of product life
cycle phases and the de�nition of product models corresponding to these dif-
ferent phases: needs, design requirement, product design, manufacturing, etc.
Phases are identi�ed by some authors [9, 12] within design processes: need and
requirements de�nition, conceptual design, embodiment design and detailed de-
sign. More to the point, various design methods are used to optimize industrial
products: design for X, ecodesign, robust design, etc. Robust design is based on
modeling and used to assess product characteristics taking into account design
process variabilities inherent to the system and its components. This paper is
interested in modeling and numerical treatment in CSP based Robust Embodi-
ment Design.

Embodiment design phase aims at choosing the main structuring character-
istics (working structure, standard components, main dimensions, etc.) of the
mechanical system being designed. The phase starts from knowledge established
during the conceptual design phase and leads to feasible architectures (embodi-
ment design solutions). Physics behavior and interactions of the components are
considered to investigate the mechanical system's feasibility. Functional archi-
tectures describing the main chosen concepts are also considered through this
design phase.

Embodiment design models consist of relations taking into account discrete
variables (choices of standardized component, catalogs references) or continu-
ous variables (component dimensions, physics phenomena). Physics behaviors,
dimensions and architectures, costs, manufacturing constraints are expressed
using the same formalism. The model is built from the conjunction of these con-
straints. Some of them may be related to logical formulae and are taken into
account as conditional constraints.

66

2 Constraint Satisfaction Techniques

Design problems may be expressed as a set of constraints, de�ning relations
between variables. The constraint satisfaction problem (CSP) formalism seems
suitable for the modeling and solving of this type of problems. It is de�ned as a
triple 〈V,D,C〉, where:

� V = {v1, ..., vn} is the set of variables.
� D = {d1, ..., dn} is the set of domains associated with the variables.
� C = {c1, ..., ck} is the set of constraints restricting the variables' domain.

S = {s1, ..., sl} is the set of a CSP solutions, such as for each si: each variable
from V is a�ected to a value and all the constraints from C are satis�ed.

Two types of CSP are identi�ed: discrete and continuous CSP. The �rst type
is concerned with domains expressed as �nite sets of values, whereas the second
one takes into account domains de�ning in�nite sets of values conservatively dis-
cretized as intervals or union of intervals. The solving algorithms are in general
speci�c to these two approaches. CSP's solutions are computed using mainly
branch-and-prune algorithms [5] with two sorts of algorithms: consistency and
search algorithms. Search algorithms explore variable's domains. Discrete do-
mains are enumerated and continuous domains are splitted until a de�ned preci-
sion. All the real numbers cannot be represented and a set of �nite approximation
of �oating point number enclosing the real solutions are computed [6]. As the
search space may be huge, consitency algorithms [7] prune domains using the
constraints set. Consistency techniques on continuous domains use labeling [3] or
approximations and projections of domains. Consistency techniques on real con-
straints use the interval arithmetic to compute a complete set of approximated
solutions [11, 1].

Dynamic CSP [8] or Conditional CSP (CondCSP) [4] appear to be more
suitable than classical CSP approaches for supporting design and con�guration
problem solving. CondCSP only considers a relevant set of active variables, which
determines the use of constraints. This formalism brings in the concept of active
or inactive variable. The declaration of a CondCSP is therefore a quadruple. The
three �rst sets are the same ones as within the classical CSP frame. The fourth
set is the set of the initially active variables. Two types of constraints are de�ned
in this formalism:

� Compatibility constraints de�ne allowed value combinations for variables.
They are only active if all their concerned variables are active.

� Activation constraints describe which variables to add to the active set. That
is a logical implication, where a constraint is a condition under which a
variable becomes active.

Dependency and causality of variables are clearly represented and more relevant
search heuristics may be used [10].

Mixed constraints are often involved in con�guration and design problems.
These constraints are both applying on continuous and discrete variables [4].

67

Computation algorithms must be adapted to cope with these problem speci�ci-
ties. Currently, the computation algorithms are well suited for problems where
discrete variables are prevailing. Indeed, these algorithms are based on bisections
on intervals and on split at the midpoint (for discrete and continuous domains).
Consistency check is performed at this point and the midpoint is removed from
the solution set as soon as an inconsistency is detected. The two parts created
are explored in the same way until the computation precision is reached for each
domain. Continuous domains are discretized with each midpoint created. More-
over, the causality between variables expressed in this formalism is in con�ict
with some physics laws. Indeed, they are de�ned by several relations on the
same variables and, therefore, all these constraints are active at the same time.
Consequently the problem becomes inconsistent.

It may be noted that the formalisms presented do not �t completely with
the design needs. Better algorithms for mixed constraints have to be used, be-
cause intervals are discretized into many midpoints. This approach does not take
into account the real continuous meaning of such domains. Moreover, knowledge
resulting from the design process can't be completely expressed and more spe-
cialized algorithms and formalism may be de�ne to meet the design needs [14].

3 PhD Thesis

Our work takes place during the embodiment phase and aims to adapt CSP tech-
niques to this application domain. Indeed, a new type of constraint is necessary
to express directly conditional dependency between conditions and constraint ac-
tivations. A condition is a logical expression of arithmetic relations expressed as
constraints. Constraints are explicitly activated and this highlights dependency
between variables from a condition and a constraint. The causality of variables is
not taken into account and is not relevant in this design phase as component oc-
currences and their activations (design concepts) are not studied in embodiment
design. The design concepts are chosen during the conceptual design phase. The
components which have to be to chosen are often described using the same vari-
ables and criteria. These variables identify references (catalog of components) or
key characteristics indicating which component is being used. Moreover, physics
knowledge may be expressed using sets of relations, each relation being related
to a speci�c behavior. The global behavior of the component emerges from the
interaction between these speci�c behaviors.

Modeling in embodiment design requires the use of di�erent types of vari-
ables. Design variables (DV) assess the main characteristics of a mechanical
system. Their values de�ne design alternatives. Auxiliary variables (AV) are in-
troduced by designers during the modeling phase to link design variables to
design criteria and assess the design alternative performances. These AV are re-
dundant from the designer point of view, because they are not involved in the
decision making process. However, they appear to be necessary in order to pre-
serve the coherence and intelligibility of the model. Thus, two types of variables

68

may be distinguished in CSP dedicated to embodiment design and have to be
used to improve search heuristics.

Speci�c split strategies for bisections may also be used. Indeed, the use of
conditional constraints allows us to know domains bounds, where constraints are
activated through the expressed conditions. Splitting on these bounds activates
more quickly the relevant constraints and consequently prunes also quickly the
variables domains. Some problems appear as soon as continuous domains have to
be split, because of the interval bounds, which must be integers or �oating-point
numbers. Otherwise, these bounds have to be approximated to the smallest hull
of �oating-point numbers, where constraints are not activated. On this interval,
only consistency check can be done.

All these heuristics can be associated with other heuristics based on the CSP
structure [2]. These approaches prove their e�ciency, but, keeping the DV and
AV heuristics requires a compromise between these two heuristics. Moreover,
conditional constraints transform progressively the CSP structure throughout
the solving process. Two approaches have to be considered: to compute dynam-
ically, after the activation of each constraint, the new relevant order on the
variables set, or to compute initially this order while taking into account the
whole conditions.

Mechanical systems models are often composed of AV, which are explicitly
de�ned. They are not essential for the model solving, but they enlarge the search
space and decrease the solving algorithm e�ciency. We choose to avoid splitting
these variables and de�ne them as arithmetic relations. The resolution algorithm
doesn't lose time on splitting their domains, while the model's intelligibility is
preserved. These variables are called aliases in the next paragraphs. For in-
stance, the adimensional Reynolds number is used in �uid mechanics to link
�uid viscosity and velocity to �owing dimensions. The use of Reynolds number
by designers facilitates �uid mechanics modeling as well as model comprehension
and reusability. It is expressed by the relation Re = ρ·V ·d

µ , and there are no need
to explore its domain as soon as ρ, V , d and µ are known. Moreover aliases may
be de�ned with a relation including other variables or aliases. However, aliases
must not be linked through any dependency cycle.

4 First Results

Search heuristics have been implemented in a branch-and-prune framework tak-
ing into account the DV, AV and aliases properties. These algorithms are tested
in the following paragraph on a small model of batch-exchanger, where a �uid
is cooled down and is graded. The model takes into account 5 DV and a set of
10 AV including 6 aliases. There are also 6 conditional constraints that express
choices in components catalogs of materials, �ns and tubes. The �rst algorithm
solve_DV computes all the solutions and starts to explore the search space with
DV domains. Table 1 points out that the algorithm e�ciency is quite better than
the one of the classical B&P algorithm. 5282 solutions are computed in 7.06 s
with 6509 splits on domains, whereas the classical algorithm computes 5376 and

69

requires 7592 splits in 8.26 s. Choices in catalogs are performed by using DV
and by starting to compute their values. The tube diameter characteristics, �n
e�ciencies and exchange surfaces are related to single values, whereas bisections
are computed on their domains by the classical algorithms.

The second algorithm (solve_DV_AV) uses the AV to limit the search space
exploration to the computation of embodiment design solutions. As mentioned
earlier, designers have no interest in AV to make decisions. For each embodiment
design solution, this algorithm only searches one value for each AV to validate
the DV's values as values corresponding to a feasible solution. 56 solutions have
been obtained. Computing time and number of bisections are quite lower than
using a classical B&P algorithm or solve_DV. The completeness of the solution
set is guarantied by restoring the domains of all AV to the state corresponding
to the last DV bisection. For these solutions, AV precisions don't comply with
their initial precision. However, this loss of precision is not signi�cant from the
designer point of view.

batch-exchanger Solutions Time (s) Bisections
Classical B&P algorithm 5376 8.26 7592
Classical B&P algorithm + Alias 5395 8.24 7519
solve_DV algorithm 5282 7.06 6509
solve_DV algorithm + Alias 2701 5.72 2883
solve_DV_AV algorithm 56 0.63 677
solve_DV_AV algorithm + Alias 56 0.62 519

Fig. 1. Results of a batch-exchanger resolution, comparing classical solving algorithm
with others that take into account of DV, AV and aliases

Figure 1 points out the impact of aliases on the solving time and on the
number of solutions. Time appears to be quite better and the number of splits
on domains are the lowest. These results are derived from the low number of
AV and consequently, from less precision errors on DV. Indeed, AV splits induce
reductions of the DV domains, and generate many solutions which are not re-
quired by designers. Aliases avoid the splitting of some domains and decrease
AV impact on DV's pruning. It can be noted that in the classical B&P approach
the number of solutions increase, but not the number of splits. In more com-
plex models of multi-scale design problems, aliases appear to be very useful and
increase the relevance of the approach proposed in this paper [13].

5 Prospects

The algorithms presented in this paper are based on variable characterization
in robust embodiment design. To improve algorithm e�ciency, we plan to im-
plement automatic decomposition algorithms taking into account DV's priority.
DV's precisions errors due to AV splits have been highlighted in this article.

70

However, some Auxiliary Variables are not aliases and some e�orts have to be
performed to better take into account the precision related to these remaining
auxiliary variables.

In the long run, other signi�cant aspects resulting from the embodiment
design process have to be taken into account. For example, designers have to
design product through di�erent life cycle situations. The same product (char-
acterized by the same Design Variables) has to be designed considering several
environments. This di�culty may be related to Dynamic CSP or Conditional
CSP domains. More to the point, new algorithms have to be developed to better
take into account global constraints involved in the formulation of multi-scale
design problems. These global constraints are mainly related to matrix algebra
and to the catalogs of models used by designers to choose standard components.

The algorithms presented in this paper are currently tested on multi-scale
embodiment design problems such as the design of aircraft air conditioning sys-
tems, wind turbines, etc. Our approach proves to broadly extend the scope of
application of CSP solvers in these domains as decision support systems.

References

1. F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer and
boolean constraints. Journal of Logic Programming, 1(32):1�24, 1997.

2. C. Bliek, B. Neveu, and G. Trombettoni. Using graph decomposition for solv-
ing continuous csps. Principles and Practice of Constraint Programming, CP'98,
Springer LNCS 1520:102�116, 1998.

3. Boi Faltings. Arc Consistency for Continuous Variables. Arti�cial Intelligence,
65(2):363�376, 1994.

4. Esther Gelle and Boi Faltings. Solving mixed and conditional constraint satisfac-
tion problems. Constraints, 8(2):107�141, 2003.

5. E. Hyvönen. Constraint Reasoning Based on Interval Arithmetic. In IJCAI'89,
Detroit, USA, 1989.

6. O. Lhomme. Consistency Techniques for Numeric CSPs. In IJCAI'93, Chambéry,
France, 1993.

7. A.K. Mackworth. Consistency in networks of relations. Journal of Arti�cial Intel-
ligence, 8:99�118, 1977.

8. Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems.
In AAAI, pages 25�32, 1990.

9. G. Pahl and W. Beitz. Engineering design: A systematic approach. Springer-Verlag
Berlin Heidelberg, 1996.

10. Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace. Greater e�ciency for
conditional constraint satisfaction. In CP 2003, pages 649�663, 2003.

11. D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints.
Constraints, 1(1&2):85�118, sep 1996.

12. Dominique Scaravetti. Formalisation préalable d'un problème de conception, pour

l'aide à la décision en conception préliminaire. PhD thesis, ENSAM, 2004.
13. P. Sébastian, J.P. Nadeau, and S. Aso. Numeric-csp for air-conditionning in aero-

nautics. In 8th World Multi-Conference on SCI, Orlando, USA, 18-21 July 2004.
14. Elise Vareilles. Conception et approches par propagation de contraintes : contribu-

tion à la mise en oeuvre d'un outil d'aide interactif . PhD thesis, Institut National
Polytechnique de Toulouse, École des Mines d'Albi, 2005.

71

The Portfolio Selection Problem: Opportunities

for constrained–based metaheuristics

Student: Giacomo di Tollo
Supervisor: Andrea Roli

Dipartimento di Scienze
Università “G.D’Annunzio” Chieti–Pescara

ditollo@sci.unich.it

Abstract. The Portfolio Selection Problem is a well-known area of ap-
plication for metaheuristics, but its basic formulation fails in incorporat-
ing real-world features. In this work we discuss some issues about how
to enrich the model by introducing features and constraints to obtain
realistic results.

Introduction

Portfolio selection is one of the most studied topics in finance: the problem
(referred to as PSP), in its basic formulation, is concerned with selecting the
portfolio of assets which minimize the risk, given a certain level of returns.
The basic model is formulated in the seminal work by Markowitz[6], in which
the formulation of the problem is given by minimizing the variance (as a risk
measure) for a given level of return:

min

n
∑

i=1

n
∑

j=1

σijxixj (1)

n
∑

i=1

rixi ≥ rp

n
∑

i=1

xi = 1 xi ∈ [0, 1] i, j = 1 . . . n (2)

where σij represents covariance between assets i and j, rp is the expected return
rate and ri is the (actual or forecasted) return rate of asset i. Note that portfolios
are modeled as sets of assets whose weight sum up to one and can assume any
value in the range [0, 1].

In this formulation the problem is solvable with exact methods, but when
adding additional features, it becomes untractable even for small instances. So
metaheuristic approaches have been exploited to solve realistic instance of port-
folio selection[2][7].

In the following we will discuss about features that improve PSP formulation
by considering real world investor behavior. These features can be modeled as
constraints in a CP framework and efficiently tackled by solution procedures as
metaheuristics.

72

1 Constraints

A shortcoming of the introduced formulation is that it lacks incorporating many
aspects of real-world trading: maximum size of portfolio, minimum lots, trans-
action costs, preferences of which assets to include in the portfolio and by how
much, management costs, etc. These aspects can be formulated by introducing
constraints and in the following we will introduce some of the most relevant ones.

Cardinality Constraints The number of assets in the portfolio is limited. Intro-
ducing for each asset a binary variable z (z = 1 if asset is in the portfolio and 0
otherwise), the constraint can be expressed as follows:

n
∑

i=1

zi = k (3)

This constraint can be defined also in inequality form, imposing that the portfolio
must contain no more (≤) than k assets, and can be, of course, expressed also
as a global cardinality constraint in CP.

Floor and Ceiling Constraints With this constraint we impose a minimum and
maximum proportion (εi and δi) allowed to be held for each asset in portfolio. In
other words the portion of the portfolio for a specific asset (each asset or some of
them) must be included in a fixed interval. Generally, floor constraint is used to
avoid the cost of administrating tiny portions of assets, while ceiling constraints
to avoid excessive exposure to a specific asset (in some case it is imposed by
law).

εizi ≤ xi ≤ δizi (4)

Minimum lots In the literature, investments are generally continuously divisi-
ble, so as to be represented by a real variable, while in real world securities are
negotiated as multiples of minimum lots: for each asset there exists a minimum
tradable lot, generally referred to as round. This constraint cannot be added in
the continuous model since rounds are expressed in money, while in the con-
tinuous model assets-portions are chosen regardless of their absolute value. For
these reasons minimum lots are generally encountered only when dealing with
the integer formulation[5], in which assets are labeled by their actual value rather
than their ratios to whole portfolio. In integer values, if pj is the price of asset
j and mlj its minimum tradable quantity, the minimum lot expressed in money
is given by cj = mljpj .

Adding those issues to the original formulation makes the problem very hard
to be solved by exact methods. Hence the need for designing efficient approximate
algorithms, such as metaheuristics[1].

2 Neighborhood and Repair mechanism

In order to develop and fathom powerful local search strategies a key point is
to define and understand the neighborhood relationship. This is a crucial point

73

in metaheuristics: Often in the literature the introduction of neighborhood is
not grounded to explicit motivations; this can lead to a misunderstanding of
the algorithm behavior or to wrong conclusion referring to the applicability of
such algorithm to specific problems (or instances). The problem formulation we
are discussing requires the definition of constraints of various nature to model
real-world features, and when local search is dealing with constraints, the neigh-
borhood can be implemented in the following ways:

– all feasible approach: each candidate solution s′, belonging to the neighbor-
hood of a current solution s, must satisfy the constraints at any step of the
search process;

– repair approach, in which if a non-feasible solution is found, this is suddenly
forced to satisfy constraints by an embedded repair-mechanism;

– penalties approach: we allow moving toward non-feasible solutions, but those
will be assigned a penalty in the objective function, depending on the amount
of violation.

Sometimes it turns out to be difficult determining which class a search
method belongs to, as can be difficult to determine if a search trajectory moves
only in feasible areas because of its formulation or because an implicit repair
mechanism is embedded. Repair-mechanism has the effect to consider a large
number of candidate solutions, but, in our opinion, it can cause loss of informa-
tion and waste good partial solution features, even if it has the effect of reducing
execution time.

A typical repair mechanism is explained in Streicher et al.[8], referring to a
formulation with cardinality and minimum lots. This procedure takes as input
a non normalized weight-vector, in which each weight represents the portion of
portfolio held by an asset, and operates as follows:

1. all weights are normalized so as to sum to one. This is done by setting weights
xi′ = xi/

∑

j xj ;
2. the obtained vector is normalized so as to meet cardinality constraint: Only

the k assets with largest value of xi′ are held and then normalized to sum
up to one;

3. a further normalization is required to meet minimum lots constraints: Weights
of assets are forced to the previous roundlot level xi′′ = xi′ − (xi′ mod ci) .
The free portfolio amount is redistributed so as to meet minimum lots con-
straint buying quantities of cis on assets with biggest (xi′ mod c) until all
the remainder is spent.

In this mechanism, at point 1), the repair mechanism operates normalizing all
assets in the portfolio. Nevertheless, there is evidence that investors choose, for
their portfolio, one highly risky asset (or a few ones) with high weight, while the
remainder is partitioned in lots of small weights used to reduce risk.

In this situation, the former repair mechanism would loose important infor-
mations about the structure of portfolio. For this reason a new repair mechanism
able to return a feasible solution composed of a vector feas can be defined just
replacing the point 1) of the previous mechanism with the following routine:

74

1. Order assets in non-increasing-weights. Let o be the resulting vector1;
2. Compute the vector d = (o1−o2), (o2 −o3), . . . (on−1 −on); let di be the i-th

component in the sequence;
3. Let m be the index of the maximum element in d: This represents the max-

imum distance between weights of adjacent assets in the ordered array o;
4. if

∑m

a=1
oa ≥ 1 return the vector

feasi =
oi

∑n

j=1
oj

5. if
∑m

a=1
oa < 1 return the vector

feasi =







oi i = 1 . . .m

oi ·
1−

∑

m

j=1
oj

∑

n

l=m+1
ol

i = (m + 1) . . . n

3 Integer versus Continuous Formulation

The formulation we introduced (continuous fractional formulation in which weights
must sum up to one) is universally used as standard approach in metaheuris-
tics formulation: Modern Portfolio Theory relies on this formulation since it was
introduced by Markowitz[6], but it represents a simplified model of real–world
situations. We introduce now two issues difficult to handle with the continuous
formulation.

Transaction costs Transaction costs are difficult to manage for the peculiar type
of their function. As stated in Konno and Wijayanayake[3], the total costs fol-
low a non-convex function on the size of the transaction: at the beginning it is
concave up to a certain point (unit-transaction cost gradually decrease as size
increase), then increases linearly to another certain point (unit-transaction costs
are here constant) and then becomes convex due to the illiquidity premium (unit
prices increases due to the shortage of supply). The transaction cost function is
not easy to determine, but it appears to be discontinuous and it can be expressed
as follows: C = (1 + v)[f + φ

(

(b + p)s
)

] + ms, where v is the VAT rate, f are
fixed costs, b is the brokerage rate, p the illiquidity premium, s represents the
transaction size, m the marketable securities tax rate and φ represents a sub-
jective arbitrary function often difficult to interpolate and to define. Illiquidity
premium plays an important role in this scheme and it can be introduced in
different ways, but herein we consider it as an increment of the brokerage rate.

We must consider that, even if Modern Portfolio Theory states that diversi-
fied portfolio are preferable to undiversified ones, there is evidence that investors
choose undiversified portfolios. This is due to the action of transaction costs,
since they were not included in the original model. Considering all typologies,
transaction costs tend to reduce portfolio-diversification: This is partially due

1 For sake of readability the resulting vector will be composed of weight values and
the label of the corresponding asset.

75

to the introduction of fixed costs, while proportional ones do not have effects
because they generate only a decrease in returns rate. It is clear however that
only proportional costs are suitable to be included in the continuous model, as
the remainder is sensitive to the invested amount.

Solution methods and discretization When applying solution methods (e.g. heuris-
tics and metaheuristic strategies) to the PSP, the implementation has to be
studied with particular care: Some metaheuristics for instance are designed to
work in a discrete search space, while in the problem we are considering variables
can assume any continuous value belonging to [0, 1] range. The basic idea for
adapting the model to these techniques would be to discretize the space; this
operation might not be conceptually sound since we only consider that assets
weights must sum up to one, regardless of the total amount to be invested. We
might decide to apply a discretization at 0.000005 intervals, without any trouble
for the formulation, but it is clear that if we have to invest 1,000,000,000 euros
the discretized minimum admissible lot will be 5,000 euros, while if we consider
10 euros to be invested it will amount to 0.00005 euros. This will not turn into
errors or warnings, but it is clear that the meaning of the efficient frontier could
be strongly misleading depending on the invested amount.

These issues lead us to face the dilemma of the integer formulation (in which
assets weights are labeled by their money-value) versus the standard continuous
one: After the latter was introduced, no extension was developed in order to
include transaction costs and to manage ambiguity arising from discretization
and total-investment. These issues seem to suggest the use of integer formulation,
easily obtained by replacing equation (2) with the following:

n
∑

i=1

rixi ≥ rpC

n
∑

i=1

xi = C xi ≥ 0, integer i, j = 1 . . . n (5)

where C is the invested amount. The local search approach is, in our opinion,
robust w.r.t the formulation, so it is able to handle the integer version too,
ensuring important advantages: Lack of necessity of discretisation, correctness
of meanings of formulation, easiness in including transaction costs and rounds.
The diffusion of software tools such as Comet [4] that enable to implement meta-
heuristics while preserving a CP modelling approach help us include the issues
discussed so far in the analysis and development of metaheuristic for the PSP.
These packages enable us to define the model (so including various constraints
in the formulation), and, separately, the search strategy, so that changing the
first does not trigger bad or misleading behavior in the latter. In the PSP, this
is of the most importance, as constraints must be added to the formulation in
order to obtain satisfactory results. In real-world applications these constraints
can be classified in two main types:

– Hard Constraints imposed in order to make the model the most realistic as
possible (these constraints must be satisfied for each category of investor in
each area we are taking into account);

76

– Soft Constraints, imposed in order to describe preferences and behaviors of
investors to whom the analysis is directed (each of this constraint must be
defined to describe a specific category or area).

The second class of constraints has often been under-considered. In our opin-
ion, efforts in introducing soft constraints can help develop solutions for several
class of investors, geographic areas, regulations and so on: Metaheuristics have
already been tested on this problem showing satisfactory results on the basic
formulation, and in our opinion the next advance has to be made on modelling.
This can be achieved by embedding in the current formulation aspects already
discussed in the economic and financial literature about portfolio selection, but
only a few of them has been investigated empirically. For example, no comparison
amongst the different risk measures has been made on the same instance.

4 Conclusions and future works

The portfolio selection problem has been proven to be suitable for a metaheuris-
tic approach in which the formulation is enriched by constraints used both to
define the problem formulation and explain investor behavior. The versatility of
these strategies enables us to add and change various aspects of the formulation
without affecting the search-process. Further research is aimed at formulating
an integer model in which constraints can be easily defined and included, and to
use it to obtain real-world oriented results. A comparison between integer and
continuous formulation will be performed in order to show differences between
the resulting portfolios (if any);furthermore a comparison of different risk mea-
sures and a formulation embedding illiquidity-premium-transaction cost will be
studied.

References

1. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, September 2003.

2. T.J. Chang, N. Meade, J.E. Beasley, and Y.M. Sharaiha. Heuristics for cardinality
constrained portfolio optimisation. Comput. Oper. Res., 27(13):1271–1302, 2000.

3. A. Wijayanayake H. Konno. Mean-absolute deviation portfolio optimization model
under transaction costs. Journal of the Operational Research Society of Japan,
42(4), 1999.

4. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press,
2005.

5. H. Kellerer, R. Mansini, and M.G. Speranza. Selecting portfolios with fixed costs
and minimum transaction lots. Annals of Operational Research, 99(4), 2000.

6. H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.
7. A. Schaerf. Local search techniques for constrained portfolio selectionproblems.

Comput. Econ., 20(3):177–190, 2002.
8. F. Streichert, H. Ulmer, and A. Zell. Evaluating a hybrid encoding and three

crossover operators on the constrained portfolio selection problem. In Proceedings

of Congress on Evolutionary Computation (CEC 2004), 2004.

77

The Art and Virtue of
Symbolic Constraint Propagation

Student: Björn Hägglund1, Supervisor: Anders Haraldsson1

1 Linköping University, 581 83 Linköping, Sweden

{bjoha, andha}@ida.liu.se

Abstract. Constraint stores supporting new kinds of stored constraints can po-
tentially increase the power of search and propagation solvers by several orders
of magnitude, but may on the other hand destroy the ease with which propaga-
tors interact with each other. We define the problem and report about work in
progress. A solution to the problem has been applied to our constraint solving
environment, Angelica, used in the examples throughout the paper.

1 The Problem

This paper primarily concerns S&P solvers, that is, solvers based on search and
propagation with computation spaces (called universes in this paper). See [8] in
conjunction with [3] and/or [7]. The strength of such solvers lies in their extensibility
and the wide range of problems they can deal with. Propagators using all sorts of
propagation algorithms for propagating all sorts of constraints belonging to all sorts of
problem domains can interoperate concurrently with each other, almost without
knowing anything about what the others are doing. This makes it easy to add new
propagation algorithms to the system. However, this strength is also a source of
weakness. All communication between propagators goes through a store, and the kind
of constraints allowed in that store is typically restricted to an extent ruling out more
powerful propagation techniques. How can we redesign stores to remedy this? More
precisely, we are interested in enabling more symbolic propagation. This section
explains what that means, why it deserves further investigation, and why it is a non-
trivial problem.

1.1 What is Symbolic Propagation?

Symbolic propagation is the activity of constraining a variable to a partial type or
binding it to a partial term. A term is partial iff it contains unbound variables1. To
make this more precise, we need to put it in some context. We assume there is a sound
term rewriting system used throughout the solver to represent and reduce stored

1 Note that we consider local names introduced by "λ", "∀" and other quantifiers to be

parameters rather than variables.

78

constraints. [5] is a good introduction to such systems. We further assume that every
stored constraint is either a binding or an ascription.

A binding is an equation whose lhs is a single variable. If the binding is stored (in
the store of some universe), we say that the variable is bound to the rhs of the binding
(in that particular universe). Variables that occurs in the lhs of some stored binding
are said to be bound. Remaining variables are unbound. Examples from Angelica:

x = 2a + 7b - 12c
y = 1, 2 » s » 4 % "»" is the sequence concatenation operator.
z = Bool

Assuming that a, b and c are constrained to numbers and s to sequences, storing these
bindings would bind x to an arithmetic expression, y to a sequence, and z to a type.

An ascription is a type constraint whose lhs is a single variable and whose rhs is a
type. If the ascription is stored, we say that the variable is constrained to the type in
the rhs. Variables that occurs in the lhs of some stored ascription are said to be
constrained. Remaining variables are unconstrained. Examples from Angelica:

x : Type
a : 5..9
f : 0..a -> 6..()

Storing these ascriptions will constrain x to be a type, a to be an integer between 5 and
9 (inclusive), and f to be a lambda term that when applied to an integer between 0 and a
returns an integer greater than or equal to 6.

Restricting the lhs of each stored constraint to be a single variable enables the store
to use some sort of dictionary where variables can be looked up in constant time. Note
that we want the contract of a binding to be strong enough to allow propagators and
store reducers to substitute a bound variable with the term it is bound to and to do so
in any context and without further considerations. This need not be true for an
unbound variable, even when constrained to be equal to some term.

1.2 Why It Deserves Further Investigation

Symbolic propagation has the potential to increase the power of S&P solvers by
several orders of magnitude. To see this, let us look at an example. Suppose we want
to solve the following problem from the Angelica constraint specification language:

x,y,z :: 0..()!
30z – 46y – 16x = 4712!
44x + 73y – 52z = 1936!
abs(x – y) ≤ 100!

0..() is the domain of all natural numbers. The exclamation marks indicates that the
Boolean terms should be asserted rather than just evaluated. Remaining constructs
have their usual mathematical meaning. Since Angelica does not come with abs, we
need to define it:

abs = λx:Int. if x < 0 then –x else x!

Submitting this problem results in the following behavior: Each of the five submitted
constraints is propagated by its own propagator. Nevertheless, the two only possible

79

solutions are found immediately, with a minimal amount of search: one universe
where x < y and consequently x, y, z = 1093, 1140, 2488 and one universe where y ≤ x and
consequently x, y, z = 992, 896, 2060. If we replace 30z – 46y – 16x with 29z – 46y – 13x, the
problem has no solutions. Angelica recognizes this immediately, without search. If
the difference constraint is omitted the problem has an infinite number of solutions.
All of them are found within a single universe. We can see what they are by
submitting the query x, y, z, which is reduced to -18 + 101[2], -1544 + 244[2], -2220 + 428[2],
where [2] is a generated variable. By switching to visible variable annotations we see
that [2] is constrained to 7..() or in other words, to an integer greater than or equal to 7.

Now compare this behavior with the behavior of an ordinary S&P solver,
represented here by Oz (downloadable from [9]):

proc {Problem Solution}
 X Y Z
in
 Solution = X#Y#Z [X Y Z] ::: 0#FD.sup
 {FD.sumC [30 ~46 ~16] [Z Y X] '=:' 4712} {FD.sumC [44 73 ~52] [X Y Z] '=:' 1936}
 {FD.distance X Y '=<:' 100} FD.distribute ff [X Y Z]}
end

Sending the above problem to SearchAll leads to the following observations:

1. The most natural way to describe the problem does not work at all, because the call
to SearchAll suspends unless all involved variables are constrained to finite domains.
So we have to constrain the variables to the largest domain available and hope that
the solutions are in this domain.

2. After 10 minutes, we were still waiting for the solutions. In fact, waiting a year
would probably not be enough. Replacing FD.sup (albeit already a low number) with
lower numbers significantly reduces search time, because the latter seems to grow
almost quadraticly with the former. Using the number 20,000 yields a search time
around 10 seconds on the laptop used to write this paper. But again, how can we
know that that all solutions are found? Requiring the user to resort to this kind of
manual guessing is not good.

3. Possibly, there are all sorts of tricks an experienced constraint programmer could
use to reduce the search time, but this is beside the point. The user should only
have to specify the problem in the most natural way. The rest should be automatic.

4. If we replace 30z – 46y – 16x with 29z – 46y – 13x, Oz goes ahead searching for solutions
anyway, despite the fact there are no solutions. This is discovered only after a
search needing about as much time as if there were solutions.

5. Removing the call to FD.distance, we see that Oz naively enumerates all solutions.
This is an unattractive way to present a large solution space.

Oz provides brilliant abstractions to program with concurrency. This is why we
currently use it to implement Angelica. But despite being implemented on top of Oz,
Angelica outperforms Oz (at least in some respects) when it comes to solving, and the
main reason for this is symbolic propagation. The point with the above example is not
to demonstrate that Angelica is good at solving linear Diophantine equations. The
way to solve such equations can easily be figured out by anyone acquainted with
elementary number theory (e.g. after having read [6]), and has also been studied
extensively in the constraint community (see e.g. [1] and [2]). The point is that

80

propagators using such algorithms are possible in Angelica, whereas they do not fit
into solvers not allowing symbolic propagation. Angelica propagates linear
Diophantine equations by binding variables to additions of unbound integer variables
multiplied by integer constants. This is not allowed in Oz. The only symbolic
propagation allowed in Oz is binding variables to partial records or other variables,
but apart from that, no relationships between variables can be expressed directly in
the stores. As a consequence, the way propagators can interact with each other is very
limited. This cripples propagation and leaves most of the work to extensional search,
whose complexity is hopelessly exponential. This limitation is not in any way specific
to Diophantine equations. It affects virtually all problems involving large variable
domains and constraints for which there are clever intensional (algebraic) propagation
algorithms. Where only small domains are involved, symbolic propagation is
probably pointless, but if symbolic propagation can be enabled without excluding any
possibilities to do ordinary propagation, propagators would be free to use it without
being required to do so.

1.3 Why It Is Not Trivial

At this point, it might seem tempting to allow all sorts of stored constraints, thereby,
abracadabra, making all the symbolic propagation of our dreams possible. However,
this is a bad idea as it would violate one or more of the following store requirements
(known as critical store requirements):

1. The store of any solved universe must be constructively consistent.
2. Stores should never get jammed.
3. Designing well-behaved propagators should be reasonably easy and impose

minimal restrictions on the choice of propagation algorithms.
4. The computational complexity of a critical transaction between a store and a

propagator should be finite and not grow with the size of the store. The critical
transactions are telling constraints, looking up variables, triggering suspended
propagators, and firing triggers (notifying suspended propagators).

5. The computational complexity of keeping the store irreducible should be finite and
grow reasonably with the size of the store. (A store S is irreducible iff no rhs of
some constraint stored in S is reducible under S.)

Constructive Consistency. A store is constructively consistent iff it is irreducible and
all and only valuations constructible from S are solutions to S. A solution to (explicit
model of) a store S is a valuation satisfying all constraints stored in S. A valuation
assigns exactly one value to every variable. A value is a closed term that cannot be
further reduced because it is not supposed to be further reduced. A valuation is
constructible from a store S iff it can be constructed as follows:
1. Assign some arbitrary value to every variable not occurring in the lhs of some

constraint stored in S.
2. Let C be a constraint stored in S with a lhs not yet assigned and a rhs containing

only assigned variables. If there is no such constraint, stop. Otherwise, repeat this
step after having done the following: Let C2 be result of replacing all variables in

81

C with the values assigned to them. Reduce C2 until its rhs is a value. If C2 is a
binding, assign the value in the rhs to the variable in the lhs. If C2 is an ascription,
assign a value having the type in the rhs to the variable in the lhs.

Constructive consistency is necessary not only to ensure that found solutions can be
trusted, but also to give the user a reasonable chance to understand the solution space
defined by the store of a solved universe.

Avoiding Jammed Stores. A store is jammed when and only when there is a
propagator wanting to store a constraint that would have been accepted if the store
were empty, but is now impossible to make the store entail. It is typically the
restrictions introduced to ensure store consistency that open the possibility to jam
stores. Jamming does not affect solver soundness, but may severely cripple further
propagation to an extent outweighing the advantages of using symbolic propagation.

Designing Well-behaved Propagators. Solver soundness relies on all propagators
being sound. A propagator is well-behaved only if it is sound. But we also need to
ensure universe stabilization: if all propagators of a universe are well-behaved and the
store never notifies propagators unless new constraints (not previously entailed by the
store) has been stored, then the universe should be guaranteed to eventually suspend,
fail or succeed. It is important that the complexity of designing well-behaved
propagators is minimized, and in particular that the well-behaved-ness of a propagator
does not depend on what other propagators exist in the same universe. Otherwise, the
point of using the S&P architecture is lost.

1.4 Problem Summary

How can we enable more symbolic propagation without violating any critical store
requirement?

2 Solution Status

We have developed effective store design rules, compliance with which ensures
constructive consistency, completely avoids jammed stores, and makes meeting the
complexity requirements pretty straightforward. We are building a system complying
with these rules without disabling any ordinary propagation; a system allowing far
more symbolic propagation than what is typically the case in S&P solvers. This work
is completed to an extent leaving no doubt that such systems are possible. However,
more experiments are needed to get a more complete picture of the solving power
enabled by symbolic propagation, especially when it comes to problems using several
profoundly different kinds of constraints.

Symbolic propagation inevitably makes it trickier to find effective criteria for what
makes propagators well-behaved. So far, the increased complexity seems to be
acceptable, but further investigations are needed.

82

Unfortunately, the 6 page limit made it impossible to include even an outline of the
design rules and an example of how to comply with them. An outline will be given in
the presentation, should the paper be accepted.

3 Related Work

Despite talking to experts in the field and browsing through online proceedings of
PPDP, ILCP, CP, RTA, PADL back to the early ninetieth, we found nothing
resembling a general treatise on symbolic propagation in S&P solvers. Maybe we did
not look in the right places using the right keywords. Or maybe the silence is caused
by a general assumption that the whole issue was settled back in the early days. It
would be surprising if discussions about the nature of constraint stores, and in
particular what kind of constraints should be storable, were not common in those
days. But the exact contents of these discussions does not really matter, as their
outcome was that the “wrong” path was taken: symbolic propagation was dismissed
from mainstream constraint research, probably because it was considered to be too
problematic and/or making solvers too complicated.

However, we did find [4], an interesting paper on a related subject: first class
propagators. They provide a way to get around restricted stores. Although an ad hoc
way to improve things, the paper presents impressive experimental results indicating
the solving power enabled by symbolic propagation.

References

1. Farid Ajili, Evelyn Contejean: Complete Solving of Linear Diophantine Equations and
Inequations without Adding Variables. In Proceedings of the First International Conference
on Principles and Practice of Constraint Programming (CP'95) in Cassis, France, September
1995. LNCS vol. 976, Springer-Verlag, Berlin/Heidelberg (1995)

2. Farid Ajili, Hendrik C.R. Lock: Integrating Constraint Propagation in Complete Solving of
Linear Diophantine Systems. In Proceedings of the Tenth International Symposium on
Principles of Declarative Programming (PLILP'98) in Pisa, Italy, September 1998. LNCS
vol. 1490, Springer-Verlag, Berlin/Heidelberg (1998)

3. Krzysztof R. Apt: Principles of Constraint Programming. ISBN 0-521-82583-0, Cambridge
University Press, Cambridge (2003)

4. Tobias Müller: Promoting Constraints to First Class Status. In Proceedings of the First
International Conference on Computational Logic (CL'00) in London, UK, July 2000.
LNCS vol. 1861, Springer-Verlag, Berlin/Heidelberg (2000)

5. Benjamin C. Pierce: Types and Programming Languages. ISBN 0-262-16209-1, MIT Press,
London (2002)

6. Kenneth H. Rosen: Elementary Number Theory and its Applications. ISBN 0-201-87073-8,
4th edition, Addison-Wesley (2000)

7. Peter Van Roy, Seif Haridi: Concepts, Techniques, and Models of Computer Programming.
ISBN 0-262-22069-5, MIT Press, London (2004)

8. Christian Schulte: Programming Constraint Services: High-Level Programming of Standard
and New Constraint Services. LNCS vol. 2302, Springer-Verlag, Berlin/Heidelberg (2002)

9. http://www.mozart-oz.org (2006-04-24). Home of Mozart/Oz.

83

The Modelling Language Zinc

Student: Reza Rafeh
Supervisors: Maria Gärcia de la Banda, Kim Marriott, and Mark Wallace

Clayton School of IT, Monash University, Australia
{reza.rafeh,mbanda,marriott,wallace}@mail.csse.monash.edu.au

Abstract. We describe the Zinc modelling language. Zinc provides set
constraints, constrained and user defined types, and polymorphic predi-
cates and functions. The last allow Zinc to be readily extended to different
application domains by user-defined libraries. Zinc is designed to support a
modelling methodology in which the same conceptual model can be auto-
matically mapped into different design models, thus allowing modellers to
easily “plug and play” with different solving techniques and so choose the
most appropriate for that problem. In our prototype implementation the
Zinc model can be mapped into one of two design models, both of which are
implemented in ECLiPSe. The first design model uses local search while the
second uses a complete tree search with propagation based finite domain
and set solvers. A core feature of the Zinc implementation supporting such
solver and technique-independent modelling is the use of an intermediate
language called FZM. This is designed to be simple and low-level enough
to be significantly closer to the decision model, but sufficiently high-level
to be a suitable intermediate model for all solvers.

1 Introduction

Solving combinatorial problems is a remarkably difficult task which requires the
problem to be precisely formulated and efficiently solved. Even formulating the
problem precisely is surprisingly difficult and typically requires many cycles of for-
mulation and solving, while efficient solving often requires development of tailored
algorithms which exploit the structure of the problem. Such algorithms achieve
scalability and performance by first isolating the core combinatorial problem,
and then exploiting the algorithms that have been proved to work best for the
(sub)problem at hand.

Reflecting this discussion, modern approaches to solving combinatorial prob-
lems divide the task into two (hopefully simpler) steps. The first step is to develop
the conceptual model of the problem which specifies the problem without consid-
eration as to how to actually solve it. The second step is to solve the problem
by mapping the conceptual model into an executable program called the design
model. Ideally, the same conceptual model can be transformed into different design
models, thus allowing modellers to easily “plug and play” with different solving
techniques [4, 3].

Here we introduce a new modelling language, Zinc, specifically designed to
support this methodology. There has been a considerable body of research into
problem modelling which has resulted in a progression of modelling languages
including MOLGEN [7], AMPL [2], Localizer [6], OPL [8], ESRA [1]. We gladly

84

Zinc
compiler

Zinc
model

data
file

FZM
instance

Conceptual
model

Design
model I

Different
design
models

Design
model II

solver
dependent
mappings

Fig. 1. Mapping a Zinc conceptual model to different decision models

acknowledge the strong influence these languages have had on our design. Our
reasons to develop yet another modelling language are threefold.

First, we want the modelling language to be solver and technique independent,
allowing the same conceptual model to be mapped to different solving techniques
and solvers, i.e., be mapped to design models that use the most appropriate tech-
nique, be it local search, mathematical modelling, constraint programming, or a
combination of the above. To date the implemented languages have been tied
to specific underlying platforms. For example, AMPL was designed to interface
to MIP packages such as Cplex and Xpress-MP, MOLGEN was interfaced to a
propagation-based solver, and Localizer was designed to map down to a local
search engine.

Second, we want to provide high-level modelling features but still ensure that
the models are executable. Zinc offers structured types, sets, and user defined pred-
icates and functions which allow a Zinc model to be encapsulated as a predicate.
It also allows users to define “constrained objects” i.e., to associate constraints to
a particular type thus specifying the common characteristics that a class of items
are expected to have [5]. It supports polymorphism, overloading and type coercion
which make the language comfortable and natural to use.

And third, we want Zinc to have a simple, concise core but allow it to be
extended to different application areas. This is achieved by allowing Zinc users
to define their own application specific library predicates, functions and types.
This contrasts with, say, OPL which provides seemingly ad-hoc built-in types and
predicates for resource allocation and cannot be extended to model new application
areas without redefining OPL itself.

Of course there is considerable tension between these aims, since the higher-
level the modelling language, the greater the gap between the conceptual model
and the design model. Critical to the success of Zinc is the design of the interme-
diate modelling language, Flattened Zinc Model (FZM), which bridges this gap.
FZM is designed to be simple and low-level enough to be significantly closer to
the decision model, but sufficiently high-level to be a suitable intermediate model
for all solvers. The translation process from the conceptual model consisting of a
Zinc model and instance specific data (optionally given in separate datafiles), to
FZM, to different technique specific design models is shown in Figure 1.

85

type PosInt = (int:x where x>0);

PosInt: sizeBase;

record Square=(var 1..sizeBase: x, y; PosInt: size);

list of Square:squares;

constraint forall(s in squares)

s.x + s.size =< sizeBase+1 /\

s.y + s.size =< sizeBase+1;

predicate nonOverlap(Square: s,t) =

s.x+s.size =< t.x \/ t.x+t.size =< s.x \/

s.y+s.size =< t.y \/ t.y+t.size =< s.y;

constraint forall(i,j in 1..length(squares) where i<j)

nonOverlap(squares[i], squares[j]);

predicate onRow(Square:s, int: r) =

s.x =< r /\ r < s.x + s.size;

predicate onCol(Square:s, int: c) =

s.y =< c /\ c < s.y + s.size;

assert sum(s in squares) (s.size^2) == sizeBase^2;

constraint forall(p in 1..sizeBase)

sum(s in Squares) (s.size*holds(onRow(s,p))) == sizeBase /\

sum(s in Squares) (s.size*holds(onCol(s,p))) == sizeBase;

output(squares);

5
6

4
3
2
1

1 2 3 4 5 6

Fig. 2. Perfect Squares model

2 Zinc

Zinc is a first-order functional language with simple, declarative semantics. It
provides: mathematical notation-like syntax; expressive constraints (finite domain
and integer, set and linear arithmetic); separation of data from model; high-level
data structures and data encapsulation including constrained types; user defined
functions and constraints. Let us illustrate some of these features by means of an
example.

Consider the model in Figure 2 for the perfect squares problem [9]. This consists
of a base square of size sizeBase (6 in the figure) and a list of squares of various
sizes squares (three of size 3, one of size 2 and five of size 1 in the figure). The
aim is to place all squares into the base without overlapping each other.

The model defines a constrained type PosInt as a positive integer and declares
the parameter sizeBase to be of this type. A record type Square is used to model
each of the squares. It has three fields x, y and size where (x, y) is the (unknown)
position of the lower left corner of the square and size is the size of its sides.
The first constraint in the model ensures each square is inside the base (note that
\/ and /\ denote disjunction and conjunction, respectively). The model contains
three user-defined predicates: nonOverlap ensures two squares do not overlap, and
onRow and onCol that a square is, respectively, on a particular row or column in
the base.

The squares provided as input data are assumed to be such that they fit in
the base exactly. To check this assumption, the model includes an assertion that
equates their total areas.

86

The last constraint in the model is redundant since it is derived from the
assumption that the squares exactly fill the base: the constraint simply enforces
each row and column in the base to be completely full.

Data for the model can be given in a separate data file as, for example:

sizeBase=6;

squares = [(x:_,y:_,size:s) | s in [3,3,3,2,1,1,1,1,1]];

3 Implementation

We have finished the first prototype of Zinc which implements the full syntax of
it. It is written in Mercury with a Yacc generated parser and flex generated lexical
analyser. It is about twelve thousand lines of Mercury code, and five thousand
lines of C.

After doing syntax and semantic checking, Zinc adds the information in the
associated data file to the compiled model and generates the Flattened Zinc Model
(FZM) instance. The FZM language is an intermediate representation that is closer
to the design model while is still solver independent. The FZM generation process
eliminates features of the Zinc model that serve only to make it user friendly
and includes: evaluation of all ground expressions, flattening high-level structures
such as user-defined functions and iteration, simplifying complex data types and
constraints and run-time checking such as assertion checking.

At the final stage, the FZM instance is mapped to the design model. Currently,
we have developed two mappings to ECLiPSe. The first design model uses a com-
plete tree search with propagation based finite domain and set solvers; and the
second uses a form of local search, in which the local move automatically maintains
hard constraints.

We wished to measure three factors about Zinc in our implementation: expres-
siveness, extensibility and performance.

In terms of expressiveness, we have performed a search of the literature and
built models (see www.csse.monash.edu.au/~rezar/Zinc/models) for a variety
of standard benchmark problems. As it can be gauged from these models, the
expressiveness of Zinc results in very natural formalisations of the problems.

In terms of extensibility, perhaps the most clear example is the Zinc language
itself and, in particular, its extensive use of library functions and predicates to
implement Zinc’s standard functions and predicates (instead of implementing them
as built-ins).

In terms of performance, we compared our Zinc models with the equivalent
ECLiPSe models using the same search strategy. The results are shown in the
next two tables. All experiments were performed on a 3GHz Pentium 4 with 2Gb
memory running Fedora.

Table 1 reports statistics on the mapping itself. We give the size of the original
Zinc model; the size of the generated FZM; the size of the ECLiPSe program
generated from the FZM; the size of the direct ECLiPSe program; and the total
time taken to generate the ECLiPSe program from the Zinc model (this includes
the time to generate the FZM). All sizes are given in “tokens” to abstract away
from choice of identifier names etc.

87

Table 1. Zinc Mapping Statistics

Problem Name Model Size (tokens) Mapping Model Size (tokens)
and parameters Zinc ECLiPSe Time (sec) FZM Generated ECLiPSe

Golfers: arrays of int.sets 273 1111 0.0540 678 2212
4 players, 2 gps, 3 wks (5 cons) (65 cons)

Golfers: sets of sets 269 0.323 10221 17233
4 players, 2 gps, 3 wks (5 cons) (569 cons)

2X2 Job-Shop: 514 (3 cons) 1021 0.1560 3106 5122 (158 cons)

Knapsack: 30 Obj, 75% fit 326 (1 cons) 564 0.1280 964 1324 (31 cons)

Knapsack: 30 Obj, 50% fit 326 (1 cons) 564 0.1270 964 1324 (31 cons)

Stable-Marriage: 8 pairs 527 (4 cons) 955 0.4360 38624 40697 (822 cons)

8-Queens 88 (1 cons) 308 0.0650 1956 3221 (86 cons)

18-Queens 88 (1 cons) 308 0.5650 10251 16541 (461 cons)

28-Queens 88 (1 cons) 308 3.6140 25046 40261 (1136 cons)

Open-stacks: 7Cust, 5Prod 230 (2 cons) 736 0.0750 5199 6301 (109 cons)

Open-stacks: 9Cust, 7Prod 264 (2 cons) 723 0.1160 12681 13453 (193 cons)

Perfect-squares 5X5, 8 sq 300 (3 cons) 630 0.1920 6798 10638 (303 cons)

We do not give a model written directly in ECLiPSe for non-flat Social Golfers
problem since this is quite unnatural to write in ECLiPSe.

We see that the Zinc model is consistently substantially smaller than the model
written directly in ECLiPSe. The FZM and generated ECLiPSe code is orders of
magnitude larger than the Zinc model and the direct ECLiPSe model. This is to be
expected and reflects that the high-level iteration constraints have been flattened.
The time to generate the ECLiPSe design model from the Zinc model is small, no
more than a few seconds.

Table 2 shows the execution time of the ECLiPSe code generated from the Zinc
model with the model written directly in ECLiPSe.

As we hoped we found that there was not a significant difference in execution
time between the design model written directly in ECLiPSe and that generated
from the Zinc model. This holds true for both the design model using complete
tree search with propagation based solvers, and the one using local search.

4 Conclusion

We have presented a new modelling language Zinc designed to allow natural, high-
level specification of a conceptual model. Unlike most other modelling languages,
Zinc provides set constraints, constrained types and user defined types, and poly-
morphic predicates and functions. Unlike virtually all other modelling languages a
Zinc model can be mapped into design models that utilize different solving tech-
niques such as local search or tree-search with propagation based solvers. This
comes from an appreciation of using an intermediate language called FZM which
is a subset of Zinc and is significantly closer to the design model while is still solver
independent.

