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Abstract. Constraint programs with one or more matrices of decision
variables are commonly and naturally used to model real-world prob-
lems. We call these matrix models and claim that they can be studied
beneficially as a class. In support of this claim we present results in three
areas: the systematization of formulating matrix models, the elimination
of row and column symmetries from matrix models, and the efficient
implementation of constraints for channelling between matrices.

1 Introduction

Though many companies have problems of vital commercial importance that
could be solved with a constraint programming toolkit they do not do so be-
cause of a lack of expertise in modeling problems as constraint programs. We
believe that we can bring the proven power of constraint programming to a wider
user base, and thereby help improve industrial competitiveness, by systematising
some of this expertise and embedding it in constraint toolkits.

A constraint programming expert is able to recognize patterns that com-
monly arise in problems and match them to patterns of problem formulation.
The expert knows a range of patterns (or idioms) of solution techniques and
knows how to match these to a variety of problem formulation patterns. To
tackle the modelling bottleneck, we need to identify, formalise, and document
these patterns of formulation and solution. We need to understand the prop-
erties of these patterns and to formulate heuristics on how to choose between
alternative formulations and alternative solution techniques.

We envision a world in which formulation patterns are supported in much
the same way that data structures are currently supported. Like data structures,
formulation patterns would be published in journals and cataloged in textbooks
along with analyses of their properties. Like textbooks on data structures, text-
books on formulation patterns would offer heuristic guidance on how to choose
between alternative patterns. As with data structure implementations, libraries
of implementations of formulation patterns would be available along with heuris-
tic guidance on how to choose between alternative implementations. In much the



same way that high-level programming languages provide high-level data struc-
tures, high level constraint languages would provide high-level patterns. And as
smart programming language compilers can choose what implementation to use
in compiling a high-level data structure, constraint language compilers would do
the same for high-level formulation patterns.

We have observed that one of the most common patterns, quite possibly the

most common pattern, in constraint programs is the matrix (of one or more
dimensions) of decision variables. We call any model of a constraint satisfaction
problem (CSP) that employs one or more such matrices a matrix model. For
example, a natural model of a sports scheduling problem has a 2-d matrix of
decision variables, each of which is assigned a value corresponding to the game
played in a given week and period [21]. In this case, the matrix is obvious in the
statement of the problem: we need a table of fixtures. However, as we demon-
strated elsewhere [7], many problems that are less obviously defined in terms
of matrices can be effectively represented and efficiently solved using a matrix
model.

There are also patterns that arise commonly within matrix models and this
paper identifies and studies two. The first common pattern is the matrix in
which some (or all) of the rows are interchangeable and some (or all) of the
columns are interchangeable. In other words, a solution is still a solution if certain
rows are interchanged and certain columns are interchanged. In many cases,
problems are intractable unless these so-called index symmetries are reduced.
The second common pattern in matrix models is channelling. This is the use of
multiple matrices to encode information redundantly and channelling constraints
to maintain consistency between the matrices [20, 3, 16, 22].

We claim that matrix models can be studied as a class, and that by doing
so we can discover powerful generalities about how to use matrices of decision
variables to formulate and solve CSPs. The discovery of these generalities can
lead to a methodology for formulating and solving matrix models that is more
systematic and (at least) partly automated. Most studies to date on the formu-
lation of CSPs address the formulation of a particular problem. We believe that
the success of this line of research has provided sufficient experience and enough
examples of good formulations that we in the constraint community are now in
a position where we can begin looking for generalizations.

After supporting, in Sec. 2, our claim of the prevalence of matrix models, this
paper exemplifies the benefits of studying matrix models as a class by presenting
results in three areas:

Modelling: Ultimately we desire systematic methods for formulating matrix
models for any of a wide range of problems and for choosing between alternative
models. We are a long way from achieving this ambitious goal. Sec. 3 lends sup-
port to the feasibility of this goal, and takes a small first step towards achieving
it, by showing how alternative matrix models can be developed somewhat sys-
tematically from a high-level specification of a particular optimization problem.

