
Symmetry in Matrix Models

Pierre Flener
�
, Alan Frisch

�
, Brahim Hnich

�
, Zeynep Kızıltan

�
, Ian Miguel

�
, Justin Pearson

�
, and

Toby Walsh
�

�
Department of Information Technology, Uppsala University, Sweden

pierref@csd.uu.se, justin@docs.uu.se�
Department of Computer Science, University of York, England�

frisch,ianm,tw � @cs.york.ac.uk�
Department of Information Science, Uppsala University, Sweden�
Brahim.Hnich,Zeynep.Kiziltan � @dis.uu.se

Abstract. Many CSPs (such as scheduling, assignment, and configuration) can be modelled
as constraint programs based on matrices of decision variables. In such matrix models, sym-
metry is an important feature. We study and generalise symmetry-breaking techniques, such as
lexicographic ordering, and propose a labelling technique achieving the same effect.

1 Introduction

A matrix model contains (one or more) matrices of decision variables. For example, a natural model
of a sports scheduling problem contains a 2-d matrix of decision variables, each of which is assigned
a value corresponding to the match played in a given week and period [11]. In this case, the matrix
is obvious in the solution to the problem: we need a table of fixtures. However, as we demonstrate in
[3], many other problems that are less obviously defined in terms of matrices of values can be effi-
ciently represented and effectively solved using a matrix model. For example, the rack configuration
problem can be modelled with a 2-d 0/1 matrix representing which cards go into which racks [6].

By identifying the central role played in many constraint programs by matrices of decision vari-
ables, we can identify some patterns common to constraint programs taken from a wide range of
domains. For example, common types of row and column constraints are often posted on such ma-
trices. As we show in this paper, we can often deal with symmetry in such models in a uniform way.
We thereby reduce the burden on the user of eliminating symmetry from their constraint programs.
The results in this paper only hold for matrix models with a single matrix of decision variables.

2 Symmetry in matrix models

Symmetry is an important aspect of matrix models. It is usually the result of objects within the
model being indistinguishable. For example, in the rack configuration problem, racks of the same
type are indistinguishable. We can therefore permute any two racks of the same type. That is, we
can permute any two columns of the associated matrix. We define a symmetry of a matrix model as
a bijection on the decision variables in the matrix that preserves solutions. We say that two variables
are indistinguishable if they occur in the same cycle of one of these symmetry bijections. Two
common types of symmetry in matrix models are row symmetry and column symmetry. We define
a column symmetry of a 2-d matrix model as a bijection on non-identical columns that preserves
solutions, and a row symmetry as a bijection on non-identical rows that again preserves solutions.
We say that two non-identical columns (rows) are indistinguishable if they occur in the same cycle of
one of these symmetry bijections. Note that we ignore bijections between identical rows or columns,
as they do not increase the number of symmetric solutions. Row and column symmetry are both

trivially symmetries of a matrix model. Note that the reverse does not hold in general (for example,
the rotational symmetry of a matrix model is neither a row nor a column symmetry). We say that a
matrix model has row symmetry (column symmetry) iff all rows (columns) are indistinguishable. We
say that a matrix model has partial row symmetry (partial column symmetry) iff a strict subset of
the rows (columns) are indistinguishable. These definitions can be easily extended to matrix models
with an arbitary number of dimensions.

3 Lexicographic ordering

For ease of presentation, we here restrict ourselves to 2-d matrices. One common method to break
row or column symmetry in a matrix model is to place lexicographic ordering constraints on the
rows or columns. We say that the rows in a matrix are lexicographically ordered if each row is
lexicographically larger (denoted �������) than the previous, and anti-lexicographically ordered if each
row is lexicographically smaller (denoted �������) than the previous.

Theorem 1 If a 2-d matrix model with row symmetry has a solution, then lexicographically (or
anti-lexicographically) ordering the rows breaks all row symmetry.

Proof: As we ignore identical rows, if one row is placed after another, then it must be lexicograph-
ically larger. Swapping the later row with the earlier one would break the lexicographic ordering
constraint. Hence, no two rows can be swapped and all row symmetry is broken. �	

The dual result for columns of course also holds. Whilst breaking row (or column) symmetry
in a matrix model is easy, breaking both row and column symmetry is difficult since the rows and
columns intersect. Ordering the rows to break the row symmetry can conflict with ordering the
columns to break the column symmetry. Consider a 2 by 2 matrix of 0/1 variables,
��� , with the
constraints that � �
 ������ and �
 ������ (i.e., every row and column has a single 1 in it). This

matrix model has both row and column symmetry. Now, ��� �
� � � and � � �� � � are the only (and symmetric)

solutions. The first solution has rows and columns that are lexicographically ordered, whilst the
second has rows and columns that are anti-lexicographically ordered. There is no solution in which
rows are lexicographically ordered and columns are anti-lexicographically ordered.