We have compared a number of standard benchmarks written in Zinc and writ-
ten in ECLiPSe. The Zinc models are considerably more concise and arguably more

88

Table 2. Comparing the direct and mapped programs

Problem Name Tree search model Local search model
(cpu secs) Direct Generated Direct Generated

Golfers: arrays of int.sets 0.005 0.006 0.002 0.003
4 players, 2 gps, 3 wks

Golfers: sets of sets - 0.008 - 0.003
4 players, 2 gps, 3 wks

2X2 Job-Shop: 0.00 0.00 0.002 0.003

Knapsack: 30 Obj, 75% fit 0.498 0.5 0.496 0.493

Knapsack: 30 Obj, 50% fit 3.465 3.449 0.734 0.728

Stable-Marriage: 8 pairs 0.131 0.075 - -

8-Queens: all solutions 0.019 0.02 0.058 0.072

18-Queens: first solution 0.707 0.721 1.91 2.13

28-Queens: first solution 67.817 66.263 10.9 12.1

Open-stacks: 7Cust, 5Prod 0.002 0.001 0.273 0.157

Open-stacks: 9Cust, 7Prod 0.588 0.273 1.125 0.279

Perfect-squares 5X5, 8 sq 0.915 0.856 - -

high-level and easier to understand. The ECLiPSe model automatically generated
from Zinc (via FZM) has similar performance to the program written in ECLiPSe,
assuming the same search method is used.

Currently our implementation uses a naive search procedure, but user-controlled
search is vital for scalable performance on real problems. It seems sensible to allow
the search component to be written in a Zinc-like language annotating the Zinc
model. We are currently exploring this.

References

1. Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing ESRA, a relational
language for modelling combinatorial problems. In LOPSTR, pages 214–232, 2003.

2. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, 2002.

3. A.M. Frisch, C. Jefferson, B. Martinez-Hernandez, and I. Miguel. The rules of con-
straint modelling. In Proc 19th IJCAI, pages 109–116, 2005.

4. C. Gervet. Large scale combinatorial optimization: A methodological viewpoint, vol-
ume 57 of Discrete Mathematics and Theoretical Computer Science, page 151ff. DI-
MACS, 2001.

5. Bharat Jayaraman and Pallavi Tambay. Modeling engineering structures with con-
strained objects. In PADL, pages 28–46, 2002.

6. L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.
In Proc. Principles and Practice of Constraint Programming - CP97, pages 237–251,
1997.

7. M. Stefik. Planning with constraints (molgen: Part 1). Artificial Intelligence, 16:111–
139, 1981.

8. P. Van Hentenryck, I. Lustig, L.A. Michel, and J.-F. Puget. The OPL Optimization
Programming Language. MIT Press, 1999.

9. E. W. Weisstein. Perfect square dissection. From MathWorld –A Wolfram Web
Resource, http://mathworld.wolfram.com/PerfectSquareDissection.html, 1999.

89

Interleaved Search in DCOP for Complex Agents

Student: David A. Burke ??

Supervisor: Kenneth N. Brown

Centre for Telecommunications Value-Chain Research
and Cork Constraint Computation Centre

Dept. of Computer Science, University College Cork, Ireland

1 Introduction

Many combinatorial problems are naturally distributed over a set of agents: e.g.
coordinating vehicle schedules in a transport logistics problem [1], or scheduling
meetings among a number of participants [2]. Distributed Constraint Reasoning
(DCR) considers algorithms explicitly designed to handle such problems, search-
ing for globally acceptable solutions while minimising communication between
agents. Most of the algorithms, however, assume that each agent controls only a
single variable. This assumption is justified by two standard reformulations [3],
by which any DCR problem with complex local problems (i.e. multiple vari-
ables in each agent) can be transformed to give exactly one variable per agent:
(i) compilation: for each agent, define a variable whose domain is the set of
solutions to the original local problem; (ii) decomposition: for each variable in
each local problem, create a unique agent to manage it. Other algorithms for
handling multiple local variables in distributed constraint satisfaction (DisCSP)
have been proposed [4][5][6]. These algorithms are specific to DisCSP, since they
reason about violated constraints, and cannot be applied directly to distributed
constraint optimisation problems (DCOP), which are concerned with costs. For
DCOP, the two original reformulations remain the standard way of handling
complex local problems [7].

Our research is focused on compilation, as this allows each agent to use state-
of-the-art centralised solvers to model and solve their local problem. We have
previously developed a new compilation method based on dominance and inter-
changeability, which increases the range of problems able to be solved efficiently
using compilation [8]. More recent results show that our compilation method
is more efficient than decomposition for agents with large and complex internal
problems [9]. However, one drawback of compilation is that it requires local solu-
tions to be found before the distributed search can begin. This can be expensive
for very complex local problems and can result in wasteful search of areas that
do not belong in the global solution.

We now propose an alternative compilation approach that does not require
local solutions to be pre-determined. Our algorithm, Interleaved-ADOPT (I-
ADOPT), consists of three key ideas: (i) during compilation, instead of finding

?? This work is supported by Science Foundation Ireland under Grant No. 03/CE3/I405

90

optimal local solutions, we calculate lower and upper bounds of solution costs;
(ii) we modify the ADOPT [7] algorithm to incorporate these solution bounds
into its cost calculations; (iii) we interleave local and distributed search processes,
using global cost information to direct the agent’s local search. In this paper, we
summarise our compilation method, and then describe I-ADOPT. We prove that
the modifications to ADOPT retain correctness and completeness. This forms
the basis for an empirical evaluation of I-ADOPT, which is now underway.

2 DCOP and Compilation

A Distributed Constraint Optimisation Problem consists of a set of agents, A=
{a1, a2, ..., an}, and for each agent ai, a set Xi={xi1, xi2, . . . , ximi

} of variables it
controls, such that ∀i6=j Xi∩Xj =φ. Each variable xij has a corresponding domain
Dij . X =

⋃
Xi is the set of all variables in the problem. C = {c1, c2, . . . , ct}

is a set of constraints. Each ck has a scope s(ck) ⊆ X, and is a function ck :∏
ij:xij∈s(ck)Dij → IN . The agent scope, a(ck), of ck is the set of agents that ck

acts upon: a(ck)={ai :Xi∩ s(ck) 6=φ}. An agent ai is a neighbour of an agent aj

if ∃ck : ai, aj ∈ a(ck). A global assignment, g, is the selection of one value for each
variable in the problem: g∈

∏
ijDij . A local assignment, li, to an agent ai, is an

element of
∏

jDij . Let t be any assignment, and let Y be a set of variables, then
t↓Y is the projection of t over the variables in Y . The global objective function,
F , assigns a cost to each global assignment: F :

∏
ijDij→ IN :: g 7→

∑
kck(g↓s(ck)).

An optimal solution is one which minimises F . The solution process, however,
is restricted: each agent is responsible for the assignment of its own variables,
and thus agents must communicate with each other, describing assignments and
costs, in order to find a globally optimal solution.

Several algorithms for DCOP have been proposed, including ADOPT [7] –
a complete algorithm that allows agents to work asynchronously. Agents are
prioritised into a tree. Let Hi be the set of higher priority neighbours of ai, and
let Li be the set of its children. During search, each agent ai repeatedly and
asynchronously performs a number of tasks:

1. Incoming values are received from higher priority agents and added to the
current context CCi, which is a record of higher priority neighbours’ current
variable assignments: CCi∈

∏
j:aj∈Hi

Dj .
2. Costs are received from children and stored if they are valid for the current

context – for each subtree, rooted by an agent aj ∈Li, ai maintains a lower
bound, lb(li, aj), and an upper bound ub(li, aj) for each of its values li.

3. Costs are calculated for each of its possible values. Let Cij be the con-
straint between zi and zj . The partial cost, δ(l), for an assignment of a
particular value li to zi is the sum of the agent’s local cost fi(li), plus
the costs of constraints between ai and higher priority neighbours: δ(li) =
fi(li)+

∑
j:aj∈Hi

Cij(li, CCi↓zj
). The lower bound, LB(li), for an assignment

of a value li to zi is the sum of δ(li) and the currently known lower bounds for
all subtrees: LB(li) = δ(li) +

∑
j:aj∈Li

lb(li, aj). The upper bound, UB(li),

91

is the sum of δ(li) and the currently known upper bounds for all subtrees:
UB(li) = δ(li)+

∑
j:aj∈Li

ub(li, aj). The minimum lower bound over all value
possibilities, LBi, is the lower bound for the agent ai: LBi = minli∈Di

LB(li).
Similarly, UBi, is the upper bound for the agent ai: UBi = minli∈Di

UB(li).
4. The value that minimises the lower bound on the costs is chosen and sent

to all neighbours in Li.
5. LBi and UBi are passed as costs to the parent of ai, along with the context

to which they apply, CCi.

As the search progresses, the bounds are tightened in each agent until the
lower bound of the minimum cost solution is equal to its upper bound. If an
agent detects this condition, and its parent has terminated, then an optimal
solution is found and it may terminate also.

To handle multiple variables in each agent, we use the compilation approach
we proposed in [8]. Let Ti =

∏
jDij be the set of possible local assignments to

the agent’s internal problem. For each agent ai, let pi = {xij : ∀c xij ∈ s(c) →
s(c) ⊆ Xi} be its private variables – the subset of its variables which are not
directly constrained by other agents’ variables – and let ei =Xi\pi be its external
variables – the variables that do have direct constraints with other agents. To
apply the compilation method: (i) for each agent ai, create a new variable zi

with domain Di =
∏

j:xij∈ei
Dij ; (ii) for each agent ai, add a unary constraint

function fi, where ∀l∈Di, fi(l)=min{fi(t) : t∈Ti, t↓ei
= l}. That is, Di contains

all assignments to the external variables, and their cost is the minimum cost
obtained when they are extended to a full local assignment for ai

1. (iii) for
each set of agents Aj = {aj1, aj2, ..., ajpj

}, let Rj = {c : a(c)=Aj} be the set of
constraints whose agent scope is Aj , and for each Rj 6=φ, define a new constraint
Cj : Dj1×Dj2× . . .×Djpj

→ IN :: l 7→
∑

c∈Rj
c(l↓s(c))), equal to the sum of the

constraints in Rj (i.e. construct constraints between the agents’ new variables,
that are defined by referring back to the original variables in the problem). Once
compiled, we can run single-variable DCOP algorithms using the new variables.
We have shown that our approach gives orders of magnitude improvement over
the basic compilation method for many parameter settings.

3 I-ADOPT: Interleaved Search in ADOPT

3.1 Compilation with Bound Estimates

Compilation requires local solutions to be pre-determined and the distributed
search for a global solution cannot proceed until this is completed. To overcome
this, we modify the compilation technique described in Section 2. For each ai,
create a new variable zi with domain Di =

∏
j:xij∈ei

Dij . Then proceed to add
a unary constraint function fi, where ∀l ∈ Di, f ′

i(l) =min{fi(t) : t ∈ Ti, t↓ei
=

1 This differs from the basic compilation method in that we find only one optimal solu-
tion for each combination of assignments to external variables (instead of finding all
local solutions), eliminating solutions that are either dominated or interchangeable.

92

l}. However, during compilation we do not evaluate this function completely.
Instead, we calculate a lower lb(fi(l)), and upper ub(fi(l)), bound ∀l ∈Di. To
calculate these bounds, any suitable technique may be chosen (for example [10]).

3.2 Using Local Bounds in ADOPT

In I-ADOPT, definitive local costs for agents will not be known from the start.
Therefore, we modify the ADOPT cost calculations such that δ(l) does not
include the local cost. Instead, the lower and upper bounds for the local cost are
included in the lower and upper bound calculations. The partial cost, δ′(l), for
an assignment of a particular value li to zi is the sum of the costs of constraints
between ai and higher priority neighbours (excluding the agent’s local cost):
δ′(li) =

∑
j:aj∈Hi

Cij(li, CCi↓zj). The lower bound, LB′(li), for an assignment
of a value li to zi is the sum of δ′(li) and the currently known lower bounds
for all subtrees plus the lower bound on the local cost of li: LB′(li) = δ′(li) +∑

j:aj∈Li
lb(li, aj)+ lb(fi(li)). The upper bound, UB′(li), is the sum of δ′(li) and

the currently known upper bounds for all subtrees plus the upper bound on the
local cost of li: UB′(li) = δ′(li) +

∑
j:aj∈Li

ub(li, aj) + ub(fi(li)).

3.3 Interleaving Local and Global Search

We coordinate the local and global search processes, tightening the bound on
local solutions as we tighten the bounds in the global search. The agents local
search process (Algorithm 1) runs on its own thread, thus interleaving with the
global search process and making use of idle time that exists in the agent. Each
loop of the algorithm attempts to tighten both the lower and upper bounds for
its target value (lines 5, 10). It then checks for a new target value (3) and repeats.
If the target value is changed, the algorithm will simply attempt to tighten the
bounds for the new target value. A target value is solved when the lower bound

Algorithm 1: local.start
(1) stopped← false
(2) while !stopped and !terminated
(3) li ← getTarget()
(4) if lb(fi(ll)) < ub(fi(li))
(5) lb(fi(ll))← lbSearch(li)
(6) agent.notifyBoundUpdated()
(7) else
(8) stopped← true
(9) if lb(fi(ll)) < ub(fi(li))
(10) ub(fi(li))← ubSearch(li)
(11) agent.notifyBoundUpdated()
(12) else
(13) stopped← true

93

Algorithm 2: Modifications to ADOPT’s backtrack procedure
(1) . . .
(2) choose li
(3) local.setTarget(li)
(4) if lb(fi(ll)) < ub(fi(li)) and local.isStopped()
(5) local.start()
(6) . . .
(7) if terminateCondition()
(8) local.terminate()

equals the upper bound (4, 9). The methods for tightening the bounds, like the
initial bound calculations, can be chosen independently of this algorithm.

To control execution of Algorithm 1, we modify the backtrack procedure in
ADOPT. The backtrack procedure is activated when: (i) a new value is received
from a parent; or (ii) if the costs of children have changed. We now add a third
activation condition: (iii) if a bound in a local cost is updated (lines 6, 12 of
Alg. 1). Two modifications are made to the backtrack algorithm (Alg. 2). First,
the agent sets the target value of the local search to be its current value (3).
If an optimal solution to the local problem for this value has not been found
previously and the local search is currently not active, then the agent starts the
local search (5). Thus, progress in the global search is directing the local search
towards the most promising areas of the search space. Local values that do not
have a possibility of being in the global solution will be ignored, reducing the
local search required by each agent. Second, if the agent detects its termination
condition (7), then it should notify the local search process to also terminate.

4 Algorithm correctness

We now prove that our algorithm, like ADOPT, is both correct and complete.
Theorem 1 states that for an agent ai, the lower bound calculated is guaranteed
to be no greater than the lower bound calculated by the same agent in the
standard ADOPT, and also that the upper bound calculated is no less than the
upper bound calculated by the same agent in the standard ADOPT.

Theorem 1. ∀li∈Di, LB′(li) <= LB(li) and UB′(li) >= UB(li)

Proof Expanding LBi gives: fi(li)+
∑

j:aj∈Hi
Cij(li, CCi↓zj)+

∑
j:aj∈Li

lb(li, aj).
Expanding LB′

i gives:
∑

j:aj∈Hi
Cij(li, CCi↓zj

) +
∑

j:aj∈Li
lb(li, aj) + lb(fi(li)).

The only difference is that LBi uses fi(li) while LB′
i uses lb(fi(li)). Since lb(fi(li))

is a lower bound of fi(li), it follows that LB′
i <= LBi. Similarly, the only dif-

ference between UBi and UB′
i is that UBi uses fi(li) while UB′

i uses ub(fi(li)).
Since ub(fi(li)) is an upper bound of fi(li), it follows that UB′

i >= UBi. 2

Theorem 2. If complete methods are used to tighten the bounds of local solu-
tions, then the algorithm is complete.

94

Proof LB′
i =

∑
j:aj∈Hi

Cij(li, CCi↓zj)+
∑

j:aj∈Li
lb(li, aj)+lb(fi(li)). Using com-

plete methods for the lower and upper bound searches for the local problem is
guaranteed to find optimal local costs for each target value li. In the worst case
all values li ∈ Di will be chosen as target values until their optimal solutions
is found, thus reducing lb(fi(li)) to be fi(li), and so LB′

i becomes equivalent to
LBi. Similarly, UB′

i becomes equivalent to UBi. Since ADOPT is proven to be
complete, it follows that I-ADOPT is also complete. 2

5 Conclusion and Future Work

We have presented a modified version of the DCOP algorithm ADOPT for han-
dling problems where each agent has multiple variables. Our algorithm, is based
on a standard approach which compiles agents’ local problems down to a single
variable whose domain is the set of all local solutions. However, our approach
eliminates the need to pre-determine local solutions. We use lower and upper
bound estimates on the costs of local solutions, which allows the global search to
progress without complete knowledge of the local solution costs of an agent. In
turn, the progress of the global search provides direction for what areas in the
local search space to explore, thus eliminating the need to search for local solu-
tions that can never be part of the global solution. In addition, the agents can
make use of naturally occurring idle time to interleave the local search process
with the distributed search. This is currently work in progress, and future work
will focus on performing a thorough experimental evaluation of the algorithm.

References

1. Calisti, M., Neagu, N.: Constraint satisfaction techniques and software agents. In:
Proc. Agents and Constraints Workshop, AIIA. (2004)

2. Wallace, R., Freuder, E.: Constraint-based reasoning and privacy/efficiency trade-
offs in multi-agent problem solving. Artificial. Intelligence. 161 (2005) 209–227

3. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems 3 (2000) 185–207

4. Armstrong, A., Durfee, E.: Dynamic prioritization of complex agents in distributed
constraint satisfaction problems. In: Proc. IJCAI. (1997) 620–625

5. Yokoo, M., Hirayama, K.: Distributed constraint satisfaction algorithm for complex
local problems. In: Proc. ICMAS. (1998) 372

6. Maestre, A., Bessière, C.: Improving asynchronous backtracking for dealing with
complex local problems. In: Proc. ECAI. (2004) 206–210

7. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence 161 (2005)
149–180

8. Burke, D., Brown, K.: Efficient handling of complex local problems in distributed
constraint optimization. In: Proc. ECAI. (2006) To appear.

9. Burke, D., Brown, K.: A comparison of approaches to handling complex local
problems in dcop. (2006) Submitted to DCSP workshop at ECAI.

10. Cabon, B., de Givry, S., Verfaillie, G.: Anytime lower bounds for constraint viola-
tion minimization problems. In: Proc. CP. (1998) 117–131

95

A New Algorithm for Sampling CSP Solutions
Uniformly at Random

Student: Vibhav Gogate
Supervisor: Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697

{vgogate,dechter}@ics.uci.edu

Abstract. The paper presents a method for generating solutions of a constraint
satisfaction problem (CSP) uniformly at random. Our method relies on express-
ing the constraint network as a uniform probability distribution over its solutions
and then sampling from the distribution using state-of-the-art probabilistic sam-
pling schemes. To speed up the rate at which random solutions are generated, we
augment our sampling schemes with pruning techniques used successfully in the
CSP literature such as conflict-directed back-jumping and no-good learning.

1 Introduction

The paper presents a method for generating solutions to a constraint network uniformly
at random. The idea is to express the uniform distribution over the set of solutions
as a probability distribution and then generating samples from this distribution using
monte-carlo sampling. We develop novel monte-carlo sampling algorithms that extend
our previous work on monte-carlo sampling algorithms for probabilistic networks [4]
in which the output of generalized belief propagation was used for sampling.

Our preliminary experiments revealed that our sampling schemes in [4] and its ex-
tensions proposed in this paper may fail to output even a single solution for constraint
networks that admit few solutions. So we propose to enhance our sampling schemes
with techniques like conflict directed back-jumping and no-good learning.

We demonstrate empirically the performance of our search+sampling schemes by
comparing them with two previous schemes: (a) the WALKSAT algorithm [5] and (b)
the mini-bucket approximation [2]. This work is motivated by a real-world application
of generating test programs in the field of functional verification (see [2] for details).

2 Preliminaries

Definition 1 (constraint network). A constraint network (CN) is defined by a 3-tuple,
〈X,D,C〉, whereX is a set of variablesX = {X1, . . . ,Xn}, associated with a set of
discrete-valued domains,D = {D1, . . . ,Dn}, and a set of constraintsC = {C1, . . . ,Cr}.
Each constraintCi is a pair(Si ,Ri), whereRi is a relationRi ⊆DSi defined on a subset
of variablesSi ⊆ X. Ri contains the allowed tuples ofCi . A solution is an assignment
of values to variablesx = (X1 = x1, . . . ,Xn = xn), Xi ∈ Di , such that∀Ci ∈ C, xSi ∈ Ri .

96

Definition 2 (Random Solution Generation Task).Let sol be the set of solutions to
a constraint networkR = (X,D,C). We define the uniform probability distribution
Pu(x) overR such that for every assignmentx = (X1 = x1, . . . ,Xn = xn) to all the vari-
ables that is a solution, we havePu(x ∈ sol) = 1

|sol| while for non-solutions we have

Pu(x /∈ sol) = 0. The task of random solution generation is the task of generating each
solution toR with probability 1

|sol| .

3 Generating Solutions Uniformly at Random

In this section, we describe how to generate random solutions using monte-carlo (MC)
sampling. We first express the constraint networkR (X,D,C) as a uniform probability
distributionP over the space of solutions:P (X) = α∏i Ci(Si = si). Here,Ci(si) = 1 if
si ∈ Ri and0 otherwise.α = 1/∑∏i fi(Si) is the normalization constant. Note that it is
easy to prove that any algorithm that samples fromP generates solutions to the con-
straint network uniformly at random. This allows us to use the following monte-carlo
(MC) sampler to sample fromP .
Algorithm Monte-Carlo Sampling
Input: A factored distributionP and a time-bound ,Output: A collection of samples fromP .
Repeat until the time-bound expires

1. FOR i = 1 to n
(a) SampleXi = xi from P(Xi |X1 = x1, . . . ,Xi−1 = xi−1)

2. End FOR
3. If x1, . . . ,xn is a solution output it.

Hence forth, we will useP to denote the conditional distributionP(Xi |X1, . . . ,Xi−1). In
[2], a method is presented to computeP in time exponential in tree-width. But tree-
width is usually large for real-world networks and so we have to use approximations.

4 Approximating P using Iterative Join Graph Propagation

Because exact methods for computingP are impractical, we consider a generalized
belief propagation algorithm [6] called Iterative Join Graph Propagation (IJGP) [3] to
compute an approximation toP. IJGP is a form of sum-product belief propagation [6,
3] which takes as input a factored probability distributionP and a partial assignment
E = e and then performs message-passing on a special structure called the join-graph.
A join-graph is a decomposition of functions inP into a collection of clusters labeled
by variables. The output of IJGP can be used to compute an approximationQ(Xi |e)
of P(Xi |e) [3]. If the number of variables in each cluster is bounded byi, we refer to
IJGP as IJGP(i). The time and space complexity of one iteration of IJGP(i) is bounded
exponentially byi (see [3] for details).

IJGP(i) can be used to compute an approximation toPby executing it withP and the
partial assignmentX1 = x1, . . . ,Xj−1 = x j−1 as input. Here, IJGP(i) should be executed
n times, one for each instantiation of variableXj in order to generate one full sample.
This process may be slow because the complexity of generatingN samples isO(N∗n∗
exp(i)). To speed-up the sampling process, in [4] we pre-computed the approximation
of P by executing IJGP(i) just once yielding a complexity ofO(N∗n+exp(i)).

97

Thus, at one end of the spectrum we have a method which executes IJGP at each
instantiation and at the other end a method which executes IJGP just once before instan-
tiating any variables. Therefore, we introduce a control parameterp which allows run-
ning IJGP(i) everyp% of the possiblenvariable instantiations. This helps us analyze the
spectrum in between asp changes. We call the resulting technique IJGP(i,p)-sampling.

The intuition behind using parameterp are the results of our preliminary empirical
testing, in which we observed that changing only one (or a few) variables to become
instantiated often does not impact the approximationQ computed by IJGP(i). Since
these reruns of IJGP can present a significant overhead, it can be more cost-effective
to rerun IJGP only periodically during sample generation. An important property of
completeness is expressed in the following theorem.

Theorem 1 (Completeness).IJGP(i,p)-sampling has a non-zero probability of gener-
ating any arbitrary solution to a constraint satisfaction problem.

5 Improving the Approximate Sampling Algorithm

It is important to note that when allP’s are exact in our monte-carlo sampler, all sam-
ples generated are guaranteed to be solutions to the constraint network. However, when
we approximateP using IJGP such guarantees do not exist and our scheme will at-
tempt to generate samples that are not consistent (rejection). Our preliminary experi-
ments showed us that the rejection rate of IJGP(i,p)-sampling was quite high for con-
straint networks that admit few solutions. So in this section, we discuss how to decrease
the rejection rate of IJGP(i,p)-sampling by utilizing constraint-based pruning schemes
thereby speeding up the rate at which random solutions are generated.

5.1 Introducing Backjumping

Traditional sampling algorithms start sampling anew from the first variable in the or-
dering when an inconsistent sample is generated. This is clearly inefficient and instead
we could backtrack to the previous variable, update the conditional distributionP to
reflect the dead-end and re-sample the previous variable. In other words, we could per-
form backtracking search instead of pure sampling. We propose to use conflict-directed
back-jumping for obvious efficiency reasons.

5.2 No-good learning

Conventional monte-carlo sampling methods do not learn no-goods from dead-ends
once a sample is rejected. Thus they are subjected to thrashing as happens during sys-
tematic search. So we augment our sampling schemes that employ back-jumping search
with no-good learning schemes as in [1]. Since each no-good can be considered as a
constraint, they can be inserted into any cluster in the join graph that includes the scope
of the no-good. So each time a no-good bounded byi is discovered, we check if the
no-good can be added to a cluster in the join-graph and if so then subsequent runs of
IJGP utilizes this no-good; thereby potentially improving its approximation.

We refer to the algorithm resulting from adding back-jumping search and no-good
learning to IJGP(i,p)-sampling as IJGP(i,p)-search-sampling.

98

Problems Time IJGP(3,p)-search-sampling IJGP(3,p)-search-samplingMBE(3)
(N,K,C,T) No learning learning

p=0 p=10 p=50 p=100 p=0 p=10 p=50 p=100 p=0
KL KL KL KL KL KL KL KL KL

MSE MSE MSE MSE MSE MSE MSE MSE MSE
#S #S #S #S #S #S #S #S #S

50,4,150,4 300s 0.02110.02840.01920.0076 0.01870.01020.0112 0.009 0.102
0.00310.00470.00270.0003 0.00280.00190.00210.0003 0.089
138322 72744 47278 19002162387 97560 38281 15347 78218

50,4,180,4 300s 0.02780.03430.02210.0092 0.02850.01190.01850.0091 0.1116
0.00380.00470.00350.0006 0.00280.00240.00290.0006 0.0695
88329 59209 37012 23671 74126 61822 24102 11438 45829

100,4,350,41000s 0.03460.03190.0108 0.011 0.04030.0172 0.013 0.0053 0.134
0.00740.00610.00280.0017 0.00860.00480.00260.0008 0.073
82290 42398 19032 11792103690 37923 25631 9872 93823

100,4,370,41000s 0.02490.02350.02670.0156 0.01670.01880.01430.0106 0.107
0.00890.00620.00840.0037 0.00580.00610.00490.0019 0.0332
18894 17883 2983 1092 28346 14894 3329 1981 33895

Table 1.Performance of IJGP(3,p)-sampling and MBE(3)-sampling on random binary CSPs.

ProblemsTime IJGP(3,p)-search-sampling IJGP(3,p)-search-samplingWALKSAT
(N,K,C,T) No learning learning

p=0 p=10 p=50 p=100 p=0 p=10 p=50 p=100 p=0
KL KL KL KL KL KL KL KL KL

MSE MSE MSE MSE MSE MSE MSE MSE MSE
#S #S #S #S #S #S #S #S #S

50,150 20s 0.124 0.092 0.083 0.088 0.109 0.089 0.085 0.073 0.114
0.019 0.007 0.006 0.006 0.013 0.006 0.005 0.005 0.017
28002 18203 9032 1033 31093 11903 7392 1208 45838

50,200 20s 0.117 0.087 0.086 0.08960.1068 0.085 0.084 0.078 0.103
0.018 0.00690.00620.00520.01240.0055 0.005 0.0057 0.016
48917 18772 8944 1292 50962 12636 7793 1172 42950

100,350 100s 0.123 0.089 0.074 0.082 0.127 0.088 0.074 0.068 0.14
0.022 0.009 0.008 0.008 0.023 0.009 0.007 0.005 0.024
89029 54832 17945 1833 79293 42894 27983 2094 103934

100,400 100s 0.107 0.077 0.049 0.024 0.128 0.059 0.039 0.019 0.093
0.029 0.00840.00750.0038 0.039 0.00810.00770.0023 0.019
70298 28901 11309 1003 60934 39782 9462 1284 93024

Table 2.Performance of IJGP(i,p)-search-sampling and WALKSAT on randomly generated 3-SAT problems.

6 Experimental Evaluation

We experimented with randomly generated binary constraint networks, randomly gen-
erated 3-satisfiability (SAT) instances and SAT benchmarks available from satlib.org.
For each network, we compute the fraction of solutions that each variable-value pair
participates in i.e.Pe(Xi = xi). Our sampling algorithms output a set of solution samples

S from which we compute the approximate marginal distribution:Pa(Xi = xi) =
NS(xi)
|S|

whereNS(xi) is the number of solutions in the setS with Xi assigned the valuexi . We
then compare the exact distribution with the approximate distribution using two error
measures (accuracy): (a)Mean Square error- the square of the difference between the
approximate and the exact, averaged over all values, all variables and all problems and
(b) KL distance- Pe(xi)∗ log(Pe(xi)/Pa(xi)) averaged over all values, all variables and
all problems. Another important criteria is the number of solutions generated which we
report in our results.

99

Note that we compare the performance of IJGP(i,p)-search-sampling with a WALK-
SAT based solution sampler [5] on all SAT instances and a mini-bucket approximation
(MBE(i)) [2] based solution sampler on all CSP instances. Also note that the MBE(i)-
based solution sampler used in [2] does not perform search while the one used in our
experiments performs search (conflict-directed backjumping to be precise).

6.1 Results on randomly generated CSPs and 3-SAT problems

We experimented with 50 and 100 variable randomly generated constraint networks
and 3-SAT problems. All problems are consistent. We had to stay with relatively small
problems in order to apply exact techniques to count the solutions that each variable-
value pair participates in. All approximate sampling algorithms were given the same
amount of time to generate solution samples indicated by columnTimein Tables 1 and
2. The results are averaged over 1000 instances each for 50-variable problems and 100
instances each for 100 variable problems. We used an i-bound of3 in all experiments.

Note that the problems become harder as we increase the number of constraints for
a fixed number of variables (phase transition). We can see that in the case of IJGP(i,p)-
search-sampling, accuracy increases and the number of solutions generated decrease as
we increasep (see Tables 1 and 2). Thus, we clearly have a trade-off between accuracy
and the number of solutions generated as we changep. It is clear from Table 1 that our
new scheme IJGP(i,0)-search-sampling is better than MBE(i) based solution sampler
both in terms of accuracy and the number of solutions generated. Also, no-good learning
improves the accuracy of IJGP(i,p)-search-sampling in most cases.

When we compare the results of IJGP(i,p)-search-sampling with WALKSAT (see
Table 2), we see that the performance of WALKSAT is slightly better than IJGP(i,p)-
search-sampling whenp = 0 in terms of accuracy. However, as we increasep≥ 10,
the performance of IJGP(i,p)-search-sampling is better than WALKSAT. It is easy to
see that WALKSAT dominates IJGP(i,p)-search-sampling in terms of the number of
solutions computed forp = 50,100. However forp = 0,10 the number of solutions
generated by WALKSAT are comparable to IJGP(i,p)-search-sampling.

6.2 Results on SAT benchmarks from SATLIB

We also experimented with logistics and verification SAT benchmark problems avail-
able from satlib.org. On all the these benchmarks instances, we had to reduce the num-
ber of solutions that each problem admits by adding unary clauses in order to apply

Logistics.a Logistics.b Logistics.d
N=828,Time=1000s N=843,Time=1000s N=4713,Time=1000s
IJGP(3,10) WALK IJGP(3,10) WALK IJGP(3,10) WALK

No Learn Learn No Learn Learn No Learn Learn
KL 0.009780.001930.01233 0.003930.00403 0.0102 0.0009 0.0003 0.0008

MSE 0.0011670.000330.00622 0.001940.00243 0.0097 0.000730.00041 0.0002
#S 23763 32893 882 11220 21932 93932 10949 19203 28440

Table 3. KL distance, Mean-squared Error and number of solutions generated by IJGP(3,10)-sampling and Walksat on
logistics benchmarks

100

Verification1 Verification2
N=2654,Time=10000s N=4713,Time=10000s

IJGP (3,10) WALK IJGP (3,10) WALK
No Learn Learn No Learn Learn

KL 0.00440.0037 0.003 0.01990.0154 0.01
MSE 0.00350.0021 0.0012 0.009 0.0088 0.0073

#S 1394 945 11342 1893 1038 8390
Table 4. KL distance, Mean-squared Error and number of solutions generated by IJGP(3,10)-sampling and Walksat on
verification benchmarks

our exact algorithms. Here, we only experimented with our best performing algorithm
IJGP(i,p)-search-sampling with i=3 and p=10. From Table 3 we can see that on the
logistics benchmarks, IJGP(3,10)-search-sampling is slightly better than WALKSAT
in terms of accuracy while on the verification benchmarks (see Table 4) WALKSAT
is slightly better than IJGP(3,10)-search-sampling. WALKSAT however dominates our
algorithms in terms of the number of solutions generated except for the Logistics.a
instance.

7 Summary and Conclusion

The paper presents a new algorithm for generating random, uniformly distributed solu-
tions for constraint satisfaction problems. The algorithms that we develop fall under the
class of monte-carlo sampling algorithms that sample from the output of a generalized
belief propagation algorithm and extend our previous work [4].

We show how to improve upon conventional monte-carlo sampling methods by in-
tegrating sampling with back-jumping search and no-good learning and is the main
contribution of our work. This has the potential of improving the performance of monte-
carlo sampling methods used in the belief network literature [4], especially on networks
having large number of zero probabilities.

Our results look promising in that we are consistently able to generate near random
solution samples. Our best-performing schemes are competitive with the state-of-the-
art SAT solution samplers [5] in terms of accuracy and thus present a Monte-carlo (MC)
style alternative to random walk solution samplers like WALKSAT [5].

References

1. R. Bayardo and D. Miranker. A complexity analysis of space-bound learning algorithms for
the constraint satisfaction problem. InAAAI, 1996.

2. Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for con-
straint satisfaction problems. InAAAI, 2002.

3. Rina Dechter, Kalev Kask, and Robert Mateescu. Iterative join graph propagation. InUAI
’02, pages 128–136. Morgan Kaufmann, August 2002.

4. Vibhav Gogate and Rina Dechter. Approximate inference algorithms for hybrid bayesian
networks with discrete constraints.UAI-2005, 2005.

5. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random
walk strategies. InAAAI, 2004.

6. Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Generalized belief propagation. In
NIPS, pages 689–695, 2000.

101

Reasoning on bipolar preference problems

Student: Maria Silvia Pini
Supervisor: Francesca Rossi

Department of Pure and Applied Mathematics, University of Padova, Italy
E-mail: {mpini,frossi}@math.unipd.it

Abstract. Real-life problems present several kinds of preferences. In this paper
we focus on bipolar problems, that are problems with both positive and negative
preferences. Although seemingly specular notions, these two kinds of preferences
should be dealt with differently to obtain the desired natural behaviour. We tech-
nically address this by generalizing the soft constraint formalism, and by consid-
ering the issue of the compensation between positive and negative preferences. In
particular, we suggest how constraint propagation and branch and bound can be
adapted to deal with bipolar problems.

1 Introduction

Real-life problems present several kinds of preferences. In this paper we focus on bipo-
lar problems, i.e., problems with both positive and negative preferences and we present
an algorithm based on branch and bound techniques for solving them. Parts of this paper
concerning modelling of bipolar problems have appeared in [3].

Positive and negative preferences could be thought as two symmetric concepts, but
this does not happen in real scenarios. In fact, assume, for example, to have a scenario
with two objects A and B. If we like both A and B, i.e., if we give to A and B positive
preferences, then the overall scenario should be more preferred than having just A or
B alone, and so the combination of such a preferences should give an higher positive
preference. Instead, if we dislike both A and B, i.e., if we give to A and B negative pref-
erences, then the overall scenario should be less preferred than having just A or B alone
and so the combination of such a negative preferences should give a lower negative
preference. When dealing with both kinds of preferences, it is natural to express also
indifference, which means that we express neither a positive nor a negative preference
over an object. A desired behaviour of indifference is that, when combined with any
preference, it should not influence the overall preference. Finally, besides combining
positive preferences among themselves, and also negative preferences among them-
selves, we also want to be able to combine positive with negative preferences, allowing
compensation, that must produce a positive or a negative preference. For example, if
we have a meal with meat (which we like very much) and wine (which we don’t like),
then what should be the preference of the meal? To know that, we should be able to
compensate the positive preference given to meat with the negative one given to wine.

In this paper we start from the soft constraint formalism [2] based on c-semirings, to
model negative preferences. We then extend it via a new structure, that models positive
preferences and then we define a combination operator between positive and negative
preferences to model preference compensation. Finally, we propose how to adapt con-
straint propagation and branch and bound techniques for finding optimal solutions of
bipolar problems.

102

2 Background: semiring-based soft constraints

A soft constraint [2] is a classical constraint [5] where each instantiation of its variables
has an associated value from a (totally or partially ordered) set. This set has two oper-
ations, which makes it similar to a semiring, and is called a c-semiring. A c-semiring
is a tuple (A, +,×,0,1) where: A is a set and 0,1 ∈ A; + is commutative, associa-
tive, idempotent, 0 is its unit element, and 1 is its absorbing element; × is associative,
commutative, distributes over +, 1 is its unit element and 0 is its absorbing element.
Consider the relation ≤S over A such that a ≤S b iff a + b = b. Then: ≤S is a partial
order; + and × are monotone on ≤S ; 0 is its minimum and 1 its maximum; (A,≤S)
is a lattice and, ∀ a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent, then
(A,≤S) is a distributive lattice and × is its glb. Informally, the relation ≤S gives us a
way to compare the tuples of values and constraints. In fact, when we have a ≤S b, we
will say that b is better than a. Given a c-semiring S = (A, +,×,0,1), a finite set D

(the domain of the variables), and an ordered set of variables V , a constraint is a pair
〈def, con〉 where con ⊆ V and def : D|con| → A. Therefore, a constraint specifies a
set of variables (the ones in con), and assigns to each tuple of values of D of these vari-
ables an element of A. A soft constraint satisfaction problem (SCSP) is just a set of soft
constraints over a set of variables. For example, fuzzy CSPs [7] are SCSPs that can be
modeled by choosing the c-semiring SFCSP = ([0, 1], max, min, 0, 1) and weighted
CSPs [2] are SCSPs that can be modeled by using SWCSP = (<+, min, +, +∞, 0).

3 Negative preferences

The structure we use to model negative preferences is exactly a c-semiring [2] as de-
scribed in the previous section. In fact, in a c-semiring there is an element which acts as
indifference, that is 1, since ∀a ∈ A, a × 1 = a and the combination between negative
preferences goes down in the ordering (in fact, a × b ≤ a, b), that is a desired property.
This interpretation is very natural when considering, for example, the weighted semir-
ing (R+, min, +, +∞, 0). In fact, in this case the real numbers are costs and thus neg-
ative preferences. The sum of different costs is worse in general w.r.t. the ordering in-
duced by the additive operator (that is, min) of the semiring. From now on, we will use
a standard c-semiring to model negative preferences, denoted as: (N, +n,×n,⊥n,>n).

4 Positive preferences

When dealing with positive preferences, we want two main properties to hold: combi-
nation should bring to better preferences, and indifference should be lower than all the
other positive preferences. These properties can be found in the following structure.

Definition 1. A positive preference structure is a tuple (P, +p,×p,⊥p,>p) such that
P is a set and >p,⊥p∈ P ; +p, the additive operator, is commutative, associative,
idempotent, with ⊥p as its unit element (∀a ∈ P, a +p ⊥p= a) and >p as its absorbing
element (∀a ∈ P, a +p >p = >p); ×p, the multiplicative operator, is associative,
commutative and distributes over +p (a×p (b +p c) = (a×p b) +p (a×p c)), with ⊥p

as its unit element and >p as its absorbing element1.

1 In fact, the absorbing nature of >p can be derived from the other properties.

103

The additive operator of this structure has the same properties as the corresponding one
in c-semirings, and thus it induces a partial order over P in the usual way: a ≤p b iff
a +p b = b. This allows to prove that +p is monotone over ≤p (i.e., ∀a, b ∈ P s. t.
a ≤p b then a ×p d ≤p b ×p d, ∀d ∈ P) and that it is the least upper bound in the
lattice (P,≤p) (∀a, b ∈ P , a ×p b ≥p a +p b ≥p a, b.). An example of a positive
preference structure is P1 = (R+, max, sum, 0, +∞), where preferences are positive
reals aggregated with sum and compared with max.

5 Bipolar preference structures

For handing both positive and negative preferences we propose to combine the two
structures described in sections 4 and 3 in what we call a bipolar preference structure.

Definition 2. A bipolar preference structure is a tuple (N, P, +,×,⊥, 2,>) where

– (P, +|P ,×|P , 2,>) is a positive preference structure;
– (N, +|N ,×|N ,⊥, 2) is a c-semiring;
– + : (N ∪ P)2 −→ (N ∪ P) is s. t. an + ap = ap, ∀an ∈ N and ap ∈ P ; this

operator induces a partial ordering on N ∪P : ∀a, b ∈ P ∪N , a ≤ b iff a + b = b;
– × : (N ∪ P)2 −→ (N ∪ P) is an operator that, ∀ a, b, c ∈ N ∪ P , satisfies

commutativity (a× b = b× a) and monotonicity property (if a ≤ b, a× c ≤ b× c).

Bipolar preference structures generalize both c-semirings and positive structures. In
fact, when in a bipolar structure 2 = >, we have a c-semiring and, when 2 = ⊥, we
have a positive structure. In the following, we will write +n instead of +|N and +p

instead of +|P . Similarly for ×n and ×p. When operator × will be applied to a pair in
(N×P), we will sometimes write ×np and we will call it compensation operator. Given
the way the ordering is induced by + on N ∪ P , easily, we have ⊥≤ 2 ≤ >. Thus,
there is a unique maximum element (that is, >), a unique minimum element (that is,
⊥); the element 2 is smaller than any positive preference and greater than any negative
preference, and it is used to model indifference. A bipolar preference structure allows
us to have a richer structure for one kind of preference, that is common in real-life
problems. In fact, we can have different lattices (P,≤p) and (N,≤n). For example, we
could be satisfied with just two levels of negative preferences, while requiring several
levels of positive preferences.

It is easy to show that the combination of a positive and a negative preference is a
preference which is higher than, or equal to, the negative one and lower than, or equal
to, the positive one. The following theorem holds when a bipolar preference structure
(N, P, +,×,⊥, 2,>) is given.

Theorem 1. For all p ∈ P and n ∈ N , n ≤ p × n ≤ p.

This means that the compensation of positive and negative preferences must lie
in one of the chains between the two combined preferences, that passes through the
indifference element 2. Possible choices for combining strictly positive with strictly
negative preferences are thus the average, the median, the min or the max operator.

In general, the compensation operator × may be not associative. We have defined
a list of sufficient conditions for non-associativity of ×. For example, if ×p or ×n is
idempotent and if there are at least two elements p ∈ P and n ∈ N , that are different

104

from 2 s. t. p × n = 2, then × is not associative. Since some of these conditions often
occur naturally in practice, it is not reasonable to require associativity of ×.

In the following table each row corresponds to a bipolar preference structure.

N,P +p, ×p +n, ×n ×np ⊥, 2, >

R−, R+ max, sum max, sum sum −∞, 0, +∞

[−1, 0], [0, 1] max, max max, min sum −1, 0, 1

[0, 1], [1, +∞] max, prod max, prod prod 0, 1, +∞

In the first structure positive preferences are positive real numbers and negative prefer-
ences are negative real numbers, the compensation is given by sum, while the ordering
is given by max. In the second structure positive preferences are between 0 and 1 and
negative preferences between -1 and 0. Again, compensation is sum, and the order is
given by max. In the third structure positive preferences are between 1 and +∞ and
negative preferences between 0 and 1. Compensation is obtained by multiplying the
preferences and ordering is again via max.

6 Bipolar preference problems

Once we have defined bipolar preference structures, we can define a notion of bipolar
constraint, which is just a constraint where each assignment of values to its variables is
associated to one of the elements in a bipolar preference structure.

Definition 3. Given a bipolar preference structure (N, P, +,×,⊥, 2,>) a finite set D

(the domain of the variables), and an ordered set of variables V , a constraint is a pair
〈def, con〉 where con ⊆ V and def : D|con| → (N ∪ P).

A bipolar CSP (V, C) is then just a set of variables V and a set of bipolar constraints C

over V . We propose a way of defining the optimal solutions of a bipolar CSP that avoids
problems due to the possible non-associativity. A solution of a bipolar CSP (V, C) is a
complete assignment to all variables in V , with an associated preference that is com-
puted by combining all the positive preferences associated to its projections over the
constraints, combining all the negative preferences associated to its projections over
the constraints, and then, combining the two preferences obtained so far. If × is as-
sociative, then other definitions of solution preference could be used while giving the
same result. A solution s is an optimal solution if there is no other solution s′ with
pref(s′) > pref(s).

6.1 An example of bipolar CSP

Consider the scenario in which we want to buy a car. We have some preferences over
the car’s features. In terms of color, we like red, we are indifferent to white, and we hate
black. Also, we like convertible cars a lot and we don’t care much for SUVs. In terms
of engines, we like diesel. However, we don’t want a diesel convertible.

We may decide to represent positive preferences via positive integers and nega-
tive preferences via negative integers. Moreover, we may decide to maximize the sum
of all kinds of preferences. This can be modelled by a preference structure where N =
[−∞, 0], P = [0, +∞], + =max,×=sum, ⊥ = −∞, 2 = 0,> = +∞. We now model

105

the example above over this bipolar preference structure. We have three variables:
variable T (type) with domain {convertible,SUV}, variable E (engine) with domain
{diesel,gasoline}, and variable C (color) with domain {red,white,black}. For the prefer-
ences over the colors, we define a constraint c1 = 〈def1, {C}〉 where, for example, we
set def1(red) = +10, def1(black) = −10, and def1(white) = 0. We also have a con-
straint over car types, say c2 = 〈def2, {T}〉 where we set def2(convertible) = +20 and
def2(SUV) = −3. The constraint over engines can then be c3 = 〈def3, {E}〉, where
we can set def3(diesel) = +10 and def3(gasoline) = 0. Finally, the last preference can
be modelled by a constraint c4 = 〈def4, {T, E}〉, where we can set def4(convertible,
diesel) = −20 and def4(a, b) = 0 for (a, b) 6=(convertible, diesel). The following
figure shows the structure of such a bipolar CSP, where we use value 0 for modelling
indifference.

red
black
white

+10
−10
 0

C

SUV
convertible +20

−3

E

T (convertible,diesel) −20

diesel
gasoline

+10
0

Consider, now, solution s1 =(red,convertible,diesel):we have pref(s1) = (def1(red)+
def2(convertible) + def3(diesel)) + def4(convertible, diesel) = (10 + 20 + 10) +
(−20) = 20. We can compute the preference of all other solutions and we can see that
the optimal solution is (red, convertible, gasoline) with global preference of 30.

6.2 Solving bipolar CSPs

Bipolar problems are NP-hard, since they generalise both classical and soft constraints,
which are already difficult problems. However, we can devise algorithms and heuristics
to solve them, hopefully efficiently in the average case. Preference problems based on
c-semirings can be solved via a branch and bound technique, possibly augmented via
soft constraint propagation, which may lower the preferences and thus allow for the
computation of better bounds [2]. In bipolar CSPs, we have positive and negative pref-
erences. Branch and bound techniques can be adapted to compute, at each search node
k, an upper bound ub to the preferences of all the solutions in the k-rooted subtree.

If× is non-associative, then each node is associated to a positive and a negative pref-
erence, say p and n, which is obtained by aggregating all preferences of the same type
in the instantiated part of the problem. An upper bound for the subtree can be computed,
for example, by taking the aggregation of all the best positive and negative preferences
in the non-instantiated part of the problem, say p′ and n′, and by aggregating them to the
positive and negative preferences of the current node. This produces the upper bound
ub = (p ×p p′) × (n ×n n′), where p′ = p1 ×p . . . ×p ps, n′ = n1 ×n . . . ×n nw,
and r = s + w is the number of non-instantiated variables/constraints. Thus ub can be
computed via r − 1 aggregation steps and one compensation step.

If × is associative, however, we don’t need to postpone compensation until all con-
straints have been considered, but we can interleave compensation and aggregation

106

while searching for an optimal solution. This means that we can keep just one value
v = p × n for each search node, that can be positive or negative, which is obtained
by aggregating all preferences (both positive and negative) obtained in the instantiated
part of the problem. The same can be done considering the best preferences in the unin-
stantiated part of the problem, obtaining a value v′. Thus, ub can now be written as
ub = v × v′, where v′ = a1 × . . .× ar, where ai ∈ N ∪P is the best preference found
in a constraint of the uninstantiated part of the problem. Thus now ub can be computed
via at most r−1 steps among which there can be many compensation steps. A compen-
sation can generate the indifference 2, which is the unit element for the compensation
operator. Thus, when 2 is generated, the successive computation step can be avoided.

If ub ≤ v, where v is the preference of the best solution so far, we can prune the
k-rooted subtree. To improve this upper bound, we can propagate negative preferences
as it is done in soft constraints [2, 4]. In fact, such a propagation may lower the negative
values while not changing the semantics of the problem. Due to the monotonicity of ×
and ×n, the upper bound may thus become smaller and allow for more pruning. Pos-
itive preference can be propagated as well. However, since ×p returns higher positive
preferences, their propagation produces higher values. This is not helpful in improving
the upper bound, since monotonicity of × implies that a higher upper bound is obtained.

7 Related and future work

Bipolar reasoning and preferences have attracted some interest in the AI community.
in [1], a bipolar preference model based on a fuzzy-possibilistic approach is described,
but positive and negative preferences are kept separate and no compensation is allowed.
In [6] totally ordered unipolar and bipolar preference scales are used, whereas we have
presented a way to deal with partially ordered bipolar scales.

We plan to consider the presence of uncertainty in bipolar problems, possibly using
possibility theory and to develop solving techniques for such scenarios. Another line
of future research is the generalization of other preference formalisms, such as multi-
criteria methods and CP-nets, to deal with bipolar preferences and to study the relation
between bipolarization and importance tredeoffs.

Acknowledgements. This is a joint work with S. Bistarelli (University of Pescara, Italy) and
K. Brent Venable (University of Padova, Italy).

References

1. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of prefer-
ences in the possibilistic logic framework. In KR 2002. Morgan Kaufmann, 2002.

2. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimization.
Journal of the ACM, 44(2):201–236, mar 1997.

3. S. Bistarelli, M. S. Pini, F. Rossi, and K. B. Venable. Bipolar preference problems. In ECAI-06
(poster), 2006.

4. M. Cooper and T. Schiex. Arc consistency for soft constraints. AI Journal, 154(1-2), 2004.
5. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.
6. M. Grabisch, B. de Baets, and J. Fodor. The quest for rings on bipolar scales. Int. Journ. of

Uncertainty, Fuzziness and Knowledge-Based Systems, 2003.
7. Zs. Ruttkay. Fuzzy constraint satisfaction. In 3rd IEEE International Conference on Fuzzy

Systems, pages 1263–1268, 1994.

107

A Case Study on Earliness/Tardiness Scheduling
by Constraint Programming

Student: Jan Kelbel
Supervisor: Zdeněk Hanzálek

Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague

kelbelj@fel.cvut.cz, hanzalek@fel.cvut.cz

Abstract. The aim of this paper is to solve a problem on schedul-
ing with earliness and tardiness costs using constraint programming ap-
proach, and to compare the results with the ones from the original timed
automata approach. The case study, a production of lacquers, includes
some real life features like operating hours or changeover times. Consid-
ering the earliness and tardiness costs of the case study, the problem was
converted to the problem with objective of minimizing the total waiting
time. Then a search heuristic was applied.