Symmetry Breaking: Sec. 4 surveys our results on how index symmetry
can be reduced by introducing extra constraints into a problem formulation.
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Channelling Constraints: Sec. 5 identifies four common patterns of chan-
nelling constraints and discusses their efficient implementation.

2 The Prevalence of Matrix Models

In order to ascertain the prevalence of matrix models we have surveyed the 31
problems specified (in English) in CSPlib (www.csplib.org) on 18 April 2002.
This has revealed that at least 27 of the 31 have natural matrix models, most
of them already published and arguably the most natural models. Despite the
small size of this sample, this seems to indicate that the corresponding problem
class is significant and thus indeed deserves special study.

Most of the CSPlib problems are assignment problems, where some set V of
“related” decision variables takes values within the set W of values, subject to
some constraints. This is almost equivalent to the constraint satisfaction prob-
lem itself, except that the decision variables need to be related in some sense,
including that they take their values within the same domain, so that they can
be collected in an index set for a matrix. Assignment problems can be naturally
modelled as matrix models, where a relation in V × W is encoded and sought,
subject to the constraints. This point is elaborated in the next section where we
see how a variety of matrix models can be formulated for a particular assignment
problem.

The other CSPlib problems are permutation problems and set partitioning
problems, which can be encoded as assignment problems so that they also admit
matrix models, as well as planning problems, which do not admit (natural)
matrix models, and problems with just one decision variable, which admit no
(non-degenerate) matrix models.

Another indication of the prevalence of matrix models is the observation that
all models in mixed integer programming and integer linear programming use a
2-dimensional matrix of decision variables.

3 Formulation with Matrix Models

This section demonstrates that matrix models can be derived somewhat system-
atically from a high-level problem specification. In particular, models that are
readily executed with current constraint technology are derived from a specifi-
cation that is not. The demonstration carefully considers the decisions involved
in deriving alternative matrix models for the Balanced Academic Curriculum
Problem (BACP), a problem proposed in [2] and further studied in [11]. Else-
where [7] we have shown in much less detail how a variety of problems can be
formulated with matrix models.

The BACP involves assigning a given set of courses to periods in which
they will be taught in such a way to satisfy certain constraints. An instance
of the problem consists of a finite set called courses; a finite set {1, . . . , n}
called periods; a function, credit, that maps every course to its credit value; a
binary relation, prereq, on the set of courses such that 〈c1, c2〉 ∈ prereq indicates
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that course c1 is a prerequisite for course c2; and four non-negative integers,
creditmin, creditmax, coursemin and coursemax. A solution to the problem
instance maps every course to a period such that the following three constraints
are met.

credit load constraint The credit load of any period, which is the sum of the
credits of all courses assigned to the period, is no less than creditmin and
no greater than creditmax.

course load constraint The course load of any period, which is the total num-
ber of courses assigned to the period, is no less than coursemin and no
greater than coursemax.

prerequisite constraint If course c1 is a prerequisite to course c2 then c1 is
assigned to a period that is strictly less than that to which c2 is assigned.

This is the BACP satisfaction problem. In the BACP optimization problem
the goal is to find a solution that minimizes the maximum credit load for all
periods.

3.1 A High-Level Specification of the BACP Using Functions

A high-level specification of the BACP is shown in Fig. 1. In addition to the
input structures (i.e., those that encode the problem instance), the specification
uses one more structure to capture the desired output. The output structure
represents the desired curriculum and is a total function CUR from courses into
periods, which captures that every course will be assigned exactly one period.

With these input and output structures it is now straightforward to express
the objective function and the three constraints of the problem. The credit
load of any period p can be computed from the CUR and credit functions:∑

c∈CUR−1(p) credit(c), where CUR−1(p) denotes the set of all courses assigned
to period p. So, we can express the objective as that of finding the function CUR

that minimizes
max

p∈periods
(

∑

c∈CUR−1(p)

credit(c) ) .

The credit load constraint is expressed as a set of inequalities. The number of
courses of each period p is represented by the cardinality of the set of courses
that have p as an image under CUR; by restricting this with inequalities we can
specify the course load constraint. Finally, if course c1 is a prerequisite of course
c2, then we enforce a strict ordering on their corresponding images.

