
Symmetry-Breaking Constraints

for Matrix Models

Zeynep Kiziltan1 and Barbara M. Smith2

1 Department of Information Science, Uppsala University, Sweden.
Zeynep.Kiziltan@dis.uu.se

2 School of Computing and Engineering, University of Huddersfield, England.
b.m.smith@hud.ac.uk

Abstract. Many CSPs can be effectively represented and efficiently
solved using matrix models, in which the matrices may have symme-
try between their rows and/or columns. Eliminating all such symmetry
can be very costly as there are in general exponentially many symme-
tries. Cost-effective methods have been proposed to break much of the
symmetry, if not all. In this paper, we continue with this line of research,
and propose several symmetry-breaking constraints. Experimental re-
sults confirm their value.

1 Introduction

Symmetry in a CSP model is an important issue as the exploration of symmet-
ric but essentially equivalent branches in a search tree may significantly slow
down the search process. This has interested many researchers in recent years,
and several techniques have been developed to address the issue of eliminating
symmetry in CSP models.
An important class of symmetries in constraint programming arises from

matrices of decision variables where any two rows and any two columns can
be interchanged [2]. For example, in the 2-d matrix model of the social golfers
problem1, the weeks are indistinguishable, and so are the groups. Any solution is
thus symmetric to another obtained by interchanging any two rows representing
two periods, and/or any two columns representing two weeks. In attempting
to find all solutions2, an exponential number of search states will be visited
unnecessarily if row and column symmetries are not eliminated.
On the other hand, eliminating all symmetries is not so easy, since the effort

required may also be exponential. In such a case, removing all symmetries is
not cost-effective: the overhead introduced is as bad as the wasted search effort
with no symmetry breaking. Methods to reduce significantly the row and column
symmetry in matrix models with only a polynomial effort have been proposed.
For instance, we can lexicographically order both the rows and columns [2],

1 prob010 at www.csplib.org
2 Note that symmetry elimination is beneficial in exhaustive search as opposed to in
first-solution search [6].



or we can apply Symmetry Breaking During Search (SBDS) [5] on the columns
and combine this with adding symmetry-breaking constraints on the rows before
search starts. Such constraints must not get in the way of permuting the columns.
One strategy is to insist that the vectors are ordered by their sums [7].

In this paper, we first explore other symmetry-breaking constraints that can
be posed on a matrix model so as to remove a significant amount of row and
column symmetry. We then empirically show the effectiveness of the proposed
constraints in comparison with the related work.

2 Related work

In recent years, many techniques have been developed towards eliminating sym-
metry in CSPs models. One can for instance specify some constraints that
are satisfied by a subset of the solutions within a set of equivalent symmet-
ric solutions of a CSP model. Ideally, only one solution in an equivalence class
satisfies these constraints, and thus all symmetries are eliminated. These con-
straints are called ‘symmetry-breaking’ constraints. There are at least two ways
of posting symmetry-breaking constraints in constraint programming: by adding
symmetry-breaking constraints to the model before search starts (e.g. [1]), or
during search (e.g. SBDS [5]). In the rest of this paper, we will refer to the
former when we talk about adding symmetry-breaking constraints.

In [2], it is shown that if a 2-d matrix model with row and column sym-
metry has a solution then it has a solution with the rows and columns ordered
lexicographically. Hence, imposing lexicographic ordering constraints on both
the rows and the columns (called double-lex) does not remove any unique solu-
tions. The lexicographic ordering constraints are symmetry-breaking constraints
and are posted between every adjacent pair of rows or columns. For an n × n

matrix model with row and column symmetry, O(n) symmetry-breaking con-
straints are posted. Whilst imposing lexicographic ordering constraints on the
rows (columns) breaks all row (column) symmetry, double-lex does not break all
row and column symmetries. However, experimental results show that double-lex
is in practice effective at dealing with row and column symmetries.