Keywords: scheduling, constraint programming, earliness and tardiness
costs

The paper is submitted only to the Doctoral Programme.

1 Introduction

This paper deals with an application of constraint-based scheduling on a schedul-
ing problem with earliness and tardiness costs. The case study, a production of
lacquers, is originally from project Ametist [1], where it was successfully solved
using timed automata approach [2]. The primary motivation of this work is to
compare the application of constraint programming with the timed automata
solution (that was better than a MIP approach [1]).

The problem can be classified as the resource-constrained project scheduling
problem, in structure similar to the job shop scheduling problem, with distinct
due dates and release dates, and with job dependent earliness and tardiness costs.
The scheduling problem with earliness and tardiness costs (E/T) and given due
dates is NP-hard already in one-machine version [3]. There are OR methods
specialized to solve some restricted E/T problems, e.g. [4]. More close to our
problem is the E/T job shop scheduling problem in [5], where hybrid CP/MIP
approach was used. In contrast, pure CP techniques are described in this paper.

Our method to solve the case study results from its feature that earliness costs
are almost 50 times smaller than tardiness costs. The problem was converted to
the problem with objective of minimizing the total waiting time subject to release
times and due dates. Then a variation of time-directed labeling procedure was
applied.

108

Fig. 1. The example recipe for uni lacquer.

The paper [2] introduces three versions of the lacquer production problem.
Two of them, a basic case study and an extended case study, are in focus of our
work. A stochastic case study, which deals with unavailability of resources due
to breakdown or maintenance, is described in detail in [6].

The paper is organized as follows. The scheduling problem is described in
Sect. 2, while Sect. 3 deals with the some aspects of constraint model and de-
scribes our approach to the search procedure. Results of experiments are pre-
sented in Sect. 4.

As a constraint programming environment we chose ILOG Solver and Sched-
uler via ILOG OPL Studio.

2 The Problem Statement

The production of a lacquer is described by a recipe. The recipe defines process-
ing steps, called tasks according to the scheduling theory, to be performed. The
definition includes processing times of the tasks, resources required for each task,
and precedence constraints. Some of the precedences have delay constraints, i.e.
maximal and minimal delays (time lags) between tasks are specified.

The case study contains 29 jobs, i.e. orders of lacquer to be produced. The
job is specified by the recipe, quantity, release date (earliest start time) and due
date. Processing times of tasks are dependent on the quantity of a lacquer. Three
different recipes are included in the problem – for lacquer types uni, metallic and
bronze.

The tasks of one recipe form a sequence, where each task requires one re-
source. Further, there is a special resource G1 or G2 (mixing vessels) that is
needed for nearly the whole time of production of the job. In order to avoid mul-
tiprocessor tasks, a shadow task is created to model processing on the special
resource. The example recipe is depicted in Fig. 1.

Case Studies

The paper introduces three instances of the two case studies. The goal of the
basic case study (denoted as BF) is to find any feasible schedule using simplified
model of the production. Each task of the recipe has processing time that is the
same for all orders, and all resources are available continuously.

109

The extended case study (EO) is the cost optimization problem. Objective
function introduced in [2] is a combination of total weighted earliness (a cost for
storage of orders that are finished too early), total weighted tardiness (a penalty
payment for delayed orders), and changeover cost. Due to the complexity of this
objective function evaluation, a simpler objective function of total earliness of
all jobs while tardy jobs are not allowed was introduced:

F =
∑

j∈J
dj − Cj , (1)

where J is set of jobs, dj is due date and Cj is completion time of job j, and
dj ≥ Cj ∀j ∈ J . The value of the production total cost, which is needed for
comparison with other approaches, is computed subsequently from the results
of the optimization. Next, some resources have more exact model of behaviour
concerning changeover times and costs. Operating hours of resources have an
exact model with breaks. Tasks cannot be scheduled during breaks, and since
some tasks have processing time longer than the available time between breaks,
these task are breakable, i.e. allowed to be interrupted by breaks.

The third case study instance is the extended case study with performance
factors (EOP), where the performance factors model the unavailability of re-
sources due to breakdown or maintenance [2]. The performance factor is assigned
to each resource, and is used to extend the processing time of a task requiring
the resource.

Resources

The resources are grouped according to their types. Some groups contain more
than one machine, i.e. there are more machines of that type. Inside the group,
the machines are parallel identical resources in terms of the scheduling theory [7],
or in terms of constraint-based scheduling [8], the groups are discrete resources
with capacity greater than one.

Groups with parallel identical resources are:

– Mixing vessel metal G1 = {R11, R12, R13} is used in production of metallic
and bronze lacquers.

– Mixing vessel uni G2 = {R21, R22} is used for production of uni lacquers.
– Dose spinner G3 = {R31, R32} is used in all recipes.
– Filling station G4 = {R41, R42} resource with changeover time and cost –

cleaning is needed when two successive jobs are of different lacquer type. It
is used in all recipes.

Dedicated resources are:

– Disperser G5 = {R5} is used in uni lacquer recipe.
– Dispersing line G6 = {R6} is used in uni lacquer recipe.
– Bronze mixer G7 = {R7} is used in bronze lacquer recipe.
– Bronze dose spinner G8 = {R8} is used in bronze lacquer recipe.

Finally, there is unrestricted resource laboratory G9.

110

3 Modelling the Problem

With naive application of constraint programming, only solutions for smaller in-
stances of the problem were found. So the state space of the problem was reduced,
and a search heuristic was applied, as it is described in following paragraphs.

Constraints in the model

Heuristic constraint called non-overtaking [2] is used in order to reduce the search
space of the problem. It ensures that job started earlier will be finished earlier.
We used even more constraining version of this heuristic. Tasks of a job with
earlier due date are constrained to start earlier. Jobs of the same lacquer recipe
of the type r are indexed with i ∈ {1, . . . , nr} according to the increasing due
date. Tr is the set of indices of tasks in recipe type r, and Si,k represents starting
time of the task k of the job i. Then these constraints are declared:

Si,k <= Si+1,k , ∀i ∈ {1, . . . , nr − 1} and ∀k ∈ Tr.

Applying this heuristic on the model with constant processing times of tasks will
remove symmetry from the search space. However, this heuristic was used also
in the extended case study with task processing times dependent on the quantity
of lacquer, leading to loss of some solutions.

Concerning the filtering algorithms on resources, the Edge-Finding algorithm
was used on unary and also on discrete resources. Due to the changeover times,
the discrete resource G4 was modelled as a set of alternative unary resources.

Search Procedure

The search procedures that are available in OPL studio are written to minimize
Cmax. For example, the SetTimes search heuristic [9, 10] builds the schedule
from earliest starting dates, and also default labeling procedure starts from the
beginning of the domains. The objective of our problem is to schedule tasks as
late as possible, but still not to exceed due date. The idea of our search procedure
is to try to build the schedule backwards. At first, we try to place tasks as near
as possible to the due dates.

One alternative of implementation of this approach is to create a new search
procedure. The other one is that the time axis can be reversed and standard
search procedures used, i.e. to convert the problem to the problem with objective
of minimizing the total waiting time subject to release times and due dates.

Because SetTimes sometimes missed all solutions (it can miss a solution in
some cases, which is also our case), we used a search heuristic, which is a simple
version of time-directed labeling procedure [11]:

1. sort final tasks of jobs by latest possible completion time in decreasing order
2. for each task state two alternatives in the search tree: assign the latest pos-

sible completion time as the end time of the task, or decrease the latest
possible completion time of the task.

111

Finally, the search heuristic was modified to be used with reversed time axis
model, which was a chosen alternative.

The search heuristic defines the shape of the search tree. It was explored
using two search strategies – Depth First Search (DFS) and Limited Discrepancy
Search (LDS, denoted as Slice-Based Search in OPL).

4 Experimental Results

The subjects of the experiments were the three case study instances introduced
in Sect. 2. The problem instance as is stated in [2] can be simplified. Some tasks
can be eliminated, e.g. task requiring unrestricted resource laboratory can be
replaced by a delay constraint, and some tasks can be put together. Finally, we
end up with 139 tasks (of which 110 are breakable) in 29 jobs.

Time for the whole schedule is 9 weeks in 1 minute resolution (90720 minutes),
but the time available for each job is about 2 weeks from release date to due
date, that makes the search space smaller. Moreover, due dates of the jobs are
almost evenly distributed from 3rd to 9th week.

The results are presented in Tab. 1, where column headers DFS-NO and LDS-
NO determine the used search strategy with the non-overtaking constraint in
the model, while LDS column corresponds to the model without the constraint.
The “timed automata” column corresponds to results from [2].

The constraint programming experiments were run on Intel P4 3GHz CPU
with 1GB of RAM, using OPL Studio 3.6 under Windows XP, timed automata
experiments were run on Intel P4 Xeon 2.6GHz [2].

Table 1. Results for test instances

DFS-NO LDS-NO LDS timed automata

cost CPU cost CPU cost CPU cost CPU

BF – 0.09 s – 0.09 s – – – 0.45 s
EO 455,758 1374 s 455,758 18.4 s 454,246 181 s * *

EOP 1,234,959 1026 s 1,186,851 12.7 s 920,240 220 s ≈ 2,100,000 ≈ 600 s
– . . . value not applicable
* . . . value not available

Comparing the results in columns DFS-NO and LDS-NO, wee can see big
speed up in computation, i.e. the Limited Discrepancy Search helped our search
heuristic a lot. In contrast, when using SetTimes search heuristic, no solution
was found using either of the search strategies.

Concerning the impact of non-overtaking constraint, it leads to more or less
significantly better results, but at the high expense of CPU time consumed by
optimization.

112

5 Conclusion and Future Work

We showed a solution of a case study on resource-constrained scheduling problem
with earliness/tardiness costs. With constraint programming approach, we found
a solution of the EOP problem that is notably better than the solution found
with timed automata. However, we tested our method only on three instances of
the problem. There is also an expectation, that the 29 job instances are maybe
one of the largest solvable in reasonable time. The plan for the future is at first
to test the method on randomly generated data. Then our method could be
improved, possibly by using approaches to solve similar problems.

References

1. AMETIST: European Community Project IST-2001-35304 (Advanced Methods
for Timed Systems). http://ametist.cs.utwente.nl/ (2002)

2. Behrmann, G., Brinksma, E., Hendriks, M., Mader, A.: Production Scheduling by
Reachability Analysis - A Case Study. In: Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), published by IEEE Computer Society Press, Los
Alamitos, California (2005)

3. Baker, K.R., Scudder, G.D.: Sequencing with earliness and tardiness penalties: A
review. Operations Research 38(1) (1990) 22–36

4. Sourd, F., Kedad-Sidhoum, S.: The one machine scheduling with earliness and
tardiness penalties. Journal of Scheduling 6(6) (2003) 533–549

5. Beck, J.C., Refalo, P.: A Hybrid Approach to Scheduling with Earliness and Tar-
diness Costs. Annals of Operations Research 118(1–4) (2003) 49–71

6. Bohnenkamp, H.C., Hermanns, H., Klaren, R., Mader, A., Usenko, Y.S.: Synthesis
and stochastic assessment of schedules for lacquer production. In: 1st Int. Conf. on
Quantitative Evaluation of Systems (QEST), published by IEEE Computer Society
Press, Los Alamitos, California (2004)

7. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Werglarz, J.: Scheduling Com-
puter and Manufacturing Processes. Second edn. Springer-Verlag, Berlin (2001)

8. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer Academic Publishers
(2001)

9. Le Pape, C., Couronne, P., Vergamini, D., Gosselin, V.: Time-versus-Capacity
Compromises in Project Scheduling. In: Proceedings of the Thirteenth Workshop
of the U.K. Planning Special Interest Group. (1994)

10. ILOG S.A.: ILOG OPL Studio 3.5 Language Manual. (2001)
11. van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM

Transactions on Computational Logic 1(2) (2000) 285–320

113

Limited Full Arc Consistency?

Student: Josef Zlomek
Supervisor: Roman Barták

Faculty of Mathematics and Physics
Charles University, Prague, Czech Republic

zlomek@kti.mff.cuni.cz

Abstract. Consistency techniques proved to be an efficient method for
reducing the search space of a CSP. Several consistency techniques were
proposed for soft constraints too. In this paper, we introduce a new
stronger form of consistency called limited full arc consistency (LFAC*)
for the Weighted CSP. We provide an algorithm for enforcing LFAC*
and for maintaining it during Branch & Bound search. We also present
some preliminary experimental results.

1 Introduction

Consistency techniques reduce the search space of a CSP [1] and thus make larger
problems solvable. They reduce the variables’ domains by removing values that
can’t be in any solution. A value can be pruned if there is no assignment including
the value that satisfies all constraints.

Weighted CSP [2] is a well-known optimization version of CSP framework.
WCSP extends classical CSP by assigning costs to tuples. The costs from differ-
ent constraints are combined together. Solutions of WCSP are those complete
assignments that have the lowest combined cost. Because of the costs, we can use
the optimality reasoning in addition to the feasibility reasoning. We can prune a
value if the value causes the cost of any complete assignment to be greater than
the minimal cost found so far. Such a value obviously can’t be in a solution.

Several arc-based consistency techniques have been introduced into WCSP
recently: arc consistency (AC*) [6], full directional arc consistency (FDAC*)
[5], and existential directional arc consistency (EDAC*) [3]. In order to detect
too high combined costs, all these consistency techniques employ moving costs
from one constraint to another. However, these consistency techniques restrict
the movements of particular types to corresponding directions according to the
order of variables.

The arc consistency techniques for a classical CSP do not restrict the pruning
process to one direction. It is also quite limiting to restrict the direction in
WCSP. In this paper, we introduce a new form of local consistency limited full

arc consistency (LFAC*) that does not use fixed directions of cost moving.
The paper is structured as follows. Section 2 gives preliminary definitions.

Section 3 defines limited full arc consistency and proposes its enforcing algorithm.

? Supported by the Czech Science Foundation under the contract 201/05/H014 and

by Grant Agency of Charles University under the contract 356/2006.

114

The correctness of the algorithm is shown too. Section 4 gives the experimental
results of LFAC*. Section 5 gives conclusions and directions for future work.

2 Preliminaries

2.1 Frameworks

A constraint satisfaction problem (CSP) is a triple P = (V, D, C). V is a set
of variables. Each variable vi ∈ V has a finite domain Di ∈ D of possible
values. C is a set of constraints. Constraint c is a relation defined on a subset
of variables, denoted as vars(c). A unary constraint is a constraint Ci ⊆ Di, a
binary constraint is a constraint Cij ⊆ Di × Dj . A tuple is an assignment to a
set of variables. Tuple t is consistent if all constraints referring only to variables
assigned by t are satisfied. A solution of P is a consistent complete assignment.

Following the paper [5], a weighted CSP (WCSP) is a tuple P = (k, V, D, C).
k ∈ {1, . . . ,∞} defines the valuation structure S(k) = ({0, . . . , k},⊕,≥), where
⊕ is defined as a ⊕ b = min(k, a + b) and ≥ is the standard order on natural
numbers. V is a set of variables, D is a set of variables’ domains, and C is a set of
constraints. Constraints assign costs to assignments to variables. For instance,
a binary constraint is a function Cij : Di × Dj → {0, . . . , k}. C∅ is a nullary
constraint representing the lower bound of the cost of the solution. The cost of
a tuple is the combined cost of the constraints. A solution is a tuple with the
minimal cost.

2.2 Some Local Consistencies in WCSP

Definition 1. [5] Variable vi is node consistent (NC*) if for all values a ∈ Di,

C∅ ⊕ Ci(a) < k, and there exists a value a ∈ Di such that Ci(a) = 0. P is NC*

if every variable is NC*.

Definition 2. [5] Value b ∈ Dj is a simple support for a ∈ Di if Cij(a, b) = 0.
Value b ∈ Dj is a full support for a ∈ Di if Cij(a, b) ⊕ Cj(b) = 0.

Definition 3. [5] Constraint Cij is arc consistent (AC) if every value a ∈ Di

has a simple support in Dj. Variable vi is AC if every constraint Cij is AC. P

is AC* if all variables are AC and NC*.

Definition 4. [3] Constraint Cij is full arc consistent (FAC) if every value

a ∈ Di has a full support in Dj . P is FAC* if every binary constraint is FAC

and P is NC*.

Definition 5. [5] Variable vi is full directional arc consistent (FDAC*) if every

constraint Cij such that j > i is FAC, every constraint Cij such that j < i is

AC, and vi is NC*.

Definition 6. [3] Variable vi is existential arc consistent (EAC) if there is at

least one value a ∈ Di such that Ci(a) = 0 and it has a full support in every

constraint Cij . P is EAC* if every variable is EAC and NC*.

115

Definition 7. [3] P is EDAC* if it is FDAC* and EAC*.

Definition 8. [5] Subtraction 	 of b from a is defined as

a 	 b =

{

a − b a 6= k

k a = k

Definition 9. [5] Projection of α cost units from Cij ∈ C to value a ∈ Di

means subtracting α from Cij(a, b) ∀b ∈ Dj and adding α to Ci(a).

Definition 10. [5] Extension of β cost units from value a ∈ Di to Cij ∈ C

means adding β to Cij(a, b) ∀b ∈ Dj and subtracting β from Ci(a).

3 Limited Full Arc Consistency

The projection and extension operations, which are employed by the consistency
algorithms like FDAC*[5] and EDAC*[3], move the costs from one constraint to
another constraint. If the unary cost of a value reaches the upper bound, the
value is pruned from the variable’s domain. Because we want to prune as many
values as possible, we would like to combine as much costs as possible. Stronger
pruning will lead to smaller number of visited nodes during search, and hopefully
to better running time.

However, finding a full support for every value is not possible in some cases.
When we attempt to do so, we can enter an infinite loop (see figure 1). In order
to avoid infinite loops, we detect them and do not enter them. For each value, we
remember the maximum unary cost it had at some moment. If the propagation
results in increasing the maximum known cost for some value, we have not been
in this state yet and we allow the propagation. Otherwise, if no unary cost
exceeds the maximum, we know we have been in the same or better state and
thus we do not propagate. Therefore, we do not enter infinite loops.

Because of the loop-cutting, the consistency enforced using this methods is
weaker than FAC* (which is impossible to enforce anyway). We call this form of
consistency Limited Full Arc Consistency (LFAC*).

Fig. 1. There are variables x and y, each with values a and b. Unary costs are illustrated
inside the domain value. Edges are the binary costs of value 1, zero costs are not shown.
Value a ∈ x does not have a full support. When we find the full support by extending 1
cost unit from b ∈ y and projecting 1 cost unit to a ∈ x, we are in the similar situation
as in the beginning, but reversed. Now b ∈ y does not have a full support.

116

Definition 11. Constraint Cij is LFAC* if Cij is FAC* and Cji is AC*, or Cij

is AC* and Cji is FAC*. Variable vi is LFAC* if all its binary constraints are

LFAC*.

Remark 1. Constraint Cij is LFAC* if it has full supports in one direction and
simple supports in the other direction.

The algorithm for enforcing LFAC* employs two ideas mentioned in the
beginning of this section. It concentrates as many costs as possible, and it uses
the loop-cutting mechanism.

The algorithm maintains a set of variables to consider. Initially, the set con-
tains all unassigned variables. In each step, one variable in the set is selected
and removed from the set. The costs are concentrated to the selected variable
from its neighbors, and the infeasible values are pruned. Because we want to
concentrate as many costs as possible to the next variable too, we must ensure
that there are costs to be moved to the next variable from its neighbors. It might
not be possible to move all costs from the selected variable to the next variable
directly. Therefore, we move the rest of costs from the selected variable back
to its neighbors, because these neighbors may also be the neighbors of the next
variable.

While the costs are moved from the selected variable, new variables are added
into the set of variables to consider. A variable is added to the set if the maximum
unary costs were increased, or when some values were pruned.

The algorithm enforces the LFAC* property, i.e. each binary constraint is
AC* in one direction and FAC* in the other direction, and each unary constraint
is NC*. The justification follows.

The procedure Prune(v) removes all infeasible values of variable v and thus
makes the variable NC*. The procedure is called whenever the costs are moved
to v. Therefore, the problem remains NC* after moving the costs to any variable.

Each unassigned variable is examined in the inner loop at least once. Given
a variable vi, the procedure ConcentrateCosts(vi) makes all the constraints Cij

FAC*. The procedure ExpandCosts(vi) makes the constraints Cji FAC* if the
unary costs in vj exceed the previous maximum unary costs.

Since both variables of the constraint Cij are examined in the inner loop,
the constraint is made FAC* in one direction and later in the other direction.
We need to prove that if the constraint Cij is FAC* and Cji is made FAC* the
constraint Cij remains at least AC*.

When constraint Cij is FAC*, for every a ∈ Di there is a full support b ∈ Dj ,
which implies that Cij(a, b) = 0. When the constraint Cji is made FAC*, costs
are extended from Ci and projected to Cj . In order to make b ∈ Dj FAC*,
we need to project m = mina′∈Di

{Cji(b, a
′) ⊕ Ci(a

′)} cost units to b ∈ Dj ,
and the m − Cji(b, a

′) cost units have to be extended first to Cji(b, a
′). Since

0 = Cji(b, a) ≤ m, m cost units are extended from a ∈ Di and projected to
b ∈ Dj . Therefore, Cji(b, a) = 0 still holds. The value a ∈ Di has a simple
support b ∈ Dj and therefore a ∈ Di is AC*.

117

Algorithm 1 LFAC* enforcing algorithm

1: Q← unassigned variables
2: while Q 6= ∅ do

3: InitBarriers()
4: while Q 6= ∅ do

5: v = variable from Q with the smallest domain
6: changed unary cost = ConcentrateCosts(v)
7: if changed unary cost then

8: Prune(v)
9: end if

10: ExpandCosts(v)
11: end while

12: v = next variable chosen by heuristic
13: changed unary cost = ConcentrateCosts(v)
14: if changed unary cost then

15: if Prune(v) then

16: Q← Q ∪ {v}

17: end if

18: end if

19: for all v ∈ unassigned variables do

20: if Prune(v) then

21: Q← Q ∪ {v}

22: end if

23: end for

24: end while

4 Experimental results

We have implemented the LFAC* enforcing algorithm to the ToolBar [4] solver.
The experiments were performed on Pentium M running at 1.4 GHz with 512 MB
of RAM. We have run various benchmarks that can be downloaded from the same
site as ToolBar. The benchmarks included the academic problems and random
generated problems. A subset of results is presented in Table 1.

The results show that the number of visited nodes is usually smaller, in many
cases significantly smaller. However, there are problems for which the number of
nodes is worse than in EDAC*, for example for few celar and jnh problems.

Unfortunately, the running time is often worse. The running time is better for
some groups of problems, for example the large warehouse problems, and many
jnh, dimacs and random k-SAT problems. We believe that the running time can
be improved by better implementation and by avoiding useless computation.

The improvement of running time of LFAC* in comparison with EDAC* is
often caused by the fact that LFAC* finds an initial feasible complete assignment
with lower cost. The cost of the initial complete assignment is used as an upper
bound of the cost of the solution. The lower upper bound, the more pruning can
be done.

However, the work per node is greater for LFAC*. This is the reason why the
running time is often worse for LFAC* even if the number of nodes is smaller.

118

EDAC* LFAC* Ratio (%)

Problem Nodes Time Nodes Time Nodes Time

sparse loose 132175 19.72 19208 20.76 14.53 105.29
sparse tight 7993 0.84 1973 1.46 24.69 175.11
dense loose 14706 1.48 5900 4.07 40.12 274.60
dense tight 22024 2.62 4740 4.81 21.52 183.90
complete loose 191739 25.94 124800 100.78 65.09 388.49
complete tight 156588 19.15 69976 56.58 44.69 295.49

capmo1 16760 125.63 6073 72.40 36.24 57.63
capmo2 11795 39.71 2662 23.43 22.57 59.00
capmo3 8357 51.18 3328 47.47 39.82 92.75
capmo4 6202 19.54 2388 20.15 38.50 103.12
capmo5 6148 20.05 3433 18.90 55.84 94.26

Table 1. Some results of LFAC* in comparison with EDAC* run until optimality is
proven. Time is in seconds and Nodes illustrate the number of visited nodes during
search. Ratio is the performance of LFAC* in comparison with EDAC* (EDAC* =
100%). The first group of results are the average times and the number of nodes for a
group of random generated problems with a given density and tightness. The second
group are the results of quite large warehouse problems.

Moreover, the value selection heuristic may choose different value because of
different unary costs and thus different paths may be chosen during the search.

5 Conclusions

In this paper, we have introduced a new stronger form of local consistency for
WCSP called limited full arc consistency (LFAC*). We provided an algorithm
for enforcing LFAC* and proved its correctness.

The experimental results show that the number of nodes is usually smaller for
LFAC*. Unfortunately, the running time of LFAC* algorithm is frequently worse
than EDAC*. We believe that the running time can be improved by a better
implementation. Still, the LFAC* algorithm is more effective than EDAC* for
solving large warehouse problems and many other problems.

References

1. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
2. E. C. Freuder, R. J. Wallace. Partial Constraint Satisfaction. Artificial Intelligence,

Volume 58, pages 21–70, 1992.
3. S. de Givry, F. Heras, M. Zytnicki, J. Larrosa. Existential arc consistency: Get-

ting closer to full arc consistency in weighted CSPs. In Proceedings of IJCAI–05,
Edinburgh, Scotland, 2005.

4. F. Heras, J. Larrosa, S. de Givry, T. Schiex, E. Rollon. ToolBar

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
5. J. Larrosa, T. Schiex. In the quest of the best form of local consistency for Weighted

CSP. In Proceedings of IJCAI–03, Acapulco, Mexico, 2003.
6. J. Larrosa, T. Schiex. Solving Weighted CSP by Maintaining Arc Consistency.

Artificial Intelligence, Volume 159 (1–2), 1–26, November 2004.

119

Overview of an Open Constraint Library

student: Marco Correia, supervisor: Pedro Barahona

Centro de Inteligência Arti�cial, Departamento de Informática,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

{mvc,pb}@di.fct.unl.pt

Abstract. Constraint programming is a �exible framework for address-
ing a broad class of problems [10]. Advances on this �eld include the
introduction, improvement and specialization of inference and search al-
gorithms for speci�c domains or applications. We argue that a software
implementation that dynamically sustains the active development in this
area is necessary but still lacking. Existing solutions [7,4] are con�ned to
a (extensive) set of techniques and disallow or penalize extensions except
for a limited set of parameters, often too restrictive in a research context.
In this paper we point out some of these limitations and report ongoing
work to circumvent them by using an emerging design paradigm named
generic programming [11], which has been successfully integrated into
the C++ programming language [17,9].

1 Introduction
From a CP researcher perspective, current available solvers allow a rather limited
set of extensions. It is usually not allowed, or not an easy task, to introduce new
domain type reasoning in an e�cient way, using the available solver primitives.
Recent developments in algorithm hybridization requires a level of control which
is not present in most solvers. In this paper we try to identify some of the depen-
dences that are the cause of such in�exibility, and simultaneously to point out
possible solutions, by recurring to strong compile time parametrization, which
is the basis of the generic programming paradigm. This work is partially related
to [16], which is using generic programming to speed up constraint propagation,
although diverging in some important design commitments.

This paper is organized as follows. In section 2 we justify the need for a highly
customizable constraint library. In section 3 we present an outline of CaSPER,
an architecture based on generic programming for achieving such goal. Finally
section 4 concludes by pointing open problems and future directions.

2 Motivation
A constraint library is composed by a set of deeply interconnected components.
Propagation, event communication and state management must cooperate very
closely and therefore they are typically hard-coded together in monolithic kernels
[4,7,14]. We identi�ed at least four reasons that suggest the need for a modular

120

architecture, in which the use of specialized versions of some of these components
could potentially increase performance and extensibility.

1. Propagators acting on speci�c domains require particular information about
domain updates. For example, most �nite domain constraint propagators
need only coarse or medium grained information (e.g. domain changed,
bound changed), while �nite set propagation is much more e�cient with �ne
grained information (i.e. which values have been removed). The selection of
the common denominator, a popular approach [2,7], penalizes performance
in some domain speci�c models if too broad (in the example, �nite domains),
and forbids extension for other models if too restrictive.

2. Trailing is domain dependent. Common search algorithms need some sort of
domain backup mechanism for backtracking purposes. Copying and restoring
the entire domain at each update (element removal) should work for every
domain type but it is not as e�cient as recording only the modi�cations
(trailing). Trailing requires support from the underlying engine, since it dif-
fers for domain representation and narrowing semantics. While only element
removals are allowed in �nite domains, updates in �nite sets may involve
also element insertions, while others require only bound update information
[8].

3. A general propagator �xpoint mechanism is not optimal in all cases. Con-
straint propagation bene�ts from structured execution, where a preference
function imposes an ordering in propagator execution. It is not clear if the
same ordering suits all constraint domains and even all applications in the
same domain (consider the case of modeling a global constraint with a set of
local constraints for a domain where such global constraint does not exist,
which actually occurs in [8]).

4. Distinct search methods require custom state handling. Search algorithms
compromises important design decisions regarding the solver state handling
method. State recomputation simpli�es memory management but is less ef-
�cient for algorithms which explore solution space in depth-�rst order. State
copying or trailing integrates well with this class of algorithms but might
lead to memory explosion with other popular search methods (consider for
example best �rst search). Recomputation, copying or a compromise between
these two seems adequate for hybrid, parallel and modular search algorithms
[15], while trailing is more suited for backtracking based methods.

3 Implementation

Creating a constraint library that is both modular and fast is an implementa-
tion challenge. We address this problem by using generic programming. Generic
programming is about writing programs as generic as possible, without sacri-
�cing e�ciency. The key point in generic program design is the concept, a set
of requirements that are general enough to cover a large family of abstractions
but still allowing e�cient processing of each member of the family. Software

121

libraries naturally bene�t from these techniques, providing them a set of soft-
ware components that can be e�ciently reused and extended in a wide variety
of situations.

Fig. 1. CaSPER architecture: (left) entity-relationship diagram (right) component in-
teraction.

Fig. 1 (left) shows CaSPER architecture. The several modules were carefully
selected to address the issues enumerated in the previous section. In the rest of
this section we present relevant implementation and communication details for
each module, and cross-link them with the issues enumerated above.

3.1 Components revisited
The core of distinct state-of-the-art object oriented constraint libraries [3,6,12]
typically agree on a set of objects, or components, which are the direct realiza-
tion of the conceptual model. Variables, domains, constraints, predicates, etc,
as �rst-class language entities in these libraries. These objects usually de�ne an
interface which may be exploited to introduce library extensions, or to solve
speci�c problems. By using generic programming we are able to relax interfaces
since most type checking is done at compile time. This new way of type res-
olution opens a new set of possibilities and simultaneously provides di�erent
perspectives on how these objects communicate.

Logical variables In CaSPER, logical variables are generic with respect to its
domain type. More speci�cally, the type of the domain is statically available to
the variable and in turn to all other objects that have access to it (instead of
abstract pointers like [7]). This lets important functionality such as state-aware
variable uni�cation immediately available for any type. Interesting particular
cases are logical variables with language built-in types such as int, �oat, etc,
which are strongly typed cousins of prolog mutable terms.

Predicates Predicates state relationships among terms. As with variables,
CaSPER predicates carry type information, in this case the type of the terms.
This has several implications:

122

composition Static type nesting, allowing predicates such as neg(fd = fd),
and particularly useful for meta-predicates (e.g. gac(fd+fd = fd), bac(fd =
fd)), combining constraint declarative syntax with propagator selection (re-
spectively generalized arc consistency and bounds arc consistency).

operator overloading Predicates may be overloaded like functions or meth-
ods. This avoids symbolic collision of predicates with the same name but
with di�erent semantics (e.g. �nite domain addition fd+ fd = fd and �nite
set union fdset + fdset = fdset).

Propagators Propagators and goals specify how to enforce a given predicate.
They are lazy-evaluated, which means that its execution is postponed from cre-
ation until some condition is met. In CaSPER, we followed the object oriented
approach to address this problem [13,6,3] which consists in representing a prop-
agator as a class. The propagator local data is stored as class members and a
set of methods implement posting, executing and entailment checking.

Example 1. Unidirectional bound consistent propagator for equality constraint
bacd1(eq(var(fd),var(fd))) : propagator {
eq(var(fd),var(fd)) p;
void post(Sched) { Sched.suspend(chmin(p.p2) or chmax(p.p2), this); }
bool entailed() {return p.p1.ground() and p.p2.ground() and p.p1 == p.p2;}
bool execute() {
p.p1.update_min(p.p2.min());
p.p1.update_max(p.p2.max());
return !p.p1.empty();

}
};

In the example, the type of the predicate being enforced, and subsequently the
type of variable domains, is known to the execute method (no casting is nec-
essary). This allows aggressive compiler optimizations inside the most intensive
(propagation) code. In this example propagation directly modi�es variable do-
mains, but the use of views (static indirection) such as proposed by [16] is also
possible. The post method allows to reuse and combine existing propagators, an
approach related to constraint handling rules [1]:

Example 2. Bound consistent propagator for equality constraint
bac(eq(var(fd),var(fd))) : propagator {
eq(var(fd),var(fd)) p;
void post(Sched)
{ Sched.post(bacd1(p.p1==p.p2) and bacd1(p.p2==p.p1)); }

};

Goals Goals also enforce a given predicate, but relying on search rather than
inference. Goals are the means to express non-determinism, currently by using
Andorra style disjunction [5].

123

Schedulers Once created, propagators and goals are stored in objects called
schedulers. Schedulers de�ne an execution policy for their members, thus im-
plementing common �xpoint algorithms. Schedulers are related to constraint
combinators [15] since they are also propagators itself, and therefore suitable
for nested composition. This feature may be used for implementing generalized
negation and rei�cation, partially completed in CaSPER.

Propagation schedulers implement batch and event-driven execution of sus-
pended propagators. Combination of di�erent propagation schedulers allow def-
inition of complex �xpoint propagation trees (issue #3).

For general search, a stack based scheduler similar to [13,6] is available. A
technique related to those used in [3,7] �ts naturally to this scheduler for common
search tree algorithms. The hybridization of more evolved search algorithms will
hopefully bene�t from composition of search schedulers, but this direction was
not yet explored.

Environment The environment object connects all components of the con-
straint library. It is itself composed of an unlimited list of autonomous modules,
namely an event dispatcher, a trail, a statistics module, garbage collection, a
debugger, etc... Modules are independent from the rest of library objects, which
permits di�erent combinations to be created in a plugin-like architecture. Im-
portant components are:
dispatcher Responsible for storing, sorting and delivering events to suspended

schedulers. Dispatchers widely used are LIFO, FIFO, and priority queues.
The selection of the dispatcher will obviously interfere with the �xpoint
propagation algorithm (issue #3).

state handler Manage choice points by recording and restoring changes to do-
mains and other reversible data structures. Common state handlers are trail-
ing and copying, and its selection per problem is possible (issues #2 and #4).

garbage collection Most generic programming based libraries [9,17] decouple
memory model from algorithms. This permits the selection of the most e�-
cient model for each situation, for example multi-threaded, memory limited
(prolog like), traceable or dynamic memory based applications.

3.2 Operation
Fig. 1 (right) shows CaSPER operational diagram. Communication among prop-
agators is done mostly through event passing, where an event is a user de�ned
data structure with information about a domain update (issue #1). Distinct
events may coexist in an environment but each scheduler only handles one event
type.

4 Conclusion
The work described is still in progress. Current implementation solves the above
mentioned problems, but it is rather incomplete for a more extensive benchmark
(mostly because it lacks important global constraints and modelling primitives).

124

By taking advantage of individual search schedulers, high level predicates are
being developed for modeling. These include imperative style constructs such as
loops and conditionals. This was not discussed in this paper.

Open problems are the realization of e�cient structured propagation (with-
out unnecessary event duplication) and the composition of search schedulers.
The latter might bene�t from the notion of search space, an idea originally pre-
sented in [15]. Potential applications for this solver includes hybridization with
other constraint paradigms, namely SAT.

References
1. Gregory J. Duck, Peter J. Stuckey, Maria J. García de la Banda, and Christian

Holzbaur. Extending arbitrary solvers with constraint handling rules. In PPDP,
pages 79�90. ACM, 2003.

2. Abderrahamane Aggoun et al. ECLiPSe 3.5 user manual, September 19 1995.
3. Simon De Givry. ToOLS: A library for partial and hybrid search methods, April 29

2003.
4. Laurent Granvilliers and Eric Monfroy. Composition operators for constraint prop-

agation: An application to choco. j-LECT-NOTES-COMP-SCI, 2239:600�??, 2001.
5. Seif Haridi and Per Brand. ANDORRA prolog - an integration of prolog and

committed choice languages. In Proc. Int. Conf. on 5th gen. Computer Systems
1988, 1988.

6. Martin Henz, Tobias Müller, and Ka Boon Ng. Figaro: Yet another constraint
programming library. Electr. Notes Theor. Comput. Sci, 30(3), 1999.

7. ILOG. ILOG Solver 5.1 User's Manual. ILOG s.a. http://www.ilog.com, 2001.
8. Ludwig Krippahl and Pedro Barahona. Psico: Solving protein structures with

constraint programming and optimization. Constraints, 7(3-4):317�331, 2002.
9. Lie-Quan Lee, Jeremy G. Siek, and Andrew Lumsdaine. The generic graph com-

ponent library. In Proceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 399�414, 1999.

10. A. Mackworth and E. Freuder. The complexity of some polinomial network con-
straint satisfaction problems. Arti�cial Intelligence, 25:65�74, 1985.

11. David R. Musser and Alexander A. Stepanov. Generic programming. In ISSAC,
pages 13�25, 1988.

12. Jean-Francois Puget. A C++ implementation of CLP. In Proceedings of the Second
Singapore International Conference on Intelligent Systems, Singapore, 1994.

13. Jean-Francois Puget and Michel Leconte. Beyond the glass box: Constraints as
objects. In ILPS, pages 513�527, 1995.

14. Peter Van Roy. Announcing the mozart programming system. SIGPLAN Notices,
34(4):33�34, 1999.

15. Christian Schulte. Programming Constraint Services: High-Level Programming of
Standard and New Constraint Services, volume 2302. Springer, 2002.

16. Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In
Mark Wallace, editor, CP, volume 3258 of Lecture Notes in Computer Science,
pages 619�633. Springer, 2004.

17. A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report
X3J16/94-0095, WG21/N0482, 1994.

125

A Hybrid Formulation for CSP

Student : Tony Lambert1,2

Supervisors: Eric Monfroy1,3 and Frédéric Saubion2

1 LINA, Université de Nantes, France (Tony.Lambert@lina.univ-nantes.fr)
2 LERIA, Université d’Angers, France (Frederic.Saubion@univ-angers.fr)
3 Universidad Santa Maŕıa, Valparáıso, Chile (Eric.Monfroy@inf.utfsm.cl)

1 Introduction

Many problems in computer science can be formalized using the Constraint
Satisfaction Problems (CSP) model. A CSP, usually defined by a set of variables
associated to domains of possible values and by a set of constraints that limits
the combinations of allowed values, can be solved by a large variety of algorithms
basically design w.r.t. the problems parameters. Many of these problems are also
associated to an optimization criterion.

To solve such problems, complete methods aim at exploring the whole search
space in order to find all the solutions or to detect that the CSP is not consistent.
We are here mainly concerned with constraint propagation with split of domains
[3]. Other methods like Local search [1] or genetic algorithms aims at revealing
patterns, amplifying, discovering hid informations. From a general point of view,
the main idea is to control a set of individuals acting in concert, by containing
fluctuations generated by both an exploration, scattering search trails and a
restriction, breaking deadlocks.

Hybrid applications using combination of resolution paradigms and tech-
niques have been studied (e.g., [4] presents an overview of possible uses of local
search in constraint programming that presume endless possibilities for search
hybridization). In this paper we are mainly concerned by a uniform formulation
of such possibilities, realized thanks to an abstraction of the basic components
involved.

2 Constraint Satisfaction Problems

We first recall basic notions related to CSP and their main resolution approaches.
A CSP is a tuple (X,D,C) where X = {x1, · · · , xn} is a set of variables

taking their values in their respective domains D = {D1, · · · , Dn}. A constraint
c ∈ C is a relation c ⊆ D1 × · · · ×Dn.

In order to simplify notations, D will also denote the Cartesian product of
Di and C the union of its constraints.

We describe now different approaches to solve CSP.
A tuple d ∈ D is a solution of a CSP (X,D,C) if and only if ∀c ∈ C, d ∈ c.
A CSP (X,D,C) is solution if and only if ∀d ∈ D,∀c ∈ C, d ∈ c.

126

A constraint optimization problem consists of an objective function f and a
CSP (X,D,C). Solving such a problem consist in finding a feasible solution s
(i.e. a solution of (X,D,C)) such that f(s) is optimal.

Constraint propagation, one of the most famous techniques for solving CSP
consists in iteratively reducing domains of variables by removing values that do
not satisfy the constraints. However, reduction mechanisms use one or some of
the constraints of the CSP. Thus, they enforce a local consistency property (such
as arc consistency) but not a global consistency of the CSP. These reductions
must be interleaved with a splitting mechanism (such as enumeration) in order
to obtain a complete solver, (i.e., a solver which returns only solutions and does
not loose any solution).

Given an optimization problem (which can be minimizing the number of
violated constraints and thus trying to find a solution of the CSP), local search
techniques [1] aim at exploring the search space, moving from a configuration
to one of its neighbors. These moves are guided by a fitness function which
evaluates the benefit of such a move in order to reach a local optimum. For the
resolution of a CSP (X,D,C), the search space can be usually defined as the
set of possible tuples of D, The fitness (or evaluation) function eval is related
to the notion of solution and can be defined as the number of constraints c such
that t �∈ c (t being a tuple from D). In this case, the problem to solve is indeed
a minimization problem.

Evolutionary algorithms are mainly based on the notion of adaptation of a
population of individuals to a criterion using evolution operators like crossover.
Based on the principle of natural selection, Genetic Algorithms [6] have been
quite successfully applied to combinatorial problems such as scheduling or trans-
portation problems. The key principle of this approach states that, species evolve
through adaptations to a changing environment and that the gained knowledge
is embedded in the structure of the population and its members, encoded in
their chromosomes. If individuals are considered as potential solutions to a given
problem, applying a genetic algorithm consists in generating better and better
individuals w.r.t. the problem by selecting, crossing, and mutating them. This
approach reveals very useful for problems with huge search spaces. In the con-
text of GA, for the resolution of a given CSP (X,D,C), the search space can
be usually defined with the set of tuples D. We consider populations g of size
i, g ⊆ D such as |g| = i. An element s ∈ g is an individual and represents a
potential solution to the problem. Fitness functions provide information about
the quality of an individual and so, of a population. Thus, these functions have
to handle both the constraints of the problem and the optimization criterion.

3 A Hybrid System for CSP

K.R. Apt proposed in [2, 3] a general theoretical framework for modeling such
reduction operators. In this context, domain reduction corresponds to the com-
putation of a fixpoint of a set of functions over a partially ordered set. These
functions, called reduction functions, abstract the notion of constraint. We have

127

extended this framework in order to include local search and genetic algorithms
components [7].

We propose here a new formulation of a general uniform framework, that
makes the modelization of hybrid algorithm simpler. As mentioned above, the
key idea of this system is to decompose each resolution process into basic func-
tion, extending the work of K.R. Apt to metaheuristics resolution techniques.
Then, these function can be managed at the same level and the resolution pro-
cess can be achieved by the generic algorithm proposed in [2]. From our system
point of view, this resolution process can be described as sequence of transitions
over a computational structure.

3.1 Construction of a partial ordering

By a partial ordering we mean a pair (D,�) consisting of a set D and a reflexive,
antisymmetric and transitive relation � on D. Given a partial ordering (D,�)
and element d of D is called the least element if d � e for all e ∈ D.

Given a set D, P(D) denotes the set of all subsets of D. (P(D),⊇) is a partial
ordering, where ⊇ is the reversed subset relation.

Definition 1. Consider the Cartesian product P(D1) × · · · × P(Dn) with ele-
ments ordered according to the reversed subset relation ⊇. such that : (X1, . . . , Xn) ⊇
(Y1, . . . , Yn) iff Xi ⊇ Yi for all i ∈ [1..n] s.t. Xi, Yi ∈ P(Di) This yields the par-
tial ordering : (P(D1) × · · · × P(Dn),⊇)

Definition 2. To extend this relation to CSPs; we built an order on 〈X,C,P(D1)×
· · · × P(Dn)〉 the set of CSPs with a set of variables X , a set of constraints C
and P(D1)×· · ·×P(Dn) the search space , meaning all possible CSPs reachable
for the initial CSP to solve 〈X,C,D1 × · · · ×Dn〉.

The pair (〈X,C,P(D1)× · · · ×P(Dn)〉,�) forms a partial ordering, relation
� being defined on the reversed set relation by the last component of the CSP
triplet (corresponding to domains).

Definition 3. Consider the set P(P(D1) × · · · × P(Dn) of possible subset of
P(D1) × · · · × P(Dn). Consider relation � on it defined as :

Given two set of CSPs Φ and Ψ members of the set P(P(D1)× · · · × P(Dn)
with Φ = {φ1, . . . , φk} and Ψ = {ψ1, . . . , ψl}. The couple (Φ, Ψ) ∈� (i.e. Φ � Ψ)
iff :

1. ∀φi ∈ Φ :
– (a1) either exists ψj ∈ Ψ s.t. ψj = φi

– (a2) or exists ψj1 . . . , ψjh
∈ Ψ s.t. Sol(φi) ⊆

⋃

k=1..h Sol(ψjk
).

2. (b) and , ∀ψj ∈ Ψ ∃φi ∈ Φ s.t. φi � ψj

Property 1. This relation over CSPs forms a semi-ordering.

128

3.2 Domain reduction functions

The computation of the least common fixpoint of a set of functions F can be
achieved by the Generic Iteration algorithm (GI) from [3], described in Figure 1.
In the GI algorithm, G represents the current set of functions still to be applied
(G ⊆ F), d is a partially ordered set (the domains in case of CSP).

GI: Generic Iteration Algorithm
d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G− {g};
G := G ∪ update(G, g, d);
d := g(d);

endwhile
where for all G, g, d, the set of functions update(G, g, d) from F is such that:

– {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d).
– g(d) = d implies that update(G, g, d) = ∅.
– g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

Fig. 1. The Generic Iteration Algorithm

Suppose that all functions in F are inflationary (x � f(x) for all x) and
monotonic (x � y implies f(x) � f(y) for all x, y) and that (D,�) is finite.
Then, every execution of the GI algorithm terminates and computes in d the
least common fixpoint of the functions from F (see [2]).

Note that in the following we consider only partial orderings.

3.3 Sampling

Sampling consists in extracting from a CSP a complete or partial assignment.
The sample is then considered as a new CSP added to the set :

S : P(〈X,C,P(D1) × · · · × P(Dn)〉) → P(〈X,C,P(D1) × · · · × P(Dn)〉)
{φ1, . . . , φn} �→ {φ1, . . . , φn, φn+1}

s.t. ∃φi with φi � φn+1

We will consider a complete assignment if : φn+1 ≡ 〈Xn+1;Cn+1;Dn+1〉
with Dn+1 = Dn+11 , . . . , Dn+1k

and ∀i ∈ [1..k], |Dn+1i
| = 1 . Or partial if

only some variables are assigned : φn+1 ≡ 〈Xn+1;Cn+1;Dn+1〉 with Dn+1 =
Dn+11 , . . . , Dn+1k

and ∃i ∈ [1..k]tq|Dn+1i
| = 1

129

Property 2. Sampling is inflationary x � S(x)
{φ1, . . . , φn} � {φ1, . . . , φn, φn+1}, the proof is straightforward.

Property 3. Sampling is monotonic x � y implies S(x) � S(y) : Φ �
Ψ −→ S(Φ) � S(Ψ) with Φ = {φ1, . . . , φn} and Ψ = {ψ1, . . . , ψm} we have :
{φ1, . . . , φn} � {ψ1, . . . , ψm} −→ {φ1, . . . , φn, φn+1} � {ψ1, . . . , ψm, ψm+1}, the
proof is straightforward.

3.4 Reducing

Reduce the search space is essential to reach a solution with a complete approach,
in the context of CSP it is translated in deleting values from domains and thus
to be sure not losing solutions.

R : P(〈X,C,P(D1) × · · · × P(Dn)〉) → P(〈X,C,P(D1) × · · · × P(Dn)〉)
{φ1, . . . , φi, . . . , φn} �→ {φ1, . . . , φ

′
i, . . . , φn}

Where φ′i = ∅ or φ = 〈X,C,Di〉 and φ′ = 〈X,C,D′
i〉 s.t. D′

i ⊆ Di.

4 Reduction functions

Therefore, we consider a structure : distinguish several transition rules :

– Domain reduction (DR) correspond to node consistency , arc consistency
and hyper-arc consistency.

{φ1, . . . , φi, . . . , φn} →DR {φ1, . . . , φ
′
i, . . . , φn}

Where DR = Rm with m > 0.
– Split (SP) is the result of a domain shattered, and is formalized for a domain

of size m as m incomplete samples generated and by the reduction (deletion)
of the original CSP, solutions being dealt.

{φ1, . . . , φi, . . . , φn} →SP {φ1, . . . , φ
1
i , . . . , φ

m
i , . . . , φn}

Where SP = SmR.
– Local Search (LS) step aims at generating new samples and moving to a

chosen neighbor and formally corresponds to m sample (generate neighbor-
hood) followed by m reduction (sélect a neighbor).

{φ1, . . . , φi, . . . , φn} →LS {φ1, . . . , φ
′
i, . . . , φn}

Where LS = SmRm.

130

– Evolution can be divided into three movements : crossover CR is a simple
sample, mutation MU is a sample followed by a reduction and selection SE
(sub population) is a s times reduction.

{φ1, . . . , φn} →CR {φ1, . . . , φn, φn+1}
Where CR = S.

{φ1, . . . , φi, . . . , φn} →MU {φ1, . . . , φ
′
i, . . . , φn}

Where MU = SR.

{φ1, . . . , φn} →SE {φ1, . . . , φ
′
n}

Where SE = Rs.

Therefore, a resolution is a finite sequence starting from an initial problem
〈X,C,D0〉 and providing as final state 〈X,C,D1

n〉, · · · , 〈X,C,Dk
n〉 by applying

previously described transition rules. . The selection corresponds to the usual
selection process used in genetic algorithms to select from a given population
the next generation. The evolution transition allow us to apply mutation and
crossover operators. In this context, a strategy is a sequence (ti)1≤i≤n where
∀1 ≤ i ≤ n, ti ∈ {DR,SP,LS, SE,CR,MU}. Our purpose is to study, at a
fine grain level, the hybridization of these transition rules over various CSP and
optimization problems.

5 Conclusion

Hybrids techniques enable us to reach a high level of efficiency for solving com-
plex combinatorial and optimisation problems, in this paper we present a suit-
able general framework to model hybrid solving algorithms. We have shown that
this work can serve as a basis for formulation of an integration of GA, LS and
CP methods with their main properties. This framework will provide a uniform
background to classify, compare, analyse, describe and control hybrid algorithms
at the lowest level.

References

1. E. Aarts and J. K. Lenstra. Local Search in Combinatorial Optimization. John
Wiley & Sons, Inc., 1997.

2. K. R. Apt. From chaotic iteration to constraint propagation. In Proceedings of
ICALP’97, pages 36–55. Springer-Verlag, 1997.

3. K. R. Apt. Principles of Constraint Programming. Cambridge Univ. Press, 2003.
4. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.

In Handbook of Metaheuristics, Kluwer Academic, 2002.
5. I. Gent, T. Walsh, and B. Selman. http://www.4c.ucc.ie/ tw/csplib/, funded by

the UK Network of Constraints.
6. J. H. Holland. Adaptation in Natural and Artificial Systems. 1975.
7. E. Monfroy, F. Saubion and T. Lambert. Hybrid CSP Solving. In Proceedings of

FROCOS 2005 , LNCS 3717, Springer Verlag, 2005.