3.2 Choice of Matrices

Starting from our high-level specification of the BACP, a space of matrix mod-
els can be generated when considering the decisions involved in modelling the
function CUR and the constraints on it. In general, a desired total function F

from a given set V into a given set W can be represented by different matrices
of decision variables, among which are:
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Inputs:

courses : set(int)
periods : set(int)
creditmin, creditmax, coursemin, coursemax : int

credit : courses −→ int

prereq : the powerset of courses × courses

Outputs: CUR : courses −→ periods

Minimize: maxp∈periods(
∑

c∈CUR−1(p) credit(c) )

Credit load constraint: ∀p ∈ periods · creditmin ≤
∑

c∈CUR−1(p) credit(c) ≤ creditmax

Course load constraint: ∀p ∈ periods · coursemin ≤ |CUR−1(p)| ≤ coursemax

Prerequisite constraint: ∀〈c1, c2〉 ∈ prereq · CUR(c1) < CUR(c2)

Fig. 1. A high-level specification of the BACP using functions

– F1: a 1d matrix F1 indexed by V and ranging over W . The interpretation
of F1[i] = j is that F (i) = j.

– F2: a 2d 0/1 matrix F2 indexed by V and W together with a constraint for
each row restricting the sum of the Booleans to be 1. The interpretation of
F2[i, j] = 1 is that F (i) = j.

– F1+2 : F1 and F2 can be used simultaneously and linked through the chan-
nelling constraint

∧
i∈V,j∈W F1[i] = j ↔ F2[i, j] = 1. Though this encoding

uses more variables and introduces a channelling constraint, it might be ad-
vantageous when considering the ease of constraint formulation, as will be
demonstrated later.

For the BACP it is difficult to compare these three implementations of CUR at
this point, except to note that CUR1+2 introduces redundant variables and a
channelling constraint.

3.3 Constraint Formulations

We now analyze some possible formulations of each of the constraints and the
objective function.

Credit load constraint. Let us consider how the credit load constraint can
be expressed in each of our three matrix models.

Using the facilities of current constraint programming languages we know of
no straightforward way to express the credit load for a given period using only
the CUR1 matrix. We therefore drop the matrix CUR1 on its own as a possible
model of the function CUR.

Using the matrix CUR2 , the credit load of period p can be expressed as∑
c∈courses credit(c) ∗ CUR2 [c, p]. The objective function also needs to refer to

the credit load of each period. Experts recognise this pattern of repeated expres-
sions and know that transforming a problem formulation by introducing new
variables to stand in place of common expressions can often increase problem
solving efficiency. (For example, this is crucial to the success of a formulation
of Golumb ruler problem [19]). One reason for this increased efficiency is be-
cause the transformation can reduce the arity of the constraints, which can lead
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to increased propagation during search. This variable-introducing transforma-
tion has been systematised and incorporated into CGRASS [10], a system that
automatically transforms formulations of CSPs.

Performing this transformation, we introduce a new variable to represent the
credit load of each period. Taken together, these new variables form a 1d matrix
of variables, call it LOAD, that is indexed by periods and constrained by

∀p ∈ periods · LOAD[p] =
∑

c∈courses

credit(c) ∗ CUR2 [c, p] . (1)

The credit load constraint can now be imposed simply by making the domain of
each variable in LOAD to be the range creditmin..creditmax.

Objective function. The introduction of the LOAD matrix also facilitates
the statement of the objective:

minimize max
p∈periods

(LOAD[p]) . (2)

Alternatively it can be expressed as minimize C where C is a variable con-
strained to be no smaller than all elements of LOAD:

∀p ∈ periods · LOAD[p] ≤ C . (3)

Course load constraint. In CUR2 , each column p (denoted here by CUR2 p)
contains a Boolean for each possible course c and when CUR2 [c, p] = 1, we have
that course c is assigned period p. So, to enforce the course load constraint, the
number of 1’s (courses) in each column (period) p has to be restricted to be
between coursemin and coursemax. There are two possible formulations. The
first uses the global cardinality constraint gcc proposed by Régin [15]:

∀p ∈ periods · gcc(1,CUR2 p, [coursemin, coursemax]), (4)

which restricts the number of occurrences of the value 1 to be between coursemin

and coursemax. The second uses linear constraints that restrict the occurrences
of the value 1 in each column as follows:

∀p ∈ periods · coursemin ≤
∑

c∈courses

CUR2 [c, p] ≤ coursemax . (5)

Even though matrix CUR1 was not suitable for the period load computation,
the course load constraint can be formulated with a global cardinality constraint
by restricting the number of times a value p appears in CUR1 to be between
coursemin and coursemax:

∀p ∈ periods · gcc(p,CUR1 , [coursemin, coursemax]) . (6)

Prerequisite constraint. If course c1 is a prerequisite of course c2 we need
to make sure that the period assigned to course c1 is strictly less than that
assigned to c2. Using CUR2 , to get the period assigned to a course c can use
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the sum expression
∑

p∈periods CUR2 [c, p] ∗ p. Hence, a possible formulation of
the prerequisite constraint can be achieved through the linear constraints:

∀〈c1, c2〉 ∈ prereq ·
∑

p∈periods

CUR2 [c1, p] ∗ p <
∑

p∈periods

CUR2 [c2, p] ∗ p . (7)

In a model with CUR1+2 , we can use CUR1 to state the prerequisite con-
straint more compactly. The period assigned to a course c is simply CUR1 [c],
so we can state the constraint as:

∀〈c1, c2〉 ∈ prereq · CUR1 [c1] < CUR1 [c2] . (8)

Since the constraints in (8) are of lower arity than those in (7), it might be more
efficient to use (8) in a CUR1+2 model.

3.4 Discussion of Matrix Models

Throughout this modelling exercise, we have seen that alternate matrix models
of the BACP can be generated in a systematic manner by walking through the
space of modeling decisions concerning the choice of matrices and the choice of
constraint formulations on these matrices and by taking into consideration the
solution methods to be employed. Though, as we have seen, some formulation
choices can be made at the modeling time, others require experimentation.

In [11], some of the matrix models of the BACP have been compared exper-
imentally on three real-life instances. Here we discuss the performance of the
three most successful models, Models A, B and C, as defined in this table:

Model A Model B Model C

Matrices CUR1+2 CUR1+2 CUR2
Credit load constraint (1) (1) (1)
Objective function (3) (3) (3)
Course load constaint (6) (5) (5)
Prerequisite constraint (8) (8) (7)
Solver CP CP + ILP ILP

Model A was executed with the constraint programming system OPL and
Model C was executed with the integer linear programming system CPLEX.
Model B was executed with a hybrid facility of OPL that performs a CP-style
search but invokes CPLEX at each node of the search tree to produce a lower
bound by using a linear relaxation on all linear constraints in the model. Notice
that constraints (1), (2), (5), (7) and (8) are linear, but (3), (4) and (6) are
not. Hence, other than the channelling constraint, all of the constraints used in
Model B are linear.

Model A is the quickest to find optimal solutions on all instances, while Model
B is the quickest to prove optimality on two instances and Model C is the quickest
to prove optimality on one instance. Model A differs from Model B by using a
global constraint for the course load constraint instead of a linear formulation and
by using a CP solver instead of a hybrid one. Model A outperforms Model B in
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finding optimal solutions because it performs more inference and thus eliminates
more search space. Model B outperforms Model A in proving optimality because
of the linear relaxation, which bounds and guides the search. Model B differs
from Model C by channelling into CUR1 and using constraints of lower arity to
enforce the prerequisite constraint. It also employs a hybrid solver rather than an
ILP one. Model B outperforms Model C in proving optimality on two instances
because it improves the linear relaxation by reducing more of the search space
due to improved propagation resulting from using constraints of lower arity and
the use of a CP solver. However, due to the overhead caused by the increase
in number of variables and channelling constraints, Model C is quicker in one
instance.