In fact, lexicographically ordering the rows will tend to put the columns into lexicographic order.
However, it does not always order the columns lexicographically, and lexicographically ordering the
columns can then disrupt the lexicographic ordering on the rows. Consider, for example, a 3 by
2 matrix of variables,
��� , with the constraints that
�������! #" � "%$'& , � ��
��� �)(, � ��
 ��� �+* ,
and �
���,��$. This model has both row and column symmetry. Now, � � � �� � � � is a solution with

lexicographically ordered columns. Ordering the rows gives the solution � � � �� � � � , but destroys the

lexicographic ordering on the columns. We need to reorder the columns to give a solution ���-� �
� � � � that

is lexicographically ordered along both rows and columns. It is not difficult to construct examples
that need several rounds of ordering rows then columns. However:

Theorem 2 If a 2-d matrix model with row and column symmetry has a solution, then it has a
solution with both the rows and columns lexicographically ordered.

Proof: To show that there is a matrix with lexicographically ordered rows and columns, we give an
ordering on matrices (denoted ��.0/21) that strictly decreases each time we lexicographically order a
pair of rows or columns. To compare two matrices, we simply apply the lexicographic ordering to the
sequence formed by appending their rows together in order. Ordering a pair of rows replaces a larger
row at the front of this sequence by a smaller row from further down. Hence, ordering a pair of rows
moves us down the matrix ordering. Ordering columns also moves us down this matrix ordering.

2

The columns may have a number of values in common at the top. Swapping these columns does not
affect the matrix ordering when just considering the corresponding top rows. However, there is then
one value in the left column that is replaced by a smaller value in the right column. This moves us
thus actually down the matrix ordering. The matrix ordering is also finite, as there are only a finite
number of permutations of the values in the matrix, and bounded below, namely by a matrix with
both rows and columns lexicographically ordered. �	

Unfortunately, lexicographically ordering the rows and columns can leave symmetry in a 2-d
matrix model. Consider a 3 by 3 matrix of 0/1 variables,
 �� , with the constraints that �
 �� � �
and � ��
 �� � �

. This model has both row and column symmetry. Now,

�� � � �� � �
� �-�

��
,

�� � � �� � �� � �
��

, and

�� �-� �� � �� � �
��

are symmetric solutions that have lexicographically ordered rows and columns. When we have more
than two values, there are even smaller examples. For instance, consider a 2 by 2 matrix of variables,
 �� , with the constraints that
 �� � �! #" � "%$'& ,
 � ���
 � � � � , � ��
 �� �	� , and � ��
 ��� ��(. This

model also has row and column symmetry, and ��� �
� � � and ��� �

� � � are symmetric solutions that both have

lexicographically ordered rows and columns.
All these results can be extended to higher dimensions: details can be found in [4].

4 Partial symmetry

We often have only partial row or column symmetry in a 2-d matrix model. For example, if the
first row in a 2-d matrix is already given, then only those columns that have identical values in the
first row are symmetric with each other. It is easy to generalise lexicographic ordering constraints
to break partial row or column symmetry. For each subset of rows (or columns) that are symmetric,
we impose a lexicographic ordering. In fact, we do not even need to do this. Suppose we have a
partial column symmetry. We add an extra first row to the matrix, in which we label identically those
columns that are permutable. Then lexicographically ordering the columns will break this partial
column symmetry as the recursive definition of lexicographic ordering separates the columns into
disjoint sets of permutable columns that have to be ordered.