In theory, SBDS can be used to eliminate all row and column symmetries of
a matrix model. However, since, an n×m matrix has n!m!−1 symmetries other
than identity, breaking all symmetries would require as many SBDS functions,
so SBDS can only be used for small matrices (e.g. 3×3 and 4×4). Therefore, in
[7], using a subset of the full SBDS functions is proposed, to reduce rather than
eliminate row and column symmetries in large matrices. Since row symmetry
alone (or column symmetry alone) can entirely be eliminated by row (column)
transpositions, a promising subset is the row transpositions and the column
transpositions, which require only O(n2) SBDS functions for an n × n matrix.
Adding all combinations of a row transposition and a column transposition to
the row and column transpositions would eliminate even more symmetry. This,
however, increases the number of SBDS functions to O(n4).



In [4], an implementation of SBDS combined with the GAP system (Groups,
Algorithms and Programming) is presented, which allows the symmetries of
a CSP to be represented by the generators of the group. This is a promising
approach, but the experiments reported show that the current implementation
is much slower than double-lex ordering to solve a BIBD problem represented
by a 6 × 10 matrix.

In [7], combining SBDS with adding symmetry-breaking constraints is ex-
plored. One can for instance use column transpositions in SBDS to remove the
column symmetry (called col-trans). This would require only O(n2) SBDS func-
tions. To reduce the row symmetry, one can add constraints that order the
rows by their sums. This method (called col-trans+row-sum) does not break all
symmetries because it does not consider combinations of row and column per-
mutations. However, it is very practical for reducing symmetry in large matrices.

3 Symmetry-breaking constraints

The effect of col-trans can also be achieved by posing lexicographic constraints
on the columns (called col-lex), because either of col-trans or col-lex breaks
all column symmetry. Col-trans+row-sum thus removes the same amount of
symmetry as col-lex combined with row-sum (col-lex+row-sum). There are other
factors which might make one of these strategies preferable to the other: this is
discussed in Section 5.

The following theorem is given in [2]:

Theorem 1. Given a 2-d matrix model where the row sums are all different,

ordering its rows by their sums as well as its columns lexicographically breaks all

row and column symmetry.

If a 2-d matrix model with row and column symmetry has a solution, then it
has a solution with the rows ordered by their sums. Now any two rows may not
be permuted even if any column permutation follows this row permutation. We
can now order the columns lexicographically as the row sums are invariant to
column permutations. Hence, all symmetry is broken.

What happens when some row sums are equal? In this case, even if we order
the rows by their sums and the columns lexicographically, we do not break all
symmetry because any two rows with the same sum can be swapped, and then
the columns can be lexicographically ordered. We now show that when some
row sums are repeated, we can order the rows by their sums and the columns
lexicographically, and order the rows having the same sum lexicographically.
This will remove more row and column symmetry.

Theorem 2. If a 2-d matrix model with row and column symmetry has a solu-

tion, then it has a solution with the rows ordered by their sums and the columns

ordered lexicographically, as well as the rows with equal sum ordered lexicograph-

ically.



Proof. We can order the rows of any matrix by their sums. Now the rows having
different sums may not be permuted by Theorem 1. On the other hand, the rows
with equal sum can freely be permuted. Hence, imposing an ordering on the rows
by their sums makes the model have partial row symmetry3. We reduce partial
row symmetry, and column symmetry by imposing a lexicographic ordering on
every subset of the rows that can be permuted (in this case the rows with equal
sums), and a lexicographic ordering on the columns [2]. ut

The method in Theorem 2, called col-lex+row-sum(+row-lex), reduces to
double-lex if the row sums are all the same. If the row sums are all different,
then it reduces to col-lex+row-sum, which in that case breaks all symmetry [2].
This method thus combines the power of double-lex when the row sums are
all the same, with the power of row-sum constraints when the row sums are
all different. When the row sums are neither all the same nor all different, col-
lex+row-sum(+row-lex) eliminates more symmetry than col-lex+row-sum. For

instance, the solution





0 0 1
1 1 0
0 1 1



 is symmetric to





0 0 1
0 1 1
1 1 0



, and is eliminated by

col-lex+row-sum(+row-lex) but not by col-lex+row-sum.