4 Breaking Row and Column Symmetry

A common pattern in matrix models is that some (or all) of the rows of the matrix
are interchangeable and some (or all) of the columns or interchangeable. In other
words, a solution is still a solution if certain rows are interchanged and/or certain
columns are interchanged. In many cases, problems are intractable unless these
symmetries are reduced. We survey our results on how these symmetries can be
eliminated by introducing extra constraints into the problem formulation. Full
details, including a proof of Theorem 1, appear in [6].

Symmetry occurs because objects within the model are indistinguishable. For
example, consider the tournament scheduling problem (problem 026 of CSPlib
at www.csplib.og) in which a match must be scheduled in every period of every
week. As the constraints of the problem do not distinguish among the weeks
or among the periods, the members of each of these sets are interchangeable.
A natural model of this problem is to have a 2-d matrix of variables, indexed
by weeks and periods, in which each variable is assigned a match. Hence, this
model has both row and column symmetry. As it is the values of the matrix’s
indices that exhibit the symmetry, we refer to this as index symmetry, a term
that generalizes beyond two dimensions.

Many examples of index symmetry have been observed [7], such as in models
for the balanced incomplete block design problem (prob028 of CSPlib), the steel
mill slab design problem [7], the social golfers problem (prob010 of CSPlib), the
template design problem (prob002 of CSPlib), the progressive party problem
(prob013 at CSPlib), and the rack configuration problem (prob031 of CSPlib).

There are a number of ways of dealing with symmetry in constraint program-
ming. The one that we adopt here is to add to the initial model constraints that
break the symmetry [4, 14]. This method is best explained by thinking about
symmetry classes (or orbits as they are called in group theory), which are ob-
tained by partitioning the set of all assignments to decision variables such that
the members of each partition are symmetric with each other. One can reduce
or eliminate the symmetry in a model by adding extra constraints to the model
that are satisfied by some, but not all, members of each symmetry class of the
model. If exactly one member of each symmetry class satisfies the added con-
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straints then all symmetry has been broken. As is usually done, the constraints
that we add enforce an order on the symmetric objects. It is also possible to
combine this approach to breaking index symmetry with another, as Gent and
Smith [18] have done.

Let us begin by considering a 2-d matrix in which either all the rows are
indistinguishable or all the columns are indistinguishable. To break all row (col-
umn) symmetry, we can order the rows (columns) lexicographically. The rows
(columns) in a 2-d matrix are lexicographically ordered if each row (column) is
lexicographically larger than the previous. As a lexicographical ordering is total,
adding a lexicographical ordering constraint to the rows (columns) breaks all
row (column) symmetry.

Now consider a 2-d matrix in which all the rows are indistinguishable and all
the columns are indistinguishable. It is reasonable to conjecture that in this case
all symmetry could be broken by imposing lexicographic ordering constraints
on both rows and columns. We have proven that simultaneously meeting both
lexicographic constraints is always possible.

Theorem 1 Every symmetry class for a 2-dimensional matrix with row and

column symmetry always has a member whose rows and columns are both lexi-

cographically ordered.

Though we can force lexicographic ordering on both rows and columns,
unfortunately—and perhaps surprisingly—this does not break all symmetry. For
example, observe that the following three members of a row/column symmetry
class have lexicographically ordered rows and columns:





0 0 1
0 1 1
1 0 0



 ⇐ swap rows 2 & 3
swap columns 1 & 2

⇒





0 0 1
0 1 0
1 0 1



 ⇐ swap rows 1 & 2
swap columns 2 & 3

⇒





0 0 1
0 1 0
1 1 0





Though we do not have a practical way to break all row and column symme-
tries in all cases,5 we have identified three conditions, which arise naturally and
commonly, such that for each we can break all row and column symmetries by
introducing a linear number of easily-imposed constraints, such as lexicographic
ordering of rows and columns. In cases where lexicographic ordering does not
break all row and column symmetry we have given experimental results showing
that sometimes it does break enough symmetries to make an intractable instance
tractable.