131

A CP-based column generation approach to

scheduling for Wireless Mesh Networks

Student: Stefano Gualandi
Supervisor: Federico Malucelli

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
{gualandi,malucell}@elet.polimi.it

Abstract. This paper presents ongoing work on the application of Con-
straint Programming based column generation to the optimum inte-
grated link scheduling and power control problem arising in Wireless
Mesh Networks. In a Wireless Mesh Network, all nodes are equipped with
identical half-duplex transceiver and omni-directional antennas. Direct
communication links can be established between couples of transmit-
ter/receiver nodes if radio interference at the receiver is below a given
threshold. Radio interference depends on the ratio between the power
of the useful signal and the overall received signals. The integrated link
scheduling and power control problem consists in assigning communi-
cation links to time slots in such a way to satisfy the traffic demands
while avoiding radio interference. This scheduling problem has a Mixed
Integer Programming formulation. We propose a hybrid column genera-
tion decomposition where the sub-problem (pricing) is solved using Con-
straint Programming. Numerical results demonstrate that the proposed
approach outperforms a traditional column generation approach.

1 Introduction

Wireless Mesh Networks are composed of nodes communicating through omni-
directional antennas which must share the spectrum. Each node can establish
a communication link at a time where it can be either transmitter or receiver.
Wireless Mesh Networks are more complicated than wired networks, since dur-
ing radio communication every client may interfere with other communications.
Several communication protocols exist trying to avoid interference while assur-
ing the Quality of Service, but this paper focuses on the Time Division Multiple
Access (TDMA) protocol. In this protocol, the time is discretized into fixed
length slots that are organized cyclically. During each time slot, a transmitter
node can establish a communication link with a receiver node, if the interference
at the receiver is below a given threshold. The interference strongly depends
on the power used by nodes transmitting simultaneously. Using high level of
power makes the communication reliable, but increases both interference and
energy consumption. Therefore, the goal of the TDMA protocol is to assign
communication links to time slots while avoiding interference, and to minimize
the number of time slots required to achieve all packet transmissions. Several

132

heuristic algorithms exist in literature that solve this problem, but they either
consider fixed power or use a simple model of interference. A formal definition
of the problem using the Signal-to-Interference and Noise Ratio (SINR) model
and considering variable levels of power is given in [1]. The authors call their
formulation the Integrated Link Scheduling and Power control (ILSP) problem,
and propose a Mixed Integer Programming (MIP) model with quadratic con-
straints. By reduction to the edge coloring problem, they prove ILSP problem
to be NP-complete.

This paper presents a Constraint Programming-based column generation ap-
proach for the Integrated Link Scheduling and Power control problem. The CP-
based column generation framework was introduced by [2], and it has found a
number of successful applications in airline crew assignment [3] and employee
time-tabling [4]. In our application, the use of Constraint Programming is mo-
tivated by the tightness of the constraints modeling the physical interference.
This tightness was observed by tackling the problem with a traditional column
generation approach. By solving the column generation sub-problems with a
Constraint Programming Solver, we can better exploit the problem structure
comparing with a traditional column generation approach which solves a com-
plicated linearized sub-problem at each iteration. This allow us to improve the
running performance of one order of magnitude.

The outline of this paper is as follow. Next section presents the formal model
of the ILPS problem. Section 3 describes the CP-based column generation ap-
proach used to tackle this problem. Section 4 gives implementation details and
presents numerical results. Finally, we conclude with discussions on future work.

2 Problem description

A Wireless Mesh Network topology with n clients is formalised with a directed
graph (V, E), where for every client i there is a node in V , i.e. |V | = n, and for
every communication link (i, j) there is an edge in E. The number of packets
each transmitter i has to send to a receiver j is given by coefficients Rij of an
asymmetric matrix R. The physical model used in this paper for the interference
is the Signal-to-Interference and Noise Ratio (SINR) [1]: a communication link
(i, j) can be established only if the SINR is equal or greater than a given threshold
γ:

SINRj =
Gijpij

ηj +
∑

(l,m)∈E(i,j) Gljplm

≥ γ (1)

whereby, pij is the transmit power of link (i, j) and ranges in [0..Pmax]; Gij is
the propagation gain which is inversely proportional to the distance between
nodes i and j; ηj is the thermal noise at receiver j. The summation in the
denominator models the aggregate interference at the receiver given by all the
other links (l, m) transmitting at the same time with link (i, j). The Integrated
Link Scheduling and Power control consists in finding the minimal number of
time slots which satisfy the traffic demand given by matrix R, while considering

133

that during a time slot can communicate only links which satisfy their SINR
threshold.

3 CP-based column generation

The main idea of column generation approaches is to exploit problem sub-
structures [5]: the original problem is decomposed into so called master and
pricing problems which reflect different sub-structures (families of constraints).
The master problem has usually a compact MILP formulation which can have
an exponential number of variables. The variables of the master are associated
to feasible solutions (also called patterns or columns) of the real problem. The
trick is to start with an initial feasible sub-set of patterns and solve the associ-
ated continuous relaxation of the restricted master problem to optimality. The
solution thus obtained is an upper bound (in case of a minimization problem;
it is lower bound otherwise) of the object value of the master. To improve the
objective value, it is necessary to introduce new variables. The question is: which
and how many variables to introduce next? To answer this question, the pricing

problem comes to play: it looks for a feasible pattern with negative reduced costs,
that is, a pattern having the corresponding dual constraint violated. Therefore,
the pricing is built using the dual values associated to the optimal solution of
the continuous relaxation of the restricted master problem. Linear Programming
(LP) duality ensures that the solution of the restricted master problem cannot
be improved if no variables with strictly negative reduced cost exist.

For the ILSP control problem under investigation, we propose the following
decomposition: each variable of the master problem denotes a feasible pattern,
that is, a time slot where the active communication links do not interfere with
each other. For each pattern s there is a non negative integer variable λs giving
the number of times the corresponding patterns is used. The set of all the possible
patterns is called S, while the set of patterns where a link (i, j) is active is
denoted Sij . The problem of finding which patterns and how many times are
used to satisfy the traffic demand R is formalised as follow:

min
∑

s∈S

λs (2)

s.t.
∑

s∈Sij

λs ≥ Rij ∀(i, j) ∈ E (3)

λs ∈ IN+ ∀s ∈ S (4)

The objective function (2) minimizes the number of time slots; constraints
(3) state the traffic demand Rij of each link (i, j); constraints (4) impose inte-
grality. By omitting integrality in constraints (4) we get the linear continuous
relaxation, which is solved using an LP solver. The initial subset of feasible
patterns defining the restricted master problem is obtained using a greedy al-
gorithm developed in [6] and out of the scope of this paper. The values σij of

134

dual variables for constraints (3), obtained by solving the LP relaxation of the
restricted master problem, are used to build the pricing problem formulated as
a Constraint Optimization Problem as follows:

min (1 −
∑

(i,j)∈E

σijzij) (5)

s.t.
∑

(i,j)∈E

zij +
∑

(j,i)∈E

zji ≤ 1 ∀i ∈ V (6)

zij ⇒
Gijpij

(η +
∑

(l,m)∈E:l 6=i Gljplm)
≥ γ ∀(i, j) ∈ E (7)

¬zij ⇒ pij = 0 ∀(i, j) ∈ E (8)

zij ∈ {0, 1} ∀(i, j) ∈ E (9)

pij ∈ {0, 1, . . . , Pmax} ∀(i, j) ∈ E (10)

The objective function (5) computes the reduced cost of the pattern associ-
ated to variables z; from LP duality, if the reduced cost (the objective value)
is non-negative, the corresponding restricted master problem cannot be further
improved. Constraints (6) formalise that all nodes can transmit in uni-casting
and half-duplex, and are single receiving: they can participate to a single trans-
mission at a time, and can be either transmitter or receiver. Constraints (7) are
the SINR derived constraints: if node i is transmitting to node j (zij = 1), then
the SINR at receiver j must be greater than a threshold γ; otherwise, (zij = 0),
the power pij is set to zero (8). The binary decision variable zij (9) indicates
if client i is transmitting to j, and the decision variable pij (10) gives the level
of power used by transmitter i. Column generation approaches work as follows:
(i) the continuous relaxation of the restricted master problem with an initial
feasible subset of patterns is solved to optimality; (ii) by using the values σij

of constraints (3) the pricing is built and solved to optimality; (iii) if the ob-
jective function value (5) is strictly negative, the pattern defined by variables
zij is added to the restricted master problem and the algorithm returns to step
(i); otherwise, if objective value (5) is positive, column generation stops, since
the restricted master problem cannot be further improved. In traditional col-
umn generation, the LP relaxation of the master is solved using a linear solver,
while the pricing is solved with an MILP solver (applied to a linearization of the
pricing) or with dynamic programming algorithms. In our approach, following
the idea proposed by [2], we use Constraint Programming to solve the pricing to
optimality. The following section gives details of our implementation, and shows
a comparison with a traditional approach using an MILP solver for the pricing.

4 Implementation and numerical results

The bottleneck of solving the ILSP problem defined in the master (2)–(4) and
the pricing (5)–(10) with column generation is the pricing. In [6], the authors

135

present a column generation approach using a MILP solver (CPLEX) for solving
both master and pricing; they observed that most of CPU time (almost 99%) is
spent in solving the pricing. Moreover, they observed that SINR constraints (7)
are strongly reducing the set of feasible solutions, i.e., they are tight constraints.
This motivates the use of Constraint Programming to solve the pricing. In our
implementation, the continuous relaxation of the master is solved with an LP
solver. Using the duals values, the pricing is built as a Constraint Optimization
Problem and is solved with Gecode (www.gecode.org). The objective function
(5) is translated into the following linear constraint:

∑

(i,j)∈E

σijzij > y (11)

whereby y ∈ {1, . . . , yub} is a finite domain integer variable, and yub is an upper
bound on its value. Constraints (7) are slightly modified: since denominators are
always strictly positive, they become implication of linear constraints. All the
linear constraints are propagated using bound consistency. The labeling heuristic
of variables z and p are: (i) choose first the variable with the higher number of
dependent constraints; (ii) assign to the selected variable first the bigger value.
The pricing is solved with depth first (CP) branch-and-bound. We have tried
three strategies for solving the pricing and adding columns to the restricted
master: CP-opt solves the pricing to optimality and adds only the best column;
CP-all adds all the columns found during the branch-and-bound search; CP-

first stops the search after the first feasible solution and adds the corresponding
column.

To evaluate and compare CP-based and MILP-based column generation, we
use instances of Wireless Mesh Networks provided by the authors of [6]. Those
instances have nodes located into a square area of 100m2 with randomly gener-
ated traffic demand R. For each couple of nodes the traffic demand is strictly
positive (i.e., the corresponding graph (V, E) is complete). The constant param-
eters are set to: η = 10−6 mW, Pmax = 30 mW, and γ = 10. Table 1 shows the
numerical results of instances with 10 nodes and 20 nodes, having respectively
90 and 380 communication links (at the time of writing we are running more
tests). The comparison of CPU time between the CP-based and MILP-based
column generation is striking: in all the instances the first approach outperforms
the latter of one order of magnitude. The two methods generate different opti-
mal patterns for the pricing instances, and this justifies the different number of
generated patterns.

5 Future work

In this paper, we have presented ongoing work on the application of CP-based
column generation to the ILPS problem arising in Wireless Mesh Networks. To
our knowledge, it is the first time this approach is used to tackle the ILPS
problem, and the performance compared to a traditional column generation ap-
proach are striking. Many directions of investigation exist, and, so far, we are

136

MILP-based CP-opt CP-all CP-first

Instance S̄ Obj Opt NC Time NC Time NC Time NC Time

p 10 1 129 590 568 16 29 15 4.9 14 4.93 14 1.63

p 10 3 121 692 602 33 63 42 16.4 50 11.1 54 6.98

p 10 8 121 554 536 17 51 22 9.73 24 8.86 29 2.82

p 20 2 533 2436 2326 - - 68 11579 77 1383 76 1532

p 20 3 533 2576 2479 - - 44 7251 58 2192 57 2370

p 20 5 576 2497 2412 - - 66 14615 83 1754 82 1869

Table 1. Results for random instances with 10 and 20 nodes with a time limit of 28800
seconds. The initial set of columns is S̄; the solution of the continuous relaxation of the
restricted master problem with S̄ is Obj, while after column generation is Opt. NC is
the number of columns added during column generation, and Time is given in seconds.

investigating possible continuous relaxations of the pricing in order to further
improve the resolution time, as suggested in [7, 8]. Other directions of research
under investigation are: first, the algorithms presented in [1] may be used as
a basis for designing specialized (cost-based?) filtering algorithms for the ILPS
problem, as in [7]; secondly, since the pricing problem is solved several times
with identical constraints apart from the cost function, it could be modeled as
Dynamic-CSP, and constraints could embed basic learning mechanisms in or-
der to save propagation time (which is the dominating resolution time for the
CP-based approach).

References

1. Behzad, A., Rubin, I.: Optimum integrated link scheduling and power control for
ad hoc wireless networks. to appear in IEEE Transactions on Vehicular Technology
(2006)

2. Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A frame-
work for constraint programming based column generation. In: Proceedings of CP.
(1999)

3. Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Sellmann, M., Vaaben, B.: Constraint
programming based column generation for crew assignment. J. Heuristics 8(1)
(2002) 59–81

4. Gendron, B., Lebbah, H., Pesant, G.: Improving the cooperation between the master
problem and the subproblem in constraint programming based column generation.
In: Proceedings of CPAIOR. (2005)

5. Wolsey, L.A.: Integer Programming. John Wiley & Sons, New York (1998)
6. Capone, A., Carello, G.: Scheduling optimization in wireless mesh networks with

power control and rate adaptation. In: [Submitted to] - IEEE Communications
Society Conference on Sensor, Mesh, and Ad Hoc Communications and Networks.
(2006)

7. Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial
Optimization. PhD thesis, University of Paderborn (2003)

8. van Hoeve, W.J.: Operations Research Techniques in Constraint Programming.
PhD thesis, University of Amsterdam (2005)

137

BlockSolve: a Bottom-Up Approach for Solving

Quantified CSPs

Student: Guillaume Verger
Supervisor: Christian Bessiere

LIRMM, CNRS/University of Montpellier, France
{verger,bessiere}@lirmm.fr

Abstract. Thanks to its extended expressiveness, the quantified con-
straint satisfaction problem (QCSP) can be used to model problems in
model checking or planning under uncertainty that cannot be expressed
in the standard CSP formalism. This is only recently that the constraint
community got interested in QCSPs and that algorithms to solve it were
proposed. In this paper we propose BlockSolve, an algorithm for solving
QCSPs that factorizes computations made in branches of the search tree.
Instead of following the order of the variables in the quantification se-
quence, our technique searches for combinations of values for existential
variables at the bottom of the tree that will work for values of variables
earlier in the sequence. An experimental study shows the good perfor-
mance of BlockSolve compared to a state of the art QCSP solver.

1 Introduction

The quantified constraint satisfaction problem (QCSP) is an extension of the
constraint satisfaction problem (CSP) in which variables are totally ordered
and quantified either existentially or universally. This generalization provides
a better expressiveness for modelling problems. Model Checking and planning
under uncertainty are problems that can be modeled with QCSP. But such
an expressiveness implies a high complexity. Whereas CSP is in NP, QCSP is
PSPACE-complete, which is considered harder.

The SAT community has also done a similar generalization from the prob-
lem of satisfying a Boolean formula into the quantified Boolean formula problem
(QBF). The most natural way to solve instances of QBF or QCSP is to instan-
tiate variables from the outermost quantifier to the innermost. This approach
is called top-down. Most QBF solvers implement top-down techniques. Those
solvers lift SAT techniques to QBF. Nevertheless, Biere [1], or Pan and Vardi
[2] proposed different techniques to solve QBF instances. Both try to eliminate
variables from the innermost quantifier to the outermost quantifier, an approach
called bottom-up. The bottom-up approach is motived by the fact that the effi-
ciency of heuristics that are used in the SAT domain seems to be greatly reduced
in QBF. The drawback of such approaches is the cost in space.

138

The problem of solving a QCSP is more recent than QBF, so there are few
QCSP solvers. Gent, Nightingale and Stergiou [3] developed QCSP-Solve, a top-
down solver that uses generalizations of well-known techniques in CSP. Repair-
based methods seem to be quite helpful as well, as shown by Stergiou in [4].

In this paper we introduce BlockSolve, the first bottom-up algorithm to
solve QCSPs. BlockSolve instantiates variables from the innermost to the out-
ermost. On the one hand, this permits to factorize equivalent subtrees during
the search. On the other hand, BlockSolve only uses classical CSP techniques,
no need for generalizing them into QCSP techniques. The algorithm processes a
problem as if it were composed of pieces of classical CSPs.

The rest of the paper is organized as follows. Section 2 defines the concepts
that we will use during the paper. Section 3 describes BlockSolve. Finally,
Section 4 experimentally compares BlockSolve to the state-of-the-art QCSP
solver QCSP-Solve and Section 5 contains a summary of this work and details
for future work.

2 Preliminaries

In this section we define the basic concepts that we will use.

Definition 1 (Quantified Constraint Network). A quantified constraint
network is a formula QC in which:

– Q is a sequence of quantified variables Qixi, i ∈ [1..n], with Qi ∈ {∃, ∀}
and xi a variable with a domain of values D(xi),

– C is a conjunction of constraints (c1 ∧ ... ∧ cm) where each ci involves some

variables among x1, . . . , xn.

Now we define what is a solution of a quantified constraint network.

Definition 2 (Solution). The solution of a quantified constraint network QC
is a tree such that:

– the root node r has no label,

– every node s at distance i (1 ≤ i ≤ n) from the root r is labelled by an

instantiation (xi ← v) where v ∈ D(xi),
– for every node s at depth i, the number of successors of s in the tree is

|D(xi+1)| if xi+1 is a universal variable or 1 if xi+1 is an existential variable.

When xi+1 is universal, every value w in D(xi+1) appears in the label of one

of the successors of s,
– for any leaf, the instantiation on x1, . . . , xn defined by the labels of nodes

from r to the leaf satisfies all constraints in C.

It is important to notice that contrary to classical CSPs, variables are ordered
as an input of the network. A different order in the sequence Q gives a different
network.

If all variables are existentially quantified, a solution to the quantified net-
work is a classical instantiation, so the network is a classical constraint network.

Definition 2 leads to the concept of quantified constraint satisfaction problem.

139

Definition 3 (QCSP). A quantified constraint satisfaction problem (QCSP)

is the problem of the existence of a solution to a quantified constraint network.

We point out that this original definition of QCSP, though different in pre-
sentation, is equivalent to previous recursive definitions. The advantage of ours
is that it formally specifies what a solution of a QCSP is.

Example 1. Consider the quantified network ∃x1∃x2∀x3∀x4∃x5∃x6, (x1 6= x5)∧
(x1 6= x6)∧ (x2 6= x6)∧ (x3 6= x5)∧ (x4 6= x6)∧ (x3 6= x6), D(xi) = {0, 1, 2, 3}, ∀i.
Figure 1 shows a solution of this network.

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

 3

 0 1 2 3

x2

x3

x4

x5

x6

 3x1

 1 2 1 1 0 0 0 0 0 0

 1 2 1 1 2 0 0 0 0 0 0 0 0 0

 2 0 0 0 1

 1

 1

 1

Fig. 1. A solution tree of Example 1

We define the concept of block, which is the main concept handled by our
algorithm BlockSolve.

Definition 4 (Block). A block in a network QC is a maximal subsequence of

variables in Q that have the same quantifier. We call a block that contains uni-

versal variables a universal block, and a block that contains existential variables

an existential block.

If x and y are variables in two different blocks, with x earlier in the sequence
than y, we say that x is the outer variable and y is the inner variable. In this
paper, we limit ourselves to binary constraints for simplicity of presentation: A
constraint involving xi and xj is noted cij .

The concept of block can be used to define a solution tree of a QCSP. This
is a compressed version of the solution tree defined above.

Figure 2 is the block-based version of the solution tree in Fig. 1. The problem
is divided in three blocks, the first and the third blocks are existential whereas
the second block is universal. Existential nodes are completely instantiated, it
means that all variables of those blocks have a single value. The universal block
is in three nodes, each one composed of the name of the variables and a union

140

Fig. 2. Solution of example 1

of Cartesian products of sub-domains. Each of the universal nodes represents as
many nodes in the solution tree of Fig. 1 as there are tuples in the product.

BlockSolve will use this concept of blocks for generating a solution and for
solving the problem.

Blocks will divide the problem in levels. Each couple (universal block, ex-
istential block) is a level. If the first block is existential, the first level is only
composed by this block. We note p the number of levels in a problem.

We call Pk the subproblem that contains variables in levels k to p and con-
straints that are defined on those variables. The universal block at level k is
noted block∀(k) and the existential block is block∃(k). P1 is the whole problem
P. The principle of BlockSolve is to solve Pp first, then using the result to solve
Pp−1, and so on until it solves P1 = P.

3 The BlockSolve Algorithm

In this section we present the algorithm, and describe how it works on QCSP
instances.

The main idea in BlockSolve is to instantiate existential variables of the
last block, and to go up to the root instantiating all existential variables. Each
assignment vi of an existential variable xi can lead to the deletion of inconsistent
values of outer variables by propagation.

Removing a value of an outer existential variable is similar to the CSP case.
While the domains of variables are non empty, it is possible to continue instanti-
ating variables. But if a domain is reduced to the empty set, it will be necessary
to backtrack on previous choices on inner variables and to restore domains.

Removing a value of an outer universal variable implies that we will have
to find also another instantiation of inner variables that supports this value,
because all tuples in universal blocks have to match to a partial solution of inner
subproblem. But the instantiation that removes a value in the domain of an
universal variable must not be rejected: it can be compatible with a subset of
tuples of the universal block. The bigger the size of the subset, the better the
grouping. Factorizing tuples of values for a universal block in large groups is a
way for minimizing the number of times the algorithm has to solve subproblems.
Each time an instantiation of inner variables is found consistent with a subset of

141

tuples for a universal block, we must store this subset and solve again the inner
subproblem wrt remaining tuples for the universal variables.

For a level k starting from level 1, we try to solve the subproblem Pk+1,
without forgetting that it must be compatible with all constraints in P. If there
is no solution for Pk+1, we try to solve Pk with the tuples on block∃(k) not
yet tried when solving Pk+1 (they were removed by instantiations in Pk+1 that
finally led to failure). If there exists a solution for Pk+1, we try to instantiate
block∃(k) with values consistent with some of the tuples on block∀(k). If success,
we remove the tuples on block∀(k) that are known to extend on inner variables,
and we start again the process on the not yet supported tuples of block∀(k).

BlockSolve needs more space than a top-down algorithm like QCSP-Solve.
It keeps in memory all tuples of existential and universal blocks for which a
solution has not yet been found. The size of such sets can be exponential in
the number of variables of the block. BlockSolve keeps sets of tuples as unions
of Cartesian products, which uses far less space than tuples in extension. In
addition, computing the difference between two unions of Cartesian products is
much faster than with tuples in extension.

4 Experiments

In this section we compare QCSP-Solve and BlockSolve on random problems.
The experiments show the differences between these two algorithms in CPU time
and number of visited nodes.

BlockSolve is developed in Java using Choco as constraint library [5]. This
library provides different propagation algorithms and a CSP solver. After loading
the data of a problem, BlockSolve creates tables that fit to set of tuples of each
block and finally launches the main function.

Instances of QCSP presented in these experiments have been created with a
generator based on that used in [3]. The generator we use allow us to set the
number of variables, the number of blocks, the number of variables in existential
and universal blocks, the number of constraints, the looseness of binary con-
straints between a universal variable and an inner existential variable (q∀∃), and
the looseness of constraints between two existential variables(q∃∃). We fix all
parameters except q∃∃ during the experimentations. Results that are presented
here in figure 3 are for instances of QCSP that have 25 variables with domains
of 8 values, 5 variables by block. The first block of each instance is an existential
one. For these instances, the transition phase is at q∃∃ = 55

We note that results are comparables for instances that are unsatisfiables (on
the left of the transition phase), even if QCSP-Solve detects the inconsistency
a little bit faster than BlockSolve when problems are far from the transistion
phase. On the right, for problems that are satisfiables, BlockSolve is more effi-
cient than QCSP-Solve. In almost all instances, BlockSolve visits far less nodes
than QCSP-Solve.

142

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
)

q_ee

Block-solve
QCSP-solve

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90 100

no

de
s

q_ee

Block-solve
QCSP-solve

CPU time Number of nodes explored

Fig. 3. Problems with 25 variables and 5 blocks.

5 Conclusions

In this paper we presented BlockSolve, a bottom-up QCSP solver that uses
classical CSP techniques. Its specificity is that it treats variables from leaves to
root in the search tree, and factorizes lower branches avoiding the search in sub-
trees that are equivalent. The larger this factorization, the better the algorithm,
thus minimizing the number of nodes visited. Experiments show that grouping
branches gives BlockSolve a great stability in time spent and in number of
nodes visited. The number of nodes BlockSolve visits is much smaller than the
number of nodes visited by QCSP-Solve in almost all instances.

Future work will focus on improving time efficiency of BlockSolve. Great
improvements can probably be obtained by designing heuristics to efficiently
prune subtrees that are inconsistent. Furthermore, most of the cpu time is spent
updating and propagating tables of tuples on blocks. Finding better ways to
represent them could significantly decrease the cpu time of BlockSolve.

We are very grateful to Kostas Stergiou, Peter Nightingale and Ian Gent,
who kindly provided us with the code of QCSP-Solve.

References

1. Biere, A.: Resolve and expand. In: SAT. (2004)
2. Pan, G., Vardi, M.Y.: Symbolic decision procedures for qbf. In Wallace, M., ed.:

CP. Volume 3258 of Lecture Notes in Computer Science., Springer (2004) 453–467
3. Gent, I., Nightingale, P., Stergiou, K.: QCSP-solve: A solver for quantified constraint

satisfaction problems. In: Proceedings IJCAI’05, Edinburgh, Scotland (2005) 138–
143

4. Stergiou, K.: Repair-based methods for quantified csps. In: Proceedings CP’05,
Sitges, Spain (2005) 652–666

5. Choco: A Java library for constraint satis-faction problems, constraint programming
and explanation-based constraint solving, http://choco.sourceforge.net. (2005)

143

A constraint programming application for

allocating sensors and improving the

diagnosability of a system

Student: R. Ceballos
Supervisors: R. M. Gasca and C. Del Valle

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla

Abstract. Model-based diagnosis enables isolating the faults of a sys-
tem. In this work, a new approach is proposed in order to improve the
computational complexity of the diagnosis process. The key idea is the
addition of a set of new sensors in order to improve the diagnosability of
the system. The number and the allocation of the new sensors is obtained
by solving a constraint satisfaction problem (CSP). In order to improve
the computational complexity of the resolution of the CSP we propose a
greedy method for determining the bottlenecks of the system.

1 Introduction

The objective of the Model-based diagnosis (MBD)[1][2] is the detection and
identification of the reason for any unexpected behaviour, and the isolation of
the components which fail. In MBD, the behaviour of components is simulated
by using constraints. Inputs and outputs of components are represented as vari-
ables of the constraints. These variables can be observable and non-observable
depending on the sensors allocation.

In this work, a new approach is proposed in order to improve the computa-
tional complexity for isolating faults in a system. Our approach is based on the
addition of new sensors. A constraint satisfaction problem is obtained in order
to select the necessary sensors to guarantee the problem specification. Our ap-
proach maintains the requirements of the user (detectability, diagnosability,. . .).
In order to improve the computational complexity of the CSP problem, we pro-
pose an algorithm for determining the bottleneck sensors of the system.

The diagnosability of systems is a very active research area in the diagnosis
community. A toolbox integrating model-based diagnosability analysis and au-
tomated generation of diagnostics is proposed in [3]. The proposed toolbox sup-
ports the automated selection of sensors based on the analysis of detectability
and discriminability of faults. In this line, [4] proposed a methodology to obtain
the diagnosability analysis using the analytical redundancy relations (ARR).
This approach is based on an exhaustive analysis of the structural information.
The objective is the addition of new sensors in order to increase the diagnosabil-
ity.

144

Our paper has been organized as follows. First, definitions and notations are
established in order to clarify MBD concepts. Section 3 introduces the basis of
our approach. Section 4 describes the specification of the CSP. Section 5 shows
the greedy method in order to improve the CSP resolution. Finally, conclusions
are drawn and future work is outlined.

2 Notation and definitions

In order to explain our methodology, it is necessary to establish some concepts
and definitions from the model-based diagnosis theories.

Definition 1. A System Model is a finite set of equality constraints which
determine the system behaviour. This is done by means of the relations between
non-observable and observable variables (sensors) of the system.

Definition 2. A Diagnosis is a particular hypothesis for how the system
differs from its model. Any component could be working or faulty, thus the
diagnosis space for the system initially consists of 2nComp - 1 diagnoses [2],
where nComp is the number of components of the system. The goal of diagnosis
is to identify and refine the set of diagnoses.

Definition 3. A set of components T is a Cluster of components [5], if it
does not exist a common non-observable variable of any component of the cluster
with any component outside the cluster, and if for all Q ⊂ T then Q is not a
cluster of components.

All common non-observable variables between components of the same clus-
ter belong to the cluster; therefore, all the connections with components which
are outside the cluster are monitored. A cluster of components is completely
monitored, and for this reason the detection of faults inside the cluster is possi-
ble without any information from other components which do not belong to the
cluster. A more detailed explanation appears in [5].

3 The basis of the algorithm

Our approach is based on the generation of new clusters of components by al-
locating sensors in some of the non-observable variables. These new clusters
reduces the computational complexity of the diagnosis process since it enables
the generation of the diagnosis of the whole system based on the diagnosis of
the subsystems. Let C be a set of n components of a system, and C1 and C2 be
clusters of n - m and m components such that C1 ∪ C2 = C, then the computa-
tion complexity for detecting conflicts in C1 and C2 separately is lower than in
the whole system C, since the number of possible diagnoses of the two clusters
is (2n-m) + (2m) - 2 ≤ 2n-m ¢ 2m - 2 which is less than 2n-1.

The clustering process enables isolating the faults of the original system, since
the multiple faults which include components of different clusters are eliminated.
These kinds of faults are transformed into single or multiple faults which belong
to only one cluster. The computational complexity for discriminating faults in a
system is always upper than in an equivalent system divided into clusters.

145

M1

M2

M3

A2

A1

a
b

c
d
e

x

y

z

f

g

Constraints Vo Vnob

M1: x=a*c
M2: y=b*d
M3: z=c*e
A1: f=x+y
A2: g=y+z

a = aob
b = bob
c = cob
d = dob
e = eob
f = fob
g = gob

x
y
z

Constraints Vo Vnob

M1: x=a*c
M2: y=b*d
M3: z=c*e
A1: f=x+y
A2: g=y+z

a = aob
b = bob
c = cob
d = dob
e = eob
f = fob
g = gob

x
y
z

ConstraintsConstraints VoVo VnobVnob

M1: x=a*c
M2: y=b*d
M3: z=c*e
A1: f=x+y
A2: g=y+z

M1: x=a*c
M2: y=b*d
M3: z=c*e
A1: f=x+y
A2: g=y+z

a = aob
b = bob
c = cob
d = dob
e = eob
f = fob
g = gob

a = aob
b = bob
c = cob
d = dob
e = eob
f = fob
g = gob

x
y
z

x
y
z

System Model

(a) (b)

Fig. 1. a) Polybox example b) 74181 ALU example

4 The CSP problem specification

The objective is to obtain the best allocation of sensors in order to generate
new clusters. The allocation of the sensors will be formulated as a Constraint
Satisfaction Problem (CSP). A CSP is a way for modelling and solving real
problems as a set of constraints among variables.

Figure 1 shows two well-known examples in model-based diagnosis. Figure
1a shows the standard problem used in the diagnosis community [2], the poly-
box system. The system consists of five components: three multipliers, and two
adders, as it appears in the system model (Figure 1a). Figure 1b shows the
74181 4-Bit ALU. It is one of the ISCAS-85 benchmarks [6]. It includes 61 com-
ponents, 14 inputs and 8 outputs. Table 1 shows the set of constants, variables
and constraints for determining the number and location of sensors for the poly-
box example. The components and non-observable variables are represented as
enumerated variables. The following constants and variables are included:

– cluster[p] : This set of constants represents the set of possible clusters of the
system. The maximal number of clusters is the number of components.

– nSensors: This variable stores the number of new sensors. It must be equal
or smaller than the number of non-observable variables(nNonObsVar).

– sensor[k] : This set of variables represents the possible new sensors of the
system. They store a boolean value in the interval {true, false}, where true

implies that there must be a sensor, and false the opposite.

146

Table 1. CSP for the polybox sensors allocation

Constants Value

(1) Enumeration{M1,M2,M3,A1,A2} {1, . . . , nComp}
(2) Enumeration{X,Y,Z} {1, . . . , nNonObsVar}
(3) cluster[1..nComp] {1, . . . , nComp}
Variable (= initial value) Domain

(4) nSensors = {free} D ∈ {1, . . . , nNonObsVar}
(5) sensor[1..nNonObsVar] sensor[k] ∈ {true, false}
(6) clusterOfComp[1..nComp] clusterOfComp[i] ∈ {1, . . . , nComp}
(7) clusterDist[1..nComp] clusterDist[t] ∈ {1, . . . , nComp}
(8) lim[1..nComp] lim[s] ∈ {1, . . . , nComp}

Constraints

(9) ¬sensor[X] ⇒ clusterOfComp[M1] = clusterOfComp[A1]

(10) ¬sensor[Y] ⇒ clusterOfComp[M2] = clusterOfComp[A1]

(11) ¬sensor[Y] ⇒ clusterOfComp[M2] = clusterOfComp[A2]

(12) ¬sensor[Y] ⇒ clusterOfComp[A1] = clusterOfComp[A2]

(13) ¬sensor[Z] ⇒ clusterOfComp[M2] = clusterOfComp[A2]

(14) distribute(clusterDist, clusterOfComp, cluster)

(15) ∀ j: 1≤i≤nComp: lim[j] ≤ cluster[j]

(16) ∀ j: 1<j≤nComp: (clusterOfComp[j-1] = lim[j-1]) ⇒ lim[j-1]+1 ≤ lim[j]

(17) ∀ j: 1<j≤nComp: (clusterOfComp[j-1] < lim[j-1]) ⇒ lim[j-1] ≤ lim[j]

(18) nSensor = (N 1≤j≤nNonObsVar: sensor[j] = true)

– clusterOfComp[i] : This set of variables represents the cluster associated to
each component i.

– clusterDist[t] : This set of variables stores the number of components included
in each cluster t.

– lim[j] : This set of variables are used in order to break the symmetries of the
solutions of the sensors assignment. They hold the maximal number of the
cluster that can be assigned to a component.

For each common non-observable variable between two components it is
generated a constraint which guaranties that if there is not a sensor the two
components must belong to the same cluster. Table 1 shows the constraints
(9),(10),...(13) that store this kind of information, and it is based on Figure
1. The final sensors allocation is stored in sensork, and the distribution of the
clusters is stored in clusterDisti. The constraint (14) maintains the distribution
of the components in the possible clusters. The constraints (15), (16) and (17)
limit the number of possible solutions and eliminate the symmetries in the al-
locations of the components to a cluster. These constraints guarantee that for
each sensors allocation, only one distribution of the components in the clusters
is possible. The constraint (18) holds in the variable nSensor the total number
of new sensors used in the solution. The optimization problem can have different
objectives, depending on the user and the problem requirements. Two typical
goals can be:

– To minimize the number of sensors (if the number of clusters is fixed).
– To minimize the maximal number of components in each cluster (if the

maximal number of sensors is fixed).

It is possible to add other constraints in order to guarantee properties of the
solution. For example in order to guarantee prices, to respect requirements of
the customers, to store incompatibilities, to specify problems with the space, ...

147

sensorsOrder(P)

componentVotes[nComp][nNonObsVar]

sensorVotes[nNonObsVar]

// All the components (1..nComp) votes the variables (sensors)

// associated to the minimal paths

forEach j between 1 to nComp

forEach Pk from component i to component j

forEach q between 1 to length(Pk)

4 = (voteValue / (length(Pk,i,j) · length(Pk))

forEach v includes in path[q]

componentVotes[i][Pk,i,j,q] += 4

endForEach

endForEach

endForEach

endForEach

// Recounting of votes for each sensor

forEach sensorj between 1 to nSensors

sensorVotes[j] = 0

forEach i between 1 to nComp

sensorVotes[j] += componentVotes[i][j] / (4 · nComp)

endForEach

endForEach

return sort(sensorVotes)

Fig. 2. Algorithm for obtaining the bottleneck sensors of the system (O(n2
·m2), where

n is the number of components and m is the number of non observable variables)

5 Improving the algorithm: A greedy method

The computational complexity of a CSP is exponential in general. We propose a
method for obtaining what are the most important sensors in order to generate
new clusters, that is, the bottlenecks of the system. This method has two phases:

1. The calculation of the minimal paths: A graph where the nodes represent the
components of the system, and the edges represent the connections between
each two components (non-observable variables). Each edge has a weight
calculated as the number of common non-observable variables between two
components. By applying the Floyd’s algorithm (dynamic programming), all
the shortest paths between all pairs of nodes will be stored.

2. In order to determine which are bottlenecks of the system, each minimal path
will vote which sensors are more important. Figure 2 shows this algorithm.
Each minimal path will vote for the included non-observable variables of the
minimal path. The number of votes is scaled in order to guarantee that each
component generates the same total number of votes. These votes enable
generating a sorted list of non-observable variables, which will be the most
important sensors.

148

The bottleneck sensors of the system represent the best sensors in order
to isolate components. The sorted list of sensors enables creating a CSP with
fewer variables in order to find the solution of the problem in a limited time.
Only the solutions included in the combinations of the m bottleneck sensors
will be tested, and therefore the number of possible solutions will be lower than
2m. The optimal solution is not guaranteed, but the reduction of computational
complexity enables finding a solution in a limited time.

Example: In the Alu74181 example the most important sensors are (based
on the number of votes): E02(930), E03(878), X28(773), E01(737), E00(583),
D00(514), D01(463), D02(326), D03(301),... The other sensors have less than 166
votes. The first 9 sensors are represented by shaded circles in Figure 1b. The pos-
sible diagnoses in the system are 261 - 1. By using the first 9 selected sensors the
number of clusters is 17 (all with less than 6 components) and the computational
complexity is reduced to less than 29 possible diagnoses.

6 Conclusions and future work

The methodology was applied to two standard examples, and the results are very
promising. The computational complexity of the diagnosis process is improved
due to the optimal allocation of the sensors. Our approach is only based on topo-
logical properties, this characteristic enables applying this approach to different
types of systems. It is possible to add other constraints in order to guarantee
other properties of the solution. As future work, we are working in new greedy
methods in order to improve the votes counting.

7 Acknowledgements

This work has been funded by the M. de Ciencia y Tecnoloǵıa of Spain (DPI2003-
07146-C02-01) and the European Regional Development Fund.

References

1. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32 1

(1987) 57–96
2. de Kleer, J., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems.

Artificial Intelligence 2-3 (1992) 197–222
3. Dressler, O., Struss, P.: A toolbox integrating model-based diagnosability analysis

and automated generation of diagnostics. In: DX03, 14th International Workshop
on Principles of Diagnosis, Washington, D.C., USA (2003) 99–104

4. Travé-Massuyés, L., Escobet, T., Spanache, S.: Diagnosability analysis based on
component supported analytical redundancy relations. In: 5th IFAC Symposium on
Fault Detection, EEUU (2003)

5. Ceballos, R., Pozo, S., del Valle, C., Gasca, R.M.: An integration of FDI and DX
techniques for determining the minimal diagnosis in an automatic way. MICAI,
Lecture Notes in Artificial Intelligence, LNAI 3789 (2005) 1082–1092

6. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 Benchmarks: A Case
Study in Reverse Engineering. IEEE Design and Test of Computers 16 (1999) 72–80

149

Symmetry Breaking in Subgraph Pattern

Matching

Student: Stéphane Zampelli
Supervisors: Yves Deville, Pierre Dupont

Université Catholique de Louvain,
Department of Computing Science and Engineering,

2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)

{sz,yde,pdupont}@info.ucl.ac.be

1 Introduction

This work aims at applying and extending symmetry techniques for subgraph
matching. Symmetries arise naturally in graphs since a permutation can be
viewed as an automorphism of a graph. However, although a lot of graph prob-
lems have been tackled [1, 2], a computation domain for graphs has been defined
[3], and despite the fact that symmetries and graphs are related, little has been
done to investigate the use of symmetry breaking for graph problems in con-
straint programming.

2 Background

A graph G = (N, E) consists of a node set N and an edge set E ⊆ N × N ,
where an edge (u, v) is a pair of nodes. The nodes u and v are the endpoints of
the edge (u, v). We consider directed and undirected graphs. A subgraph of a
graph G = (N, E) is a graph S = (N ′, E′) where N ′ is a subset of N and E′ is
a subset of E.

A subgraph monomorphism (or subgraph matching) between Gp and
Gt is a total injective function f : Np → Nt respecting the monomorphism
constraint : (u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et.

The CSP model of graph matching should represent a total function f : Np →
Nt. This total function can be modeled with X = x1, ..., xn with xi a FD variable
representing the ith node of Gp and D(xi) = Nt. The injective condition is mod-
eled with the global constraint alldiff(x1, ...xn). The monomorphism condition
is translated into the global constraint MC(x1, ..., xn) ≡

∧

(i,j)∈Ep
(xi, xj) ∈ Et.

Implementation, comparison with dedicated algorithms, and extension to sub-
graph isomorphism and to graph and function computation domain can be found
in [4, 5].

A CSP instance is a triple < X, D, C > where X is the set of variables, D

is the universal domain specifying the possible values for those variables, and
C is the set of constraints. In the rest of this document, n = |Np|, d = |D|,

150

and D(xi) is the domain of xi. A symmetry over a CSP instance P is a bi-
jection σ mapping solutions to solutions, and hence non solutions to non solu-
tions [6]. Since a symmetry is a bijection where domain and target sets are the
same, a symmetry is a permutation. A variable symmetry is a bijective func-
tion σ : X → X permuting a (non) solution s = ((x1, d1), . . . , (xn, dn)) to a
(non) solution s′ = ((σ(x1), d1), . . . , (σ(xn), dn)). A value symmetry is a bijec-
tive function σ : D → D permuting a (non) solution s = ((x1, d1), . . . , (xn, dn))
to a (non) solution s′ = ((x1, σ(d1)), . . . , (xn, σ(dn)). A value and variable sym-

metry is a bijective function σ : X × D → X × D permuting a (non) solution
s = ((x1, d1), . . . , (xn, dn)) to a (non) solution s′ = (σ(x1, d1), . . . , σ(xn, dn)). A
conditional symmetry of a CSP P is a symmetry holding only in a sub-problem
P

′

of P . The conditions of the symmetry are the constraints necessary to gener-
ate P

′

from P [7]. A group is a finite or infinite set of elements together with a
binary operation (called the group operation) that satisfy the four fundamental
properties of closure, associativity, the identity property, and the inverse prop-
erty. An automorphism of a graph is a graph isomorphism with itself. The sets
of automorphisms Aut(G) define a finite permutation group.

3 Variable Symmetries

It has been shown that the set of variable symmetries of the CSP P is the
automorphism group of a symbolic graph S(P) [6] and this automorphism group
can be computed by using tools such as NAUTY [8]. We show that Aut(S(P))
is equal to Aut(Gp), and thus that the set of variable symmetries is Aut(Gp).

Figure 1 shows an instance composed of two undirected triangles. The 6 so-
lutions are : {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}. The two gener-
ators of the pattern are (1 3) and (2 3). The size of its automorphism group is
6. Once the variable symmetries are broken, the unique solution is {(1, 2, 3)}.

Fig. 1. Example of instance.

Two techniques were selected to break variable symmetries. The first tech-
nique is an approximation and breaks only the generators of symmetry group
[9] computed by NAUTY. The second technique breaks all variable symmetries
of an injective problem by using a SchreierSims algorithm, provided that the
generators of the variable symmetry group are known [6].

151

4 Value Symmetries

In graph matching, value symmetries are the automorphisms of the target graph
and do not depend on the pattern graph.

Figure 2 gives an example of a value symmetry on the target graph. There
is only one generator for this graph : (1 2). Suppose the pattern graph is a path
of length 2 : x1 → x2 → x3. Suppose (1, 3, 2) is a solution. Then (2, 3, 1) is also
a solution. Suppose (1, 3, 4) is a solution. Then (2, 3, 4) is also a solution.

Fig. 2. Example of value symmetry on the target graph.

Breaking initial value symmetries can be done by using GE-Tree technique
[10]. The idea is to modify the distribution by avoiding symmetrical value as-
signment [6].

5 Conditional Value Symmetries

In subgraph monomorphism, the relations between values are explicitly repre-
sented in the target graph. This allows the detection of conditional value sym-
metries. The induced graph upon the nodes ∪i∈Np

D(xi) is the subgraph G∗
t

Fig. 3. Example of dynamic target subgraph.

of Gt in which a solution is searched. Figure 3 shows an example of dynamic
target graph. In this figure, the circled nodes are assigned together. The blank
nodes are the nodes excluded from ∪i∈[1,··· ,n]D(xi), and the black nodes are the
nodes included in ∪i∈[1,··· ,n]D(xi). The plain edges are the selected edges for the
dynamic target subgraph.

152

We show that each automorphism of G∗
t is a conditional value symmetry

for the state S and that the conditions are the assignments corresponding to
assigned variables. We show how the GE-Tree algorithm can be modified to
handle conditional values symmetries.

6 Local Value Symmetries

In this section, we introduce the concept of local value symmetries, that is value
symmetries on a subproblem. Such symmetries will be detected and exploited
during the search. We first introduce the partial dynamic graph concept. Those
graphs are associated to a state in the search and correspond to the unsolved
part of the problem. This can be viewed as a new local problem to the current
state. The partial dynamic pattern graph G−

p is an induced subgraph of Gp

on the set of non assigned variables. The partial dynamic target graph G−
t

is an induced subgraph of Gt on the union of the domains of the non assigned
variables.

When forward checking (FC) is used during the search, in any state in the
search tree, every constraint involving one uninstantiated variable is arc consis-
tent. In other words, every value in the domain of an uninstantiated variable
is consistent with the partial solution. This FC property on a binary CSP en-
sures that one can focus on the uninstantiated variables and their associated
constraints without loosing or creating solutions to the initial problem. Such a
property also holds when the search achieves stronger consistency in the search
tree (Partial Look Ahead, Maintaining Arc Consistency, . . .).

We show that value symmetries of the local CSP P ′ can be obtained by
computing Aut(G−

t), and that these symmetries can be exploited without loosing
or adding solutions to the initial matching problem. It is important to notice that
the value symmetries of P ′ are not conditional symmetries of P . It is not possible
to add constraints to P to generate P ′, since the P ′ is a new problem with less
variables. As the CSP P ′ is a local CSP associated to a state S, these value
symmetries are called local value symmetries.

Consider the subgraph monomorphism instance (Gp, Gt) in Figure 4. Nodes
of the pattern graph are the variables of the corresponding CSP, i.e. node i of Gp

corresponds to variable xi. Suppose that x1 has been assigned to value 1. Because
of MC propagation, D(x3) = {4, 6, 7}. Moreover, because of alldiff(x1, · · · , xn),
value 1 is deleted from all domains D(xi) (i 6= 1). The new CSP P

′

con-
sists of the subgraph of G−

p = ({2, 3, 4, 5}, {(2, 3), (3, 2), (3, 5), (5, 3), (4, 5),

(5, 4), (2, 4), (4, 2)}) and G−
t = ({2, 3, 4, 5, 6, 7},{(2, 3), (3, 2), (3, 5), (5, 3), (4, 5),

(5, 4), (2, 4), (4, 2), (6, 7), (7, 6)}). The domains of the variables of P
′

are :
D(x3) = {4, 6, 7} = {4}, D(x2) = {2, 5, 6, 7} = {2, 5}, D(x5) = {2, 5, 6, 7} =
{2, 5}, D(x3) = {3, 4, 6, 7} = {3, 4}. For the state S, Sol(S) = {(1, 5, 4, 3, 2),
(1, 2, 4, 3, 5)} and BSol(S) = {(1, 2, 4, 3, 5)}. For the subproblem P

′

, Sol(P
′

) =
{(5, 4, 3, 2),(2, 4, 3, 5)} and BSol(P

′

) = {(2, 4, 3, 5)}. The partial assignment
(x1, 1) in state S together with the solutions of P

′

equals Sol(S).

153

Fig. 4. Example of local value symmetry. The dashed squares show the new subgraph
monomorphism instance for CSP P

′.

Breaking local value symmetries is equivalent to breaking value symmetries
on the subproblem P ′. Puget’s method [6] and the dynamic GE-Tree method
[10] can thus be applied to the local CSP P ′.

7 Experimental results

The data graphs used to generate instances are from the GraphBase database
containing different topologies and has been used in [11]. The undirected set
contains graphs ranging from 10 nodes to 138 nodes. Using those graphs, there
are 1225 instances for undirected graphs. All runs were performed on a dual
Intel(R) Xeon(TM) CPU 2.66GHz with 2 Go of RAM.

In our tests, we look for all solutions. A run is solved if it finishes under 5
minutes, unsolved otherwise. First we applied the basic CSP model; then the
GE-Tree technique (value symmetries) and the full variable symmetry (FVS)
technique that breaks all variable symmetries, and both techniques together.
Results are shown in Table 1. In those runs, the preprocessing time has been
considered. The total time column shows the total time needed for the solved
instances. The mean time column shows the mean time for the solved instances.
The mean time was reduced in both variable symmetry breaking and in value
symmetry breaking. However the value symmetry breaking tends to be more
effective regarding the mean time. This can be explained by the fact that sym-
metric solutions arise mainly when the target is highly symmetrical i.e. has a lot
of edges. Both variables and value symmetry breaking slightly increase the per-
centage of the solved instances. Thanks to variable and value symmetry breaking,
more instances are solved. Interestingly, the combination of GE-Tree and FSV
does not outperform GE-Tree alone. This shows that symmetries on the target
graph, in this data set, are more important regarding the number of solutions.
However, the percentage of solved instances do not highly increase, calling for a
dynamic symmetry breaking.

154

Table 1. Comparison over GraphBase undirected graphs for variable and value sym-
metries.

All solutions 5 min.
solved unsol total time mean time

CSP 53,6% 46,3 % 31 min. 20.1 sec.
GE-Tree 55,3% 44,7 % 6 min. 3.21 sec.

FVS 54,9 % 45,1% 31 min. 19 sec.
GE-Tree and FVS 55,3 % 44,7% 26 min. 8.68 sec.

8 Conclusion

In this work, we developed value and variable symmetries for subgraph match-
ing. We also showed how to detect dynamic symmetries. As future works, we
would like to implement the conditional and local value symmetry detection,
asses its performance on highly regular and symmetrical graphs, consider local
variable symmetries and consider automatic detection of symmetries in graph
computation domain.

References

1. Beldiceanu, N., Flener, P., Lorca, X.: The tree constraint. In: Proceedings of
CP-AI-OR’05. Volume LNCS 3524., Springer-Verlag (2005)

2. Sellman, M.: Cost-based filtering for shorter path constraints. In: Proc. of the 9th
International Conference on Principles and Pratice of Constraint Programming
(CP). Volume LNCS 2833., Springer-Verlag (2003) 694–708

3. Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph computation
domain in constraint programming. In: Proc. of the 9th International Conference
on Principles and Pratice of Constraint Programming (CP). Volume LNCS 3709.,
Springer-Verlag (2005)

4. Zampelli, S., Deville, Y., Dupont, P.: Approximate constrained subgraph matching.
Principles and Pratice of Constraint Programming (2005)

5. Deville, Y., Dooms, G., Zampelli, S., Dupont, P.: Cp(graph+map) for approximate
graph matching. 1st International Workshop on Constraint Programming Beyond
Finite Integer Domains, CP2005 (2005)

6. Puget, J.F.: Automatic detection of variable and value symmetries. In: Proc. of the
9th International Conference on Principles and Pratice of Constraint Programming
(CP). Volume LNCS 3709., Springer-Verlag (2005) 477–489

7. Gent, I.P., Kelsey, T., Linton, S.A., McDonald, I., Miguel, I., Smith, B.M.: Con-
ditional symmetry breaking. In: Proc. of the 9th International Conference on
Principles and Pratice of Constraint Programming (CP). Volume LNCS 3709.,
Springer-Verlag (2005) 256–270

8. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30 (1981)
45–87

9. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry breaking predicates for
search problem. In: Proceedings of KR’96. (1996)

10. C.M., R.D., Gent, I., T., K., S., L.: Tractable symmetry breaking in using restricted
search trees. ECAI’04 (2004)

11. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical. Structures in Comp. Sci. 12(4) (2002) 403–422

155

Adversarial Constraint Satisfaction plays sHex

Student: David Stynes1

Supervisor: Ken Brown1

Cork Constraint Computation Centre,
Dept of Computer Science, UCC, Cork, Ireland
d.stynes@4c.ucc.ie, k.brown@cs.ucc.ie

Abstract. Adversarial Constraint Satisfaction models problems where
self-motivated decision makers operate in a shared problem space. It
combines techniques from constraint satisfaction and AI game playing.
Here we apply it to a new domain, in which players attempt to generate
winning paths in an extension of the game Hex.