However, note that col-lex+row-sum(+row-lex) can also leave symmetry in
a 2-d matrix model. Consider a 3× 3 0/1 matrix model that has both row and

column symmetry. The solutions





0 0 1
0 1 0
1 0 1



 and





0 0 1
0 1 0
1 1 0



 are symmetric solu-

tions that have rows ordered by their sums, columns ordered lexicographically,
as well as the rows with equal sums ordered lexicographically.

We can also treat each row of the matrix as a multiset, i.e. as a set with
repetitions, and insist that each row, as a multiset, should be no greater than the
rows below it. We can, for instance, imagine the values in rows 1 and 2 sorted
in descending order: the largest value in row 1 must be no greater than the
largest value in row 2; if they are the same, we compare the 2nd largest values,
and so on. Multiset ordering of the rows is stronger than row-sum ordering
because non-identical rows with the same sum may be different when considered
as multisets. Hence, combining multiset row ordering with col-lex (called col-
lex+row-multiset) would reduce more symmetry than col-lex+row-sum does. For

instance, the matrix





0 1 2 3
0 3 3 3
1 2 3 3



 is symmetric to





0 1 2 3
1 2 3 3
0 3 3 3



, and is eliminated

by col-lex+row-multiset but not by col-lex+row-sum.

We can achieve multiset ordering by assigning a weight to each value, sum-
ming the weights along each row and constraining the sums to be non-decreasing.
Since we first order the rows in increasing order of maximum element, and con-
sider other elements in the rows only if there is a tie, the weight should increase
with the value. We want to ensure that, for instance, for any possible value k,

3 A matrix model has partial row (resp. column) symmetry iff strict subset(s) of the
rows (resp. columns) of one of its matrices are indistinguishable [2].



a row containing say one element with value k and n − 1 0s has greater weight
than a row in which each of the n elements is k − 1, where n is the number of
columns. A suitable weighting assigns the weight nr to the value r. Thus the first
row in the example has total weight nk + n− 1 and the second row has weight
nk. The ordering can be implemented by introducing new constrained variables
wij such that wij = nk iff xij = k. Then the constraint that row i is not greater
than row i+ 1, both considered as multisets, is:

∑

j wi,j ≤
∑

j wi+1,j .

With this implementation, multiset ordering appears to be no more expensive
than row-sum ordering. However, it will not be possible to implement it in this
way unless nl is manageable, where l is the largest possible value in the matrix.
Moreover, if there are only two possible values in the domains, col-lex+row-
multiset is equivalent to col-lex+row-sum.

It is possible to improve col-lex+row-multiset even further. We can imagine
that two non-identical rows may have the same weighted sum, so that multiset
ordering is not able to distinguish between them. We may, however, distinguish
them by ordering them lexicographically. We can easily show that we do not lose
any solutions by this method.

Theorem 3. Given a 2-d matrix model where the row weighted-sums are all

different, ordering its rows by their weighted-sums as well as its columns lexico-

graphically breaks all row and column symmetry.

Proof. The proof of theorem 1 can easily be adapted for weighted-sums. ut

Theorem 4. If a 2-d matrix model with row and column symmetry has a solu-

tion, then it has a solution with the rows ordered by their weighted-sums and the

columns ordered lexicographically, as well as the rows with equal weighted-sum

ordered lexicographically.

Proof. The proof of theorem 2 can easily be adapted for weighted-sums. ut

With this new method, called col-lex+row-multiset(+row-lex), if the row
weighted-sums are all the same then we will end up with double-lex. Also, when
the domain size is 2, the strategy will specialise into col-lex+row-sum(+row-lex)
which is stronger than col-lex+row-sum. If the row weighted-sums are all differ-
ent then we will end up with col-lex+row-multiset, which breaks all symmetry
when the row weighted-sums are all different.