More dimensions: Though this section has only considered index symmetry
on 2-d matrices, we have shown that these results extend to matrices in any
number of dimensions in which there is symmetry on any subset of the indices.

Partial symmetry: Some matrix models have index symmetry that is only
partial in that only some subsets of an index’s values are interchangeable. For
example, in one model of the rack design problem only those columns that corre-
spond to racks of the same type are interchangeable with each other. To handle
5 Following the approach of Crawford et. al. [4], we have shown how all row and column

symmetries in an n by m matrix can be broken by imposing n! ·m!−1 lexicographic
ordering constraints, but clearly this is not practical.
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such a situation one can add constraints that enforce a lexicographic ordering
on each subset of rows (or columns) that are interchangeable.

Value symmetry: Many CSP models have value symmetry in that some
variables have indistinguishable domain elements. For example, the social golfers
problem requires that a set of golfers be partitioned in a particular way. The
golfers, which in many models of the problem are the domains of the variables,
are indistinguishable. We have shown how a model with value symmetry can be
transformed into a model that has index symmetry instead of value symmetry.
Our techniques for breaking variable symmetry can then be used and our ex-
perimental results show that this can be a highly-effective method for handling
value symmetry.

Enforcing lexicographic ordering: The utility of reducing index symme-
try by introducing lexicographic ordering constraints depends upon having a
method to enforce these constraints efficiently during search. Elsewhere [9] we
have introduced the first linear time algorithm for incrementally enforcing gen-
eralized arc consistency on a lexicographic ordering constraint. We have shown
that some problem instances can be solved many times faster by using this al-
gorithm over its competitors.

In summary, index symmetry and value symmetry are common patterns in
matrix models and the ability to solve many problems requires greatly reducing
the amount of symmetry. We have shown that imposing a lexicographic ordering
on each dimension of a multi-dimensional matrix can always be used to reduce
index symmetry and—since we have shown that value symmetry can be mapped
to index symmetry—value symmetry as well. In some special cases we have
identified methods for breaking all index symmetry. In our future work, we intend
to look at ways of identifying row and column symmetry automatically, and at
methods for reducing symmetry even more efficiently and completely.

5 Channelling Constraints

Another common pattern that arises within matrix models is the use of multi-
ple matrices that represent the same information redundantly and channelling

constraints that enforce consistency among the representations [3]. Despite the
increase in the number of variables and constraints, there are a number of ben-
efits of channelling, which are identified in this section.

5.1 Types of Channelling Constraints

There are a variety of types (or patterns) of channelling constraints, each char-
acterized by a schema. The schemas differ in the type of matrices involved and
the constraints imposed on them. This section presents four of these schemas
and explains why each is useful.

The first type of channelling constraint is very useful in permutation prob-
lems, a common and well-studied problem pattern that arises in many assign-
ment, scheduling, and sequencing problems. In a permutation problem a set of
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n variables must be assigned distinct values from a domain of size n. Such a
problem can be modelled by a matrix X of n variables, taking distinct values
from {1, . . . , n}. For instance, in the n-queens problem each X[i] represents the
queen on row i, and the value assigned represents the column on which that
queen is placed. Since the queens are to be on different columns, and there are
in total n columns, the queens are to be assigned distinct values from 1 . . . n.
In a permutation problem, every variable is assigned a value and every value in
the domain of the variables is assigned a variable. Hence, as observed in [16],
one can enforce the distinctness constraint by introducing a dual matrix Y of n

variables taking values from {1, . . . , n}, and asserting the channelling constraint
∧

v,w∈{1,...,n}

X[v] = w ↔ Y [w] = v . (9)

Matrices X and Y are duals of each other in the sense that the roles of
the variables and the values are interchanged. Even though arc-consistency on
the channelling constraint is not as tight as arc-consistency on an alldifferent

constraint on the elements of X [22], in practice channelling constraints may
significantly reduce the run-time with a slight increase in the number of back-
tracks [17]. Furthermore, the use of dual matrices opens the possibility of using
both sets of variables as search variables, which can sometimes reduce search
[17].