1 Introduction

Adversarial Constraint Satisfaction[1] can be used to model problems in which in-
telligent self-motivated participants with different objectives must form a shared
solution which satisfies all of the problem’s constraints. The objectives of the par-
ticipants can be conflicting, which results in an adversarial situation where each
participant is attempting to find a solution to the problem which maximises their
objective at the expense of the other participants’ objectives. We aim to expand
upon the system presented in [1] to allow for a greater variety of constraints
within problems and for more complex objectives for participants, in order to
extend the range of problems that can be tackled with Adversarial CSP. In this
paper we consider a variation of Hex, which is inspired by a security system
problem in which one participant’s objective is defence of the system and the
other participant’s objective is to breach the system’s security.

2 Background

Adversarial CSP was proposed in [1] to model problems with multiple decision
makers with independent and possibly conflicting objectives. It proposed a pro-
tocol for coordination in which agents take turns to instantiate the variables in
a CSP. The problem must end in a satisfactory solution, so a controller ensures
that the agents backtrack out of situations which lead to an inconsistency. On
a turn, an agent evaluates the current state of the problem and instantiates a
variable, with the aim of guiding the solution towards its respective objective. It
can assign any unassigned variable with any value that is not known to cause a
conflict. To make this decision, an agent should reason about the likely moves of
the other agents. The depth of moves the agent will look ahead to is limited by
the time complexity of searching further; while in theory the agent could look

156

ahead until a complete problem solution is formed, this would take an unreason-
able amount of time and in general, the look ahead is limited to merely a few
moves.

The agent then needs a strategy for choosing a move. Four different strategies
were considered in [1]. Minimax chooses moves which minimise the maximum
score its opponent can get. Maximin chooses moves to guard against an opponent
trying to minimise the current participant’s own score, and so selects moves that
maximise the minimum score it can achieve. Maximax assumes that each par-
ticipant will attempt to maximise their own objective. MaxWS is an algorithm
designed to handle inaccuracies in the evaluation function. The evaluations can
only estimate the score from the current position, since future moves and con-
straint propagation may reduce the score obtainable. Also, since on subsequent
moves the opponent will be looking ahead to a deeper level, it will have more
information on which to base the decision. Thus for moves under the opponent’s
control we return evaluations weighted by a probability that the opponent will
make that move, while for the current participant’s moves we choose the move
that maximises a weighted sum of the evaluation. The probability of an oppo-
nent’s move is calculated by dividing the payoff for that opponent by the sum
of the payoffs over all moves.

The game of Hex is a two player game on a rhombic board with hexagonal
cells. The classic board dimensions are 11x11, but it can be any size. The players,
Black and White, take turns placing pieces of their own color on empty cells of
the board. Black’s objective is to connect the north-west edge of the board to
the south-east edge with a chain of black pieces. White’s objective is to connect
the south-west edge of the board to the north-east edge with a chain of white
pieces. Figure 1 shows a sample Hex position on a 4x4 board, and Fig. 2 shows
black playing a winning move from that position.

Fig. 1. A sample Hex position Fig. 2. Black plays a winning move

The game can never end in a draw. This follows from the fact that is all
of the cells are occupied, then a winning chain for Black or White must exist.
Anshelevich[2] uses virtual connections, which represent sub-games on the board
which a player is guaranteed to win even if the opponent plays in the sub-game
first, and an electrical network flow model to play computer Hex and is the
current state of the art.

157

3 Extending Hex to sHex

The basic game of Hex can be modelled as a graph (see Fig. 3), where each node
in the graph represents a cell of the board and the players are attempting to
create a path of nodes of their own color from one side of the graph to the other.
This graph has no constraints between the nodes.

Fig. 3. Representing Hex as a graph

We take the graph as being a model for a security system, where one partici-
pant is the administrator of the system, while the other is an attacker. We refer
to this security model as sHex. If the attacker makes a path of his color from
one side to the other it means he has successfully infiltrated the system, while
if the defender has made a path of his own color, then he has successfully de-
fended the system from attack. Due to limited resources and inter-connectivity
of system components, the system has certain limitations on what colors can
be assigned and so we overlay a graph coloring problem on the board. The rea-
soning behind this was that blocking off a certain aspect of the system to the
attacker may result in creating an opening elsewhere within the system. If ever
the system detects a violation of these limitations it automatically restores to
its last valid back-up and removes the values that caused the violation from the
relevant node(s). These new limitations on the combinations of colors between
certain nodes add constraints and backtracking to the basic hex game.

Additionally, in sHex, we now allow n different colors for a node to represent
different ”strengths” of the attacker’s offense. A path of the 1st color being best
for the attacker and of the nth color being a complete block by the defender.
Agents are also allowed to select any color, which is not known to cause a conflict,
for a node, not merely their own color. Thus the attacker’s objective now becomes
to create the strongest path he can, with the strength of a path being calculated
based upon how many of each color node are in the path; a path of all 1st color
nodes being the best possible path, and all nth color nodes the worst possible
path.

4 Playing sHex

The game plays the same as the system described in [1]. On their turn, each
agent must decide: how deep to look ahead, how to order branches for searching,

158

how to evaluate partial solutions and how to decide upon the best move. The
following is how our agents in our experiments are configured to play sHex.

Propagation The same propagation (MAC)[3] is used by all agents in sHex.
Depth of search The agents are limited to looking ahead 2 moves in our

experiments for complexity reasons.
Evaluation Functions Each agent calls a heuristic evaluation function to esti-

mate how good a position is for that agent. The function first calculates what it
believes to be the best strength path from one side to the other that the current
agent can complete. Then it calculates the same for the opponent (between his
respective sides of the board). The ratio of these two values is what the heuristic
evaluation function returns as its estimation of the quality of the given position
for the current agent.

The means we use to calculate the best path it is possible for an agent to
form is as follows. Each node is assigned a weight based on how good a color
it is assigned or what the best color in its domain is, if it is unassigned. Each
edge is then assigned a length equal to the sum of the weights of the two nodes
it connects. We calculate virtual connections between nodes according to the
H-search algorithm described in [2] and each virtual connection is added as a
new weighted edge in the graph, though the weighting for a virtual connection
edge is slightly increased compared to that of the original edges to indicate that
a virtual connection is not quite as strong as a true edge. We then calculate
the shortest distance path possible between the two sides of the board that this
agent is attempting to connect using Dikjstra’s algorithm [4].

Branch Ordering All agents in sHex simply select variables and values lexi-
cographically during lookahead search.

Game Strategies The strategies agents can use are Minimax, Maximax, Max-
imin, MaxWS as described previously.

5 Experiments and Results

We have generated 40 random problems with 4x4 nodes and 4 colors, 20 of
which had 5% constraint density and 20 of which had 10% constraint density.
The constraint densities are quite low so as not to overly limit the lines of play
open to the participants to the point that their choice of strategy would no longer
affect their choices of moves. The strategies Minimax, Maximax and Maximin are
equivalent on these problems as a result of the nature of the evaluation function,
because one player’s evaluation is the inverse of his opponent’s evaluation. Thus
we ran tests with the players using Minimax and MaxWS. The constraints we
used are a uniformly random selection from: equals, not-equals, greater than, less
than, greater than or equal and less than or equal. The problems have on average
a 50% tightness but tightness for each individual problem varies.

For any pair of strategies, strat1 and strat2, we perform four tests on each
test problem. We take the cases where the first player is using strat1 and has
an attacker objective, where the first player is using strat1 and has a defender
objective, where the first player is using strat2 and is an attacker and where the

159

first player is using strat2 and is a defender. By its nature, the first player has
a large advantage in the game of Hex and similarly so in sHex, thus we expect
strategies to perform better when they are the first player than when they are
the second.

Table 1 shows the performance for the different strategies in our tests with
5% constraint density. Table 2 shows performance on the 10% constraint density
tests. The optimal score possible is a score of 0. Table 3 shows how many cases
were won for each test class. In terms of total wins, the Minimax algorithm
performed better than MaxWS in most conditions, only performing poorer when
playing as the second player in the lower density problems. When you are the
first player and are unconcerned about win quality, Minimax is always the best
choice. When you are the second player and unconcerned about win quality, if
the first player is using Minimax then your best strategy is MaxWS, while if the
first player is using MaxWS it is better to use Minimax as the second player.
However in terms of quality of win, MaxWS generally out performs Minimax in
the cases where it does win.

Table 1. Average scores with 5% constraint density

Minimax MaxWS

Winning Player1 Attacker -0.23042 -0.24365
Winning Player1 Defender -0.26888 -0.14411
Winning Player2 Attacker -0.47247 -0.29050
Winning Player2 Defender -0.39853 -0.37840

Losing Player1 Attacker -25.40837 -41.21123
Losing Player1 Defender -31.49409 -26.82651
Losing Player2 Attacker -56.56792 -89.48099
Losing Player2 Defender -47.34488 -50.52685

Table 2. Average scores with 10% constraint density

Minimax MaxWS

Winning Player1 Attacker -0.41256 -0.40406
Winning Player1 Defender -0.41621 -0.36553
Winning Player2 Attacker -0.71606 -0.68821
Winning Player2 Defender -0.53862 -0.54663

Losing Player1 Attacker -1.84773 -2.26522
Losing Player1 Defender -1.47981 -1.70215
Losing Player2 Attacker -19.30188 -24.30217
Losing Player2 Defender -22.47613 -23.46171

160

Table 3. Total Wins

Minimax MaxWS

5% density, Player1 65 58
5% density, Player2 18 19

10% density, Player1 60 57
10% density, Player2 22 21

The initial results indicate that playing order is important, different strategies
should be used depending on which player you are, and what strategy your
opponent is using. Also important is whether you want to win as often as possible
or to have the best quality win (but at the cost of not necessarily winning as
often).

6 Conclusions and Future Work

We have developed a broader version of adversarial constraint satisfaction, one
which supports a larger variety of constraints and has more complicated ob-
jectives, by applying it to a new domain. We have shown that the difficulty of
evaluating complex objectives may be offset by utilizing existing knowledge from
other fields. We have shown that different agent configurations can be advisable
depending on the adversary’s configuration. In the future, we wish to develop
an improved intermediate position evaluation function, that takes account of all
potential paths rather than just the best potential path and in which one player’s
evaluation is not the inverse of his opponent’s, to allow more differences between
strategies. We also would like to extend the system to a more realistic security
model.

7 Acknowledgements

This work has received funding from the Irish Research Council for Science En-
gineering and Technology(IRCSET) Embark Initiative and from Microsoft Re-
search Cambridge (MSRC). We also wish to acknowledge the support of Youssef
Hamadi from MSRC.

References

1. Brown, K.N., Little, J., Creed, P.J., Freuder, E.C.: Adversarial constraint satisfac-
tion by game-tree search. Proceedings of the 16th European Conference on Artificial
Intelligence 2004 (2004) 151–155

2. Anshelevich, V.V.: A hierarchical approach to computer hex. Artificial Intelligence
134(1-2) (2002) 101–120

3. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfac-
tion. Proceedings of the Second International Workshop on Principles and Practice
of Constraint Programming (PPCP-94) 874 (1994) 10–20

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1) (1959) 269–271

161

The importance of Relaxations and Benders
Cuts in Decomposition Techniques: Two Case

Studies

Alessio Guerri (student) and Michela Milano (supervisor)

DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

{aguerri, mmilano}@deis.unibo.it

When solving combinatorial optimization problems it can happen that using
a single technique is not efficient enough. In this case, simplifying assumptions
can transform a huge and hard to solve problem in a manageable one, but they
can widen the gap between the real world and the model. Heuristic approaches
can quickly lead to solutions that can be far from optimality. For some problems,
that show a particular structure, it is possible to use decomposition techniques
that produce manageable subproblems and solve them with different approaches.
Benders Decomposition [1] is one of such approaches applicable to Integer Linear
Programming. The subproblem should be a Linear Problem. This restriction has
been relaxed in [4] where the technique has been extended to solvers of any kind
and called Logic-Based Benders Decomposition (LBBD). The general technique
is to find a solution to the first problem (called Master Problem (MP)) and than
search for a solution to the second problem (Sub-problem (SP)) constraining it
to comply with the solution found by the MP. The two solvers are interleaved
and they converge to the optimal solution (if any) for the problem overall. When
solving problems with a Benders Decomposition based technique, a number of
project choices arises:

– At design level, the objective function (OF) depends either on MP or SP
variables, or both. This choice affects the way the two solvers interact.

– Generation of Benders Cuts; Benders Cuts are constraints, added to the MP
model once a SP as been solved, that remove some solutions.

– Relaxation of the SP; to avoid the generation of trivially infeasible MP so-
lutions, some relaxations of the SP should be added to the MP model.

We focus on two particular problems, (1) the allocation and scheduling prob-
lem on Multi-Processor System-on-Chip (MPSoC) platforms (ASP), we inves-
tigated in [2], and (2) the dynamic voltage scaling problem on energy-aware
MPSoC (DVSP), we investigated in [3]. These are very hard problems and they
have never been solved to optimality by the system design community. We used
LBBD to solve the problems.

The aim of this paper is to show the importance of the relaxations and
Benders Cuts in terms of their impact on the search time and on the number of
times the two solvers iterate. In addition, we claim that, in general, a tradeoff
between the complexity of the cuts and relaxations introduced and their impact
on the number of iterations must be found.

162

1 Benders Decomposition

The Benders Decomposition (BD) technique works on problems where two loosely
constrained sub-problems can be recognized. Let us consider a problem modelled
using two sets of variables x and y. The Benders Decomposition technique solves
to optimality the master problem (MP) involving only variables x, producing the
optimal solution x̄, then it solves the original problem where the variables x val-
ues are fixed to x̄, namely the sub-problem (SP). Depending on the objective
function (OF), two cases can appear: (i) if the OF depends only on variables x,
the SP is simply a feasibility problem; if x̄ is a feasible solution for the SP, it is
the optimal solution for the original problem, otherwise the SP must communi-
cate a no-good saying that x̄ is not feasible and another one must be found; (ii)
if the OF depends on both x and y variables (or only on y variables), the MP
finds an optimal solution w.r.t. its OF (or feasible if the OF depends only on y),
x̄, then passes the solution to the SP and, when the SP finds an optimal solution
w.r.t. its OF, the SP must tell the MP that the solution found is the optimal
one unless a better one can be found with a different assignment to variables x.
In both cases, the two solvers are interleaved and they converge to the optimal
solution (if any) for the problem overall.

To avoid the inefficient generate and test behaviour of the MP and the SP
interaction it is useful to add to the MP a relaxation of the SP. The relaxation
provides a lower bound (or an upper bound if it is a maximization problem) on
the SP optimal solution.

The original BD technique models both the MP and the SP using Integer
Linear Programming (IP), while LBBD [4] extends BD to cope with any solver.
In [5] LBBD is applied to planning and scheduling problems. A set of activities
must be assigned and scheduled on a given set of homogeneous facilities. The al-
location master problem is modelled using an IP approach, while the scheduling
sub-problem is modelled using Constraint Programming (CP). Once the allo-
cation problem is solved, the scheduling part becomes easier since the schedul-
ing problem does not contain alternative resources. Precedence constraints are
posted only among activities allocated to the same facility, so the scheduling SP
can be decomposed in a number of simpler one machine scheduling problems,
one for each facility. In both our problems the scheduling does not decompose
since precedence constraints link tasks that possibly run on different processors.

2 Problem Description

We describe here the two problems we faced in [2] and [3].
Problem 1: Allocation and scheduling problem on a MPSoC (ASP)

• Given a set of tasks t1 . . . tn, with duration d1 . . . dn and memory require-
ments s1 . . . sn for the internal state, pd1 . . . pdn for the program data and
c1 . . . cn for communication,

• given precedences and communications among tasks, and realtime constraints
imposing deadlines on tasks and processors,

163

• given an MPSoC platform [7], where a set of homogeneous processors p1 . . . pm

each with a local memory slot, a system bus and a remote memory are inte-
grated on the same chip,

¦ find an allocation of tasks to processors and of memory requirements to
storage devices such that the total communication on the system bus is min-
imized. We have a contribution to the OF each time a memory requirement
is allocated on the remote memory and each time two communicating tasks
execute on different processors.

Problem 2: Allocation, scheduling and voltage selection problem on
an energy-aware MPSoC (DVSP)

• given an energy-aware MPSoC platform [6], where a set of homogeneous
processors able to change their frequency and a system bus are integrated
on the same chip,

• Given a set of tasks t1 . . . tn, each annotated with a tuple of durations
{d11 . . . d1f} . . . {dn1 . . . dnf} (one for each processor speed) and a communi-
cation requirement c1 . . . cn,

• given precedences and communications among tasks, and realtime constraints
imposing deadlines on tasks and processors,

• given time and energy overhead for a processor to switch from a frequency
to another,

¦ find an allocation of tasks to processors and of frequency to task executions
such that the total power consumption is minimized. We have a contribution
to the objective function each time an activity (task or communication)
is performed and each time two activities running at different speeds are
scheduled one just after the other on the same processor.

In both problems, we model and solve the allocation using an Integer Pro-
gramming approach, while we use Constraint Programming to solve the schedul-
ing SP. We can immediately see that the main difference between the ASP and
the DVSP concerns the objective function. In the ASP, when the allocation is
done, we know all the contributions to the objective function and thus the SP is
simply a feasibility problem. In the DVSP instead the OF depends on both the
MP and the SP.

3 Improving the models

3.1 Generation of Logic-based Benders cut

In the following we describe the Benders Cuts used.
ASP: A no-good is generated when the optimal solution of the MP is not feasible
for the SP. We investigated two no-goods.

– We have variables Xij that assume the value 1 if task i is allocated to
processor j, 0 otherwise. The no-goods impose that for each set of tasks Sp

allocated to a processor p, they should not be all reassigned to the same
processor in the next iteration. The resulting no-good is

∑m
p=1

∑
i∈Sp

Xip <
n.

164

– The cuts described above remove only complete solutions. It is possible to
refine the analysis and to find tighter cuts that remove only the allocation of
tasks to bottleneck resources. So, when a SP failure occurs, we solve a one
machine scheduling for each processor p considering constraints involving
only tasks running on p. For each processor p where the problem is infeasible,
we generate the cut

∑
i∈Sp

Xip < |Sp|. Finding this cut is a NP-hard problem,
but we will show experimentally when it pays off.

DVSP: Here the OF depends on both MP and SP. If there is no feasible schedule
given an allocation, the cuts are the same computed for the ASP. If the schedule
exists we have to produce a cut stating that the one just computed is the optimal
solution unless a better one exists with a different allocation. These cuts produce
a lower bound on the setup of single processors. The cuts can therefore be of
two types:

– We have variables Xtpf , taking value 1 if task t executes on processor p at
frequency f . Let us consider Jp the set of couples (Task, Frequency) allocated
to processor p. No-goods are the following:

∑
(t,f)∈Jp

Xtpf < |Jp|,∀p.
– Suppose a SP solution has an optimal setup cost Setup∗. It is formed by

independent setups, one for each processor Setup∗ =
∑m

p=1 Setup∗p. We
have a bound on the setup LBSetupp

on each processor and therefore a
bound on the overall setup LBSetup =

∑m
p=1 LBSetupp

. The constraints in-
troduced in the master problem are: Setupp ≥ LBSetupp

, and LBSetupp
=

Setup∗p−Setup∗p
∑

(t,f)∈Jp
(1−Xtpf), where Jp has the same meaning intro-

duced above.

The cuts described remove only one allocation. Indeed, we have also produced
cuts that remove some symmetric solutions.

3.2 Relaxation of the subproblem

In the MP models, deadlines are not taken into account, so the simplest kind of
relaxation is based on the tasks execution times. The sum of the execution times
of all the activities (tasks and communications) allocated to the same processor
must not exceed the deadline. The deadline constraint can still be violated during
the scheduling, but a huge number of infeasible solutions is surely cut.

In the DVSP this procedure can be improved by adding other relaxations
expressing bounds on the setup cost and setup time in the master problem
based only on information derived from the allocation. Let us consider, for each
processor, the set of frequencies appearing at least once. A bound on the sum of
the energy spent during the frequency switches can be computed as follows: let us
introduce in the model variables Zpf taking value 1 if the frequency f is allocated
at least once on the processor p, 0 otherwise. Let us call Ef the minimum energy
for switching to frequency f , i.e. Ef = mini,i 6=f{Eif}. Setupp ≥

∑M
f=1(ZpfEf −

maxf{Ef |Zpf = 1}). This bound helps in reducing the number of iterations
between the master and the subproblem. Similarly, we can compute a bound on
the setup time to tighten the constraints involving deadlines described above.

165

4 Experimental Results

We have generated 500 DVSP and 400 ASP realistic instances, with the number
of tasks varying from 7 to 19 and the number of processors from 3 to 10. We
consider applications with a pipeline workload. We assume for the DVSP that
each processor can run at three different frequencies. All the considered instances
are solvable and we found the proved optimal solution for each of them. Exper-
iments were performed on a 2.4GHz Pentium 4 with 512 Mb RAM. We used
ILOG CPLEX 8.1, ILOG Solver 5.3 and ILOG Scheduler 5.3 as solving tools.

4.1 Algorithm performances

In [2] and [3] we compared the hybrid approaches with pure approaches modelling
the problem as a whole using only IP or CP. For the ASP we found that the pure
approaches search times are order of magnitude higher w.r.t. the hybrid, while
for the DVSP the pure approaches are not able to find even a feasible solution
within the time limit. In this section we will show the effectiveness of the cuts
used. We consider ASP and DVSP instances with task graphs representing a
pipeline workflow. Note that here, since we are considering applications with
pipeline workload, if n is the number of tasks to be allocated, the number of
scheduled tasks is n2, corresponding to n iterations of the pipeline. Results are
summarized in Table 1 for the ASP and in Table 2 for the DVSP. The first three
rows contain respectively the number of tasks allocated and scheduled and the
number of processors considered in the instances. The last two rows represent
respectively the search time and the number of iterations. Each value is the mean
over all the instances with the same number of tasks and processors. We can see
that for all the DVSP instances the optimal solution can be found within four
minutes and the number of iterations is typically low. For the ASP instances
the optimal solution can be found within one minute and the mean number of
iterations is very close to 1.

To show the effectiveness of the relaxations used for the DVSP we solved the
instances considering either both or only one of the two relaxations described in
3.2. Table 3 shows the percentage of occurrence of a given number of iterations
when solving the DSVP with different relaxations. Using both of them (row All)
we can see that the optimal solution can be found at the first step in one half of
the cases and the number of iterations is at most 5 in almost the 90% of cases.
We tried to solve the problems using only one relaxation; rows Time and Bound
show the results when considering only the relaxation on the deadlines and on
the SP OF lower bound respectively. We can see that, for most of the cases, the
number of iterations is higher than 10. In addiction, the search time on average
rises up to 1 order of magnitude and, in the worst cases, the solution cannot be
found within two hours.

To show the effectiveness of the cuts used for the ASP, we selected a hard
ASP instance with 34 activities and we solved it with different deadline values,
starting from a very weak one to the tightest one. Table 4 shows the number of
iterations when solving these instances respectively without (row Base) and with

166

(row Advanced) the second kind of cuts described in 3.1 for descending deadline
values (row Deadline). We can see that, when the number of iterations is high,
the cuts reduce them notably. These cuts are extremely tight, but the time to
generate them is one order of magnitude greater w.r.t. the time to generate the
Base cuts, therefore they are helpful only on hard instances.

We tried to introduce tighter cuts and relaxations, but we experimentally see
that the computation time increases. This is because the cuts and the relaxations
complicate the model too much. In general, a tradeoff between the complexity
of the cuts and the reduction in terms of iterations must be found.

Alloc 7 7 9 9 11 11 11 13 13 15 15 15 17 17 19 19 19
Sched 49 49 81 81 121 121 121 169 169 225 225 225 289 289 361 361 361
Procs 3 4 4 5 4 5 6 5 6 5 6 7 6 7 4 7 9

Time(s) 0,42 0,41 0,50 0,57 0,60 0,85 1,26 2,84 6,14 0,98 9,53 14,37 7,71 9,25 3,85 27,85 46,69
Iters 1,01 1,05 1,01 1,07 1,06 1,09 1,10 1,08 1,09 1,03 1,07 1,12 1,11 1,02 1,03 1,06 1,11

Table 1. Search time and number of iterations for ASP instances

Alloc 7 7 9 9 11 11 11 13 13 15 15 15 17 17 19 19 19
Sched 49 49 81 81 121 121 121 169 169 225 225 225 289 289 361 361 361
Procs 3 4 4 5 4 5 6 3 7 4 5 7 5 6 3 6 10

Time(s) 1,43 2,24 5,65 6,69 15,25 2,17 2,14 5,90 34,53 12,34 22,65 51,07 60,07 70,40 3,07 120,1 209,4
Iters 2,91 3,47 4,80 3,41 4,66 4,50 3,66 1,90 6,34 4,45 10,53 6,98 7,15 9,20 1,96 6,23 10,65

Table 2. Search time and number of iterations for DVSP instances

Iter 1 2 3 4 5 6 7 8 9 10 11+
All 50,27 18,51 7,11 4,52 4,81 2,88 2,46 2,05 1,64 1,64 4,11

Time 35,23 10,32 3,47 4,76 3,12 2,84 2,13 2,06 1,04 1,11 33,92
Bound 28,6 10,12 5,64 3,78 4,35 2,91 1,29 1,48 1,12 0,84 39,87

Table 3. Number of iterations distribution ratio with different relaxations

Deadline 1000000 647824 602457 487524 459334 405725 357491 345882 340218 315840 307465
Base 3 1 1 18 185 192 79 6 4 2 2

Advanced 3 1 1 6 16 23 17 4 3 3 2

Table 4. Number of iterations varying the deadline and with different Benders Cuts

References

1. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and scheduling for
mpsocs via decomposition and no-good generation. In Proceedings of CP 2005,
pages 107–121, 2005.

3. L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation, scheduling and voltage
scaling on energy aware mpsocs. In Proceedings of CPAIOR2006, 2006.

4. J. N. Hooker. A hybrid method for planning and scheduling. In Procs. of the 10th
Intern. Conference on Principles and Practice of Constraint Programming - CP
2004, pages 305–316, Toronto, Canada, Sept. 2004. Springer.

5. J. N. Hooker. Planning and scheduling to minimize tardiness. In Procs. of the
11th Intern. Conference on Principles and Practice of Constraint Programming -
CP 2005, pages 314–327, Sites, Spain, Sept. 2005. Springer.

6. M. Ruggiero, A. Acquaviva, D. Bertozzi, and L. Benini. Application-specific power-
aware workload allocation for voltage scalable mpsoc platforms. In 2005 Interna-
tional Conference on Computer Design, pages 87–93, 2005.

7. W. Wolf. The future of multiprocessor systems-on-chips. In In Procs. of the 41st
Design and Automation Conference - DAC 2004, pages 681–685, San Diego, CA,
USA, June 2004. ACM.

167

Backdoors, Backbones and Clause Learning:
Towards Direct Backdoor Search

Student: Peter Gregory
Supervisors: Derek Long

Maria Fox
University of Strathclyde

Glasgow, UK
firstname.lastname@cis.strath.ac.uk

Abstract

Is it possible to exploit backdoors directly? If it is then a good characterisation
of backdoors is required. One way to find this characterisation is through empirical
analysis of different features that could predict backdoor membership. This work
describes some preliminary steps required in this analysis. Backdoor distributions,
the relationship with backbones and the effect of clause learning are discussed.

1 Introduction
A backdoor of a CSP problem is a subset of the variables that make the rest of the
problem solvable in polynomial time. It is typical that the backdoor sizes of CSPs are
small. If there were a way of characterising backdoors then searching directly for them
could be an effective new form of search. This work describes the preliminary steps
required to achieve this.

The backbone of a CSP is the set of variables that take the same assignments in
every solution. Previous work has shown that backdoor membership is negatively cor-
related with backbone membership [2]. Further insight into why this is the case is
discussed here.

This work is motivated by the desire to exploit backdoor variables directly in or-
der to improve search. This work describes the preliminary steps of this investigation:
finding an effective characterisation of backdoor variables. The relationship with back-
bones is discussed as work done in the past regarding backbone membership could
possibly be reused to find backdoor variables.

2 Preliminaries
A constraint satisfaction problem (CSP) P is defined as a triple, (X,D, C). X is a
finite set of n variables, X = {x1, x2, ..., xn}. D is a finite set of domains, D =
{D(x1), D(x2), ..., D(xn)}, such that D(xi) = {vi1 , vi2 , ..., vim} is the finite set of
possible values for variable xi and C is the set of constraints C = {C1, C2, ..., Cm}.
A constraint Ci is a relation over a subset of the variables Si ⊆ X that represents the

168

assignments to the variables in Si that are legal simultaneously. If Si = {xi1 , ..., xil
},

then Ci ⊆ Di1 × ...×Dil
.

An assignment to a variable is a pair 〈xi, v〉 such that (v ∈ D(xi)), meaning vari-
able xi is assigned the value v. A solution S to a CSP P is a set of assignments
S = {〈x1, v1〉, 〈x2, v2〉, ..., 〈xn, vn〉}, such that all constraints in C are satisfied. A
partial assignment VS is a set of assignments to variables in S = {xi1 , ..., xil

} such
that S ⊂ X . We also use the notation P [v/x] to represent the simplified CSP un-
der the assignment 〈x, v〉 and P [VS] to represent the simplified CSP under the partial
assignment VS .

2.1 Backdoors
A sub-solver is an algorithm that solves a tractable subproblem of a general problem
class. Paraphrasing Garey and Johnson [3], a subproblem of the general CSP is ob-
tained whenever we place additional restrictions on the allowed instances of the general
CSP problem class. A sub-solver AΠ is an polynomial time algorithm that determines
only problem instances of subproblem Π ⊂ CSP .

Given a sub-solver A, a weak backdoor Bw is a set of variables Bw = {xi1 , ..., xil
}

such that there is at least one assignment bw to Bw such that A determines S[bw]
satisfiable. A strong backdoor Bs is a set of variables Bs = {xi1 , ..., xil

} such that
for every assignment bs to Bs, A determines P [bs] correctly. Note, this definition
of a strong backdoor includes strong backdoors for both satisfiable and unsatisfiable
CSPs. For unsatisfiable CSPs, every assignment to Bs is determined unsatisfiable by
A. For satisfiable instances, at least one assignment to Bs is determined satisfiable by
A, and all of the assignments not determined satisfiable are correctly determined as
unsatisfiable (and never rejected).

2.2 SAT and Unit Propagation
Boolean Satisfiability (SAT herein) is a special case of CSP. SAT restricts the domains
of every variable to two values, true and false. It also restricts the constraints to
a set of clauses. A clause is a disjunction of literals. The variables correspond to
logical variables, and the clauses disjunctions of logical literals, rather than writing
〈xi, true〉 and 〈xi, false〉, we will use the shorthand xi and ¬xi instead. We will also
occasionally refer to xi and ¬xi as being in positive and negative phase respectively.

A clause with only one literal xi is called a unit clause. To satisfy the formula,
that literal must be true in any solution. This means that the complementary literal
¬xi can be pruned from any clause (as ¬xi cannot be made true). This procedure can
run iteratively, if some pruned clause(s) have now been reduced to unit clauses. This
procedure is called Unit Propagation and runs in linear time. In DPLL [4, 5], it is used
in conjunction with backtracking search to solve SAT problems. DPLL forms the basis
of many modern SAT solving algorithms.

3 Distribution of Backdoors
This section of the work concentrates on the way backdoors are spread across the

variable space in different types of SAT problems. The problem instances we will study
are encoded from several different problem domains. We look at planning problems,

169

Algorithm 1 MINIMAL BACKDOOR

1: candidate← X
2: member ← ∅
3: while candidate 6= ∅ do
4: c← xi, xi ∈ candidate
5: candidate← candidate \ c
6: if b dpll(candidate ∪member) did not determine P then
7: member ← member ∪ {c}
8: end if
9: end while

10: return member

graph colouring problems, quasigroup completion problems and random 3SAT prob-
lems (from the phase trasnsition region). These were all selected from the satlib web
resource [7] for their variety in structure.

The algorithm MINIMAL BACKDOOR reduces a candidate minimal backdoor until
there are no variables that can be removed from the candidate that yield a backdoor. The
entire set of variables is trivially a backdoor, and this is what the candidate is initialised
to. Minimisation is achieved by simply removing each variable, in random order, and
testing if the remaining structure is a backdoor using a depth-bounded DPLL search
(written b dpll in the algorithm). If it is, then the variable is not part of the minimal
backdoor, and is discarded. If not, then the variable is reintroduced into the candi-
date. This is similar to the MINWEAKBACKDOOR algorithm in [2]. The difference
being, that algorithm used literals and not variables as the constituents of the backdoor.
This means that different instantiation of the variables in their backdoors could give a
smaller weak backdoor. It also means that MINWEAKBACKDOOR cannot detect (or
minimise) strong backdoors.

Algorithm 1 is simple in approach, and is only useful for reasonably small prob-
lems. However, for our study Algorithm 1 has advantages over methods previously
employed to find backdoors [1, 2]. Previous work has relied on the assignments made
by a SAT solver when finding solutions. A modified version of the satz-rand solver
that outputs the chosen decision variables is the method used to find backdoors. This
approach will find backdoors admitted by the randomised heuristic of satz-rand. But
we are not interested in just those backdoors, we are interested in general backdoors.
Algorithm 1 provides a method of finding backdoors that is independent of any solver
and any variable ordering heuristic.

The results of finding 100 different backdoors using MINIMAL BACKDOOR for our
test instances are given in Table 1. As has previously been noted, backdoors are typ-
ically only a small fraction of the total variables. It is interesting to note the sizes of
backdoor as a proportion of variables differs greatly between problem domain. The
backdoors in the unstructured random 3SAT instances have particularly large back-
doors compared to the planning and quasigroup completion problems.

An important question, indeed a critical one, is whether some variables occur in
many backdoors whilst others occur in few, if any. We can look at the frequencies that
variables occur in the backdoors we found in Table 1. In the blocksworld problem bw-
medium for instance, there were 75 variables out of 116 that occurred in any backdoor.
The most frequent variable found occurred in 11% of all backdoors. The 25 most fre-
quent variables occurred in an average of 6.1% of all backdoors found. There are also
41 variables in this problem that never occur in a backdoor. These facts together show

170

Problem |X| MedB |I| Med|B ∩ I| MedBC

bw-medium 116 2 97 0 1
bw-huge 459 3 459 2 1
qg1-07 343 5 189 0 2
qg2-07 343 5 169 0 3
qg7-09 729 2 505 0 1
flat30-50 90 5 0 0 4
flat75-5 225 12 0 0 11
uf75-05 75 8 68 2 5
uf100-05 100 11 58 1 7

Table 1: Table of statistics for the studied instances. |X| is the number of variables in
the instance. MedB is the median number of variables in the found backdoors. |I| is
the size of the backbone. Med|B ∩ I| is the median number of variables in the found
backdoors that are also in the backbone. MedBC is the median number of backdoor
variables when clause learning is turned on.

that indeed, for this instance, there are particular variables that tend to be “backdoor
variables”.

All of the variables in flat-30-50 occurred in at least one backdoor. The most fre-
quent variable occurred in 10% of the backdoors. The least frequent occurred in just
2% of the backdoors. The frequencies between the two extreme vary much more uni-
formly than the blocksworld example. In spite of this fact, it is still the case that certain
variables occur more often in backdoors five times more often than others.

4 The Backbone and Backdoors
The backbone IP is the set of variables in X that have a fixed value in every solution.
That is, IP ⊆ X is the backbone of a CSP P if there is a partial assignment XIP

such that P [XIP
] is satisfiable and IP is the maximum set with this property. Note, we

assign the letter I to denote the backbone as it is a solution invariant. Recall that we
have defined P [XS] as the CSP P simplified under partial assignment XS ⊂ X . The
backbone of a CSP simplified by a partial assignment is given by IP [XS] and will be
referred to as the augmented backbone. This is because as variables are assigned, the
backbone of the CSP grows monotonically. If an augmented backbone IP [XS] = X
then the partial assignment P [XS] is a unique solution identifier. That is, there is only
one value that each variable in X can take once the partial assignment P [XS] is made.

It has been previously observed that backdoor variables are not often backbone
variables [2]. There is occasionally an intersection between the two structures, but
it appears accidental. So a better question is: what is the reason that backbones and
backdoors appear to be (typically) disjoint? Let us start by making some observations.

If all of the backbone variables are set correctly, could this be a backdoor? No. The
backbone variables are those whose assignments are implied by the problem. Thus,
if setting the backdoor correctly implied another variable/value assignment, this other
variable must be in the backbone also. Once we have this piece of information, we can
see that partial/ full assignments to backbone variables only have the capacity to imply
other backbone variables. Since a backdoor implies every variable’s value for a given

171

solution, the backbone variables cannot be a backdoor.
As variables are assigned in search, the sub-spaces that we move into have mono-

tonically growing backbones. Indeed, when a problem is solved a problem using as-
signment and propagation, all of the variables are trivially in the augmented backbone
(as in the final state all variables are set). Since we have shown backbone variables can
only imply themselves, it is true that in any sub-space of the search tree, the next choice
should not be in the augmented backbone, as this can’t imply any variables other than
those already in the augmented backbone.

4.1 Identifying Unique Solutions
When search is in a state where all variables are in the augmented backbone, then there
is a single solution (in that sub-space). This doesn’t mean that search is necessarily
complete, some problems with single solutions are hard to solve. But it does mean
search is at the stage where unit propagation may be able to solve the problem, because
there is now a single solution in our sub-space.

So, we have a necessary, but not sufficient, property of any backdoor – assignment
of part of the backdoor must identify a unique solution. The next enquiry naturally
concerns the question: how is the remainder of the backdoor composed? In this sit-
uation, several variables have been assigned such that, in the current sub-space, there
is a unique solution to the studied instance (but the problem is not solved). Our prob-
lem now must be that we don’t have enough information in the current clauses to cause
propagation of the remaining variables. We can infer information using clause learning.

5 Clause Learning and Backdoors
When searching for backdoors, we disabled the clause learning features of the SAT
solver. This is because clause learning “interferes” with backdoors. The effect it has
on backdoors is to make them smaller. In terms of search, this is obviously a desirable
effect. We performed the same experiments as before (finding 100 backdoors for our
test cases) whilst leaving clause learning turned on. In every case, the median backdoor
size found was reduced by at least one, and as many as four in the case of the uf100-05
instance. Although it may seem a small reduction, a linear reduction in the size of the
average backdoor means there is an exponential increase in the number of backdoors
to the problem.

6 Conclusions and Future Work
If backdoors are to be exploited directly, then we must be able to identify good can-
didate members. This work shows that if a good approximation to the backbone is
available, then we can reduce the choice for backdoor variables. It also shows that
clause learning can have a positive effect on backdoors, it can reduce their size. This
is because it adds useful information to the problem such that more of the augmented
backbone can be propagated at each point in search.

Future work will entail rigourous analysis of more properties that may indicate
backdoor membership. These properties will be taken from different variable ordering
heuristics, structural properties such as ratio between positive and negative phase liter-
als, and other measures that could prove indicative of backbone membership. Once that

172

analysis is complete, a combination of the features will be used to predict backdoors
and will form the basis of a search algorithm.

References
[1] Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In

Gottlob, G., Walsh, T., eds.: Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, Morgan Kauffman (2003) 1173–1178

[2] Kilby, P., Slaney, J., Thiebaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. In: Proceedings of AAAI-2005. (2005)

[3] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

[4] Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3) (1960) 201–215

[5] Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7) (1962) 394–397

[6] Beame, P., Kautz, H., Sabharwal, A.: Understanding the power of clause learn-
ing. In Gottlob, G., Walsh, T., eds.: Proceedings of the 18th International Joint
Conference on Artificial Intelligence, Morgan Kauffman (2003) 1194–1201

[7] Hoos, H.H., Sttzle, T.: SATLIB: An Online Resource for Research on SAT. In
I.P.Gent, H.v.Maaren, T.Walsh, eds.: Proceedings of the Third International Con-
ference on the Theory and Applications of Satisfiability Testing, IOS Press (2000)
283–292

[8] Dechter, R.: Constraint Processing. Morgan Kauffman (2003)

173

New Propagators for the SPREAD Constraint

Students: Pierre Schaus, Jean-Noël Monette.
Supervisors: Yves Deville, Pierre Dupont.

Computer Sciences and Engineering Department (INGI)
Université catholique de Louvain

Place Sainte-Barbe, 2
1348 Louvain-la-Neuve

{pschaus, jmonette, yde, pdupont}@info.ucl.ac.be

1 Introduction

In assignation problems, it is often desirable to have a fair or balanced solution.
One example of such a problem is BACP. The goal is to assign periods to courses
such that the academic load of each period is balanced, i.e., as similar as possible
[1]. A perfectly balanced solution is generally not possible. A standard approach
is to include the balance property in the objective function. Alternatively the
constraint SPREAD introduced by Pesant and Régin [2] could be used to re-
duce the search tree while simplifying the model. Constraining the variance of
assignments to fall below an upper bound is a proper way to enforce the balance
property.

Given a set of variables X and two variables µ and σ, SPREAD(X, µ, σ)
states that the collection of values taken by the variables of X exhibits an arith-
metic mean µ and a standard deviation σ. While the SPREAD constraint in [2]
also involves the median, this will not be considered here. We present a simpli-
fied version of the propagator from σ and µ to X. We also introduce a propator
to narrow the upper bound of σ which is missing in [2].

Section 2 introduces some statistical background, definitions of constraint
programming and explains the results from [2] that will be used. Then, section
3 describes our propagator from µ and σ on the domains of the set of variables
X and finally section 4 describes the propagator to lower the upper bound of
the standard deviation interval from the set of variables X.

2 Background [2]

In this section we introduce some background and definitions necessary to un-
derstand the rest of the article. We also present the results from [2] we use in our
propagator. We assume the reader familiar with common statistical notions such
as mean, standard deviation and variance. Note simply that a convenient way
to compute the variance of a set of values X = {x1, x2, ..., xn} is the following:
σ2 =

(
1
n

∑n
i=1 x2

i

)
− µ2.

We use the following notations for the variables and domains considered in
this paper:

174

– A finite-domain (discrete) variable x takes a value in D(x), a finite set called
its domain. We denote the smallest (resp. largest) value x may take as xmin

(resp. xmax).
– A bounded-domain (continuous) variable y takes a value in ID(y) =

[ymin, ymax], an interval on R called its domain as well.
– Given a finite-domain variable x, ID(x) denotes its domain relaxed to the

continuous interval [xmin, xmax]. By extension for a union of domains D =⋃n
i=1 D(xi), ID represents the interval [minn

i=1 xmin
i ,maxn

i=1 xmax
i].

To narrow the variables in X, we need a way to find the minimum possible
variance with a fixed mean. [2] explains how to solve this optimization problem.

Definition 1 (Minimization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (discrete) variables. For some fixed number q we de-
note by Π1(X, q) the problem: min

∑n
i=1(xi − q/n)2 such that

∑n
i=1 xi = q,

xi ∈ ID(xi), 1 ≤ i ≤ n and we denote by opt(Π1(X, q)), or simply opt(Π1), the
optimal value to this problem.

In the above definition, opt(Π1) corresponds to n times the minimal variance
and q to n times µ.

Definition 2. An assignment A : x→ ID(x) over X is said to be a v-centered
assignment when A(x) = xmax if xmax ≤ v, A(x) = xmin if xmin ≥ v and
A(x) = v otherwise.

Lemma 1 ([2]). Any optimal solution to Π1(X, q) is a v-centered assignment.

Lemma 1 gives a necessary condition for an assignment to be optimal for
Π1(X, q) but the v value can be anywhere in ID. [2] introduces a splitting of ID
into intervals. Any such interval is either included in a domain or has an empty
intersection with it but no partial overlap occurs. This splitting simplifies the
problem of finding where the optimal v lies within ID.

Definition 3. Let B(X) be the sorted sequence of bounds of the relaxed domains
of the variables of X, in non-decreasing order and with duplicates removed. De-
fine I(X) as the set of intervals defined by a pair of two consecutive elements
of B(X). The kth interval of I(X) is denoted by Ik. For an interval I = Ik we
define the operator prev(I) = Ik−1, (k > 1).

They are at most 2.n − 1 intervals in I(X). Let assume that the value v
of the optimal solution to Π1(X, q) lies in the interval I ∈ I(X). We denote
by R(I) = {x|xmin ≥ max(I)} the variables lying to the right of I and by
L(I) = {x|xmax ≤ min(I)} the variables lying to the left of I. By lemma 1, all
variables x ∈ L(I) take their value xmin and all variables in R(I) take their value
xmax. It remains to assign the variables overlapping I. We denote these variables
by M(I) = {x|I ⊆ ID(x)} and the cardinality of this set by m = |M(I)|. By
lemma 1, the variables of M(I) must take a common value v. The sum constraint
of Π1(X, q) can be rewritten as

∑
x∈R(I) xmin +

∑
x∈L(I) xmax +

∑
x∈M(I) v = q.

175

Let denote the sum of extrema by ES(I) =
∑

x∈R(I) xmin +
∑

x∈L(I) xmax. The
sum constraint from Π1 implies that v must be equal to v∗ = (q − ES(I))/m.
This results in a valid assignment only if v∗ ∈ I. This condition is satisfied if
q ∈ V (I) = [ES(I) + min(I).m,ES(I) + max(I).m].

By defining S(X) =
∑

x∈X xmin and S(X) =
∑

x∈X xmax, an important
property concerning I(X) and the definition of V (I) is min(V (I1)) = S(X),
max(V (I|I(X)|)) = S(X) and for two consecutive intervals Ik, Ik+1 from I(X),
we have min(V (Ik+1)) = max(V (Ik)), thus leaving no gap.

Given a value q such that q ∈ [S(X), S(X)] and Iq ∈ I(X) such that q ∈
V (Iq), the following assignment gives the optimal value to Π1(X, q):

Definition 4. AIq (x) = xmax for x ∈ L(Iq), AIq (x) = xmin for x ∈ R(Iq) and
v = AIq (x) = (q − ES(Iq))/m for x ∈M(Iq).

Example 1. Let X = {x1, x2, x3} with ID(x1) = [1, 3], ID(x2) = [2, 6] and
ID(x3) = [3, 9] then I(X) = {I1, I2, I3, I4} with I1 = [1, 2], I2 = [2, 3], I3 = [3, 6],
I4 = [6, 9]. M(I2) = {x1, x2}, L(I2) = φ, R(I2) = {x3}, ES(I2) = 3 and
V (I2) = [7, 9]. Similarly, V (I1) = [6, 7], V (I3) = [9, 15] and V (I4) = [15, 18]. For
q = 10 we have q ∈ V (I3) thus I10 = I3. L(I3) = {x1}, M(I3) = {x2, x3} and
R(I3) = φ. AI3(x1) = 3, AI3(x2) = AI3(x3) = 3.5. For q = 9, we have q ∈ V (I2)
and q ∈ V (I3). Whichever interval we choose between I2 and I3, we find the
same optimal assignment AI2(x1) = AI3(x1) = 3, AI2(x2) = AI3(x2) = 3 and
AI2(x3) = AI3(x3) = 3.

3 Propagation from µ and σ to X

To simplify the presentation, we first assume that σ is an interval [σmin, σmax]
and µ is a given value. We will consider afterwards the general case where µ is
an interval.

Let us denote q = nµ, πmax
1 = n(σmax)2 and Iq ∈ I(X) is such that

q ∈ V (Iq). If opt(Π1) > πmax
1 the constraint fails because there exists no consis-

tent assignment. Otherwise, for a variable x ∈ R(Iq) (resp. ∈ L(Iq)) we compute
its maximal value (resp. minimal value) and for a variable x ∈M(Iq) we compute
both. As the problem is symmetrical we only consider the maximal value com-
putation for x ∈ R(Iq) ∪M(Iq). For these variables we will see that shifting its
domain to x + d increases opt(Π1) quadratically. The bound πmax

1 is reached for
d = dmax. The propagator considers each variable x in turn, computes its dmax

and prunes D(x)← D(x)∩ [xmin, xmin + dmax]. All the domains can be updated
once after consideration of all variables in X. Alternatively, each pruned domain
can directly be used for the propagation on the other variables. In either case,
the process must be iterated until a fix-point is reached. The simplest approach
is the first one and as can be seen in the exemple of Figure 1, the propagation is
already effective in this way. The analysis of the FindDMax algorithm described
below shows that dmax is computed in O(n) making our propagator running in
O(n2).

176

Searching dmax for x ∈ R(Iq) X ′ denotes X after the shift x′ = x + d. Let
Π1(X ′, q), ES′(Iq) and V ′(Iq) be the corresponding quantities for X ′. We have
ES′(Iq) = ES(Iq) + d and V ′(Iq) = V (Iq) + d.

Let assume that d ≤ d1 = q −min(V (Iq)) such that v′ remains in Iq. Only
the v value will change in the optimal assignment: v′ = v − d/m. We have
opt(Π1(X ′, q)) =

(∑
xi∈L(Iq)(x

max
i)2

)
+

(∑
xi∈R(Iq)(x

min
i)2

)
+ d2 + 2dxmin +(∑

xi∈M(Iq)(v −
d
m)2

)
− q2

n = opt(Π1(X, q)) + d2 + 2dxmin + m
(

d2

m2 − 2 d
mv

)
.

The value dmax is the positive solution of a second degree equation ad2 +2bd+c,
where a = (1 + 1

m), b = xmin − v and c = opt(Π1(X, q))− πmax
1 .

Until now, we made the assumption that d ≤ d1. If dmax > d1 this value is
not valid since v does not lie within Iq anymore. In this case x is shift by d1 and
the interval Iq ′ = prev(Iq) is considered. The resulting Algorithm 1 searching
for dmax runs in O(n) since they are at most |I(X)| < n recursive calls and that
the body runs in O(1).

Algorithm: FindDMax(x, Iq)

Data: x ∈ R(Iq); Iq ∈ I; q ∈ V (Iq);
Result: dmax s.t. opt(Π1(X

′, q)) = πmax
1 with x′ = x + dmax

d1 = q −min(V (Iq));

dmax =
−b+

√
b2−ac

a
;

if dmax < d1 then
return dmax;

else
if Iq = I1 then

return d1;
else

return d1+FindDMax(x + d1, prev(Iq));
end

end

Algorithm 1: FindDMax

Searching dmax with x ∈ M(Iq) can be reduced to searching for dmax with
a new variable x′ with x′min = v. When x is increased (x′ = x + d), the optimal
assignment does not change if d ≤ v − xmin. For d = v − xmin two new intervals
are created replacing the old Iq: Ij = [min(Iq), v] and Ik = [v,max(Iq)] with
q = max(V ′(Ij)) = min(V ′(Ik)). The optimal assignment is the same but a
new problem Π1(X ′, q) is created with q ∈ V ′(Ij) and x′ ∈ R(Ij). This case
reduced to searching for dmax with x′ ∈ R(Ij) is exposed above. The final dmax

relative to the variable x is given by: dmax = v−xmin+FindDMax(x′, Ij) where
x′ = x + v − xmin.

Figure 1 shows an example of the effect of the propagator.

Extension to µ = [µmin, µmax] The generalization µ = [µmin, µmax] is equiv-
alent to q ∈ [qmin = nµmin, qmax = nµmax]. This extension does not affect our

177

Fig. 1. The propagation on a typical run. The Iq interval lies between the two horizon-
tal lines. The posted constraint is SPREAD(X, 50, [0, 23]). There are 20 variables and
the domains after one and two propagations are represented on the left of each original
domain. We can see that the second propagation does not prune a lot anymore.

propagator but only requires an additional step before the call to FindDMax for
each variable: the computation of a suitable q ∈ [qmin, qmax]. The computation
of dmax in the algorithm depends on the value of q. To express this explicitly we
denote dmax as a function of q: dmax(q). Since it can be shown to be concave and
derivable, one can search a q0 such that dmax(q) is maximum: ∂dmax

∂q

∣∣
q=q0 = 0.