This method thus combines the power of double-lex when the row weighted-
sums are all the same, with the power of col-lex+row-sum(+row-lex) when
the domain size is 2, and with the power of weighted-sum constraints when
the row weighted-sums are all different. Hence, col-lex+row-multiset(+row-lex)
eliminates more symmetry than col-lex+row-multiset. For instance, the ma-

trix





0 1 2 3
3 3 3 0
0 3 3 3



 is symmetric to





0 1 2 3
0 3 3 3
3 3 3 0



, and is eliminated by col-lex+row-

multiset(+row-lex) but not by col-lex+row-multiset. However, note that col-
lex+row-multiset(+row-lex) can also leave symmetry in a 2-d matrix model.



3x3 matrices 4x4 matrices
Strategy 2 vals 3 vals 4 vals 5 vals 6 vals 2 vals 3 vals

SBDS 36 738 8240 57675 289716 317 90492
no symmetry-breaking 512 19683 262144 ≥ 1.5M ≥ 1.5M 65536 ≥ 1.5M
double-lex 45 1169 14178 102251 520017 650 250841
col-lex+row-sum 42 1007 11174 75715 368154 567 190671
col-lex+row-sum(+row-lex) 39 832 9264 63829 316329 420 120281
col-lex+row-multiset 42 863 9128 61555 302386 567 136665
col-lex+row-multiset(+row-lex) 39 804 8710 59716 296337 420 109545
row & col. transpositions
+combinations 36 786 8985 63052 315428 353 114966

Table 1. Number of matrices found using different symmetry-breaking strategies.

4 Experimental results

We have carried out some experiments to compare different ways of reducing
symmetry in a matrix model with row and column symmetry. In the experiments,
we ignore any constraints on the matrix to be constructed. We only specify the
size of the matrix and the domain size of the elements in the matrix, and then
want to find a set of matrices such that no two can be generated from each other
by permuting the rows and/or columns. We here consider small matrices only,
so that we can compare the results with the results of SBDS, which eliminates
symmetry entirely but is applicable, at present, only to small matrices. Table 1
shows how many solutions each technique finds, in comparison with the number
of distinct solutions given by SBDS, and also in comparison with no symmetry-
breaking. Note that M stands for a million.

Note that using SBDS does not hinder the variable and value ordering; if
we order the matrices in any symmetry equivalence class according to the vari-
able and value ordering being used for the search, then the first matrix in each
equivalence class is the one that will be found. On the other hand, if we are
adding symmetry-breaking constraints to the model before search, we have to
be more careful in choosing the search strategy: the constraints should be de-
signed with a variable and value ordering in mind (or v.v.); otherwise, the first
matrix in an equivalence class according to the ordering may conflict with the
symmetry-breaking constraints.

The lexicographic ordering constraints discussed in [2] are consistent with
a variable ordering which considers the top row, left to right, 2nd row, left to
right, and so on, and the values in ascending order. This ordering has been used
for the experiments described here.

As seen in Table 1, col-lex+row-sum(+row-lex) breaks more symmetry than
double-lex and col-lex+row-sum. Col-lex+row-multiset is a better strategy than
col-lex+row-sum(+row-lex) when there are more than 3 possible values for each
element of the matrix. On the other hand, col-lex+rom-sum(+row-lex) is a better
strategy than col-lex+row-multiset when the domains of the matrix elements



have 2 or 3 values. Table 1 shows that by improving col-lex+row-multiset by
lexicographically ordering equivalent rows under multiset ordering, we obtain
better results than any other approximation technique mentioned so far.
Another possibility for reducing symmetry is to use SBDS with row transpo-

sitions, column transpositions, and combinations of one of each (just the trans-
positions without the combinations is a poor strategy, as shown in [7]). For 3×3
matrices with 2 or 3 possible values, and for 4×4 matrices with 2 values, row and
column transpositions plus combinations gives better results than col-lex+row-
multiset(+row-lex). For the other domains, col-lex+multiset-row(+row-lex) is
the best approximation technique. As the matrix size enlarges, SBDS functions
may not be manageable, so col-lex+row-multiset(+row-lex) may be preferable.
However, whether multiset ordering is practicable on larger matrices depends
on whether it can be implemented efficiently: the method described here would
only be feasible for small matrices and a small number of values. In such a case,
col-lex+row-sum(+row-lex) would be a practical approximation technique.