5 GAC
���
Even though multi-dimensional lexicographic ordering fails to break all symmetry, even less sym-
metry may be broken in practice. The problem is that explicitly defining a lexicographic ordering
on two sequences of decision variables requires a large number of ordering constraints on the in-
dividual decision variables to deal with all the different cases. For this reason, matrix models are
sometimes constructed with only sufficient constraints to ensure that the first few decision variables
are lexicographically ordered. This will break even less symmetry than a complete multi-dimensional
lexicographic ordering. We can, however, enforce generalised arc-consistency (GAC) on a pair of 1-
d matrices efficiently. Enforcing GAC on the lexicographic ordering constraints between every pair
of rows in a 2-d matrix does not guarantee global consistency (i.e., it does not guarantee that the
rows can be lexicographically ordered). Indeed, for � ����� , consider a 2 by 3 matrix of variables,
 �� ,
with
 � � �
 � � � �! #"%$ & ,
 � � �
 � � � � � & ,
 � � � � � "%$'& , and
 � � � � $'& . Then the lexicographic
ordering constraints between every pair of rows are GAC. However, there is no globally consistent
solution with
 � � � � $'& . Also, for � ����� , consider a 2 by 5 matrix of 0/1 variables. The strict lexi-
cographic ordering constraints between every pair of rows are GAC. However, there is no globally
consistent solution as there are only 4 possible distinct rows.

3

6 Canonical labelling

Global constraints like GAC � ��� are one strategy for efficiently dealing with symmetry in matrix
models. An alternative approach is to compile the symmetry-breaking constraints directly into the
labelling algorithm. We provide the user with fast labelling routines — here called canonical la-
belling — that only return values consistent with the (implicit) symmetry-breaking constraints.

The definition of canonical labelling is in two parts, first the notion of a 1-d slice of an � -d
matrix (such as a row or column of a 2-d matrix) being canonically labelled wrt a group of permuta-
tions, then further the notion of a matrix being canonically labelled wrt a sequence of groups and a
particular choice of 1-d slice.

Definition 1 A 1-d slice,
�

, of a matrix is canonically labelled wrt a permutation group � if
� � ��� ��	� ��
 for all � ��� , where �� ��
 is the result of partially applying the permutation � to

�
.

That is, the slice
�

is the smallest lexicographically ordered slice in the collection of all permu-
tations of that slice in � . For example, a row of 1s and 0s is canonically labelled wrt the group of all
permutations of the columns if it is of the form ������ � ����� � .
Definition 2 A 2-d matrix is canonically labelled wrt a sequence of 1-d slices if there exists a se-
quence of permutation groups � ��� � � ��������� ��� such that each 1-d slice, � , is canonically
labelled wrt the group � � .

Before we introduce an example, we introduce some notation. Given a row of length � from a 2-d
matrix, let � � ������� ��� � � � � � ������� ��� ������� � � � � � � �����!� � denote the group generated by Sym " � � ������� �
�#
Sym " � � � � � ������� �
$# ����� # Sym " � � �%� � � � �����&�
 , where Sym " � �'�����)(
 is the group of permutations
of the columns �2"������ "�(. Now, the following matrix is canonically labelled wrt row-slices and the
sequence of groups indicated next to each row:*+ � � � � � � � � �

,-
[1. . . 4][5. . . 7]

[1,2][3,4][5,6][7]
[1][2][3][4][5][6][7]

Canonically labelling the rows makes the columns lexicographically ordered, and vice versa:

Theorem 3 If
 is a 2-d matrix with canonically labelled rows, then

��/. � �����
 �0. � � �����
 �21 � . � �����
��31 � . � (1)

for all � �4� �65 . In other words, the columns of
 are in lexicographic order.
Proof: Consider two arbitrary adjacent columns, columns � and � � � . If
 has these two columns
identical, then they are in lexicographic order. Otherwise, let (be the smallest row such that
 �0. 87�
 �21 � . . It suffices to show that
 �/. �
 �21 � . . Since for all � �9� �:(we have that
 �0. ; �
 �21 � . ; ,
the variables
��/. and
��31 � . can be permuted (by the definition of canonical labelling). Hence, by
the definition of canonical labelling, we have that
 �0. �
 �21 � . . Since
��/. 7�
��31 � . , it must be the
case that
��/. �
 �21 � . . �	
Theorem 4 Let
 be a matrix such that � �
 for all � �6� �65 . Then
 is canonically labelled. That
is, for all � �4� �45 and � �<(�4� , if
��/. and
��21 � . can be permuted, then
��/. �
 �21 � . .
Proof: Consider two arbitrary adjacent columns, columns � and � � � . If these two columns are
labelled identically, then they are canonically labelled. Otherwise, let (be the smallest row such that
 �0. 7�
 �21 � . . Observe that
��0. ; and
��21 � . ; can be permuted if and only if � �=� �>(. Thus it
suffices to show that
��0. ; �
 �21 � . ; for all � �>� �9(. In the case in which � �?(, we have that

4

 �0. ;��
 �31 � . ; , since (is the smallest row at which they differ. In the case in which � � (, by (1) it
must be the case that
 �/. ; �
 �21 � . ; . �	

The previous two theorems together with Theorem 2 imply that for any 2-d matrix there always
is an equivalent matrix that is canonically labelled along both dimensions (this can even be shown
directly for � -d matrices). A strategy to achieve such double lexicographic ordering is to canonically
label both the rows and the columns at the same time.