It can be shown that q0 is the only valid solution of a second degree equation .
As q ∈ [qmin, qmax], if q0 > qmax (resp. < qmin) then FindDmax is called with
q = qmax (resp. q = qmin). If q0 ∈ [qmin, qmax], FindDmax is called with q = q0.

4 Propagation from X to σmax

To narrow the upper bound of σ we need a way to compute the maximal variance
on X such that

∑n
i=1 xi = q. This can be shown to be a convex maximization

problem (NP-hard in general [3]). Even the relaxed problem without the sum
constraint remains a convex maximization problem but it is easier to design an
upper bound on it because of a known characterization of the optimal solution
with respect to the extrema of the domains.

Definition 5 (Maximization of the variance on X). Let X = {x1, x2, ..., xn}
be a set of finite-domain (Discrete) variables. We denote by Π2(X) the problem:
max

∑n
i=1(xi −

∑n
j=1 xj/n)2. We denote by opt(Π2(X)) the optimal value for

the problem.

Lemma 2 (Optimal solution to Π2(X)). Any optimal solution to Π2(X)
must be an assignment on the extrema of the domains i.e. on xmax or xmin.

They are 2n possible extrema assignments for X. We denote µ = S(X)/n

and µ = S(X)/n. For some variables the optimal assignment can be deduced
immediatly. Indeed if xmin > µ, an optimal solution to Π2(X) is such that
x = xmax. The case xmax < µ is symmetrical. There are additional cases where

178

extrema assignment can be deduced. Note that if x would be assigned to xmin,
the upper bound for µ would become µ∗ = µ− xmax−xmin

n .
In the example on the left of Figure 2, an optimal solution would assign

x = xmax because the lower bound on the distance of xmax to µ is greater than
the upper bound on the distance of xmin to µ∗. More generally, in each case
where the lower-bound using an extremum is larger than the upper-bound using
the other extremum, the optimal assignment corresponds to the first extremum.

Assigning a variable x to xmin will decrease µ and assigning a variable x to
xmax will increase µ resulting possibly in a larger set of variables for which an
optimal assignment can be deduced. All such extrema can be found in O(n2).

Since opt(Π2(X)) =
∑

i x2
i − (

∑
i xi)

2
/n, an upper bound opt(Π2(X)) can

be computed using the assigned values and xmax
i (resp. xmin

i) in the first (resp.
second) sum otherwise. This upper bound can be used to narrow the interval σ by
posting the constraint n.σ2 ≤ opt(Π2(X)). For the example on the right of Figure
2 with 50 variables, the algorithm find the optimal solution i.e. opt(Π2(X)) =
opt(Π2(X)). The deduced extrema’s are indicated with a ⊕. The worst case for
propagating on σ would correspond to all variables with an identical domain.

Fig. 2. Left figure: x = xmax because the lower bound on the distance from xmax

to µ is smaller than the upper bound on the distance from xmin to µ. Right figure:
opt(Π2(X)) = opt(Π2(X)). The deduced extrema’s are indicated with a ⊕

References

1. Problem 30 of CSPLIB (www.csplib.org).
2. Jean-Charles Regin Gilles Pesant. Spread: A balancing constraint based on statis-

tics. Lecture Notes in Computer Science, 3709:460–474, 2005.
3. Lieven Vandenberghe Stephen Boyd. Convex Optimization. Cambridge University

Press, 2004.

179

180

181

182

183

184

185

A Specialised Binary Constraint for the Stable Marriage

Problem with Ties and Incomplete Preference Lists∗

Student name: Chris Unsworth
Supervisor name: Patrick Prosser

Department of Computing Science, University of Glasgow, Scotland.
{chrisu,pat}@dcs.gla.ac.uk

Abstract

Gent and Prosser proposed the first constraint model for the Stable Marriage
problem with Ties and Incomplete preference lists (SMTI). Their model was based
upon the simple Stable Marriage (SM) model proposed by Gent et al, in which for
each man woman pair a constraint is posted consisting of a set of no good pairs of
values. Prosser and Unsworth proposed a specialised binary constraint for SM which
significantly outperforms the simple SM model proposed by Gent et al. We now
propose a new specialised binary constraint for SMTI. This constraint should provide
a complete solution for the problem which significantly outperforms the simple SM
model proposed by Gent and Prosser. This may then allow us to solve larger more
realistic sized problem instances.

1 Introduction

In the Stable Marriage problem (SM) [4] we have a set of n men {m1 . . .mn} and a set
of n women {w1 . . . wn}. Each man ranks the n women into a strictly ordered preference
list, and the women rank the men similarly. The problem is then to produce a stable
matching of men to women. By a matching we mean that there is a bijection from men
to women, and by stable we mean that there is no incentive for partners to divorce and
elope. A matching M is said to be unstable if it contains a blocking pair. A man woman
pair (mi, wj) form a blocking pair in a matching M if mi and wj are not matched in M
and would both prefer to be matched to each other than to be matched to their respective
assigned partners in M .

The Stable Marriage problem with Ties and Incomplete lists (SMTI) is a generalisation
of SM. In SMTI men and women are allowed to submit incomplete preference lists which
may also contain ties. By allowing ties in the preference list we are dropping the require-
ment that the preference lists must be strictly ordered, thus allowing someone to express
indifference between two or more potential parters. By allowing incomplete preference
lists we allow someone to state that they would rather be unmatched than be matched
to someone not in their preference list. An instance of SMTI can be seen in Figure 1, in
which entries in brackets indicate indifference.

By allowing ties in the preference list we introduce the possibility of different definitions
of a blocking pair, and thus different definitions of stability. Here when talking about
stability in SMTI we refer to the most commonly used definition known as weak stability
[4]. In this definition a pair (mi, wj) will only form a blocking pair if both mi and wj

∗The author is supported by EPSRC. Software support was given by an ILOG SA’s academic grant.

186

Men’s lists Women’s lists
Alf : Zoe (Ann Liz) Joe Ann : Tom Alf Bob Ian
Bob : Liz Jes (Ann Zoe) Joe : Ian (Alf Bob Jim)
Tom : (Ann Jes Liz Zoe) Liz : (Alf Ian) Tom Bob
Ian : Ann Jes Liz Zoe Joe Zoe : Tom (Jim Ian Bob) Alf
Jim : Joe Zoe Jes Jes : Ian Jim (Tom Bob)

Figure 1: An SMTI instance with 5 men and 5 women

stand to improve their position by eloping. For example if Alf was matched to Joe and
Liz was matched to Ian (from the instance in Figure 1), then (Alf,Liz) would not form a
blocking pair, even though Alf would rather be matched to Liz than Joe. Liz is happy
enough with Ian and would not want to swap. However if Liz was matched to Tom then
(Alf,Liz) would form a blocking pair.

It has been proven that a stable matching can always be found for an instance of SMTI
in O(n2) time [5]. It has also been proven to be NP-hard to find a stable matching in
which the maximum possible number of people are matched [6]

We now present a specialised binary constraint for SMTI. We will first show how an
SMTI instance can be represented within a constraint model. We present the constraint
and the methods that act upon it. We then discuss the complexity of the constraint.

2 Representing SMTI in a Constraint Model

In this constraint model we represent the men with a set of n integer variables {x1 . . . xn},
the women are also represented by a set of n integer variables {y1 . . . yn}. The man variable
xi has an initial domain of {1 . . . lmi , n + 1}, where lmi is the length of mi’s preference
list (the women variables have equivalent initial domains). The domain values represent
preferences, meaning that if xi were assigned the value j then this would correspond to
mi being matched to the woman in the jth position in mi’s preference list. For example
if x4 was assigned the value 2 then in the instance shown in Figure 2, that would mean
m4 was matched to w4. A variable xi being assigned the value n + 1 indicates that mi is
unmatched.

Men’s lists Women’s lists
1: 1(3 6 2)4 1: 1 5 6(3 2 4)
2: 4 6(1 2)5 2:(2 4 6)(1 3 5)
3:(1 4)5(3 6 2) 3:(3 6)(5 1)
4: 6 4 2 1 5 4: 1 (3 5 4)2 6
5: 2 3(1 4 5)6 5: 3(2 6)4 5
6: 3(1 2 6 5 4) 6: 5(1 3 6 4)2

Figure 2: An SMTI instance with 6 men and 6 women

In [9] the preference lists are represented in two ways. The first is as a pair of two
dimensional integer arrays mpl and wpl. These arrays contain the male and female pref-
erence lists respectively. For example from the instance in Figure 2 m4’s entry would be
mpl[4] = [6, 4, 2, 1, 5] and his second choice woman would be mpl[4][2] = 4 or w4. There is
also a second pair of two dimensional integer arrays mPw (man’s preference for woman)
and wPm (woman’s preference for man). These arrays contain the inverse preference

187

lists and can be used to find where a specific person appears in someone’s preference
list. For example m4’s inverse preference list would be mPw[4] = [4, 3,−1, 2, 5, 1] (where
the entry -1 indicates that person is unacceptable) and m4’s preference for w2 would be
mPw[4][2] = 3. Note that mpl[i][k] = j ⇔ mpw[i][j] = k.

To extend this to include ties in the preference list we first arbitrarily break the ties
to flatten the preference lists. The preference lists are then held as before in a pair of two
dimensional arrays. For example, m1’s preference list could look like mpl[1] = [1, 3, 6, 2, 4]
(depending on how the ties were broken). We then extend the inverse preference lists to
include information about ties. Instead of storing a single integer to describe the position
of wj in the preference list of mi we store a triple (α, β, γ). Here α represents the position
in mi’s preference list of the first person tied with wj , β is the position of wj in the prefer-
ence list, and γ is the position of the last person in the tie with wj . For example the triple
representing m1’s preference for w6 would be mPw[1][6] = (2, 3, 4). The full inverse pref-
erence list for m1 would be mPw[1] = [(1, 1, 1)(2, 4, 4)(2, 2, 4)(5, 5, 5)(−1,−1,−1)(2, 3, 4)].
A triple in which α = β = γ indicates that this person in not involved in a tie. Note that
a triple (−1,−1,−1) is used to indicate an unacceptable partner.

3 Specialised Binary Constraint for SMTI (SMTI2)

The specialised binary constraint for the stable marriage problem with ties and incomplete
lists (SMTI2) is designed to work within an AC5 type environment. SMTI2 is a binary
constraint and acts over a man woman pair (mi, wj). SMTI2 will ensure that (mi, wj) do
not become a blocking pair or get inconsistent values assigned to them (meaning that if mi

is matched to wj then wj will be matched to mi). A constraint model using this constraint
to solve an instance of SMTI will require one of these constraints for each man woman
pair. To model an SMTI instance of size n would require O(n2) of these constraints.

An SMTI2 constraint acting over the man woman pair (mi, wj) would have the follow-
ing attributes:

• x is a constrained integer variable representing mi

• y is a constrained integer variable representing wj

• xPy is a single triple representing mi’s preference for wj , meaning xPy = mPw[i][j].

• yPx is a single triple representing wj ’s preference for mi, meaning yPx = wPm[j][i].

We also require the following procedures that act upon a constrained integer variable. We
assume all these methods run in O(1) time:

• getMin(v) returns the smallest value in the domain of variable v.

• getNextHigher(v, a) returns the smallest value in the domain of variable v that is
strictly greater than the value a, if no such value exists then this procedure returns
n + 1.

• setMax(v, a) removes all values from the domain of variable v that are strictly
greater than the value a.

• removeV alue(v, a) removes the value a from the domain of the variable v.

We assume that we require two methods to enforce AC over this constraint, init(c)
which gets called at the head of search when the constraint c is initialised, and remV al(c, a)
which is called when the value a is removed from the domain of a variable constrained by

188

the constraint c. The methods will be presented using a Java like pseudo-code such that
the . (dot) operator is an attribute selector, such that c.b delivers the b attribute of c.
Parentheses will be used to access individual elements of a list. For example, c.xPy[2] will
deliver the second item from the triple c.xPy.

We give these methods from a male only perspective. When a call is made to remV al(c, a)
we assume that the value has been removed from the domain of variable x. When a call
is made to init(c) we only consider the domain of x. To implement this constraint we will
also require methods that consider the female perspective. The female versions of these
methods can be obtained be simply swapping the gender specific terms. (i.e. c.x becomes
c.y and c.xPy becomes c.yPx)

1. remVal(c,a)
2. IF a = c.xPy[2]
3. THEN removeValue(c.y,c.yPx[2])
4. IF getMin(c.x) == c.xPy[2]
5. THEN IF getNextHigher(c.x,c.xPy[2]) > c.xPy[3]
6. THEN setMax(c.y,c.yPx[3])
7. IF getMin(c.x) > c.xPy[2]
8. THEN setMax(c.y,c.yPx[3])

The remV al(c, a) method is called when the value a has been removed from the domain
of variable x constrained by the constraint c. If the value corresponding to y is no longer in
the domain of x (line 2) then x is removed from the domain of y (line 3). If the minimum
value in the domain of x corresponds to y (line 4) and the next highest value x’s domain is
not tied with y (line 5), then x strictly prefers y to all the remaining women in his domain,
therefore y must not consider any man she likes less than x (line 6). If x is to be matched
to a woman he likes less than y (line 7) then y must be matched to someone she likes no
less than x (line 8).

1. init(c)
2. IF getMin(c.x) == c.xPy[2]
3. THEN IF getNextHigher(c.x,c.xPy[2]) > c.xPy[3]
4. THEN setMax(c.y,c.yPx[3])

The init(c) method is called when the constraint c is initialised. This method checks
if x strictly prefers y to all the remaining women in his domain (lines 2-3), if so then y
must be matched to a man no worse than x (line 4).

This constraint has been implemented in JSolver [1] (the Java version of Ilog Solver).
The results of initial testing are encouraging, and show that this constraint significantly
outperforms the simple constraint model proposed in [3].

4 Complexity of the Constraint

Each SMTI2 constraint has size O(1). A constraint model using this constraint would
require O(n2) of these constraints to model an instance of SMTI, therefore a constraint
model using this constraint would require O(n2) space.

Assuming that all the methods used within the init(c) and remV al(c, a) methods run
in O(1) time, then init(c) and remV al(c, a) will also run in O(1) time. The init(c) method
will be called once for each of the O(n2) constraints. Each variable will be associated with
O(n) SMTI constraints, and each variable has O(n) domain values, therefore for each
variable the remV al(c, a) method could be called at most O(n2) times. There are O(n)
variables in an instance of SMTI, therefore in the worse case enforcing AC on a constraint
model using this constraint will take at most O(n3) time.

189

Note that with SMTI enforcing AC is not sufficient to ensure a solution is found, unlike
the case with SM [2].

5 Conclusions and Future Work

We have proposed a new specialised constraint solution for SMTI. This constraint can be
used to find all possible stable matching for a given instance of SMTI. Initial test have
shown that this constraint offers a significant performance increase compared with the
simple constraint model proposed in [3]. It will be interesting to extend these tests to a
full empirical study.

In [3] Gent and Prosser conducted an empirical study of SMTI. In the study the
authors generated random SMTI instances varying the number of ties and the size of the
preference lists and measure the search cost to solve them. We intend to follow on this
work by repeating the empirical study using SMTI2, and extending it to investigate larger
instances, to see how this effects the problem.

In the same way as the specialised binary constraint for SM has been modified to solve
SMTI, the specialised n-ary constraint proposed in [8] can be extended to solve SMTI.
It should also be possible to extend the specialised binary and n-ary constraints for the
hospital/residents problem proposed in [7] in the same way. This will then allow us to
produce a complete solution for the real life hospital/residents problem.

References

[1] ILOG JSolver. http://www.ilog.com/products/jsolver/.

[2] I. P. Gent, R. W. Irving, D. F. Manlove, P. Prosser, and B. M. Smith. A constraint
programming approach to the stable marriage problem. In CP’01, pages 225–239,
2001.

[3] I. P. Gent and P. Prosser. An empirical study of the stable marriage problem with ties
and incomplete lists. In ECAI’02, 2002.

[4] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms.
The MIT Press, 1989.

[5] D. F. Manlove. Stable marriage with ties and unacceptable partners. Technical report,
Dep. Computing Science, Univ. Glasgow, 1999.

[6] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants
of stable marriage. Theoretical Computer Science, 276:261–279, 2002.

[7] D. F. Manlove, G. O’Malley, P. Prosser, and C. Unsworth. A constraint program-
ming approach to the hospitals / residents problem. In Workshop on Modelling and
Reformulating Constraint Satisfaction Problems at CP’05, 2005.

[8] C. Unsworth and P. Prosser. An n-ary constraint for the stable marriage problem. In
The Fifth Workshop on Modelling and Solving Problems with Constraints, 2005.

[9] C. Unsworth and P. Prosser. A specialised binary constraint for the stable marriage
problem. In SARA 2005, pages 218–233, 2005.

190

Automatic Generation of
Alternative Representations

and their Channelling Constraints

Student: Bernadette Mart́ınez-Hernández
Supervisor: Alan M. Frisch

Department of Computer Science, University of York, United Kingdom
{berna, frisch}@cs.york.ac.uk

Abstract. Automatic modelling systems aim to reduce the number of
decisions human modellers must take. To do so, these systems implement
common modelling guidelines and techniques. One of the widespread
methods to improve a model is the introduction of channelling constraints
when two (or more) alternative representations are simultaneously used
to solve a problem. In this paper we discuss the automatic generation of
the alternatives and their channelling constraints.

1 Introduction

Constraint modelling is the process of encoding a problem into finite-domain
decision variables and a set of constraints posed over them. Efficient constraint
modelling is a hard task, often learnt by novice constraint users from modelling
examples. In order to reduce the modelling time many automatic modelling sys-
tems have arisen. The construction of an automatic modelling system requires a
good understanding of the modelling process as well as each commonly used mod-
elling technique. In this paper we study the modelling technique of combining
(redundant) alternative models through the addition of channelling constraints.
Channelling constraints (or channels) were defined by Cheng et al [1] and used
to increase propagation by combining two alternative models of a permutation:
primal and dual. Channels are now used in many efficient models for all sorts of
problems (see [2]), though the formalisation their automatic inclusion in a model
has been somehow overlooked. This paper introduces an automatic method to
generate channelling constraints. We first define representations in Section 2 to
then discuss alternative representations and channels in the next section. The
automatic generation of representations is described in Section 4, and finally, we
detail the method of automatic generation of channels and channelled models in
Section 5. Conclusions and future work are presented in the last section.

2 Representations

Throughout this paper we use the common definition of CSP (Constraint Sat-
isfaction Problem) instance: a triple (X, DX , C) of variables, domains and con-
straints. For example, the Sonet problem requires to configure a group of nodes

191

X = { rings }
DX(rings) = multisets (of size nrings) of sets (of maxsize capacity) of 1..nnodes
C = ∅

Fig. 1. CSP-instance 1 of the rings of the Sonet problem.

X1 = { rings1 }
DX1 (rings1) = 2-D matrix of Boolean indexed by 1..nrings and 1..nnodes
C1 = ∀i ∈ 1..nrings . (

P
j ∈ 1..nnodes . rings[i, j]) = capacity

Fig. 2. CSP-instance 2 of the rings of the Sonet problem.

(1..nnodes) in a network of certain number nrings of rings, where each of ring
has a maximum capacity of nodes1. In CSP instance 1, shown in Figure 1, the
network of rings is specified as a multiset of sets. Since no constraint is imposed
on the rings variable, the solutions of this instance are all the possible assign-
ments to the multiset. Figure 2 shows a second CSP instance modelling the Sonet
network with a Boolean 2-dimensions matrix rings1, where rings1[i, j] = True
if node j is in ring i. Notice that each solution of the CSP instance 2 can be
mapped into a solution of the CSP instance 1. In general, we seek to find a
mapping from solutions to solutions to ensure an instance represents another
instance; as it is shown in the following definition.

Definition 1 R′ represents R via ψ, if R′ = (X ′, DX′ , C ′) and R = (X,DX , C)
are CSP instances and ψ is a partial function from the total assignments of X ′

into the total assignments of X such that:

– For each total assignment w′ of the variables in X ′, w′ is a solution of C ′

if and only if ψ(w′) is defined and it is a solution of C,
– For each solution w of C, there is at least one solution w′ of C ′ such that

ψ(w′) = w.

We say that R′ represents or is a representation of R if for some ψ R′

represents R via ψ

For our Sonet example we can define the function ψ1 that transforms the rows
of rings1 into the sets of rings, and then say CSP instance 2 represents CSP
instance 1 via ψ1.
1 For simplicity, in this example we do not impose the communication and minimisa-

tion constraints.

X2 = { rings2, switch }
DX2 (rings2) = 2-D matrix of 1..nnodes indexed by 1..nrings and 1..capacity
DX2 (switch) = 2-D matrix of Boolean indexed by 1..nrings and 1..capacity
C2 = ∅

Fig. 3. CSP instance 3 of the rings of the Sonet problem.

192

3 Alternative Representations and Channels

Let us now introduce a third CSP instance that models the network of rings.
This instance is shown in Figure 3 and contains the matrices, rings2 and switch,
of integer and Boolean variables respectively; where node j is in ring i if for some
k, rings2[i, k] = j and switch[i, k] = True. The CSP instance 3 also represents
CSP instance 1. Since CSP instance 2 and CSP instance 3 represent CSP instance
1 we call them redundant with respect to CSP instance 1.

Two redundant CSP instances with respect to a third CSP instance are
alternative if their sets of variables are disjoint. The union of a group of instances
is defined as the union of their variables, domains and constraints. In fact, the
union of alternative CSP instances, redundant with respect to R, also represent
the CSP instance R. For example, the union of CSP instances 2 and 3 represents
CSP instance 1 too.

The definition of representation connects two instances. We introduce now
the concepts of variable and constraint representations that relate variables and
constraints to CSP instances. These extensions of the concept of representation
are used to define a constraint-wise representation, that is a group of instances
that some how represent the constraints and variables of a CSP instance.

Definition 2 Let xR be a variable with domain τxR
. The CSP instance R repre-

sents the decision variable xR if R represents the CSP instace ({xR}, {τxR
}, {}).

Let CR be a constraint over the variables x1, . . . , xn with domains τx1 , . . . , τxn
.

The CSP instance R represents the constraint CR if R represents the CSP
instance ({x1, . . . , xn}, {τx1 , . . . , τxn

}, {CR}).
Let R be the CSP instance (X, DX , C = {C1, . . . , Cn}); the CSP instances
R1, . . . , Rn be representations of the constraints C1, . . . , Cn; and Rx1 , . . . , Rxn

be representations of the variables {x1, . . . , xn} in X such that no constraint in
C is imposed over them. The set of instances {R1, . . . , Rn, Rx1 , . . . , Rxn

} is a
constraint-wise representation of CSP instance R if:

– The variables of each instance in the set {R1, . . . , Rn, Rx1 , . . . , Rxn
} are pair-

wise disjoint.
– For every constraint Ci in C, there are (pairwise variable-disjoint) CSP sub-

instances Ryj
of Ri such that for each variable yj the constraint Ci is imposed

on, xj is represented by Rxj .

To clarify these definitions consider the following example. Let us extend CPS
instance 1 by adding to it constraints Cm(rings) and Cp(rings); to instance
2 C ′m(rings1); and to instance 3 C ′p(rings2, switch). We call these extensions
CSP instances 1a, 2a and 3a respectively2. Suppose CSP instance 2a represents
constraint Cm(rings) and CSP instance 3a represents Cp(rings). This, CSP in-
stances 2a and 3a compose the constraint-wise representation of CSP instance
1a. In general, the union of a constraint-wise representation of an instance does
not represent the instance because the solutions of both representations are not
synchronised, and when propagating the constraints they do not prune consis-
tently assignments in the representation mapping to the same assignment in the
2 To simplify the examples constraints Cm, C′m, Cp, C′p remain undefined.

193

instance. To synchronise the different alternative representations of a variable in
a constraint-wise representation of an instance we add channelling constraints.
For the union of instances 2a and 3a we introduce the following channel:

∀i ∈ 1..nrings . ((
X

j ∈ 1..nrings . ∀k ∈ 1..nnodes . ∃l ∈ 1..nnodes rings1[i, k] = rings1[j, l])

= (
X

j ∈ 1..nrings . ∀k ∈ 1..nnodes . ∃l ∈ 1..capacity . rings1[i, rings2[j, l]] ∧ switch[j, l]))(1)

We generalise the synchronisation intuition in the following definition of chan-
nelling constraints.

Definition 3 Let R1 represent R via ψ1 and R2 represent R via ψ2. Let vars(R1)
and vars(R2) be disjoint sets of variables. The set of constraints Ch is considered
a set of channelling constraints between R1 and R2 if:

– For each solution x1 of R1 there is at least one total assignment x2 (of
the variables in R2) such that the composed assignment x1 ∪ x2 satisfies the
constraints in Ch. Similarly for each solution x2 there must be an assignment
x1 such that the composed assignment x1∪x2 satisfies the constraints in Ch.

– For all total assignments x1 and x2 where the composed assignment x1 ∪ x2

satisfies the constraints in Ch, ψ1(x1) and ψ2(x2) are either both undefined
or take the same value.

By adding correct channels to the union of a constraint-wise representation of
an instance we can now ensure it represents the instance.

Theorem 1 Let Rcstr be the constraint-wise representation of R, where variable
x of R has two variable representations Rx1 and Rx2 in Rcstr. Let Ch be the
correct channelling constraint between Rx1 and Rx2 . Then, the CSP instance⋃

Rcstr ∪ Ch represents R.

4 Refinement

Refinement is an automatic modelling method used by Conjure, a system in-
troduced by Frisch et al [3]. The refinement of Conjure is a generalisation of
the refinement restricted to instances, that is, the refinement explained in this
paper.

Given an input CSP instance R, the refinement process generates constraint-
wise representations of R, where each one composes a single instance by joining
its elements. Every constraint-wise representation is generated by independently
producing the representations of the constraints and variables of R by means
of the recursive application of refinement rules. For example, the rings variable
of CSP instance 1 is transformed into CSP instance 1′ of Figure 4 by a rule
that transforms multisets into arrays (explicit representation). Then the vari-
able rings′ is fed to the refinement process to obtain CSP instance 2 of Figure
2 after applying the rule that transforms sets into Boolean arrays (occurrence
representation). Regardless of the rule used to refine a variable or constraint,
the transformations applied to variables are recorded using tags called repre-
sentation annotations. These tags contain information specifying representation
constructed by the rule. From the set of annotations of a produced instance

194

X′ = { rings′ }
D′

X(rings′) = 1-D matrix of sets (of maxsize capacity) of 1..nnodes
indexed by 1..nrings

C′ = ∅

Fig. 4. CSP instance 1′ of the rings of the Sonet problem.

we can generate sequences of annotations connecting the variables of refined in-
stance R with their produced representations. For example, for the refinements
of CSP instance 2 and 3 of CSP instance 1 we have the sequences

[represent(exp, rings, rings
′
), ∀i ∈ 1..nrings. represent(occ, rings

′
[i], rings1[i])] (2)

[represent(exp, rings, rings
′
), ∀i ∈ 1..nrings. represent(varexp, rings

′
[i], (rings2[i], switch[i]))]

Note these sequences are also produced by refining CSP instance 1a into the
union of instances 2a and 3a. Any CSP instance R′, produced by the refinement
process of an input CSP instance R, represents R as long as it does not contains
several alternative representations of any of the variables in R. For example, one
of the refinements of CSP instance 1a is the union of CSP instances 2a and 3a
which is clearly not a representation of instance 1a. As we showed in the previous
section, channels need to be introduced to transform this union into a proper
representation.

5 Systematic generation of channelling constraints

Using the annotations, we can track the final representation of each variable
of a refined CSP instance. More importantly, two representations of a variable
are identical if we can unify their sequences of annotations obtained from the
refinement each one was produced. Whenever one of the instances returned after
the refinement contains two (or more) alternative redundant representations of
the same variable, we use the sequence of annotations in a second refinement of
the variable for whom alternative representations were produced. We follow the
next steps:

1. A dummy variable with the same domain is created. For our example of the union
of CSP instance 2a and 3a, we create ringsdummy ; a variable whose domains is,
as well as the rings variable, composed of multisets of sets.

2. We modify the sequences of annotations to assign a path conducting each variable
to an alternative representation. In our example we change only the last sequence
of (4) into:

[represent(exp, ringsdummy, ringsdummy
′
),

∀i ∈ 1..nrings. represent(varexp, ringsdummy
′
[i], (rings2[i], switch[i]))] (3)

3. Equality is a channelling constraint between two variables with the same
domain. The refinement of a channelling constraint between two variables
produces the representation of the two variables plus the channelling con-
straints between them. For that reason the equality constraint between two
variables is refined. For the example, we refine rings = ringsdummy.

195

From the set of representations we get after this process is finished we select only
those whose sequences of annotations unify with the previously modified ones.
In our example the channel (1) is produced. Theorem 1 ensures the algorithm of
generation produces correct channelling constraints, converting constraint-wise
representations into proper representations of instances. In many cases a direct
implementation of a channel propagate over an extensive set of constraints does
not give the most efficient pruning. We can obtain specialised global constraints
by add to the system refinement rules that produce them instead of the usual
constraints.

6 Conclusions and future work

We have identified that channels in a refined-based automatic may only be
needed when a variable is used in several constraints. We introduce a method
of automatic generation of the channels that depends upon keeping track of the
series of transformation used to construct alternative redundant representations
of the same variable. We use the tags that annotate the consecutive transfor-
mations to restrict the refinement of an equality constraint. The purpose of this
second refinement is the automatic generation of the needed channelling con-
straints using the same refinement technique.

Future work includes the addition of global constraints for the channels
between representations of variables of compound domains and/or uncommon
representations, for example the channel (1) between the occurrence and the
variable-sized-explicit representation (introduced in [4]). Also, the literature pro-
vides examples of combinations of alternative representations where some redun-
dant constraints or variables have been deleted to improve the propagation (e.g.
[5]). We need to implement them and possibly find similar cases.

References

1. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding up constraint propagation by
redundant modeling. In: CP 1996. (1996) 91–103

2. Walsh, T., Hnich, B.: Why channel? multiple viewpoints for branching heuris-
tics. In: Proceedings of the CP’03 Second International Workshop on Modelling
and Reformulating Constraint Satisfaction Problems: Towards Systematisation and
Automation. (2003)

3. Frisch, A.M., Jefferson, C., Mart́ınez-Hernández, B., Miguel, I.: The rules of con-
straint modelling. In: Nineteenth Int. Joint Conf. On Artificial Intelligence (IJCAI).
(2005) 109–116

4. Jefferson, C., Frisch, A.M.: Representations of sets and multisets in constraint
programming. In: Fourth International Workshop on Modelling and Reformulating
Constraint Satisfaction Problems. (2005) 102–116 Held at the 11th International
Conference on Principles and Practice of Constraint Programming.

5. Walsh, T.: Permutation problems and channelling constraints. In Nieuwenhuis, R.,
Voronkov, A., eds.: Proceedings of LPAR-2001. LNAI, Springer (2001) 377–391

196

The Effect of Constraint Representation on
Structural Tractability

Student: Chris Houghton
Supervisor: David Cohen

Department Of Computer Science,
Royal Holloway, University Of London, UK

Abstract. Tractability results for structural subproblems have gener-
ally been considered for explicit relations listing the allowed assignments.
In this paper we define a representation which allows us to express con-
straint relations as either an explicit set of allowed labelings, or an ex-
plicit set of disallowed labelings, whichever is smaller. We demonstrate
a new structural width parameter, which we call the interaction width,
that when bounded allows us to carry over well known structural de-
compositions to this more concise representation. Our results naturally
derive new structurally tractable classes for SAT.

1 Introduction

An instance of the constraint satisfaction problem is a collection of variables to
be assigned, a universe of possible values and a collection of constraints. Each
constraint has a relation which restricts the allowed simultaneous assignments to
a set of these variables. This set of variables is called the scope of the constraint.

The constraint satisfaction problem is, in general, NP-hard. As such, it is an
important area of research to identify subproblems which are tractable.

The structure of a constraint satisfaction problem instance (CSP) is defined
to be the hypergraph whose vertices are the variables of the instance and whose
hyperedges are the constraint scopes.

When we are given a CSP to solve, the constraint relations will be expressed
in some encoding, that is, by some sequence of symbols. We classify these en-
codings based on the expression method used. The set of encodings that we
allow a class of CSPs to be expressed by is called a representation. Practitioners
generally use the most concise representation they can to express a problem.

Most research on tractability has been concerned with explicitly allowed en-
codings [2], which we shall refer to as the positive representation. In this paper
we wish to investigate how well our current theory translates into a more natural
representation.

We define a notion of structural width for a hypergraph which we call the in-
teraction width. We are able to show that certain structural classes with bounded
interaction width are tractable.

We describe SAT in terms of our complement representation and show why
this is a natural approach for discussing the structural tractability of classes of
SAT instances.

197

2 CSPs and Representations

Definition 1. A constraint satisfaction problem instance (CSP) is a triple
〈V, D,C〉 where; V is a set of variables, D is a finite set which we call the
universe of the problem, and C is a set of constraints.

Each constraint c ∈ C is a pair 〈σ, ρ〉, where σ (called the constraint scope)
is a subset of V and ρ (called the constraint relation) is a set of labelings of σ.
Each labeling is a function from σ into the universe D.

A solution to a CSP, P = 〈V, D,C〉 is a mapping s : V → D such that for
every 〈σ, ρ〉 ∈ C we have that s restricted to σ is an element of ρ.

Definition 2. A hypergraph, H, is a pair 〈V, E〉, where V is a set, called the
vertices of H, and E is a set of subsets of V , called the hyperedges of H.

For any CSP P = 〈V,D, C〉, the structure of P , denoted σ (P), is the hyper-
graph 〈V, {σ | 〈σ, ρ〉 ∈ C}〉.

The class of CSPs whose structure is an acyclic hypergraph is tractable [1].
In particular an acyclic hypergraph has a join tree which can be used to solve
the instance.

Example 1. Let A be the class of CSPs generated by taking an instance of graph
3-coloring and adding a universal constraint (over all variables) which allows all
labeling. This does not alter solution but the universal constraint forces instances
of A to have acyclic structure.

This anomaly relies on the universal constraint being expressed by listing
every possible assignment to all variables in the CSP.

An encoding is the way in which a constraint relation is expressed. It is usual
for the labelings in a constraint relation to be encoded directly as the allowed
assignments to the variables in the scope. We shall refer to this encoding as
the positive encoding. Alternatively, it is also acceptable for the labelings to be
encoded as the disallowed assignments to the variables in the scope. We shall
refer to this encoding as the complement encoding.

Definition 3. A representation, R, is a set of possible encodings.
A CSP, P = 〈V, D, C〉, is said to be expressed in a representation, R, if for

every constraint, 〈σ, ρ〉 ∈ C, the relation, ρ, is expressed by the encoding in R
which has the smallest size for ρ. (This is similar to the concept of Minimum
Description Length [3].)

The representation which allows only the positive encoding is called the pos-
itive representation (Pos) and the representation which allows only the compli-
ment encoding is called the compliment representation (Comp).

The representation which allows both the positive encoding and the compli-
ment encoding is called the mixed representation (Mixed).

198

3 Tractability with respect to representation

We show that the tractable classes of each of these representations is distinct by
demonstrating classes which distinguish them.

Definition 4. A class of CSPs is called tractable if there is a polynomial time
algorithm to decide membership and to solve the instances of the class.

Define by T(R) the tractable classes of representation R.

Proposition 1. Consider two representations, R and Q, such that Q ⊆ R.
Assuming that there is a polynomial conversion from relations expressed with
respect to Q to relations expressed with respect to R, then for a set, S, of CSPs,
we have that if S ∈ T(R) then S ∈ T(Q).

Proof. Let P be any CSP in S expressed with respect to Q. We use the polyno-
mial time conversion to change the expression of P from Q to R and then solve
using the algorithm for S with respect to R.

Corollary 1. Let S be a set of CSPs such that S ∈ T(Mixed). We have that
S ∈ T(Pos) and S ∈ T (Comp).

Proof. It is straightforward to see that any relation expressed in the larger of
the two encodings must list more than half the possible number of assignments.
The universal constraint on this scope is at most twice as big so we can generate
the other encoding for this relation.

The class A from Ex. 1 is in T (Pos), but not in T (Comp). This is because
the universal constraint has no size when expressed in Comp and so is directly
equivalent to graph 3-coloring.

Example 2. Let B be the class of CSPs with 2n variables generated by taking an
instance of graph 3-coloring over n of the variables and adding a single constraint
over the remaining n variables which allows only a single assignment.

The class of instances, B, in example 2 is not tractable when expressed in
Pos. The added constraint over the n variables which are not part of the graph
coloring instance is small when expressed in the positive encoding, and so the
problem is directly equivalent to graph coloring. When expressed in Comp, the
size of this constraint dominates the size of the graph coloring component and
so a simple polynomial time algorithm is to test all possible assignments to the
graph coloring component.

We have now shown that T (Pos) is incomparable to T (Comp) as neither
is contained in the other. However, as we have also shown that anything in
T (Mixed) must also be in both T (Pos) and T (Comp), T (Mixed) must be a
proper subset of both T (Pos) and T (Comp). This poses the question; does
T (Mixed) contain any interesting (non-trivial) classes?

199

4 Converting Mixed to Pos

We shall show that by bounding some new notion of structural size, called the
interaction width, we can convert certain CSPs from Mixed to Pos. If there are
subclasses of CSP classes in T (Pos) for which there is a polynomial conversion
from Mixed to Pos, then such subclasses are tractable with respect to Mixed.

If we were to represent a hypergraph as a Venn Diagram where the hyperedges
are the sets, then an interaction region of the hypergraph is a region of the Venn
Diagram. Interaction width is the maximal number of regions over any of the
hyperedges.

Definition 5. Let H = 〈V, E〉 be a hypergraph. We define the interaction on
vertex x ∈ V , denoted τ (x), to be the set of edges containing x so that τ (x) =
{e ∈ E | x ∈ e}.
We define I to be the set of interactions for all vertices so that I = {τ (x) | x ∈ V }.
We define I (e) to be the set of interactions for the vertices which are in the edge
e so that I (e) = {X ∈ I | e ∈ X}.

The interaction region, V (X), associated with the interaction X ∈ I is
the set of vertices which are in the same interaction as X that is, V (X) =
{x ∈ V | τ (x) = X}.

The interaction width, denoted Iw (H), of H is the largest number of non-
singleton interactions associated with any of its edges;

Iw (H) = max {|I (e)− {{e}}| | e ∈ E}.

There are two types of interaction region in which we may not have enough
information to do the conversion in polynomial time. We call these ‘isolated
regions’ and ‘trivial compliment regions’. We shall also show that the reduction
from one structure to the new structure preserves other structural notions of
width.

For a hypergraph, H = 〈V, E〉, we define the removal of a set of vertices,
V ′ ⊆ V , to be the hypergraph H ′ = 〈V ′, E′〉 where E′ = {e ∩ V ′ | e ∈ E}.

It is straightforward to show that removing a set of vertices does not increase
the structural decomposition width of a hypergraph. Structural decomposition
of the original structure may therefore be used to solve the converted instance.

Our conversion requires that we project out certain interaction regions.

Definition 6. The projection of a constraint, 〈σ, ρ〉 onto a subset, X, of its
scope is the constraint 〈X,

{
f|X | f ∈ ρ

}〉.

The method for performing projection on constraints whose relations are
sets of allowed assignments is well defined, but it is not clear how to perform
projection in polynomial time for constraint whose relation is expressed as sets
of disallowed assignments. Method 1 does this for any constraint expressed using
Comp and gives the resulting constraint expressed with respect to Comp.

200

Method 1. Given an encoding of a constraint, 〈σ, ρ〉, where ρ is a set of dis-
allowed assignments, and a subset of the variables in the scope, σ′ ⊆ σ we can
project ρ onto σ′ in the following way;

Restrict the assignments of ρ so that they are only over the variables of σ′ to
give ρ′. For every l in ρ′, if every possible extension to l exists in ρ then keep l
in ρ′, else discard l.

After performing projection on a constraint represented with respect to Pos,
it may then allow more than half the possible assignments and need to be con-
verted to Comp (which can be done in polynomial time for the same reason).

Definition 7. Given a hypergraph, H = 〈V, E〉, for each e ∈ E the region
associated with the interaction {e} is called an isolated region.

If we could project out the isolated regions from a CSP, then we could solve
the problem over the remaining variables and then extend any solution on the
reduced structure to the isolated regions of the original.

Definition 8. Any interaction for which all constraints (over at least two scopes)
are encoded with respect to Comp, is called a compliment interaction.

Given a CSP, P = 〈V, D,C〉 with a compliment interaction, X, let C ′ ⊆ C
be the set of constraints whose scopes are contained in X. Let ρ′ be the set of all
labellings from the constraints in C ′ restricted to the vertices of the complement
region X, i.e. ρ′ =

{
l | ∀〈σ, ρ〉 ∈ C ′, l ∈ ρ|V (X)

}
. If l does not contain all possi-

ble assignments over the variables in X, |l| < |D||X|, then we call X a trivial
complement region.

We can remove trivial compliment regions as not all disallowed assignments
exist in ρ′ so any missing assignment must be allowed by all extensions for every
constraint in C ′. We can see that ρ′ can be generated in polynomial time. By
assuming an order on assignments we can easily check if one is missing from ρ′.
We can stop after finding a single missing assignment and remember it for the
purpose of extending solutions later.

Let H be a set of hypergraphs with interaction width i. We can now provide
an algorithm for converting any CSP represented with respect to Mixed and
whose structure is in H to a solution preserved CSP represented with respect to
Pos.

Method 2. INPUT: A CSP P = 〈V, D,C〉 and the hypergraph of P , H =
〈V, E〉.
1. Find and project out all isolated regions.
2. Find and project out trivial complement regions, remembering extensions.

(Let H ′ be the reduced structure and P ′ = 〈V ′, D, C ′〉 be the reduced instance
after projecting out isolated regions and trivial complement regions.)

3. Convert the reduced instance to the positive representation.
– Create a mapping, L, which maps from interactions I of the hypergraph

H ′ to sets of assignments on the respective interaction regions such that

201

• For each interaction, X ∈ I, if there exists a constraint, 〈σ′, ρ′〉 ∈
C ′ whose relation is expressed with respect to Pos and whose scope
contains V (X), the region of the interaction X, then set L(X) to be
ρ|V (X)

. Otherwise, set L(X) to be the set of all possible assignments
to V (X) over D.

– Create a new CSP, P̄ = 〈V ′, D, C̄〉 with structure H ′ such that
• For each hyperedge σ′ of H ′, create the new constraint in 〈σ′, ρ̄〉 in

P̄ such that ρ̄ is the product over X ∈ I(σ′) of (L(X)).
• For each constraint 〈σ′, ρ̄〉 ∈ C̄, then for every constraint 〈σ′, ρ′〉 ∈

C ′, if ρ′ is represented with respect to Pos, then ρ̄ := ρ̄∩ρ′. Otherwise,
ρ̄ := ρ̄− ρ′.

It is straightforward to show that this algorithm runs in polynomial time
for bounded interaction width. The bound is required for generating the new
constraints on the products of the assignments over the regions.

Once we have solved the reduced CSP we can then extend any solutions to
the original CSP by extending solutions to the trivial complement regions and
the isolated regions. We have already shown that this is easy to do.

For any tractably identifiable structural decomposition, such as bounded
width hypertrees [2], we generate a new tractable class with respect to the rep-
resentation Mixed.

5 Structurally Tractable classes of SAT

Each clause in a SAT instance only disallows a single assignment. There can be
no polynomial time conversion from SAT clauses to Pos as this would lead to a
possible exponential blow-up in the size of an instance unless the arity is bound.

However, there is a natural representation of SAT in Mixed where each claude
is a constraint with a single disallowed assignment. Structural tractability results
(with bounded interaction width) naturally extend to SAT.

Szeider [4] has also developed a structural tractability result for SAT which
is based on the treewidth of the so called incidence graph. He has shown that
any class of instances with bounded treewidth of this graph is a fixed parameter
tractable class for SAT. We can show that even just for SAT, these two struc-
turally tractable classes are incomparable, so there are two distinct structural
tractability results for SAT. However, ours has a natural extension to domains
of larger size, so we hope may be applicable to other practical problems.

References

1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30:479–513, 1983.

2. Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural
csp decomposition methods. Artif. Intell., 124(2):243–282, 2000.

3. J. Rissanen. Modeling by shortest data description. In Automatica, vol. 14, 1978.
4. Stefan Szeider. On fixed-parameter tractable parameterizations of sat. In SAT,

pages 188–202, 2003.

202

Combining BDDs with Cost-Bounding

Constraints for Interactive Configuration

Student: Tarik Hadžić
Supervisor: Henrik Reif Andersen

Computational Logic and Algorithms Group, IT University of Copenhagen,
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

{tarik,hra}@itu.dk

Abstract. Binary Decision Diagram (BDD) [1] is a data structure repre-
senting a conjunction of propositional formulas in a format that supports
efficient answers to many important queries (satisfiability, equivalence,
model counting etc). Although exponentially large in worst case, it has
a compact representation for many important propositional formulas oc-
curring in practice [2]. In particular, BDDs are successfully applied in
the area of interactive configuration [3] where the key user functionality
of calculating valid domains (CVD) [4] is implemented by an algorithm
enforcing generalized arc-consistency [5].

In order to extend the range of current BDD-based interactive configu-
ration, we are investigating which constraints can be implicitly conjoined
with a BDD and still allow for efficient calculation of valid domains. In
[6] we described first such bounding-cost constraint. Here we show that
BDD extensions with several cost-bounding constraints necessarily re-
quire an NP-hard algorithm for implementing CVD functionality. We
also discuss further algorithmic approaches to tackle this problem.

1 Introduction

Interactive configuration problems are special applications of Constraint Satis-
faction Problems (CSP) where a user is assisted in interactively assigning values
to variables by a software tool. The key user functionality delivered by this tool
is the calculation of valid domains (CVD) for each unassigned variable. Appli-
cation areas include customizing physical products (such as PC’s and cars) and
services (such as airplane tickets and insurances).

The domains calculated by the CVD functionality should be complete (all
valid configurations should be reachable through user interaction), backtrack-

free (a user is never forced to change an earlier choice due to incompleteness
in the logical deductions), and the CVD feedback should be in real-time. If
we understand the underlying CSP model as defining a single constraint C,
the requirement for backtrack-freeness corresponds to making the constraint C

generalized arc-consistent. In general this is an NP-hard task. Therefore, in order
to provide real-time guarantees for user interaction, current approaches use off-
line compilation of the CSP model into a tractable datastructure representing
the solution space of all valid configurations [3, 7, 8].

203

In [3, 10, 9] the interactive configuration over CSP models involving propo-
sitional constraints is delivered by first compiling constraints into a BDD [1].
Then the CVD functionality is delivered online by algorithms that are provably
efficient in the size of the compiled representation [4]. Although having exponen-
tial worst-case size, in the real industrial applications of product configuration,
the compiled BDDs can often be kept small [9]. This is essential for guaranteeing
a real-time response time to a user interaction.

Adding global constraints to a CSP model can make the size of a compiled
BDD to explode. Therefore we are investigating whether we can avoid such ex-
plosion by keeping global constraints outside a BDD, but still develop efficient
algorithms for CVD. In [6] we demonstrated one such case where a cost bounding

constraint was combined efficiently with a BDD. Here, we show that for a con-
junction of a BDD with several cost-bounding constraints there is no polynomial
time algorithm calculating valid domains.

The rest of the paper is organized as follows. In section 2 we describe a
BDD approach to interactive configuration. In section 3 we show the infeasibility
result. Finally we conclude in the fourth section.

2 BDD-Based Interactive Configuration

The input model describing the knowledge about valid variable assignments is a
special kind of a Constraint Satisfaction Problem (CSP) [5]:

A configuration model C is a triple (X,D,F) where X is a set of variables
{x0, . . . , xn−1}, D = D0 × . . . × Dn−1 is the Cartesian product of their finite
domains D0, . . . , Dn−1 and F = {f0, ..., fm−1} is a set of propositional formulae
over atomic propositions xi = v, where v ∈ Di, specifying conditions on the
values of the variables.

Concretely, every domain can be viewed as Di = {0, . . . , |Di| − 1}. An as-

signment of values vi0 , . . . , vik
to variables xi0 , . . . , xik

is denoted as a set of
pairs ρ = {(xi0 , vi0), . . . , (xik

, vik
)}. The domain of the assignment dom(ρ) is the

set of variables which are assigned: dom(ρ) = {xi | ∃v ∈ Di.(xi, v) ∈ ρ} and if
dom(ρ) = X we refer to ρ as a total assignment. We say that a total assignment
ρ is valid if it satisfies all the rules, which is denoted as ρ |= F . A partial assign-
ment ρ, dom(ρ) ⊆ X is valid if there is at least one total assignment ρ′ ⊇ ρ that is
valid, ρ′ |= F , i.e. if there is at least one way to successfully complete the existing
configuration process. Given the starting domains Di and a partial user assign-
ment ρ valid domains are: D

ρ
i = {v ∈ Di | ∃ρ′.(ρ′ |= F and ρ ∪ {(xi, v)} ⊆ ρ′}.

In product configuration, the knowledge about product components and
product rules is usually modelled by representing all the choices for a compo-
nent as values in a variable domain. Then, a valid total assignment ρ completely
specifies a configurable product.

The compilation of a configuration model to a BDD and the implementation
of CV D functionality is described in [4]. The description is based on the Clab
[11] configuration framework.

204

2.1 Cost-Bounded Configuration

Consider an extension of the configuration model where the selection of each
choice v ∈ Di is associated with a cost.

A cost bounded configuration model Cc is a quadruple (X,D,F, c) where
C(X,D,F) is a standard configuration model and c is a cost function such that
ci
v ∈ Z denotes the integer cost of a choice xi = v, xi ∈ X, v ∈ Di.

The cost of assignment ρ is defined as c(ρ) =
∑

i ci
ρ(xi)

. Given the starting
domains Di, a partial user assignment ρ and a user-designated maximum cost
Cmax, the configurator should calculate and display the valid domains involving
only those choices that can be extended to a configuration of maximum cost
Cmax. The cost-bounded valid domains are: D

ρ,Cmax

i = {v ∈ Di | ∃ρ′.(ρ′ |=
F and ρ ∪ {(xi, v)} ⊆ ρ′ and c(ρ′) ≤ Cmax)}.

In [6] we described a polynomial-time algorithm for implementing this max-
bounded CV D algorithm, where the maximum cost Cmax can be interactively
changed during user interaction. We did not explicitly encode a cost information
as a propositional theory, thus avoiding the exponential increase in the size of
existing BDD B. In practice, the implementation facilitates an interactive prod-
uct configurator where a user can interactively limit the price of any configurable
product, and get the same user functionality as in the standard configuration.

3 Infeasibility Result

An important user functionality is to prune choices based on more than one cost
function. For example, in a product configuration scenario, a user might want
to interactively limit both the maximum price and the weight of a product. We
propose a direct extension of the cost bounded configuration model:

Definition 1 (2-cost bounded configuration model). A 2-cost bounded
configuration model Ca,b is a 5-tuple (X,D,F, a, b) where C(X,D,F) is a stan-

dard configuration model and a, b are cost functions such that ai
v, bi

v ∈ Z denote

the integer costs of a choice xi = v, xi ∈ X, v ∈ Di.

The costs of assignment ρ are defined as a(ρ) =
∑

i ai
ρ(xi)

, b(ρ) =
∑

i bi
ρ(xi)

.
Given the starting domains Di, a partial user assignment ρ and a user-designated
maximum costs cA, cB, the configurator should calculate and display the valid
domains involving only those choices that can be extended to a configuration
not exceeding cA and cB. The 2-cost bounded valid domains are: D

ρ,cA,cB
i =

{v ∈ Di | ∃ρ′.(ρ′ |= F and ρ ∪ {(xi, v)} ⊆ ρ′ and a(ρ′) ≤ cA and b(ρ′) ≤ cB)}.
In this section we show that it is not possible to construct an algorithm for

calculating valid domains D
ρ,cA,cB
i , in time polynomial in the size of the given

BDD representing C(X,D,F). To do so, we will first define an auxiliary problem
used in the proofs to follow.