5 Discussions

From the experiments presented here, the best approximation to eliminating
symmetry in matrices with more than three possible values, of those we have
tried, is multiset ordering on one dimension as well as lexicographic ordering on
the vectors that are equivalent under multiset ordering, combined with either
lexicographic ordering or SBDS using just the transposition symmetries on the
other dimension. Both strategies will result in the same number of matrices being
generated. Which of them is the better choice in practice probably depends
on other factors, such as the efficiency of the implementation of the multiset
ordering and lexicographic ordering constraints, or the effect of enforcing GAC
on them. Frisch et al. in [3] propose a linear time global consistency algorithm for
maintaining GAC on lexicographic ordering between two vectors. One factor that
favours SBDS is that whichever solution is found first in an equivalence class,
symmetry-breaking constraints added during search eliminate the symmetric
solutions. On the other hand, symmetry-breaking constraints added to the model
implicitly specify which solution is to be found, before search starts. This may
slow down the search, as the specified solution may not be found easily in the
search tree.
Whether a strategy involving multiset ordering is actually practicable de-

pends on whether the ordering can be implemented efficiently: the method de-
scribed here would only be feasible for small matrices and a small number of
possible values. For large matrices, row-sum ordering with lexicographic ordering
on the rows with equal row-sums, combined with either lexicographic ordering
or SBDS using just the transposition symmetries on the columns, or the same
strategy with rows and columns reversed, would be a practical approximation
technique.
The experiments reported omit any problem constraints. Even though the

symmetry-breaking constraints mentioned do not interfere with problem con-



straints, the effect of reducing symmetry could be very problem dependent. For
instance, if the rows of a matrix are constrained to have the same sum (e.g. the
matrix model of BIBD4), then row-sum ordering will not be effective, and thus
col-lex+row-sum will specialise into col-lex, and col-lex+row-sum(+row-lex) will
specialise into double-lex. Likewise, if the rows of a matrix are constrained to
have the same number of occurrences of every possible value (e.g. the matrix
model of the sports scheduling problem5), then every row will be identical when
seen as a multiset. This will reduce col-lex+row-multiset to col-lex, and col-
lex+row-multiset(+row-lex) to double-lex.

Acknowledgements

We would like to thank Alan Frisch for suggesting multiset ordering, and also
Pierre Flener, Brahim Hnich and Toby Walsh for valuable discussions.

References

1. J. Crawford, G. Luks, M. Ginsberg, and A. Roy. Symmetry breaking predicates
for search problems. In Proc. of KR’96, the 5th Int. Conf. on Knowledge Repre-

sentation and Reasoning, pp. 148–159, 1996.
2. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetry in matrix models. In Proc. of CP’2002.
Springer, 2002.

3. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for
lexicographic orderings. In Proc. of CP’2002. Springer, 2002.

4. I.P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: symmetry breaking
during search. In Proc. of CP’2002. Springer, 2002.

5. I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In
Proc. of ECAI’00, the 14th European Conf. on AI, pp. 599–603. IOS Press, 2000.

6. S. Prestwich. First-solution search with symmetry breaking and implied con-
straints. In Proc. of Formul’01 , the CP’01 Workshop on Modelling and Problem

Formulation, 2001.
7. B.M. Smith and I.P. Gent. Reducing symmetry in matrix models: SBDS vs.
constraints. Technical report APES-31-2001. Available from http://www.dcs.st-
and.ac.uk/∼apes/reports/apes-31-2001.ps.gz, 2001.

4 prob028 at www.csplib.org
5 prob026 at www.csplib.org