7 All symmetries

The symmetry group of a matrix model with row and column symmetry is generated by two sets of
generators, namely � � ���!�� & where � and (run over the rows in the matrix, and � � ��� �� & where� and (run over the columns in the matrix. A generator � �� swaps the two rows � and (, while a
generator � �� swaps the two columns � and (. Note that � generates the complete symmetry group
on the rows (i.e., any permutation of the rows is possible), and the corresponding statement is true
of � .

Theorem 5 The group of symmetries of a matrix model is isomorphic to the group ���	�
��� , where ���
is the group of all possible row permutations and � � is the group of all possible column permutations.
Further, the group of symmetries has size 5��� ��� for an 5 by � matrix.
Proof: This can be proved [4] by observing that the row and column permutations commute, thus
allowing any word in the group to be rewritten as a product of and row and column permutations. �	

The question is then, given multi-dimensional lexicographic ordering or its equivalent, multi-
dimensional canonical labelling, when are all symmetries broken? We first identify a special case
where all the row and column symmetries can be easily broken. If all the values in the matrix are
distinct and the largest value is placed in the bottom right corner, lexicographically ordering the rows
and columns breaks all symmetry. Using these observations, the following can be proved [4]:

Theorem 6 If a 2-d matrix model with row and column symmetry has a solution and all values in
the matrix are distinct, then it has a unique solution with the largest value placed in the bottom right
corner and the first row and last column ordered.

In fact, we will thus break all symmetry even if the other rows and columns contain repeated
values. Ordering the first row and last column will fix all the other values in the matrix in a unique
way. We do not therefore need every value in the matrix to be distinct (although this is sufficient to
ensure that the first row and last column both do not contain repeated values).

There are other cases where all the symmetries are broken, but we first need to introduce the
following notation. We say that a 0/1-valued 5 by � matrix belongs to the class � � � "������ "�� � � �� � � "������ "�� . � if the � � and � are non-decreasingly ordered, for each � there exists a distinct column
with sum � � , and for each (there exists a distinct row with sum � . Obviously, this class will be
empty if ��� 7� ��� � . The sum � � � ����� � � � � � � � � � ����� � � . is referred to as a partition of � .

Now, for a given class, how many distinct (that is non-symmetric) matrices are there? (This is
the orbit-counting problem in group theory.) Also, for a given class, does multi-dimensional lexico-
graphic ordering break all symmetries? The duals of the following results also hold.

Theorem 7 The class � � � "������ "���� � �<� � � "������ "�� . � is empty if there is a (with � ��65 .

This simple theorem (proved in [4]) is remarkably useful in removing cases when classifying
matrices by counting rows and columns.

Matrices of the class � � "������ " � � � � � � "������ "�� . � can have all row and column symmetry broken, but
not by lexicographic ordering alone. Such matrix models are quite common. For example, the 2-d

5

models we used in the rack configuration problem all have this form [6]. Lexicographically ordering

both rows and columns fails to break all symmetry in such models. For instance,

�� � �� �
� �
��

and

�� � �
� �� �
��

are symmetric, but have lexicographically ordered rows and columns. However, if we also add the
constraint that the columns are ordered by their sum, then all row and column symmetry is broken:

Theorem 8 In a 2-d 0/1 matrix of the class � � "������ " � � � � � � "������ "�� . � , ordering its rows lexicographi-
cally as well as its columns lexicographically and by their sums breaks all row and column symmetry.
Proof: The top row contains a single 1. Suppose it occurs anywhere but at the top right. Then the
column it occurs in will be lexicographically larger than the last column (which must start with a 0).
Hence the top right corner must contain a 1. Suppose that in the next row down, the 1 occurs to the
right of where it does in this row. Then the next row is not lexicographically larger. Suppose that it
occurs more than one column across to the left. Then the columns in between are not lexicographi-
cally larger. Hence, the 1 in the next row down must occur either directly below or one column to the
left. The only freedom is in how many consecutive rows have 1s in the same column. This symmetry
is broken by ordering the sums of the columns. �	