Definition 2 (Set-Sum-Partition). Given an input instance defined by a fi-

nite set S of positive integers and by integer constants CA and CB such that
∑

c∈S c ≤ CA + CB, the set-sum-partition problem asks whether S can be parti-

tioned into subsets SA ⊆ S, SB ⊆ S such that
∑

a∈SA
a ≤ CA,

∑

b∈SB
b ≤ CB.

205

We will also use a subset-sum problem [12], defined by a finite set of positive
integers S, and an integer C. The problem asks whether there exist a subset
S′ ⊆ S such that

∑

c∈S′ c = C.

Theorem 1. The set-sum-partition problem is NP-hard.

Proof. 1 We will prove our claim by reducing the NP-hard subset-sum prob-

lem [12] to the set-sum-partition (SSP). Given a subset-sum instance S =
{c1, . . . , cn}, C; take D =

∑

c∈S c to be the sum of all elements in the set. Now,
we can create an instance of the SSP problem by taking: CA = C,CB = D −C.

If SSP returns true then the subset-sum returns true. Namely, there exists a
partition SA, SB ,

∑

c∈SA
c ≤ C,

∑

c∈SB
c ≤ D − C, hence

D =
∑

c∈S

c =
∑

c∈SA

c +
∑

c∈SB

c ≤ C + (D − C) = D.

Therefore,
∑

c∈SA
= C and the subset-sum returns true.

If SSP returns false then the subset-sum returns false. Namely, if there was a
solution S′ ⊆ S to the subset-sum, it would suffice to take SA = S′, SB = S \S′

to get a solution to the SSP. ut

Now we will show that an algorithm calculating 2-cost valid domains (2-
cost CVD) cannot have a polynomial time complexity w.r.t. the input BDD B

representing the standard configuration model. The size of input B is |B| =
|V | + |E| + |Xb| where V is the set of BDD nodes, E is the set of edges and
Xb refers to the set of Boolean variables encoding the finite-domain variables X

(the notation is adopted from [6]).

Theorem 2 (Infeasibility result). Given the configuration model C(X,D,F)
and its compiled solution space B, and the partial user assignment ρ, the problem

of calculating valid domains D
ρ,cA,cB
i = {v ∈ Di | ∃ρ′.ρ′ |= F and ρ∪{(xi, v)} ⊆

ρ′ and a(ρ) ≤ cA and b(ρ) ≤ cB} is NP-hard in the size of input |B|.

Proof. We will prove our claim by reducing the NP-hard set-sum-partition (SSP)

(Theorem 1) to the problem of calculating valid domains D
ρ,cA,cB
i over a linear

size BDD B.
Given the input instance to the SSP defined with a set of positive integers

S = {c1, . . . , cn} and constants CA, CB , we will construct a configuration model
C(X,D,F) as follows: Define 2n Boolean variables X = {x1, . . . , x2n}. Take
the constraint set F to contain n constraints {x1 6= x2, . . . , x2n−1 6= x2n}. The
compiled BDD representation B with respect to natural ordering x1 < . . . < x2n

has 3n internal nodes.
For each k = 1, . . . , n define costs as follows:

a2k−1

1
= ck, a2k−1

0
= 0, a2k

1
= 0, a2k

0
= 0

1 The proof of Theorem 1 is to be credited to Andrzej Wasowski, who first brought it
to our attention.

206

b2k−1

1
= 0, b2k−1

0
= 0, b2k

1
= ck, b2k

0
= 0

Take cA = CA, cB = CB . Now, if calculated domains are non-empty, then
there is at least one satisfying solution ρ |= F . To construct a solution to SSP it
suffices to take:

SA = {ck | ρ(x2k−1) = 1, k = 1, . . . , n},

SB = {ck | ρ(x2k) = 1, k = 1, . . . , n}.

Since x2k−1 6= x2k for any ci, i = 1, . . . , n exactly one of the variables x2k−1, x2k

must be assigned 1. This implies that the sets SA, SB form a partition.
It remains to show that

∑

c∈SA
c ≤ CA and

∑

c∈SB
c ≤ CB . Observe that

it holds:
∑

c∈SA
c =

∑n

k=1
ck · ρ(x2k−1). With respect to our choice of the cost

function a it also holds:

ck · ρ(x2k−1) = a2k−1

ρ(x2k−1)
= a2k−1

ρ(x2k−1)
+ a2k

ρ(x2k)
. (1)

Now, substituting equation (1) in
∑n

k=1
ck · ρ(x2k−1) we get

∑

c∈SA

c =

n
∑

k=1

(a2k−1

ρ(x2k−1)
+ a2k

ρ(x2k)
) =

2n
∑

k=1

ak
ρ(xk)

= a(ρ) ≤ cA = CA.

Hence,
∑

c∈SA
c ≤ CA. Analogously we show

∑

c∈SB
c ≤ CB .

Therefore, if calculating valid domains returns all non-empty domains then
there is a solution to SSP.

The opposite also holds. If one of domains was empty, the SSP has no required
partitioning. Namely, if there was partitioning SA, SB for the SSP problem, a
solution ρ |= F could be constructed as follows: ρ(x2k−1) = 1 iff ck ∈ SA,
ρ(x2k) = 1 − ρ(x2k−1), k = 1, . . . , n. In this case, every domain Di would have
at least one element, ρ(xi). This would contradict to initial assumption.

We have shown that the problem of calculating valid domains restricted by
two cost functions is NP-hard w.r.t to a BDD representing the compiled config-
uration model. ut

The infeasibility result indicates that unless P=NP, there is no efficient way
to deliver multi-cost bounding on top of compiled BDD.

4 Conclusions and Future Work

In this work we considered the tractability of calculating valid domains (CVD)
over BDDs combined with the cost-bounding constraints. We extended our re-
sults from [6] by showing that it is NP-hard to deliver CVD functionality when
a BDD is combined with multiple cost-bounding constraints.

In the future we plan to investigate approximation schemes for implementing
multi-cost bounding. We also plan to further characterize constraints that can
be efficiently combined with BDDs for calculating valid domains.

207

Acknowledgments

We would like to thank Andrzej Wasowski for bringing to our attention the
Set-Sum-Partition problem. We also thank our reviewers for their comments.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 8 (1986) 677–691

2. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design.
Springer (1998)

3. Møller, J., Andersen, H.R., Hulgaard, H.: Product configuration over the internet.
In: Proceedings of the 6th INFORMS. (2001)

4. Hadzic, T., Jensen, R., Andersen, H.R.: Notes on Calculating Valid Domains.
http://www.itu.dk/~tarik/cvd/cvd.pdf (2006, online)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
6. Hadzic, T., Andersen, H.R.: A BDD-Based Polytime Algorithm for Cost-Bounded

Interactive Configuration. In: Proceedings of The Twenty-First National Confer-
ence on Artificial Intelligence (AAAI-06). (2006) To appear.

7. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations
in dynamic CSPs-application to configuration. Artificial Intelligence 1-2 (2002)

8. Madsen, J.N.: Methods for interactive constraint satisfaction. Master’s thesis,
Department of Computer Science, University of Copenhagen (2003)

9. Subbarayan, S., Jensen, R.M., Hadzic, T., Andersen, H.R., Hulgaard, H., Møller,
J.: Comparing two implementations of a complete and backtrack-free interactive
configurator. In: CP’04 CSPIA Workshop. (2004) 97–111

10. Hadzic, T., Subbarayan, S., Jensen, R.M., Andersen, H.R., Møller, J., Hulgaard,
H.: Fast backtrack-free product configuration using a precompiled solution space
representation. In: PETO Conference, DTU-tryk (2004)

11. Jensen, R.M.: CLab: A C++ library for fast backtrack-free interactive product
configuration. http://www.itu.dk/people/rmj/clab/ (online)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability-A Guide to the Theory
of NP-Completeness. W H Freeman & Co (1979)

208

High-Level Nondeterministic Abstractions in C++

Student: Andrew See1

Supervisors: Laurent Michel1 and Pascal Van Hentenryck2

1 University of Connecticut, Storrs, CT 06269-2155
2 Brown University, Box 1910, Providence, RI 02912

Abstract. This paper presents high-level abstractions for nondetermin-
istic search in C++ which provide the counterpart to advanced features
found in recent constraint languages. The abstractions have several bene-
fits: they explicitly reflect the nondeterministic nature of the code, avoid
the need for goal interpreters, simplify debugging, and are efficiently im-
plementable using macros and continuations. Their efficiency is demon-
strated by comparing their performance with the C++ library Gecode.
A more detailed discussion of this work is presented in the full length
paper [15].

1 Introduction

The ability to specify search procedures has been a fundamental asset of con-
straint programming languages since their inception (e.g., [1, 2, 12]) and a dif-
ferentiator compared to earlier tools such as Alice [6] and MIP systems where
search was hard-coded in the solver. Indeed, by programming the search, users
may define problem-specific branching procedures and heuristics, exploit uncon-
ventional search strategies, break symmetries dynamically, and specify termina-
tion criteria for the problem at hand. The last two decades have also witnessed
significant progress in this area (e.g., [5, 7, 8, 11, 13, 14]).

The embedding of constraint programming in mainstream languages such
as C++ has also been a fundamental step in its acceptance, especially in indus-
try. With constraint programming libraries, practitioners may use familiar lan-
guages and environments, which also simplifies the integration of a constraint
programming solution within a larger application. Ilog Solver [9] is the pio-
neering system in this respect: it showed how the nondeterministic abstractions
of constraint logic programming (e.g., goals, disjunction, and conjunction) can
be naturally mapped into C++ objects. To specify a search procedure, users thus
define C++ objects called goals, and combine them with logical connectives such
as or and and. In recent years, constraint programming libraries have been en-
hanced to accommodate search strategies [8, 3] (originally proposed in Oz [11])
and high-level nondeterministic abstractions [7] (originally from OPL [13]).

However these and other similar libraries, while widely successful, still have
two inconveniences as far as specifying search procedures. On the one hand,
constraint programming libraries require users to create objects (e.g., goals)
to specify search procedures. This may obscure the natural nondeterministic

209

structure of the code and may produce some non-trivial interleaving of C++ code
and library functions. On the other hand, their implementations typically rely
on an interpreter, complicating the debugging process which alternates between
library and user code, while not showing users the inherent nondeterministic
structure of their applications.

This paper is an attempt to mirror, in constraint programming libraries,
the high-level nondeterministic abstractions of modern constraint programming
languages. The paper shows that it is indeed possible and practical to design a
search component in C++ that

– reflects the nondeterministic structure of the application directly;
– avoids the need for a goal interpreter;
– simplifies the debugging process;
– is as efficient as existing libraries.

The technical idea underlying the paper is to map the nondeterministic ab-
stractions of Comet [14] into C++ using macros and continuations. Since con-
tinuations are not primitive in C++, it is necessary to show how they can be
implemented directly in the language itself.

The rest of the paper is organized as follows. Section 2 presents the nonde-
terministic abstractions and their benefits. Section 3 briefly discusses how to im-
plement continuations in C++. Section 4 presents the experimental results which
shows that the nondeterministic abstractions can be implemented efficiently and
compare well with the search implementation of Gecode.

2 The Search Abstractions

This section describes the search abstractions in C++. Section 2.1 starts by de-
scribing the nondeterministic abstractions used to define the search tree to ex-
plore. These abstractions are parameterized by a search controller that specifies
how to explore the search tree. Search controllers are discussed in the full length
paper and are presented in depth in [14].

2.1 Nondeterministic Abstractions

The nondeterministic abstractions are mostly modelled after OPL [13].

Static Choices The try construct creates a binary search node representing the
choice between two alternatives. The snippet

TRY(sc)

cout << "yes" <<endl;

OR(sc)

cout << "no" <<endl;

ENDTRY(sc)

nondeterministically produces two lines of output: the first choice displays yes,
while the second one displays no. When the search controller sc implements
a depth-first strategy, the instruction first executes the first choice, while the
second choice is executed upon backtracking.

210

0. TRYALL(<sc>, <param>, <low>, <high>, <condition>, <ordering>)

1. [<Statement>]*

2. ENDTRYALL(<sc>)

Fig. 1. The Syntax of the TRYALL Construct.

0. int x[3] = -1, -1, -1;

1. EXPLOREALL(sc)

2. for(int i=0; i<3 ; i++) {
3. TRY(sc)

4. x[i] = 0;

5. OR(sc)

6. x[i] = 1;

7. ENDTRY(sc)

8. }
9. cout << x[0]<<’,’<<x[1]<<’,’<<x[2]<<endl;

10. ENDEXPLOREALL(sc)

0,0,0

0,0,1

0,1,0

0,1,1

1,0,0

1,0,1

1,1,0

1,1,1

Fig. 2. An Example of Encapsulated Search.

Dynamic Choices The TRYALL construct iterates over a range of values, filter-
ing and ordering the candidate values dynamically. Figure 1 depicts the general
syntax of the construct. The first parameter <sc> is the search controller. The
<param> argument is the local variable used to store the selected value. Param-
eters <low> and <high> define the range of values, while <condition> holds
for those values to consider in the range. Finally, the expression <ordering>
specifies the order in which to try values. For instance, the snippet

TRYALL(sc, p, 0, 5, (p%2)==0, -p)

cout << "p = "<< p << endl;

ENDTRYALL(sc)

nondeterministically produces three lines of output: p=4, p=2, and p=0. The
instruction binds the parameter p to values 0 through 5 in increasing order of
-p and skips those violating the condition (p%2)==0.

Encapsulated Search The EXPLOREALL construct implements an encapsulated
search that initializes the search controller and produces all solutions to its body.
Figure 2 illustrates an encapsulated search for implementing a simple labeling
procedure. The body of the encapsulated search (lines 2–9) iterates over the
values 0..2 (line 2) and nondeterministically assigns x[i] to 0 or 1 (lines 3–7).
Once all the elements in array x are labeled, the array is displayed in line 9.
The right part of Figure 2 depicts the output of the encapsulated search for a
depth-first search controller. Other similar constructs implement encapsulated
search to find one solution or to find a solution optimizing an objective function.

It is important to emphasize some benefits of the nondeterministic abstrac-
tions. First, the code freely interleaves nondeterministic abstractions and arbi-
trary C++ code: it does not require the definition of classes, objects, or goals.
Second, the nondeterministic structure of the program is clearly apparent, sim-
plifying debugging with traditional support from software environments. In par-
ticular, C++ debuggers can be used on these nondeterministic programs, enabling

211

users to follow the control flow of their programs at a high level of abstraction.
For example, by line stepping, users can step over the implementation of the
TRYALL statement into the body as they would expect from the syntax, since the
macros expand to a single line of C++ code. Breakpoints also function normally
with the nondeterministic abstractions. The details of the macros implementing
the nondeterministic abstractions are presented in the full length version.

3 Search Nodes as C++ Continuations

As in Comet [14], the nondeterministic abstractions are implemented using
continuations. Since C++ does not support continuations natively, this section
describes briefly how to implement continuations in the language itself. Recall
that a continuation captures the current state of computation, i.e., the program
counter, the stack, and the registers (but not the heap). Once captured, the
continuation can be executed at a later time, causing the computation to resume
from the previous state. This ability to return to search nodes is the fundamental
building block of the search abstractions described in the previous section.

The implementation of continuations uses the standard C functions setjmp
and longjmp and is thus portable to any architecture with correct implementa-
tions of these functions. In absence of setjmp and longjmp, continuations can
be implemented using getContext and setContext, or in assembly. Our im-
plementation based on setjmp/longjmp has been successfully tested on three
different hardware platforms (Intel x86, PowerPC, and UltraSparc) and four
operating systems (Linux, Windows XP, Solaris, and OSX). The only platform
where it fails is Itanium because its implementation of setjmp and longjmp is
non-conformant. Further details regarding the implementation are presented in
the full length paper.

It is important to note that the implementation of Ilog Solver [4] also uses
setjmp and longjmp [10]. The novelty here is to save the stack before calling
setjmp and restoring the stack after calling longjmp. The benefits are twofold.
On the one hand, it enables the implementation of high-level nondeterministic
abstractions such as tryall in C++. On the other hand, it enables continuations
to be called at any time during the execution even if the stack has fundamentally
changed. As a result, continuations provide a sound basis for complex search
procedures jumping from node to node arbitrarily in the search tree.

4 Experimental Results

This section presents the experimental results demonstrating the efficiency of
the implementation. It first shows that the cost of using continuations is not
prohibitive. Then, it demonstrates that the abstractions are comparable in effi-
ciency to the search procedures of existing constraint libraries. The CPU Times
are given on a Pentium IV 2.0 GHz running Linux 2.6.11.

212

n 16 18 20 22 24 26 28 30 32

R .007 .028 .152 1.486 .405 .443 3.748 78.900 133.86
N .014 .063 .308 2.878 .731 .762 6.175 125.64 205.82
(N −R)/R 1.00 1.25 1.026 0.937 0.805 0.720 0.648 0.592 0.538

Table 1. The Pure Cost of the Nondeterministic Abstractions

n 16 18 20 22 24 26 28 30 32

Gecode .06 .20 .98 7.83 2.08 2.08 16.34 301.27 507.08
ND + Gecode 0.5 .19 .97 7.55 2.02 1.96 16.28 292.80 495.69

Table 2. Performance Comparison in Seconds on Gecode Only.

On the Efficiency of Continuations One possible source of inefficiency for the
nondeterministic abstractions is the overhead of capturing and restoring contin-
uations. To quantify this cost, we use a simple backtrack search for the queens
problem and we compare a search procedure written in C++ (and thus with a
recursive style) with a search procedure using the nondeterministic abstractions
(and thus with an iterative style). Table 1 shows the runtime of the recursive (R)
and nondeterministic (N) search procedures and the percentage increase in CPU
time. The results show that the percentage increase in CPU time decreases as
the problem size grows and goes down to 54% for the 32-queens problem. These
results are quite interesting, since they use a mainstream, non-garbage collected,
language which is supposed to be highly efficient. Moreover, these programs do
not involve any constraint propagation and do not need to save and restore the
states of domain variables and constraints. As such, these tests represents the
pure cost of the abstraction compared to the hand-coded implementation.

Programming Search Engines We now compare the nondeterministic abstrac-
tions with the search engine of an existing library: Gecode [3]. In order to focus
the comparison on the search components, this experiment only uses Gecode
as the underlying solver. It compares the built-in implementation of depth-first
search in Gecode with an implementation using our nondeterministic abstrac-
tions. Recall that Gecode manipulates computation spaces representing the
search tree. The following C++ code

0. EXPLORE(gecode)

1. while (gecode->needBranching()) {
2. int alt = gecode->getNbAlternatives();

3. TRYALL4(gecode, a, 0, alt-1)

4. gecode->tryCommit(a);

5. ENDTRYALL4(gecode);

6. }
7. ENDEXPLORE(gecode);

is an implementation of depth-first search for Gecode that uses our nondeter-
ministic abstraction. The code iterates branching until the tree is fully explored
(line 1). To branch, the code retrieves the number of alternatives (line 2) and

213

performs a TRYALL to try each alternative (line 4). The code uses a gecode con-
troller to clone and restore the spaces appropriately (which is not shown for space
reasons). Note also the combination of a C++ while instruction with TRYALL.

Table 2 depicts the computational results. This evaluation has the merit of
comparing the search procedures with exactly the same constraint solver and the
search procedure coded by the designer of the library. The nondeterministic ab-
stractions are slightly more efficient than the builtin implementation of Gecode,
although they perform exactly the same number of clones, failures, and propa-
gation calls. The results thus indicate that the nondeterministic abstractions are
not only expressive and natural; they are also very efficient.

Acknowledgments

This work was supported by the National Science Foundation grant DMI-0423607.

References

1. A. Colmerauer. Opening the Prolog-III Universe. BYTE Magazine, 12(9), 1987.
2. N.C. Heintze, S. Michaylov, and P.J. Stuckey. CLP(<) and some Electrical Engi-

neering Problems. In ICLP-87, May 1987.
3. http://www.gecode.org/. Generic Constraint Development Environment, 2005.
4. Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France, 1998.
5. F. Laburthe and Y. Caseau. SALSA: A Language for Search Algorithms. In CP’98,

Pisa, October 1998.
6. J-L. Lauriere. A Language and a Program for Stating and Solving Combinatorial

Problems. Artificial Intelligence, 10(1):29–127, 1978.
7. L. Michel and P. Van Hentenryck. Modeler++: A Modeling Layer for Constraint

Programming Libraries. In CP-AI-OR’2001, April 2001.
8. L. Perron. Search Procedures and Parallelism in Constraint Programming. In

CP’99, pages 346–360, Alexandria, Virginia, October 1999.
9. J-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS’94, Singa-

pore, November 1994.
10. J.-F.. Puget. Personal Communication, March 2006.
11. C. Schulte. Programming Constraint Inference Engines. In CP’97, 519–533, Linz,

Austria, October 1997.
12. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-

gramming Series, The MIT Press, Cambridge, MA, 1989.
13. P. Van Hentenryck. The OPL Optimization Programming Language. The MIT

Press, Cambridge, Mass., 1999.
14. P. Van Hentenryck and L. Michel. Nondeterministic Control for Hybrid Search. In

CP-AI-OR’05, Prague, May 2005.
15. L. Michel and A. See and P. Van Hentenryck High-Level Nondeterministic Ab-

stractions in C++. In CP’06, Nantes, France, September 2006.

214

A Comparison of Time-Space Schemes

Student: Robert Mateescu
Supervisor: Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter,mateescu}@ics.uci.edu

Abstract. We investigate two parameterized algorithmic schemes for graphical
models that can accommodate trade-offs between time and space: 1) AND/OR
Cutset Conditioning (AOC(i)) and 2) Variable Elimination with Conditioning
(VEC(i)). We show thatAOC(i) is better than the vanilla versions ofVEC(i) ,
and use the guiding principles ofAOC(i) to improveVEC(i) . Finally, we show
that the improved versions ofVEC(i)can be simulated byAOC(i) , which empha-
sizes the unifying power of the AND/OR framework.

1 Introduction

In this paper we compare AND/OR search [1] and alternating elimination and con-
ditioning controlled by induced-widthw (VEC) [2, 3]. By analyzing them using the
context minimal AND/OR graph data structure [4], we show that VEC(i) can be im-
proved via the AND/OR search principle and by careful caching, to the point that both
schemes become identically good. We show that the recently proposed AND/OR cutset
conditioning [5] (improving cutset, andw-cutset schemes) can simulate any execution
of VEC, if the latter is augmented with AND/OR search over the conditioning variables.

The analysis is done in the general context of graphical models, assuming no deter-
minism. This is still useful in the context of constraint networks, providing a comparison
of the total space that the algorithm might need to traverse.

2 Preliminaries

Definition 1 (graphical model). A graphical modelis a 3-tupleM = 〈X,D,F〉,
where:X = {X1,. . . ,Xn} is a set of variables;D = {D1,. . . ,Dn} is the set of their
finite domains of values;F = {f1,. . . ,fr} is a set of real-valued functions.

Definition 2 (pseudo tree).A pseudo treeof a graphG = (X, E) is a rooted treeT
having the same set of nodesX, such that every arc inE is a backarc inT (i.e., it
connects nodes on the same path from root).

Definition 3 (induced graph and induced width).An ordered graphis a pair (G, d),
whereG is an undirected graph, andd = (X1, ..., Xn) is an ordering of the nodes.
Thewidth of a nodein an ordered graph is the number of neighbors that precede it
in the ordering. Thewidth of an orderingd, denotedw(d), is the maximum width over

215

all nodes. Theinduced width of an ordered graph, w∗(d), is the width of the induced
ordered graph obtained as follows: for each node, from last to first in d, its preceding
neighbors are connected in a clique. Theinduced width of a graph, w∗, is the minimal
induced width over all orderings. The induced width is equalto thetreewidthof a graph.

3 Description of Algorithms

AOC andVECare both parameterized memory intensive algorithms that need to use
space in order to achieve the worst case time complexity ofO(n kw∗

), wherek bounds
domain size. The task that we consider is one that is equivalent to solutions counting.

3.1 AND/OR Cutset Conditioning - AOC

The AND/OR search space is a recently introduced [1, 4, 5] unifying framework for
advanced algorithmic schemes for graphical models. Its main virtue consists in exploit-
ing independencies between variables during search, whichcan provide exponential
speedups over traditional search methods oblivious to problem structure.

Given a graphical modelM = 〈X,D,F〉, its primal graphG and a pseudo tree
T of G, the associated AND/OR search tree has alternating levels of OR and AND
nodes. The OR nodes are labeled correspond to branching according to values of vari-
ables, while the AND nodes correspond to problem decomposition The structure of the
AND/OR search tree is based on the underlying pseudo treeT . The AND/OR search
tree can be traversed by a depth first search algorithm, thus using linear space.

Theorem 1 ([6–8, 5]).Given a graphical modelM and a pseudo treeT of depthm, the
size of the AND/OR search tree based onT is O(n km), wherek bounds the domains
of variables. A graphical model of treewidthw∗ has a pseudo tree of depth at most
w∗ log n, therefore it has an AND/OR search tree of sizeO(n kw∗ log n).

The AND/OR search tree may containunifiablenodes, that root identical condi-
tioned subproblems. When unifiable nodes are merged, the search space becomes a
graph. The depth first search algorithm can therefore be modified to cache previously
computed results, and retrieve them when the same nodes are encountered again. Some
unifiable nodes can be identified based on theircontexts[8]. We only use caching based
on OR context, denoted ascontext(X) = [X1 . . . Xk], which is the set of ancestors of
X in T ordered descendingly, that are connected in the primal graph toX or to descen-
dants ofX. Thecontext minimalAND/OR graph is obtained by merging all the context
unifiable OR nodes. An example will appear later in Figure 4.

Theorem 2 ([7, 1]).Given a graphical modelM, its primal graphG and a pseudo tree
T , the size of the context minimal AND/OR search graph based onT is O(n kw∗

T
(G)),

wherew∗
T (G) is the induced width ofG over the depth first traversal ofT , andk bounds

the domain size.

AND/OR Cutset Conditioning (AOC) [5] is a search algorithm that combines
AND/OR search spaces with cutset conditioning. The conditioning (cutset) variables

216

form a start pseudo tree. The remaining variables (not belonging to the cutset), have
bounded conditioned context size that can fit in memory.

Given a primal graphG, of a graphical model and a pseudo treeT of G, a start
pseudo treeTstart is a connected subgraph ofT that contains the root ofT .

We can now define algorithmAOC(i) , that depends on a parameter i that bounds
the maximum size of a context that can fit in memory. Given a pseudo treeT , we first
find a start pseudo treeTstart such that the context of any node not inTstart contains
at most i variables that are not inTstart. This can be done by starting with the root of
T and then including as many descendants as necessary in the start pseudo tree until
the previous condition is met.Tstart now forms the cutset, and when its variables are
instantiated, the remaining conditioned subproblem has induced width bounded by i.
The cutset variables can be explored by linear space (no caching) AND/OR search, and
the remaining variables by using full caching, of size bounded by i. The cache tables
need to be deleted and reallocated for each new conditioned subproblem.

Adaptive Caching for AND/OR Search The cutset principle inspires a refined
caching scheme for AND/OR search, which we will calladaptive caching(in the
sense that it adapts to the available memory), that caches some values even at nodes
with contexts greater than the bound i that defines the memorylimit. Lets assume that
context(X) = [X1 . . . Xk] andk > i. During search, when variablesX1, . . . , Xk−i

are instantiated, they can be regarded as part of a cutset. The problem rooted byXk−i+1

can be solved in isolation, like a subproblem in the cutset scheme, after the variables
X1, . . . , Xk−i are assigned their current values in all the functions. In this subprob-
lem, context(X) = [Xk−i+1 . . . Xk], so it can be cached within space bounded by i.
However, when the search retracts toXk−i or above, the cache table forX needs to be
deleted and reallocated when a new subproblem rooted atXk−i+1 is solved.

Algorithm AOC(i) is essentially an AND/OR search with adaptive caching bounded
by i for all variables. The AND/OR search algorithm that caches only the full contexts
bounded by i isAO(i) .

Proposition 1. AOC(i) increases space requirements linearly compared toAO(i), but
the time savings can be exponential.

3.2 Variable Elimination with Conditioning - VEC

Variable Elimination with Conditioning (VEC) [2, 3] is an algorithm that combines
the virtues of both inference and search.VEC works by interleaving elimination and
conditioning of variables. Typically, given an ordering, it prefers the elimination of a
variable whenever possible, and switches to conditioning whenever space limitations
require it, and continues in the same manner until all variables have been processed.
We say that the conditioning variables form aconditioning set, or cutset(this can be
regarded as aw-cutset, wherew defines the induced width of the problems that can
be handled by elimination). The vanilla version ofVEC will also be calledVEC-OR
because the cutset is explored by OR search rather than AND/OR. When there are
no conditioning variables,VEC becomes the well known Variable Elimination (VE)
algorithm. In this caseAOC also becomes the usual AND/OR graph search (AO).

217

a) b)

B A

C

E

F G

H

J

D

K
M

L

N

O

P

R A []

B [A]

F

E

[AR]

[AB]

G [AF]

J [ABE]

H [ABEJR]

L [ABEJH]

N [ABEJHL]

O [ABEJHLN]

K [ABEJHLNO]

D [ABEJHLOK]

P [ABEHLOKD]

C [ABEHLKDP]

M [DC]

R [ABEJ]

Fig. 1.Primal graph and pseudo tree

N

L

K

P

O

[]

[L]

[LN]

[LNO]

[OK]
K

L

N

O

P

B A

E

H

J

D

R

B

A

D

J

R

E

[]

[A]

[AB]

[ABE]

[ABJ] [EJ]

H[ABJR]

Fig. 2.Components after conditioning onC

C

HK

D

M F

G

A

B

E

J

O

L

N

R

P

[- AR]

[- AF]

[CH - AE]

[C - EJ]

[- CD]

[H - AB][CH - AB]

[C - HA]

[- CH]

[- C]

[]

[C - KO]

[CK - LN]

[C - KL]

[- CK]

[- C]

Fig. 3.Pseudo tree forAOC(2)

Theorem 3 (VE and AO are identical [4]). Given a graphical model with no de-
terminism and a pseudo tree,VE traverses the full context minimal graph bottom-up
by layers (breadth first), whileAO is a top-down depth-first search that explores (and
records) the full context minimal graph as well.

4 AOC(i) Compared to VEC(i)

We will begin by following an example. Consider the graphical model given in Figure
1a having binary variables, the orderingd1 = (A,B,E, J,R,H,L,N,O,K,D, P -
, C,M,F ,G), and the space limitationi = 2. The pseudo tree corresponding to this
ordering is given in Figure 1b. The context of each node is shown in square brackets.

If we applyVEC alongd1 (processing from last to first), variablesG, F andM can
be eliminated. However,C cannot be eliminated, because it would produce a function
with scope equal to its context,[ABEHLKDP], violating the boundi = 2. VEC
switches to conditioning onC and all the functions that remain to be processed are
modified accordingly, by instantiatingC. The primal graph has two connected compo-
nents now, shown in Figure 2. Notice that the pseudo trees arebased on this new graph,
and their shape change from the original pseudo tree.

Continuing with the ordering,P andD can be eliminated (one variable from each
component), but thenK cannot be eliminated. After conditioning onK, variablesO,
N and L can be eliminated (all from the same component), thenH is conditioned
(from the other component) and the rest of the variables are eliminated. To highlight
the conditioning set, we will box its variables when writingthe ordering,d1 = (A,B-
, E, J,R, H , L,N,O, K , D, P , C ,M, F,G).

218

C

0

K

0

H

0

F F F

1 1

F

G

0 1

G

0 1

G

0 1

G

0 1

M

0 1

M

0 1

0

K

0

H

01 1

M

0 1

M

0 1 0 1 0 1 0 1 0 1

L

0 1

N N

0 1 0 1

A

0 1

B

0 1

E

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

D

0 1

D

0 1

D

0 1

D

0 1

R E R

L

0 1

N N

0 1 0 1

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

B

0 1

E R E R

A

0 1

B

0 1

E R E R

J

0 1

J

0 1

B

0 1

E R E R

J

0 1

J

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

L

0 1

N N

0 1 0 1

A

0 1

B

0 1

E

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

D

0 1

D

0 1

D

0 1

D

0 1

R E R

J

0 1

J

0 1

L

0 1

N N

0 1 0 1

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

B

0 1

E R E R

J

0 1

J

0 1

A

0 1

B

0 1

E R E R

J

0 1

J

0 1

B

0 1

E R E R

J

0 1

J

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

J

0 1

J

0 1

J

0 1

J

0 1

Fig. 4.Context minimal graph

If we take the conditioning set[HKC] in the order imposed on it byd1, reverse it
and put it at the beginning of the orderingd1, then we obtain:

d2 =

(

C ,

[

K ,

[

H ,

[

A,B,E,J,R

]

H

,L,N,O

]

K

,D,P

]

C

,M,F,G

)

where the indexed squared brackets together with the underlines represent subproblems
that need to be solved multiple times, for each instantiation of the index variable.

So we started withd1 and boundi = 2, then we identified the corresponding con-
ditioning set[HKC] for VEC, and from this we arrived atd2. We are now going to
used2 to build the pseudo tree that guidesAOC(2), given in Figure 3. The outer box
corresponds to the conditioning ofC. The inner boxes correspond to conditioning on
K andH, respectively. The context of each node is given in square brackets, and the
2-contextis on the right side of the dash. For example,context(J) = [CH-AE], and
2-context(J) = [AE]. The context minimal graph corresponding to the execution of
AOC(2) is shown in Figure 4.

We can now follow the execution of bothAOC andVEC along this context minimal
graph. After conditioning onC, VEC solves two conditioned subproblems (one for
each value ofC), which are the ones shown on gray backgrounds. However, thevanilla
versionVEC-OR is less efficient thanAOC, because it uses an OR search over the
cutset variables, rather than AND/OR. In our example, the subproblem onA,B,E, J,R

would be solved eight times byVEC-OR, once for each instantiation ofC, K andH,
rather than four times. It is now easy to make the first improvement toVEC, so that it
uses an AND/OR search over the conditioning set, an algorithm we callVEC-AO .

Let’s look at one more condition that needs to be satisfied forthe two algorithms
to be identical. If we change the ordering tod3 = (A,B,E, J,R, H , L,N,O, K , D-
, P , F ,G, C ,M), (F andG are eliminated after conditioning onC), then the pseudo
tree is the same as before, and therefore the context minimalgraph forAOC is still
the one shown in Figure 4. However,VEC-AO would require more effort, because
the elimination ofG andF is performed twice now (once for each instantiation ofC),
rather than once as was for orderingd1. This shortcoming can be eliminated by defining
a pseudo tree based version forVEC, rather than one based on an ordering. The final

219

algorithm,VEC(i) is given below (whereNG(Xi) is the set of neighbors ofXi in the
graphG). Note that the guiding pseudo tree is regenerated after each conditioning.

Algorithm VEC(i)

input : M=〈X,D,F〉; G=(X,E); d=(X1,. . ., Xn); i

output : Solutions count.
generate the bucket treeT for d;
while T not emptydo

if ((∃Xi leaf inT)∧(|NG(Xi)|≤ i)) then eliminateXi elsepick Xi leaf ofT ;
for eachxi ∈ Di do

assignXi = xi;
call VEC(i) on each connected component of conditioned subproblem

Theorem 4 (AOC(i) can simulate VEC(i)). Given a graphical modelM =
〈X,D,F〉 and an execution ofVEC(i), there exists a pseudo tree that guides an ex-
ecution ofAOC(i) that traverses the same context minimal graph.

5 Conclusion
We have compared two parameterized algorithmic schemes forgraphical models that
can accommodate time-space trade-offs. They have emerged from seemingly different
principles:AOC(i) is search based andVEC combines search and inference.

We show that if the graphical models contain no determinism,AOC(i) can have a
smaller time complexity than the vanilla versions ofVEC(i) . This is due to a more ef-
ficient exploitation of the graphical structure of the problem through AND/OR search,
and the adaptive caching scheme that benefits from the cutsetprinciple. These ideas
can be used to enhanceVEC(i) . We show that ifVEC(i) uses AND/OR search over
the conditioning set and is guided by the pseudo tree data structure, then there exists
an execution ofAOC(i) that is identical to it. AND/OR search with adaptive caching
(AOC(i)) emerges therefore as a unifying scheme, never worse thanVEC(i) . All the
analysis was done by using the context minimal data structure, which provides a pow-
erful methodology for comparing the algorithms.

References

1. Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic networks and their and/or
search space. In: UAI’04. (2004) 120–129

2. Rish, I., Dechter, R.: Resolution vs. search; two strategies for sat.Journal of Automated
Reasoning24(1/2)(2000) 225–275

3. Larrosa, J., Dechter, R.: Boosting search with variable-elimination.Constraints7(3-4)(2002)
407–419

4. Mateescu, R., Dechter, R.: The relationship between and/or searchand variable elimination.
In: UAI’05. (2005) 380–387

5. Mateescu, R., Dechter, R.: And/or cutset conditioning. In: IJCAI’05. (2005) 230–235
6. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfac-

tion problems. In: IJCAI’85. (1985) 1076–1078
7. Bayardo, R., Miranker, D.: A complexity analysis of space-boundlearning algorithms for the

constraint satisfaction problem. In: AAAI’96. (1996) 298–304
8. Darwiche, A.: Recursive conditioning. Artificial Intelligence125(1-2) (2001) 5–41

220

����������	
���
��	�������������������	�� �!�#"%$�&('%��')����������	�� �!�
�*���,+��!���.-����0/1��+
���

2436587:9
;43=<?>@9
369=ACBEDGFIH436DG;JF4KMLG9IN?2O5JPQ9
ASRODGT6UIAV<OWXKM;ZY[9
;43=N]\=PJ;]N:DGPJF?^`_[7Ja=T
b TX36cdKI;?7eb KIaIb 5Jf
gIhji4k`k=l8k
mon@kVp�qsrstXuSvwgMhyxzuy{4hSuV|4}w{4xz~�uSvX��x�t���k
mogMt���{O�MvXuS���y|O��x�mGuC����������gI�C|:gMhyk=tXl��
{O�

�,���y�y���O�=�V��� r4�={`tXx��Ou���qsvXkV slzuyp�����r4hji��=� ��¡ �¢�={4�¤£`rO�={`tXx��Ouy��n0gs¥¦iO��~�u
 :uyuS{¨§V�=xz{4xz{s§©��t�tXuy{`tXx�k={ªvXuyhyuy{`tXl��`« ¡ k
tXi¨k
m�tXisuy��u¬qsvXkV slzuyp��­h��
{® :u�rs��u��
tXk¢p�kM�suSl�¥�gs¥J��n°¯±qsvXk= 4lzuyp����
vXxz��xz{4§¢xz{®�w²j|@m³k
v¤uS´s�
p�q4lzu�q4l��={s{4xz{4§Zrs{sµ
�IuSv0r4{shyuSv�tj�
x�{`t��`|M�V�I~�uSvX�X�
vXx��
l8§V�=p�u�qsl����Ixz{4§��={4�,p�kM�Iuyl:hji4uyhj¶Mx�{s§s« ��¡ ��iO�=�
vXuyhSuyxz~�u���p�k=vXu��
t�tXuS{MtXxzk={���kCm³�
v�|`��kEtXi4u���u���vXh6i,�=lz§=k=vXx�tXi4p��@�
vXu� :uSt�tXuSv@�suy~�uSlzµ
k=q:u��?|M�
{O�·tXk!tj�=¶�u��=�s~=�={`tj�=§=uwk
m?tXisxz�0¸�uy{`t�uSt0�
lQ¹z�yºJ�suS~�uylzkVq:u����
{�uy{4hykM�Ixz{4§
k
m[sx�{4�
v�� � n0gs¥»�
� ��¡ �@«�¼°isu�uy{shykM�sxz{s§¦qIvXkV§
vXuy����u��½tXisvXk=r4§ViªtXiIvXuyu¾xzt�µ
uSvj��tXxzkV{4�y|�¿VÀzÁ�ÂXÃVÀ�Ã�ÄXÄjÅ�ÆOÇÈÃ�ÂSÉÊÀ É³ÇÊË
|°ÀzÁ�ÄXÃVÀoÃ�ÄXÄjÅ�ÆOÇÈÃ�ÂSÉ³À É³ÇÊË¬�={4�ÌÃ�ÍVÃ6ÆOÇ�Å�Í¬ÀzÁX¿=«?²�{�tXi4xz�
q4�=q:uSv]²?qsvXuy��uS{MtQtXi4u@{suS´Mt��dtXuyqCxz{�tXi4�
te��u�£`rsuy{4hyu=|���x�p�qslzxzmÎ�Ix�{s§��
{O�Ex�p�qIvXk�~Ixz{s§
�=�4�=qItXu��¾l�k=§s«8¼°i4u�{4uS�ÏuS{4hykM�Ix�{s§�hSkVp�qO��vXuy��m³��~VkVrsvj�
 4l�����x�tXi¬tXisu[qIvXuy~Mx�k=r4�
uy{shykM�sxz{s§V�w�={O��tXi4u!�Ix�vXuyhSt���kVlzrstXxzk={��=lz§Vk
vXx�tXi4p � n0gs¥eµÐgIkVlz~�u�¹ Ñ�ºÈ«

Ò Ó4Ô�Õ:ÖJ×!Ø�ÙCÚQÕJÛX×�Ô
Ü�5?KM;436DÎÝ?9V7·PJA6UsÞJLG9
ß�ToT65?ayH�KIT@Ü�5?KM;436DÎÝ?9V7�àwUOUsLÎ9VKM;�áJUsA6ß�5JLGKI9CâÐÜ[à�á0ãeKI;?7�Ü�5?KI;s3SD�Ý89=7
äwUI;?Tj36AyKMDG;43!2:KM36D³TXåÈKsa�3SDÎUs;¬>�ASUIÞJLG9
ß�T�âdÜ�ä�2O>wã�H?K�Rs9CÞQ9
9
; F4KMDG;JDÎ;?F­KM3j369=;436DGUI;�A69Va�9
;43SLÎæsb
àwUI36HZUIå@3SHJ9=T69�PJASUIÞ?LÎ9=ß¤TCa
KM; ÞQ9,5?T69=7�3SU¾ß¤UO7J9
Lo>�2O>eçCäwè�PJASUIÞJLG9
ß�TEKIA6D³T6DÎ;JF¤DG;¦çEW�N
åéUIA�9�êJKIß­P?LÎ9 PJL³KM;J;?DÎ;JF½5J;87:9
A�5J;8a�9
A63SKIDÎ;43XæsN�KI7:Rs9
AyT6KIA6D³KMLwFsKMß¤9�PJL³K�æ4DG;JFªKM;87¨ß¤U:7:9
L
ayHJ9=ayfODG;JF?bQÜ[à�á¨H?KITCA69Va�9
DGRI9V7�ß­UsA69�KM3j3S9
;436DGUI;¢T6U¤åÈKMAVN?T6U�36HJ9�Tj9VKMAyayH KILÎFsUIASD�3SHJß�T!KMAS9
KMASFI5?KIÞJLÎæ½ß¤UIAS9 KI7:R`KM;8a�9=7±âÊåéUsA�9�êJKMß¤PJLG9IN°AS5JLG9=T�T6P89Va�DÎÝ8a�36U¨Ü[à�áìë í`îÐN�a
UI;:ï?D³a�3¾KI;?7
TjUsLÎ5:3SDÎUs;Ï7:DGA69Va�369V7ðÞ?Ksayf=ñX5?ß­P?DÎ;JF�ë òIî·KI;?7ó9�ô¾a�DG9
;43 7JK`3yK¨Tj36AS5?a�3S5JA69VT¢ë õ�î·H?K�RI9¢ÞQ9
9=;
7:9
Rs9
LGUIPQ9=7?ã�b�ö�U¾3yKMfs9�KI7JR�KI;43SKMFs9,UIå036HJD³T
NoY[9=;43[9
3·KILwëG÷�î�7:9=RI9
LGUIPQ9=7¦KM;¦9=;?a�U:7:DG;JF�UMå
ÞJDÎ;8KMASæøÜ�ä�2O>*3SUªÜ[à�á�b0BEUI369�36H?KM3�ÞJDÎ;8KMASæ®Ü�ä�2:>�D³T¤;JUM3­36ASDGR4D³KMLÐù°D�3�D³T¤>w2O>eçCäwè0c
a�UIß¤PJLG9�3S9�KIT�DGT�Fs9
;J9=ASKIL]Ü�ä�2:>úKI;?7�Ü[à�á�bJö�HJ9·9
;?a
U:7:DÎ;?F�PJASUIFsA69VT6T69=7­3SHJASUI5JFsH¾36H?A69=9
D�3S9
AyK`36DGUI;8T
N�ûMüÎýsþyÿ`ü�ÿ�����������ÿIþ	�Êü
���
�`N0üGý��yÿ`ü�ÿ�����������ÿIþ	�Êü
�����¢KM;?7¨ÿ��Iÿ��������ZüÎý6ûIb�W�;Z36H?DGT�P?KMPQ9
A
W�PJA69VTj9=;43�36HJ9�;J9
ê43¤TX3S9
P®DG;ª3SH?K`3¤Tj9��s5?9
;?a
9IN°a
KMLGLG9=7��	���Jÿ��������ÌüÎý6ûIN0TjDGß¤PJLGD�åéæODG;JFÌKI;?7
DÎß¤PJASU`RODÎ;JF¤KI7?KMP:3S9=7�LÎUsF¤KI;?7�FsKIDÎ;JDG;JF¤K­P89=AjåéUsA6ß�KM;8a�9·DÎß¤PJASU`RI9=ß¤9
;43=b
è�;JH?KI;?a�9V7�LÎUsF�DG;?a�LG5?7:9VTwKI;¾DG7J9=K·åéASUIß 36H?9C9
;?H?KM;?a
9=7�Þ?DÎ;?KIA6æ­9
;8a�U:7:DG;JF,PJAS9=T69
;43S9=7

Þ4æÏá?A6D³TSayHÏ9�3¢KML¤ë��Vî·åéUIA 9
;8a�U:7:DG;JFø;?UI;:c�à�U4UsLÎ9VKM;ÏTSK`3SDGTjÝ8KMÞ?DÎLGD�3Xæ(âÐ2:ç0öEã¬36UóàwUOUsLÎ9VKM;
2:ç0ö·beW�;?a�UsA6PQUIAyK`3SDÎ;?F�36HJ9¤9=;JH?KM;8a�9=7¦ÞJDG;?KMASæZDG7J9=K�KMLGLÎU��ETC36HJ9¤;J9�� 9
;8a�U:7:DG;JF¬3SU�3SKMfs9
KI7:R`KM;43yKMFI9·UIå@3SHJ9�PJ5JAS9�LGD�3S9
AyKML]AS5JLG9�PJAS9=T69
;43EDÎ;¢T6UIß¤9�Ü[à�á¨T6UILGRI9=AST�3SU�9
LGDÎß¤DG;?K`3S9�36H?9
;J9
9V7¬åéUsA!DÎ;87:DGa=K`3SUIA�R`KMASDGKIÞJLÎ9VT
b
á�DGAyTX3°W]PJAS9=T69
;43o3SHJ9�9
;?a
U:7:DÎ;?F?N=36HJ9=;�9=ß­P?DÎASDGa=KMLGLÎæ·9=R�KILÎ58K`369�DÎ3@Us;�K[Tj5JDÎ369�UMå8ASKI;?7:UIß

ÞJDÎ;8KMASæ­Ü�ä�2O>�T=NMDG;¾a�UIß¤P?KIA6D³T6UI;��!DÎ36H­3SHJ9CKI7?KMP:3S9=7�LÎUsF�9
;?a
UO7JDÎ;JF�KI;?7¤K�7:DÎAS9=a�3�TjUsLÎRs9
AVN
Ü�ä�2O>0cX2OUILGRI9·ë
�=îÐb4ö�HJ9!9
;?H?KM;?a
9=7�LÎUsF·9
;?a
UO7JDÎ;JF�Us5:36PQ9
A6åéUIASß�T@36HJ9EKs7JKMPJ369=7­LGUIF·ÞOæ�3 ��U
UIAy7:9
AyT·UMå!ß�KMFs;JD�3S5?7:9�Us;½K�Rs9
AyKMFs9INeKM;?7ªa=KM;ªKML³T6U¢TjDGFI;JDÎÝ8a=KM;436LGæ¢UI5J36PQ9
A6åéUIASß Ü�ä�2O>0c
2OUILGRI9sb

221

! "$#0Ú&%('�Ö?×�ÙCÔ�Ø
W�; 36HJ9­Ü�ä�2:>@N8R`KMASDGKIÞJLÎ9VT!ß�K�æ¬ÞQ9�5J;JDGRI9=ASTSKMLGLGæ¦â�) åéUIA[KMLGL]R`KMLG5J9=T�*ÎN&+eã�KI;?7 9�ê:D³TX3S9
;436D³KMLGLÎæ
â�) 36HJ9=A69·9�ê:D³TX3yT!K­R�KILÎ5?9�*GN-,Jã(�45?KM;436DÎÝ?9V7¬DG;�T69��45J9=;?a�9sbJáJUsA!9�êJKMß¤PJLG9IN436H?9�Ü�ä�2O>øÞQ9
LGU��
A69VKI7JT�KsT.) 3SHJ9
AS9�9�ê:D³TX3yT�K R`KMLG5J9¤UMå(/oN�T65?ayH©36H8K`3�åéUIA�KMLGL0R�KILÎ5?9=T�UIå10�Ne3SHJ9
AS9�9�ê:D³TX3yT�K
R�KILÎ5?9[UIå32�T65?ayH�36H?KM3!36HJ9�T6DG;JFILG9�a�UI;8TX3SASKIDÎ;43�DGTETSK`3SDGTjÝ?9V74*Îb

,�/6587�9�:;:�<�=?>�+�0@5A7�9�:;:�<�=?>�,B2.5A7�9�:C:�<�=ED?F�/HGI<�0JGLK�2NM�K�O
W�;Ï36H?DGT a
KsTj9¦36HJ9®Ü�ä�2O> DGT�5J;8T6KM36D³TXÝ8KIÞJLG9IN�TjDG;?a�9©;JUøR�KILÎ5?9ÌUIå�/»9�êO369=;?7JT�36Uóí