Another special case is when a row contains only ones. The following result shows that this row
affects neither the number of distinct solutions nor the impact of lexicographic ordering:

Theorem 9 Consider an 5 by � matrix in the class � � � "������ "���� � �6� � � "������ "�� . � , where � � � 5 .
The number of distinct solutions under row and column symmetry is equal to the number of distinct
solutions under row and column symmetry of the class � � � "������ " ��� � � � � � � � � � "������ "�� . � � � . Further,
lexicographic ordering of both the rows and the columns breaks all the symmetries � � � "������ "���� � �� � � "������ "�� . � if and only if it breaks all the symmetries � � � "������ "����%� � � �<� � � � � "������ "�� . � � � .
Proof: Observe that the row of ones can be permuted to the bottom of the matrix (see [4]). �	

Given a partition
� ��� � � ����� � ��� with all � � � , we say that the partition

��� �	� � � ����� � ��
�
is conjugate to

�
if every ��
�� 1 � � is the number of indices � for which ��������� � �?(. This can be

visualised by arranging
�

as left-aligned rows of bullets and then reading the columns to get the
conjugate partition

���
. For example, the partition $ � � (::.) has the conjugate $ � $ � � . By repeated

applications of the previous theorem, we can prove (see [4]):

Theorem 10 The set of matrices in the class � � � � � ��� � , where
���

is the conjugate partition to�
, contains only one distinct matrix, and further lexicographically ordering the rows and columns

breaks all symmetries.

8 Symmetrical values

We can often deal with symmetrical values using the same techniques developed for symmetrical
variables. By introducing a 0/1 matrix whose final dimension corresponds to the value, we can con-
vert indistinguishable values into symmetrical variables. For example, in the social golfers problem
(prob010 at www.csplib.org), players are indistinguishable and introducing an extra dimension into
the matrix corresponding to the players converts this value symmetry into variable symmetry [3].

9 Experimental results

Balanced incomplete block design (BIBD) generation is a standard combinatorial problem from
design theory (prob028 at www.csplib.org). A BIBD is an arrangement of � distinct objects into�

blocks, such that each block contains exactly � distinct objects, each object occurs in exactly �
different blocks, and every two distinct objects occur together in exactly

�
blocks. A BIBD instance

6

double lex set 1st row & col row lex col lex
Instance #sol #sol time #sol time #sol time #sol time�������������	����
��

�� ��� ��
�� ����
 ��� ��� � ��� ��� �������
����	���	��������

 ��� ���
������� ������� � ��������� ���!����� �
� ��� �������
����"���	�������#� ��$
���� ��� % % % % ����� ����� �������
�����&�	����
��
 �'������
�� % % % % �!���(
����!��� �������
����	���"���	���#� ��� �!����� �!� % % % % % %

Table 1. Experiments on BIBD instances, where “
%

” indicates that no solution could be found in one CPU hour

is thus explained by its parameters) � " � " � "���" �+* . One way of modelling a BIBD is in terms of its
incidence matrix, which is a � by

�
0/1-matrix with exactly � ones per row, � ones per column, and

with a scalar product of
�

between any pair of distinct rows [3].
This matrix model has row and column symmetry since we can permute any rows or columns

freely without affecting any of the constraints. This symmetry is often broken by setting the first
row and the first column. However, this breaks less symmetry than lexicographically ordering both
the rows and columns. Table 1 shows our experimental results on some BIBD instances, taken from
[8] and [7]. We enforced lexicographic ordering between neighbouring pairs of rows and columns.
With row and column lexicographic ordering constraints, we labelled along one row and then down
one column, as this is more efficient than labelling along the rows or down the columns on these
instances. However, there are some instances (not shown in the table) where labelling along the
rows is much more efficient than labelling the rows and columns. With the first row and column set,
the best labelling strategy varies, so the table reports the best results achieved among these three
strategies. With row lexicographic-ordering constraints, the best strategy is to label the columns,
and with column lexicographic-ordering constraints, the best strategy is to label the rows. Column
lexicographic-ordering constraints are much more efficient than row lexicographic-ordering con-
straints. This is true for many other instances (which are not shown in the table). We conjecture
that the

�
constraint so tightly constrains the rows that little work is left to be done by the row

lexicographic-ordering constraints. The column lexicographic-ordering constraints act orthogonally
and so are more constraining.

The results confirm that row and column lexicographic ordering breaks more symmetry than the
other symmetry-breaking methods. It is also the fastest method on all the problem instances we tried.
In a recent study [8], a binary CSP model encoded in SAT that breaks symmetries in a different way
was proposed to solve several BIBD instances using SATZ, WSAT, and CLS. All its instances could
be solved much faster with our 2-d 0/1 matrix model using row and column lexicographic-ordering
constraints. For example, our model solves the instance)-, " � � " * " � " � * , which was not solved in
several hours with any algorithm or encoding in [8], in just $ � , � (seconds.

10 Related work

There is currently much interest in the exploitation of symmetry in constraint satisfaction problems.
Existing approaches can be broadly categorised into four types. The first, as advocated here, adds
symmetry-breaking constraints to the initial model in an attempt to remove symmetry before search
starts [9]. A second method adds symmetry-breaking constraints during search, as embodied by
the SBDS system [5]. Upon backtracking, SBDS adds symmetry-breaking constraints that prune
parts of the search tree symmetrical to those already explored. See also [1] for a related approach.
Third, symmetry may also be broken through a heuristic variable-ordering, directing the search
towards subspaces with a high density of non-symmetric states by breaking as many symmetries as
possible with each new variable assignment. The variety-maximisation heuristic presented in [7] is a

7

combination of this technique with the popular smallest-domain variable-ordering heuristic. Lastly, it
is often possible to remodel a problem to remove symmetry, for example via the use of set variables.
In general, though, this can produce a very complex model, as presented in [10].

All of these approaches would benefit from an efficient means of automatic symmetry detection.
However, symmetry detection has been shown to be graph-isomorphism complete in the general
case [2]. Therefore, it is often assumed that the symmetries are known by the user. Since matrices
are such a common occurrence in models of constraint satisfaction problems [3], with rows and
columns often symmetric, making matrices first-class objects in the modelling language would give
a heuristic symmetry-detection technique obvious clues as to where to look.

11 Conclusions

Matrix models have been studied from a symmetry point of view. Different types of symmetries
in matrix models have been identified, such as (partial) row and column symmetry. Furthermore,
methods have been developed to efficiently deal with symmetry in matrix models, either using global
constraints, such as � ��� � , or encoding the symmetry-breaking constraints directly into the labelling
algorithm. In order to further reduce the burden on the user of eliminating symmetry from their
constraint programs, our next step is to identify such symmetries automatically.

Acknowledgements. This research is supported by VR grant 221-99-369 and by EPSRC grant
GR/N16129. The last author is supported by an EPSRC advanced research fellowship.

References

1. R. Backofen and S. Will. Excluding symmetries in concurrent constraint programming. In J. Jaffar, editor,
CP’99, pages 73–87. Springer-Verlag, 1999. LNCS 1713.

2. J.M. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic. In Proc. of the AAAI
workshop on tractable reasoning, 1992.

3. P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Matrix modelling. Tech Rep APES-
36-2001, APES group, 2001. Available at http://www.dcs.st-and.ac.uk/ � apes/reports/apes-36-2001.ps.gz.

4. P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, J. Pearson and T. Walsh. Symmetry in
matrix models. Tech Rep APES-30-2001, APES group, 2001. Available at http://www.dcs.st-
and.ac.uk/ � apes/reports/apes-30-2001.ps.gz.

5. I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In W. Horn, editor, ECAI’00,
pages 599–603

6. Z. Kızıltan and B. Hnich. Symmetry breaking in a rack configuration problem. In Proc. of the IJCAI’01
Workshop on Modelling and Solving Problems with Constraints, 2001.

7. P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction search. Artificial Intelli-
gence, vol. 129, no. 1–2, pp. 133–163, 2001.

8. S.D. Prestwich. Balanced incomplete block design as satisfiability. In Proc. of the 12th Irish Conference
on AI and Cognitive Science, 2001.

9. J.-F. Puget. On the satisfiability of symmetrical constrained satisfaction problems. In J. Komorowski and
Z.W. Ras, eds, ISMIS’93, pages 350–361. Springer-Verlag, 1993. LNAI 689.

10. B.M. Smith. Reducing symmetry in a combinatorial design problem. In Proc. of the IJCAI’01 workshop
on Modelling and Solving Problems with Constraints, pages 105–112, 2001.

11. P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint programming in OPL. In G. Nadathur,
editor, PPDL’99, pages 97–116. Springer-Verlag, 1999. LNCS 1702.

8