T6KM36D³TXåéæODG;JF�KsT6T6DÎFs;Jß¤9
;43ST0åéUIA�9=KIayH¬R�KILÎ5?9CUMåP0�bJÜ[à�áÌD³T�TjDGß¤DÎL³KMAVNsH?U��w9=RI9
A�36HJ9�R�KIA6D³KMÞ?LÎ9VT
H?K�RI9!7:Usß¤KIDÎ;Q7�RS>UT.=EKI;?7¤a�UI;8TX3SASKIDÎ;43ST0KIA69E7JDGTÈñX5J;?a�3ST�UIåQPQUsT6DÎ36DGRI9EUsA0;J9
F4K`36DGRI9!LGDÎ369
AyKML³T=b
Ü[à�á*DGT�36HJ9=A69
åéUIAS9 K½T65JÞ?T69�3¾UIå�Ü�ä�2O>°b�á?UIA¾ÞQUM3SH�Ü�ä�2O>%KM;?7ÏÜ[à�á�N�A69=PJAS9=T69
;436DG;JF
36HJ9�T69�3!UMå°a�UI;8TX3SASKIDÎ;43ST�KsTWV0NO3SHJ9�Tj9=ß¤KI;436D³a
T�UMå�36HJ9,Ü�ä�2O>(XIÜ[à�á�YZV©a
KM;�Þ89�7J9�Ý?;J9V7
A69Va�5JAyTjDGRI9=LÎæ¤KIT�åéUILGLGU��ET
b4Wdå(Y D³TwUIåe36HJ9[åéUsA6ß[,�/4\]J^	/_^�>	:�:	:`>�]Ja�/_a¾36HJ9=;8YSV¢DGTw36AS5J9�Dcb
36HJ9=A69[9�ê:D³TX3yT!K,R`KMLG5J9Ede56fhgi/j\�kwT65?ayH¬36H?KM3S]N^`/_^�>	:�:	:	>�]Ja�/_a?Vml /j\SM�d�npoCD³T�36AS5J9IbOWdå(Y
DGT[UMåw36HJ9�åéUIASßq+�/4\`]J^	/_^�>	:�:	:`>�]Ja�/_a¢36HJ9=;rYSV®DGT�3SA65J9­D;bªåéUIA�KMLGL°R�KILÎ5?9=TEds5Lfsgp/j\�k�N
] ^ / ^ >�:	:	:	>�] a / a Vml / \ M�d�n]D³T�36AS5J9Ib:WdåtV¦D³T!9
ß¤P:3Xæ¾36HJ9=; 36HJ9·PJASUIÞJLG9
ß DGT�3SA65?9Ib

u vZÔCÚ�×!Ø�ÛjÔS'�Õ&wSx»Ú�×�ÔzysÕ:Ö�ÛjÔwÕ&y
áJUIA�Þ8UI36H�9
ê:DGTj369=;s3SDGKILsKI;?7·5J;JDGRI9=ASTSKML4Ü�ä�2:>¢R`KMASDGKIÞJLÎ9VT
N�36HJ9=A69�D³ToKCTj9
3�UMå8Ü[à�á�R�KIA6D³KMÞ?LÎ9VT
/_{|�AS9
PJAS9=T69
;43SDÎ;JF�K¾R`KMASD³KMÞJLG9�}QN4�!D�3SH¦3SHJ9­DÎ;4369=;436DGUI;¢3SH?K`3J/�{|@M~R��.� }6M��yb�ö�H?9
UM36H?9
AEKIT6PQ9=a�3yT�UMå°A69=PJAS9=T69
;436DG;JF¤K�Ü�ä�2:>úR`KIA6D³KMÞJLG9·KMAS9·a
U`RI9=A69V7�DÎ;�3SHJ9�;J9�êO3CT69=a�36DGUI;]b
ö�HJ9¦7:DGA69Va�3�KI;?7ÏT65JPJPQUIA63¬9
;8a�U:7:DG;JFsTZë �`î·UMå·3SHJ9Ìa
UI;?Tj36AyKMDG;43ST¾T6DÎß�5JL³K`369¢åéUIA���KIAS7

ayHJ9=ayfODG;JF©KI;?7¨KIASa�cda
UI;?T6D³TX3S9
;?a
æ©AS9=T6PQ9=a�3SDÎRs9
LGæðâéDÐb 9sb�5J;JDÎ3�PJA6UsP?KMF4K`3SDÎUs;®U`RI9=A,3SHJ9Za�UI;Jc
TX3SASKIDÎ;43�a�L³KM5?T69=T·T69�3yTJ/ {| R�KIA6D³KMÞ?LÎ9VTC3SU 36HJ9¾TSKMß¤9¤9`b�9=a�3,KIT[åéUsAU��KMAy7¢ayHJ9Vayf4DG;JF UIA�KIASa�c
a�UI;8TjD³TX3S9
;?a
æ,DG;¤36HJ9CUIASDÎFsDÎ;?KILQÜ�ä�2O>wã�b4Y[9=;s3w9�3wKILoëG÷�îQ7:D³7¤;JUI3�DÎ;8a�LG5?7:9!3SHJ9�T65JPJPQUIA63�9
;:c
a�U:7:DG;JF,ÞQ9=a=KM5?T69CDÎ3�PQ9
A6åéUIASß�T�PQUOUIASLÎæ@�!DÎ36H�KILÎL836H?9�9=;?a�U:7:DG;JFsTw7:9=TSa�ASDGÞ89V7¤36HJ9=A69sb:ö�HJ9
AS9
DGT�;JU�AS9=KIT6UI;�36U,Þ89=LÎDG9
Rs9ED�3��wUs5JLG7¤ÞQ9EÞQ9�36369
A��!D�3SH¾9
;?H?KM;?a
9=7¤LGUIF8NITjDG;?a
9ED�3�a�ASDÎPJP?LÎ9VT036H?9
PJ5JAS9[LGDÎ369
AyKMLeAS5JLG9·åéUIAZ/ {|�R`KMASDGKIÞJLG9=T=b4W�UIß¤DÎ3ED�3EH?9
AS9�åéUsA�36HJD³T!AS9=KsTjUs;]b
ç a�UI;8TX3SASKIDÎ;43�� ÞQ9�3 ��9
9=;ú3 �wUªR`KMASD³KMÞJLG9=T�døKM;?7����!D�3SHÏ7:UIß�KMDG;?T�� KI;?7r� DGT

A69=PJA69VTj9=;4369=7øÞOæ®3SHJ9ZA69=LGKM36DGUI;��E��� �A�����L�1a
UI;43SKIDÎ;JDG;JF©36H?9¦KMLGLÎU���9=7øP?KIDÎAyT
b�ö�H?9
7:DÎAS9=a�3!9
;?a
UO7JDÎ;JF¤åéUsA6Þ?DG7JT�9VKIayH�UMå@36HJ9�7:D³TSKMLGLÎU���9=7¬P?KMDGAST=b
���H�_���t�
�������
 &¡t¢�£�¢ áJUsAEKMLGL�365JP?LÎ9VTN¤p��>�¥�¦J§5Q�­N

¨ / �|S© ¨ / �
ª

áJUIA�a
UIß¤P?KIA6D³TjUs;¦3SHJ9¬Ks7JKMP:3S9=7©LGUIF 9
;?a
U:7:DÎ;?FZH?KIT�a
UI;:ï8DGa�3,a�L³KM5?T69=T ¨ / �|«© ¨ / �
ª ©

2 { �!H?9
AS9.2 { D³TC3SHJ9¤R`KMASDGKIÞJLÎ9�DÎ;87:DGa=K`3SDÎ;JF KM;Ì5J;?Ksa
a�9=P:3SKIÞJLG9�KITST6DÎFs;Jß¤9
;43C3SU�5J;?DÎRs9
AyT6KILR�KIA6D³KMÞ?LÎ9(},UsA�T6UIß¤9�UI5:3S9
A�5J;?DÎRs9
AyT6KIL:R�KIA6D³KMÞ?LÎ9sbMáJUIAwa�UI;8TX3SASKIDÎ;43ST°DG;ORIUsLÎRODG;JF·9�ê:DGTj369=;436D³KML³T
�w9¾58Tj9�2 { åéUIA,36HJ9�LGKsTX3�5J;?DÎRs9
AyT6KILm}8�45?KI;436DÎÝ?9=7½ÞQ9�åéUsA69�3SHJ9�Ý?AyTj3,9�ê:D³TX3S9
;436D³KML!Ü�ä�2O>
R�KIA6D³KMÞ?LÎ9sù�åéUIA,a
UI;?Tj36AyKMDG;43ST·DG;4RsUILGRODÎ;JFZK 5J;?DÎRs9
AyT6KIL¬}s��9�5?Tj9e2 { N]UsA�36HJ9¬DÎ;J;?9
ASß­U4TX3�DÎå36HJ9[a�UI;8TX3SASKIDÎ;43�DG;ORIUILGRI9VT°3 ��U�5J;JDGRI9=ASTSKML³T
bsçELGLQDG;?7:D³a
KM36UsA�R`KMASDGKIÞJLG9=T�KIA69E9
ê:DGTj369=;s3SDGKIL8KI;?7
DÎ;�36H?9�DÎ;J;?9
ASß­U4TX3!ÞJLGU:ayf�b
­¬® i4u6vXuJ¯ °_±�²´³�µ8p�u��={s�°tXi4u!�
����xz§V{4p�uS{Mt�k
m4³�tXkE°�±y«

222

¶ vZÔCÚ�×!Ø�ÛjÔS'�Õ&wSx~·r¸L¹1º¼»3#@Ö8Û #3½¿¾ÀxÁy

è�KIayH(9
êOD³Tj369
;43SDGKIL­Ü�ä�2O> R`KMASD³KMÞJLG9LÂ®D³T¢9=;?a�U:7:9V7»Þ4æ»KÏT69�3¦UIå¾àwUOUsLÎ9VKM;±R�KIA6D³KMÞ?LÎ9VT
/�Ã\ :�:	: /jÃÄ6�!HJ9=A69QÅ½D³T­36HJ9Z7:Usß¤KIDÎ;óT6D;Æ=9�UIå¿}QN�KM;?7I/�Ã| M�R �.� Â´M��Sb�ö�H?9Ç/jÃ
R�KIA6D³KMÞ?LÎ9VT�KMAS9�9�ê:DGTj369=;436D³KMLGLÎæ8�s58KM;436DÎÝ?9=7Ì3SUIFI9
36HJ9=A=b�ç�3,LÎ9VKITj3�UI;J9�UIå�36HJ9e/ Ã R�KIA6D³KMÞ?LÎ9VT
ß,5?Tj3�ÞQ9�KITST6DÎFs;J9=7HR�NsT6U·36H?9!åéUILGLÎU��!DG;JF�a
LGKI5?Tj9CDGTwKI7J7:9V7­36U·3SHJ9EåéUsA6ß�5JLGK?bIö�HJ9Ca
UI;:ï8DGa�3
a�L³KM5?T69=T�a�Us;s3yKMDG;¾UI;?LÎæ¤;J9=FsK`3SDÎRs9CLGD�3S9
AyKML³T
NOT6U,DÎ3�D³T�Tj5:ô¾a
DÎ9=;s3�36H8K`3�36HJ9=æ¾KMAS9�KMLGL�T6KM36D³TXÝ?9V7
KM;?7�9=KsayHZTj9
3EUMå3/¢R`KMASDGKIÞJLÎ9VT�H?KIT!KM3CLG9=KITj3!UI;J9�KsT6T6DGFI;J9V7�R�b8ç!7J7:DG;JF¾a�L³KM5?T69=T�3SU¾TX3yK`3S9
36H?KM3�9�êJKIa�36LGæ¦UI;?9�DGT�KsT6T6DGFI;J9V7¢3SA65J9�D³T�;JUI3�;J9=a
9=TST6KIA6æsbeçEL³TjU8Ne36HJ9¾Ks7J7:DÎ36DGUI;?KIL�a�L³KM58Tj9VT
�wUs5JLG7¦TX3SUIPZ3SHJ9�P?5JA69�LÎDÎ369=ASKIL�AS5JLG9H��UIASfODÎ;?F�9`b�9=a�3SDÎRs9
LGæZUI;Z3SHJ9./�Ã·R`KMASD³KMÞJLG9=T=bQö�H?DGT�DGT
DG7:9=;436D³a
KML�3SU¤36HJ9�Ks7JKMPJ369=7�LGUIF¤9
;?a
U:7:DÎ;?F?b

�~È.�e�i£� &¢��.����£ a�L³KM5?T69

/ Ã \ ©e/ Ã^ ©A:	:	:É©e/ ÃÄ
è�KIayHó5J;JDGRI9=ASTSKML!R`KIA6D³KMÞJLG96ÊÏD³T¾9=;?a�U:7:9V7eNwKsT�DÎ;ó3SHJ9¦Ks7JKMP:3S9=7úLGUIFª9
;8a�U:7:DG;JF?N�ÞOæ

Ë LGUIF ^ Å�Ì[R�KIA6D³KMÞ?LÎ9VTW�ÎÍ|N�!H?DGayH¬KIA69!5?;JDÎRs9
AyT6KILÎLGæH�45?KI;436DÎÝ?9=7­3SUIFI9
36HJ9=A=bsö�HJ9CUsAS7:9=A�UMåeR`KMASDÎc
KMÞJLG9=ToDGToPJA69VTj9=A6Rs9=7[DG;�36HJ91�45?KM;436DÎÝ?9=AoTj9��45J9
;?a
9Ib�ÏÌ9�KML³TjUEDG;436ASU:7:5?a�9W/ Í\ :�:	:U/ Í ÄCR�KIA6D³KMÞ?LÎ9VT
KIT@Þ89
åéUIAS9INÉ�!HJD³ayH­KIA69w9�ê:D³TX3S9
;436D³KMLGLÎæN�45?KI;436DÎÝ?9=7­K`3@36HJ9�9=;?7,UIå?3SHJ9Z�s58KM;436DÎÝ?9
A0T69��45J9=;?a�9sb
ö�HJ9=T69¿/ Í R`KMASDGKIÞJLÎ9VT�KIA69[5?T69=7¾DG;¾3SHJ9·a�UI;8TX3SASKIDÎ;43�a
LGKI5?T69=T=NI3SU­K�RsUID³7�H?K�RODÎ;?F�T69
RI9=ASKIL�� Í
LÎDÎ369=ASKILGT·DG;®a�Us;`ñX5J;?a�36DGUI;©36UZAS9
PJAS9=T69
;43�K R`KMLG5J9INe3SHJ9
;®7JDGTj36ASDÎÞ?5:36DG;JF¢a�Us;`ñX5J;?a�36DGUI;½U`RI9=A
7:DGTÈñX5J;?a�36DGUI;]b
ö�HJ9E� Í| R`KIA6D³KMÞJLG9=T�KMAS9�ayH8KM;J;J9=LÎLG9=7�36U�36HJ9E/ Í R`KIA6D³KMÞJLG9=T��!DÎ36H¾3SHJ9[åéUILGLÎU��!DG;JF­a�L³KM5?T69

Tj9
3=b?ö�HJD³T�D³T!FIDGRI9=;¾åéUIA�3SHJ9�a
KsTj9E�!HJ9=A69JÅHMÐ<:b

���HÑ� &�t�t£?�
�i�
��Ò8���
 &¡�¢�£�¢

/ Í \ ©Q� Í^ ©Q� Í \ ©Ç� ÍÓ/ Í^ ©Ç� Í^ ©Ç� Í \ © ¨ � ÍÓ/ ÍÔ ©Q� Í^ © ¨ � Í \
/ ÍÕ © ¨ � Í^ ©Ç� Í \
/ ÍÖ © ¨ � Í^ © ¨ � Í \

ö�HJ9
AS9�KIA69�õ¦PQUsTST6DÎÞJLG9 KITSTjDGFI;Jß¤9=;s3yT�36UÌ36HJ9h� Í R`KMASD³KMÞJLG9=T=N@KI;?7øí¦R`KMLG5J9=T=N�T6U¦åéUsA
36HJ9�R`KMLG5J9=T.�JN@òÌKI;?7¨í 3SHJ9
AS9�KIA69¬3 �wU8� Í KITSTjDGFI;Jß¤9=;s3yT�ß�KMP?P89V7®UI;43SU¢9=KsayH]N�H?9
;?a
9
KMLGL�õÌKITSTjDGFI;?ß­9=;43ST­KMAS9¬R`KMLGDG7]b@W�;úa�Us;s3SASKsTX3�36U½KI7JKIP:369V7ªLGUIF?N°;JUÌLÎU:a=KML!KIa=a�9
PJ3SKMÞ?DÎLGD�3Xæ
R�KIA6D³KMÞ?LÎ9Câ�a
KILÎLG9=7H2 Í DG;¾ëG÷�îéã]D³ToP?A69VTj9=;s3VN=ÞQ9=a=KM5?T69�;?U[KsT6T6DÎFs;Jß¤9
;43ST]36U�PJA69=RODÎUs5?T]5J;?DÎRs9
AyT6KILR�KIA6D³KMÞ?LÎ9VT@a=KM;­Þ89!DG;OR`KMLGDG7eb�×EU���9
RI9=A=N=36H?9!PJA6UsÞJLG9
ß D³T°36H8K`3036H?9EÜ[à�áÌTjUsLÎRs9
A°a
KM;�T69=KIASayH
3 �wU 9��45JDGR`KMLG9
;43�Tj5?Þ:36AS9
9VT·DÎ;ªT6UIß¤9�a
KIT69=T=N�åéUIA�9
êJKMß¤PJLG9.�!H?9
;L� Í^ M�RìKM;?7$� Í\ M�R,N
36HJ9�T6UILGRI9=A�a=KM;�ÞJAyKM;?ayH�UI;6�ÎÍÓ �!HJD³ayH�DGT!;?UM3Ea�Us;s3yKMDG;J9=7�DG; KI;Oæ¬a�L³KM5?T69Ib
àwæ�a�UI;43SASKsTX3VNVDG;�36HJ9EKs7JKMP:3S9=7�LÎUsF·9
;?a
UO7JDÎ;JF8N�36HJAS9
9!KsT6T6DÎFs;Jß¤9
;43ST�3SUJ� Í KMAS9wDG;OR`KMLGDG7eN

KM;?7�a
KM58Tj9�36HJ9[DG;?7:D³a
K`3SUIAZ2 Í KM;?7�KMLGL�T65JÞ?T69��45J9=;43�DG;?7:D³a
KM36UIAyT12 {�ØjÍ 36U­Þ89�T69�3�36HJASUI5?FIHK�FsA6Us5JP�UMå@a
UILGLÎ9Va�3SUIA!a�L³KM5?T69=T=b
ç!åÊ369=ACT69�3j3SDÎ;?F�� Í^ KI;?76� Í\ N?D�å09
DÎ36H?9
AED³TET69�3E3SU�R�3SHJ9
; 3SHJ9�Ý?AyTX3!3 ��U�a�L³KM5?T69=T!KIÞ8U`Rs9

KMAS9·TSK`3SDGTjÝ?9V7�KI;?7¬DG;�36HJ9�AS9=7J5?a�9V7¾åéUsA6ß�5JLGK�� ÍÓ 7:UO9=T�;JUI3E9�ê:DGTj3=bJà�UI36Hh� ÍÓ KM;87 ¨ � ÍÓ KMAS9

223

PJ5JAS9INJT6U­DÎåo3SHJ9�T6UILGRI9
A�DGß­P?LÎ9=ß­9=;43ST�3SHJ9�PJ5JAS9�LGDÎ369
AyKMLeAS5JLG9[36HJ9=;�DÎ3Z�!DÎLGL];JUI3!ÞJASKI;?ayH¬Us;
36HJD³T�R`KIA6D³KMÞJLG9Ib4ö�HJD³TwT6UILGRI9VT036H?9CAS9
PQ9=K`3S9=7�T65JÞ:3SA69=9CPJASUIÞJLG9
ß ß¤9
;436DGUI;?9=7¾KIÞ8U`Rs9INIUs;�36H?9
a�UI;87:D�3SDÎUs;©36H?KM3H� ÍÓ D³T�Tj9
3�LGKsTX3VboçEL³T6U?N]DG;ªa�UIß¤ß¤UI;$�!DÎ36H©36H?9¬KI7JKIP:369V7¦LGUIF 9=;?a�U:7:DG;JF?N
36HJ9¤ayH?KM;?;J9
LGLÎDG;JFÙ�wUsA6f:TEUs;JLGæ�åéASUIß��ÎÍ�3SUÙ/�Í�R`KIA6D³KMÞJLG9=T=N�TjU�UI;JLGæ P8U4TjDÎ36DGRI9H/_Í LGD�3S9
AyKML³T
KMAS9�DÎ;?a
LÎ587:9=7½DG;½36HJ9¾a
LGKI5?T69¾Tj9
3�KMÞQU`RI9sN�36HJ9=A69
åéUIAS9¤36HJ9¾P?5JA69�LGDÎ369
AyKML�A65JLG9¾a
KI;®7:9�3S9=a�3
a
KIT69=T¿�!HJ9=A69­36H?9./ Í| DGT·DG;ORIUsLÎRs9=7ZDG;Ì;?U�a
UI;:ï?D³a�3yT
b�W�;½TjUsß¤9­a
DÎAya�5Jß�Tj3SKI;?a�9VT
NQ36H?DGT·a
KI;
KML³TjU�LÎ9VKI7Z3SU¬3SHJ9¤9
LGDÎß¤DG;?K`3SDÎUs;¦UIå(� Í R`KMASDGKIÞJLG9=T=bQá?UIA·9�êJKMß¤PJLG9IN�DÎåW/ ÍÕ KM;?7s/ ÍÖ ÞQ9=a�Usß¤9
PJ5JAS9INO36H?9
;h� Í^ ÞQ9=a
UIß¤9=T�PJ5?A69�KsT(�w9=LÎL]KI;?7¾3SHJ9�T69=KMAyayH¬D³T!AS9=7:58a�9=7]b
W�ÞJASDÎ9
ï?æ¬KIA6Fs5J9C3SH?K`3�3SHJDGTE9
;?a
UO7JDÎ;JF¤D³T!a�UsA6AS9=a�3=beâX÷�ãwö�H?9�a�UI;Jï?DGa�3Ea�L³KM5?T69=T�7:DGA69Va�3SLÎæ

9
;?a
UO7J9E36H?9[T69
ß�KM;43SDGa=T�UMåe3SHJ9[ÞJDÎ;8KMASæ­a
UI;?Tj36AyKMDG;43ST=b8â
�sã�2ODG;?a
9E36H?9[a
UI;:ï?D³a�3�a�L³KM5?T69=TwKMAS9
;J9
F4K`36DGRI9sN°D�3�D³T¤A69��s5?DÎAS9=7®36H?KM3¬K`3�LÎ9VKITj3­Us;J9 UMå�36HJ9Q/ { R`KMASDGKIÞJLÎ9VT­DGT�T69�3¤36AS5J9sb�ö�HJDGT
DGT¾Ksa
a
UIß¤PJLGDGT6HJ9=7I�!DÎ36Hó36H?9¦K`3¾LG9=KsTX3�UI;?9¢a�L³KM5?T69 åéUIA�9
êOD³Tj369
;43SDGKILGT=N�KM;87úayH8KM;J;J9=LÎLGDG;JF
åéUIA�5J;JDGRI9=ASTSKML³T=<��!H8K`369=RI9=A·36HJ9¾KsT6T6DÎFs;Jß¤9
;43[36U 36H?9�� { R`KMASD³KMÞJLG9=T=NeK`3�LG9=KITj3·36HJ9¾a
UIASA69
c
TjPQUI;?7JDÎ;JF�/ {| R`KMASDGKIÞJLG9�DGT[Tj9
3C3SA65J9sb�â
�sãEö�H?9H�45?KM;43SD�Ý8a=K`3SDÎUs;�UsAS7J9
ACD³TEP?A69VTj9=A6Rs9=7eb?ö�H?9
a�UIß�ÞJDG;?K`3SDÎUs;�UIå�âX÷�ã�Noâ��Iã�KM;87Ìâ
�sã�PJAS9=T69
ASRI9VT�3SHJ9�T6KM36D³TXÝQKMÞJDGLÎDÎ3Xæ¾UIåo36H?9�UIASDÎFsDÎ;?KILoÜ�ä�2O>
ÞJ5:3·;JUM3[D�3yT�T69�3[UMå�T6UILG5:36DGUI;?T=bQW�;¦K¬T6UILG5:36DGUI; 3SA69=9�åéUsAC3SHJ9¤Ü[à�á�N?3SHJ9
AS9�KIA69�7:5JPJLGDGa=K`3S9
ÞJASKI;?ayHJ9VT�åéUsA�36HJ9�T65JPQ9
A6ï?5JUs5?T�5J;JDGRI9=ASTSKMLeKITST6DÎFs;Jß¤9
;43ST=b
ö�HJ9¦T6P?KIa
9¢a�UIß¤PJLG9�ê:DÎ3Xæ®åéUsA�36HJ9Ì9
;JH8KM;?a
9=7úLÎUsF®KM;?7ðKs7JKMPJ369=7óLGUIFª9=;?a�U:7:DG;JF4T�DGT

Ú@giÂÉÅ ^ k°3SU�9�ê:PJAS9=TST°3SHJ9�a
UI;?Tj36AyKMDG;43ST0KM;87eÚ@giÅmÛCÜ�Ý1Å?k0åéUIA�36HJ9[ayH?KM;J;?9
LGLÎDG;JF¾âÈKI;?7�DG;?7:D³a
KMc
36UIA�R`KMASDGKIÞJLÎ9VTSã�N=T6UzÚ@giÂÉÅ ^ k]DÎ;�3SUM3yKML8âi�!HJ9
AS9�Å8<�7:UIß�KMDG;�T6D;Æ=9IN�Â4<=;45?ß,ÞQ9
A@UMåJa�Us;?TX3SASKIDÎ;43yTSã�b

Þ v6ß�à�ÛjÖ?ÛjÚj#¬¾Jx4»3#¬¾jÙz#�ÕJÛj×�Ô
öoU�9=R�KILÎ58K`369�3SHJ9!9
;?H?KM;?a
9=7­LGUIF�9
;8a�U:7:DG;JF?NMDÎ3�D³T�a�Usß­P8KMAS9=7,36U�3SHJ9EKI7JKIP:369V7­LÎUsF[9=;?a�U:7Oc
DÎ;JF�KM;?7 KML³T6U¤36U�3SHJ9,Tj3SK`3S9�cdUMåÊcÐ36HJ9
cdKIAj3E7:DGAS9=a�3�Ü�ä�2O>ÏTjUsLÎRs9
A�Ü�ä�2O>�c�2OUsLÎRs9�ë��VîÐbQö�HJDGTCDGT
7:UI;J9z�!D�3SH¾K�Tj5?D�3S9EUMåeAyKM;?7:Usß¤LÎæ�Fs9
;J9=ASKM369V7�Þ?DÎ;?KIA6æ�Ü�ä�2O>�T=bsö�HJ9CFI9
;?9
AyK`36DGUI;¤ß¤9�3SHJU:7
DGT0T6DÎß¤DGLGKIA°36U�ä�2O>½ß¤U:7:9
L:ÞoNMDÎ;­3SH?K`303SHJ9!P?KMAyKMß¤9
369
AyT@A69=PJAS9=T69
;43@P?A6UsP8UsAj3SDÎUs;?T�âÊåéUIA05?;JD�c
åéUIASß­DÎ3XæJã!AyK`3SHJ9
A�36H?KI;¢PJASUIÞ?KIÞJDGLÎDÎ36DG9=T=beäwUs;?Tj36AyKMDG;s3yTEÞQ9�3 ��9
9=;¢3 ��U¾5J;JDGRI9=ASTSKML�R�KIA6D³KMÞ?LÎ9VT
KMAS9E;JUM3�FI9=;J9
AyK`3S9=7eN4Þ89Va
KI5?Tj9CD�å�T65?ayH¬K�a�Us;?TX3SASKIDÎ;43wa
UI;43SKIDÎ;?9=7�KM;Oæ�a�Us;:ï?D³a�3yT036H?9�PJASUIÞJc
LÎ9=ß���UI5JL³7�Þ89·3SA6DGRODGKILÎLGæ¾åÈKILGT69IbJçCLGT6U�;JU¾a�Us;?Tj36AyKMDG;s3yT�KMAS9[Fs9
;J9=ASKM369V7¾åéASUIß 9�ê:DGTj369=;436D³KML³T
36U�5J;JDGRI9=ASTSKML³T!âéDÐb 9Ib`3SHJ9E9�ê:D³TX3S9
;436D³KML?DGTm�45?KI;436DÎÝ?9=7­ÞQ9�åéUIAS9�36H?9!5J;JDGRI9
AyTSKMLÊãoÞQ9=a=KM5?T69�36H?9=T69
a
KM;�ÞQ9�A69VTjUsLÎRs9=7�3SU�K¤5J;?KMASæ¾a�Us;?Tj36AyKMDG;s3EKI;?7¬AS9
ß¤U`Rs9=7¾ÞOæ¾P?A69=PJA6U:a
9=TSTjDG;JF?b
öoU©K�RIUID³7©36H?9�ïQKÉ��7:9=TSa�ASDÎÞQ9=7®DÎ;±ëÎ÷�îÐN3�!HJ9=;¨FI9=;J9
AyK`3SDÎ;?FÌK¦a
UI;?Tj36AyKMDG;43�LGDÎ;?f4DG;JF©K

5J;JDGRI9
AyTSKML¬d¢KM;87©KI;Ì9
ê:DGTj369=;s3SDGKIL0R`KMASDGKIÞJLÎ9���N�åéUsA�9=KIayH©R`KMLG5J9¤UMåZd¢K�5J;JDá�45J9�R`KMLG5J9¤UMå
�CD³TCayH?UsT69
;-â`bQáJASUIß 36HJ9VTj9�Å¬ß�KMPJPJDG;JF4T
N-ã`ä�å��ÇÅ�T6KM36D³TXåéæODG;JF¤365JP?LÎ9VTCKMAS9�ayHJU4Tj9=;]b?çCTCK
A69VTj5JLÎ3=N8D�å03SHJ9�7JUIß�KMDG;¢TjDCÆ
9,DGTCFIAS9=K`3S9
A!3SH?KM; 3SHJ9,;O5Jß�Þ89=ACUIå�5J;JDGRI9
AyTSKML]R`KMASD³KMÞJLG9=T=N:36H?9
ï8KÉ�(a
KM;?;JUM3CU:a=a�5JAVb8á?UIA�a
UI;?Tj36AyKMDG;43ST!ÞQ9�3 ��9
9=; 3 �wU¬9�ê:DGTj369=;436D³KML³T
N-ã�å�å��hÅ ^ T6KM36D³TXåéæODG;JF
365JPJLG9=T!KIA69[ayHJUsT69
;¾åéA6Usß�KMLGLQPQUsTST6DÎÞJLG9E3S5JPJLG9=T=bJáJUsA�9
ê:P89=A6DGß¤9
;43STwUMå]3SHJD³T!TjDCÆ
9¤âpæhMçF�è4ã�N
ï8KÉ�ET�DG;¨a�Us;?Tj36AyKMDG;s3yT�ÞQ9�3 ��9
9
;ª9
ê:DGTj369=;s3SDGKILGT�KMAS9¾;JUI3�KM;®D³TSTj5J9sb�á?UIA,9VKIayHªP?KIASKIß¤9�369=A
Tj9
3=N]÷�é�é�Ü�ä�2O>óDÎ;?Tj3SKI;?a�9VT!KMAS9�Fs9
;J9=ASKM369V7eb
öoUCa
UIß¤P?KIA69°3SHJ9�3 ��UE9
;8a�U:7:DG;JFsTÁ�!D�3SH­Ü�ä�2O>0cX2OUILGRI9sN`��9�5?T69=7�K!LGU:a
KILIDGß­P?LÎ9=ß­9=;43SK`c

36DGUI;,UIåeä�2:à(ê­âéUsA6DGFIDG;?KMLGLGæ·7J9=TSa�ASDÎÞQ9=7,Þ4æ,Y[DG5J;?ayH?DÎFsLÎD³KC9
3°KIL�ë ëMîÊã��!DÎ36H,5?;JD�30PJASUIP8KMFsKM36DGUI;
KM;?7¦36HJ9�P?5JA69­LGD�3S9
AyKML0AS5JLÎ9sb]á@DÎFs5JA69 ÷¤TjH?U��ETC3SHJ9�AS9=T65JL�3yT
N�9
ê43S9
;?7JDÎ;JF 3SHJ9�Tj9Va�Us;?7¦9
êOc
P89=A6DGß¤9
;43CUMå�Y[9
;43C9
3�KML�ë���îÐb?ö�H?9�DÎ;8TX3yKM;?a
9=T!H?K�Rs9N�`ò�R`KMASDGKIÞJLG9=T=NB�!D�3SH¦õ¤9�ê:D³TX3S9
;436D³KMLGLÎæ
ì �wlzlJvj�={O�IkVp(hji4k=x�hSuy���
vXu!p��V�Iu���x�tXi¤r4{sx�m³k=vXp �Ixz�dt�vXx� srstXxzkV{?«

224

 10

 100

 1000

 10000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cp
u

tim
e

(m
s)

q_ee

QCSP-Solve median
Adapted log median

Enhanced log median
ímîCï ��ð4� n°¥o}útXxzp�u�hSkVp�qO��vXxz��kV{8«�ñ�²Lò`ós|�ñBô«²´õI|�ö¿²L÷M|�ø�²´ù�ú ò`|�û�ô�üS²´ù�ú ý

�s58KM;436DÎÝ?9=7¢åéUILGLÎU���9=7¢Þ4æ¢õ¬5J;JDGRI9=ASTSKMLGLÎæ6�45?KI;s3SD�Ý89=7ZåéUsLÎLGU���9=7ZÞOæ¢õ¾ß¤UsA69­9�ê:D³TX3S9
;436D³KMLGLÎæ
�s58KM;436DÎÝ?9=7]b?ö�HJ9,7:Usß�KMDG; T6DCÆ
9�D³TSëJN89
;?T65JASDÎ;JF­3SH?K`3E3SHJ9�DG;?Tj3SKM;8a�9=TCKMAS9[5?;:ï8KÉ��9=7eb?ö�H?9
PJA6UsP8UsAj3SDÎUs;�UMåoFs9
;J9=ASKM369V7¾a�Us;?TX3SASKIDÎ;43yT0åéASUIßì36H?UsT69E36H8K`3!KMAS9�KMLGLGU��w9V7­36U­Þ89[FI9=;J9
AyK`3S9=7
DGTSé?b �Jb-ã ä�å D³TSéJb�í:N?KI;?7Qã å�å DGTER�KIA6DG9=7 Ksa�ASUsTST�36HJ9�TSK`3SDGTjÝ8KMÞ?DÎLGD�3Xæ�PJH?KsTj9·3SASKI;?TjDÎ36DGUI;ob?áJUsA
9=KIayH­PQUIDG;s3VN?÷�é�é[DÎ;8TX3yKM;?a
9=T¬��9
AS9�FI9
;?9
AyK`369V7ebMö�HJ9!ß¤9=7JDGKI;¤K�Rs9
AyKMFs9wD³T05?T69=7­ÞQ9=a
KI5?T69!UMå
HJDÎFsH UI5:3SLÎDG9
AyT
bJö�H?9·36DGß­9·3yKMfs9
;�36U¤9
;8a�U:7:9·36H?9�DÎ;?Tj3SKI;?a�9VT!D³T�;JUM3EDG;?a�LG5?7:9V7eN?Þ?5:3CTjDG;?a
9
D�3ED³TEK­LÎDG;J9VKMA�9
;?a
U:7:DÎ;?F¤36HJD³T�DGTE;J9
FsLÎDGFIDGÞJLG9�åéUsAE7:DÎô�a
5JLÎ3EDÎ;?Tj3SKI;?a�9VT
b
ö�HJ9­a
LÎU4Tj9VTX3·Tj9
3j3SDÎ;JF UIå�ã å�å 3SU�3SHJ9­PJH?KIT69�36AyKM;?T6D�3SDÎUs;¢D³TJéJb�íIí:N��!DÎ36H¦ò?�¬DG;?Tj3SKI;?a�9VT

T6KM36D³TXÝ8KIÞJLG9CåéASUIß ÷�é�éJb:ö�HJD³T�KML³TjU¤KMP?PJA6U�ê:DGß�K`369=LÎæ�a
UIDG;?a�D³7:9=T1�!DÎ36H�36HJ9�7JD�ô¾a�5?L�3Xæ¾PQ9=KIf:T
åéUIA!3SHJ9�9
;?a
U:7:DÎ;?FsT=NJÞJ5:3E;JUI3EåéUIA�Ü�ä�2:>0c�2:UILGRI9IbJá?UIAELGU���9
A�R`KMLG5J9=T!UIå3ã�å�å�åé9��w9=AEUMå@36H?9
DÎ;?Tj3SKI;?a�9VTEKMAS9�T6KM36D³TXÝQKMÞJLG9�KM;?7�36H?9�9
;JH?KI;?a�9V7�LÎUsF­9=;?a�U:7:DG;JF�D³T!LG9=TST!a�UIß¤PQ9�3SD�3SDÎRs9N�!D�3SH
Ü�ä�2O>0cX2OUILGRI9sb]áJUIA�9
êJKMß¤PJLG9¾K`3�ã�å�åQMþO&: K�<JNPë�ë�UMå�36H?9�DÎ;?Tj3SKI;?a�9VT�KMAS9¤5J;?TSK`3SDGTjÝ8KMÞ?LÎ9sN
KM;?7ªÜ�ä�2O>0cX2OUILGRI9­UI5J36PQ9
A6åéUIASß¤T�3SHJ9�9
;JH8KM;?a
9=7ÌLÎUsF�9=;?a�U:7:DG;JF?b4ÏðH?9
AS9@ã�å�åÇM�O&: ÿ�KILÎL
36HJ9·DG;?TX3yKM;?a
9=T�KMAS9�TSK`3SDGTjÝ8KIÞJLÎ9·KM;87�36H?9[9=;JH?KI;?a�9V7¾LGUIF­9
;?a
UO7JDÎ;JF­UI5J36PQ9
A6åéUIASß¤T!Ü�ä�2O>0c
2OUILGRI9sboç�3.ã�å�åsM�O&: �JNo36HJ9¬ß­9V7:D³KM;ªåéUsA�36HJ9�9
;JH8KM;?a
9=7½LGUIFZ9
;8a�U:7:DG;JFZåé9
LGL�Þ89=LÎU�� 36H?9
A69VTjUsLÎ5:3SDÎUs;¬UIå�3SHJ9·36DGß¤9
AVN?TjU­DÎ3EDGT!;?UM3ETjH?U��!;�Us;�3SHJ9·FIAyKMPJHob
ö�HJDGT�Tj5?FIFI9VTX3yT[36H?KM3�ä�2:à(êZD³T�ß¤UsA69¾9	bQ9Va�3SDÎRs9�36H?KI;øÜ�ä�2O>0cX2OUILGRI9�DG;ªPJAS5J;JDG;JF¢UsA

Þ?KIayfVñX5Jß¤PJDG;JF�U`RI9=A!5J;JDGRI9=ASTSKML]R`KIA6D³KMÞJLG9=T=N:ÞQ9=a
KI5?T69�DÎ;¢K¤LGUOUsT69
LGæ4cda
UI;?Tj36AyKMDG;J9=7¬DÎ;8TX3yKM;?a
9
36HJ9·ß�KMDG;�a
UsTj3!DGT�ÞJAyKM;8ayHJDÎ;?F,UI;�5J;JDGRI9=ASTSKML³T=b:Ü�ä�2O>�c�2OUsLÎRs9[a
UI;43SKIDÎ;8T�K­ß¤9�3SHJU:7�a=KMLGLÎ9V7
TjUsLÎ5:3SDÎUs;Ì7:DGAS9=a�3S9=7ÌPJAS5J;JDG;JF¬3SUZKIayHJDG9
Rs9,3SHJDGT=NeÞJ5:3�DÎ3�ß¤K�æZÞQ9�LG9=TST�9	bQ9Va�3SDÎRs9�3SH?KM;Ì36H?9
TjUsLÎ5:3SDÎUs;¤Þ?KIayfVñX5Jß¤PJDG;JF�DG;?a�UsA6PQUIAyK`3S9=7�DÎ;436U¤ä�2:à(ê?bIö�H?DGT�a
UI5JL³7¤ÞQ9!369VTX3S9=7¤ÞJ5:3wA69=ß¤KIDÎ;8T
åéUIA�åé5:3S5JA69J��UIASf�b

225

� ¸Ì×wÔCÚ4¾jÙ¿yOÛX×�Ô¿y
W­H8K�RI9 DÎ;43SA6U:7:5?a
9=7ø36H?9¢9
;JH8KM;?a
9=7úLÎUsFª9
;?a
U:7:DÎ;?F?N�Þ?KsTj9V7úUI;ú36HJ9ÌKI7JKIP:369V7øLGUIFªKI;?7
9
;JH?KI;?a�9V7ÏÞJDG;?KIA6æð9=;?a�U:7:DG;JFsT=b�Wd3 9
ê:PJLÎUsD�3yT�36HJ9½PJ5JAS9©LÎDÎ369=ASKIL�AS5JLG9ÌPJAS9=T69
;43 DÎ;»T6UIß¤9
Ü[à�áªT6UILGRI9=AST�36U­A69=PJL³KIa�9C36HJ9·DG;?7:D³a
KM36UIA�R`KMASDGKIÞJLG9=TwUMå]3SHJ9�KI7JKIP:369V7¾LGUIF,9=;?a�U:7:DG;JF8bOö�H?9
9
;JH?KI;?a�9V7¤LÎUsF�9
;?a
U:7:DÎ;?F�DGTw9`b�9=a�36DGRI9sNIDG;¾TjUsß­9�a
KIT69=T�UI5:3SP89=AjåéUsA6ß¤DG;JF·36HJ9[TX3yK`3S9�cdUMåÊcÐ36HJ9
c
KMA63!7JDÎAS9=a�3!T6UILG5:3SDÎUs;�KILÎFsUIASD�3SHJß b
ö�HJ9wKs7:R`KM;43SKIFI9�UIå:36HJD³T@9
;?a
UO7JDÎ;JF�U`RI9=A°Ü�ä�2O>0cX2OUsLÎRs9�a�Us5JLG7,Þ89�7:5J9�36U·KEAS5JLG9�DG;�36H?9

Ü[à�áóT6UILGRI9=A=NJDG;h�!HJD³ayH¦a=KIT69,DÎ3¿��UI5JL³7ZÞQ9,DG;s3S9
AS9=Tj36DG;JF�3SU�7:9=RI9
LGUIP¢36HJ9­KM;?KILÎUsFI5J9�AS5JLG9
åéUIACÜ�ä�2O>°bJçELÎ369=A6;?KM36DGRI9=LÎæ¤DÎ3!a
UI5JL³7¾ÞQ9�TjDGß¤PJLGæ�FIAS9=K`3S9
A�9�ô¾a�DG9
;8a�æ�UMåo36HJ9,Ü[à�áªTjUsLÎRs9
AVN
HJU��w9=RI9=A�36HJD³T�Tj9=9
ß�T¬5?;JLÎDGfI9=LÎæúÞQ9=a
KI5?T69¢36H?9½äw>�� 36DGß¤9=T�P89VKMfóDÎ; 7:Dcb�9
AS9
;43�PJLGKsa�9VT
DÎ;½Ý?Fs5JAS9Z÷IboW�;ORs9=Tj36DGFsK`3SDÎ;?F�3SHJD³T�åé5JA636H?9
A�D³T�LG9�åÊ3�åéUIA�åé5:3S5JAS9���UIASfQb��C3SHJ9
A�DÎ;43S9
AS9=Tj36DG;JF
7:DÎAS9=a�36DGUI;?T1��UI5JL³7¾ÞQ9[36U¤DG;4Rs9=Tj36DGFsKM369E3SHJ9�T65JPJPQUIA63�9=;?a�U:7:DG;JF.�!D�3SH�9=;JH?KI;?a�9V7¾LGUIF?N:KI;?7
36U�7:9
Rs9
LGUIP�9
;?a
U:7:DÎ;?FsT�UMå0a�Usß¤ß­Us;�;?UI;:cdÞJDG;?KMASæ¾a�Us;?TX3SASKIDÎ;43yT
b
Wd3­D³T­;JUM3­9�ê:P89Va�3S9=7¨36H?KM3=N°DÎ;¨36HJ9�LGUI;JF¦369
ASß N�Ü[à�á �!DGLGL�Us5:36PQ9
A6åéUIASß Ü�ä�2O>*Us;

LGKIA6Fs9CTX3SA658a�365?A69V7�PJASUIÞJLG9
ß�T=b4ö�HJ9·a�Us;436ASDÎÞJ5J36DGUI;¾HJ9=A69�DGT�36U­9
;8KMÞJLG9·Ü�ä�2O>øA69VTj9VKMAyayHJ9
AyT
36U©Þ89
3j369=A�a�UIß¤P?KIA69¬36HJ9=DÎA¤ß¤9�3SHJU:7JT¤KMF4KMDG;?TX3�Ü[à�á�N0KM;87ª36U©D³7:9
;436DÎåéæªß¤9�3SHJU:7JT­5?Tj9V7
DÎ;¦Ü[à�á´�!HJD³ayHÙ��UI5?LG7�Þ89=;J9�Ý?3[Ü�ä�2O>°b���;J9·D�3S9
AyK`3SDÎUs;¬UMå@36H?DGT�H?KsT!KMLGA69VKI7:æ�H8KMPJPQ9
;J9V7
�!D�3SH�3SHJ9�PJ5JAS9·R`KMLG5J9�A65?LÎ9·ÞQ9
DG;JF�DÎ;8a�UIASPQUIAyK`369V7¾DG;436U¬Ü�ä�2O>0cX2OUILGRI9sb

� � Ú&%!ÔE×�	I¾ x�ØS'mxÁß�xoÔwÕ&y
ö�HJ9CÝ8ASTj3�KI5:36HJUsA�D³Twåé5J;?7:9V7¾ÞOæ�KM;¬è�>w2�
Eäó7:U:a�3SUIAyKML?36AyKMDG;JDÎ;?F,FIAyKM;43Vb�Ï©9¿��UI5JL³7¾KILGT6U
LÎDGfI9!3SU�3SH?KM;Jf�çC;?7:AS9	��
!U��!LG9
æ�åéUIA�P?A6U`ROD³7:DÎ;?F·36HJ9�DÎß¤PJLG9
ß¤9
;43yK`36DGUI;¬UMå@ä�2:à(ê,KI;?7¤åéUsA
a�UI;43SA6DGÞJ5:3SDÎ;JF¾36U¬KI;¢9=KIA6LGDÎ9=AEP?KIAj3CUIå036HJD³T¿�wUsA6fÌëÎ÷�îdN�KM;?7�
�UsTj3SKsTE24369=A6FsDÎUs5 åéUIA�HJ9
LGP:åé5JL
a�UIß¤ß¤9
;43yT!KM;?7�5?T69·UMå0Ü�ä�2:>0c�2:UILGRI9Ib

� x���xoÖ&xoÔCÚjx�y
�=«�²Ð�={¾¥�«J¸�uy{`t�|O¥�uStXuSv���xz§Vi`tXxz{4§V�=lzu[�
{O�¤��{O�MvXuS����k���lzuS�`|:¯]{4hykM�Ixz{4§ � rO�
{`tXxz�4u���n0gI¥o�w�=�
� r4�={`tXx��Ou�� ¡ k`kVlzu��
{¾�4k=vXp�r4l��=uV|sxz{¤¥evXk`hV«:¯�n°�w²��������s|4qO�=§=uy�E��Ñ=��µX�����M|��������I«

�`«!��lÎ�
{! �«4�svXxz��h6i­�={4��¼°xzp�k=tXi`�#"s«4¥�uyrs§V{4xzu%$=|:gMkVlz~Mx�{s§&�wkV{sµ ¡ k`k=lzu��={¾gI�
tXxz�d�:�
 4xzlzx�tÐ��¥]vXk= sµ
lzuyp��0��x�tXi�g`tXk`h6i4�=�dtXxzh('8k`h��
legIuy�
vXhji8|Ixz{�¥]vXk`h=«O²)"�n°�w²������M�V|:q4�=§VuS�*���+��µ)�����M|,�����I�V«

- «�²Ð�={�¥�«4¸�uy{`t�|O��vXhEn@kV{s��xz�dtXuy{4hS�­xz{�gs�o¼�|Ixz{�¥]vXk`h=«:¯�n°�w²��������M|:q4�=§VuS�E���M�6µj����.`|,�����+�M«
�I«!¯]{svXxzhyk¤¸�x�rs{4hji4xz§Vlzx��I|� ¤�
����x�p�k#����vXx/$%$��={sk¤�
{O�¾��vXp��
{O�sk�¼Q�=hyhji4uylzl��I| ¡ �
h6¶�0Ðr4p�q4xz{s§�mGk=v
£`rO�
{`tXxz�4u�� ¡ k`kVlzu��={�lzk=§VxzhE�X�
tXxz�d�:�
 4xzlzxzt��`|Oxz{¤¥evXk`hV«4²)"`n°��²1�����I�V|4qO�
§Vuy�*�VÑ�.�µ2���M�V|������M�V«

.`«3 ¤��vXhyk�n°�=�skVlzxÊ|4 ¤�
vXhyk[gIhjiO�
uSv�mÐ|I��{O�MvXu��E¸�xzk
~=�={4�
vj�IxJ�={O�# ¤�
����x�p�k[¸�xzk�~V�
{O�
vj�IxÊ|I�w{��wl�µ
§=k=vXx�tXi4pótXk!¯]~=�=lzrO��tXu � rO�
{MtXx��4u�� ¡ k`k=lzu��={��4k
vXp[rslÎ�
u0�={4��x�tX�]¯e´sq:u6vXx�p�uS{Mtj�
lI¯o~=�=lzrO��tXxzkV{8|
xz{!"Vk=rsvX{4�=l?k=mo�wrItXkVp���tXu��#��u��
��kV{4xz{s§s|����657��80q4�=§=uy�!���I�6µX�%�9�`|,�����+�`«

�M«:'?r4h��
� ¡ k
vj�su��
rs´ª�
{O�ª¯evXxzh; ­k={smGvXk��`| ¡ uS�`kV{4�<��¥�=���vXh6µdn@k={4��xz�dtXuy{shS�©mGk=v � r4�={`tXx��Ou��
n@k={4�dt�vj�=xz{`tX�y|Oxz{�¥evXk`hV«:n°¥]µ2�����+�`|OqO�
§Vuy� - Ñ`�Sµ - �=�I|,�������M«

Ñ`«�²Ð�={C¥�«
¸�uy{`t�|�¥�uStXuSv���xz§Vi`tXxz{4§V�=lzu°�
{O���wkV�dtj�=�egMtXuSvX§=x�k=r8| � n0gI¥]µÐgMkVlz~�u�=��¢gMkVlz~�uSv8m³k
v � rO�
{sµ
tXx��Ouy��n@kV{s�dt�vj�=xz{`t�gI�
tXxz�dmÊ�
hStXxzkV{¾¥evXkV sl�uSp��y|stXk��
q4q:u���v�x�{¤¥]vXk`hV«s²)"�n°�w²1�����+.`«

�M«!��{O�IvXu6�<��k���lzuS�`| ® �
tXhji4xz{s§Cn@lÎ�
r4��uy�0xz{ � rO�
{`tXxz�4u�� ¡ k`k=l�uy�={��4k=vXp�r4l��=uV|`�wq:uy���wuy��uy�
vXhji
¸wvXk=r4q­tXuyhji4{sxzh��=lJvXuyq:k=v�tw���M|4��¥o¯@g`µÐ����µ2����� - |,����� - «

�M«!¯]{svXxzhyk¤¸�x�rs{4hji4xz§Vlzx��I|� ¤�
����x�p�k#����vXx/$%$��={sk¤�
{O�¾��vXp��
{O�sk�¼Q�=hyhji4uylzl��I| ¡ �
h6¶�0Ðr4p�q4xz{s§�mGk=v
£`rO�
{`tXxz�4u�� ¡ k`k=l�uy�={ lzkV§=xzh·�X�
tXxz�d�:�
 4xzlzx�tÐ�`|?��v�tXx��4hyx��=le²Ð{`tXuylzlzxz§Vuy{shyu��>�9.?5d�Sµ2��8�q4�=§VuS�!�V��µj�����M|
����� - «

226

Author Index

Ågren, Magnus, 37

Burke, David A., 90

Andersen, Henrik Reif, 203

Bacchus, Fahiem, 13, 54
Barahona, Pedro, 120
Barták, Roman, 114
Bessiere, Christian, 138
Brown, Kenneth N., 90, 156

Castro, Carlos, 31
Ceballos, Rafael, 144
Cejudo, Victor, 144
Chenouard, Raphael, 66
Cohen, David, 197
Correia, Marco, 120
Crawford, Broderick, 31

Davies, Jessica, 54
De Koninck, Leslie, 42
de la Banda, Maria Garcia, 84
Dechter, Rina, 96
Del Valle, Carmelo, 144
Demoen, Bart, 42
Deville, Yves, 150, 174
di Tollo, Giacomo, 72
Dupont, Pierre, 150, 174

Flener, Pierre, 37
Fox, Maria, 168
Frisch, Alan, 191

Gasca, Rafael M., 144
Gogate, Vibhav, 96
Granvilliers, Laurent, 66
Gregory, Peter, 168
Gualandi, Stefano, 132
Guerri, Alessio, 162

Hadzic, Tarik, 203
Hanzalek, Zdenek, 108
Heras, Federico, 1
Houghton, Christopher, 197

Jean, Sallantin, 180

Kelbel, Jan, 108

Kitching, Matthew, 13

Lambert, Tony, 126
Larossa, Javier, 1
Long, Derek, 168

Marriott, Kim, 84
Mart́ınez-Hernández, Bernadette, 191
Mateescu, Robert, 215
Mathias, Paulin, 180
Meisels, Amnon, 19
Michel, Laurent, 209
Milano, Michela, 162
Monette, Jean-Noël, 174
Monfroy, Eric, 126

Nigtingale, Peter, 221

Pearson, Justin, 37
Pini, Maria Silvia, 102
Prestwich, Steven, 60

Rafeh, Reza, 84
Rollon, Emma, 48
Rossi, Francesca, 102
Rossi, Roberto, 60

Sébastian, Patrick, 66
Samulowitz, Horst, 54
Saubion, Frédéric, 126
Schaus, Pierre, 174
See, Andrew, 209
Shapen, Uri, 19
Smith, Stephen, 25
Streeter, Matthew, 25
Stynes, David, 156

Unsworth, Chris, 186

Van Hentenryck, Pascal, 209
Verger, Guillaume, 138

Wallace, Mark, 84

Zampelli, Stéphane, 150
Zazone, Moshe, 19
Zivan, Roie, 19
Zlomek, Josef, 114
Zytnicki, Matthias, 7