A second type of channelling that is often used is 1-d to 1-d channelling of
the form X[v] = w → Y [w] = 1. For instance, the channelling in a model of
the warehouse location problem is of this form [20]. The assignment of stores
to warehouses is modelled as a 1-d matrix X, indexed by the set of stores V ,
taking values from the set of warehouses W . The set of warehouses to be opened
is modelled as a 1-d 0/1 matrix Y indexed by the set of warehouses W . If a
warehouse is supplying a store then that warehouse must be open. Thus, we
channel between the matrices as follows:

∧

v∈V,w∈W

X[v] = w → Y [w] = 1 .

The main motivation behind this type of channelling is to facilitate the statement
of the problem constraints based on the objects that are assigned (e.g., stores
in the warehouse problem), as well as the constraints based on the values that
are assigned to any of objects (e.g., warehouses being opened in the warehouse
problem).

A third type of channelling, which is similar to the second type, arises when
an assignment problem is modelled by a 2-d 0/1 matrix with an additional con-
straint that every object is assigned exactly one value, and the values being
assigned are also represented. For instance, the assignment of stores to ware-
houses can also be modelled by a 2-d 0/1 matrix X indexed by the set of stores
V and the set of warehouses W . The channelling constraint in this case is

∧

v∈V,w∈W

X[v, w] = 1 → Y [w] = 1 .
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A fourth type of channelling links a 1-d matrix and a 2-d with channelling of
the form X[i] = j ↔ Y [i, j] = 1. For instance, the channelling in the CUR1+2

model of BACP is of this form. In one model, the assignment of courses to
periods is modelled as a 1-d matrix X, indexed by the set of courses V , taking
values from the set of periods W . In the other model, the assignment is modelled
as a 2-d 0/1 matrix Y , indexed by the set of courses V and the set of periods
W . The combined model is obtained by channelling the models as follows:

∧

v∈V,w∈W

X[v] = w ↔ Y [v, w] = 1 .

This fourth type of channelling also is used to turn value symmetry into
variable symmetry. If a 1-d matrix of variables take values from a set of indis-
tinguishable values, we can convert value symmetry into variable symmetry by
channelling into a 2-d matrix of 0/1 variables whose first dimension is the same
as the original matrix and second dimension corresponds to the set of values.
This allows us to employ the techniques for breaking variable-symmetry to tackle
the value symmetry.

As seen, in many cases channelling is useful, and thus is frequently used. Con-
sequently, the efficient implementation of channelling constraints is important
and so we now turn our attention to how we can efficiently maintain generalized
arc-consistency on channelling constraints.

5.2 Generalized Arc Consistency on Channelling Constraints

Each channelling constraint is a conjunction where each conjunct is of the form
E → E′ or each is of the form E ↔ E′. Each of E and E′ is an equation of the
form V ar = c, where V ar is an indexed variable (that is, a variable in a matrix)
and c is a constant.

The insight in how to enforce generalized arc-consistency (GAC) on any
channelling constraint of the above forms comes from two observations:

Proposition 1. No two conjuncts of a channelling constraint have variables in

common.

Proposition 2. Let {C1, . . . , Cn} be a set of constraints such that no two have

a variable in common and let C be the constraint C1 ∧ · · · ∧ Cn. Constraint C is

GAC if and only if either

– every variable occurring in C has an empty domain, or

– no variable occurring in C has an empty domain and each member of C1, . . . , Cn

is GAC.

By these observations, the task of maintaining GAC on a channelling con-
straint of the form E → E′ (resp. E ↔ E′) can be decomposed into a finite set
of tasks of maintaining GAC on an implication (resp. bi-implication) constraint.
We shall not discuss the algorithms for maintaining GAC on an implication or
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bi-implication constraint as they are straightforward and are provided by most
constraint toolkits.

Thus, using existing constraint toolkit facilities it is easy to implement a
channelling constraint by explicitly posting an implication or bi-implication con-
straint for every conjunct in the constraint. However, the space and runtime re-
quired by this implementation will be proportional to the number of conjuncts.
Notice that the number of conjuncts can be quite large. For example, for a per-
mutation involving n elements, the channelling constraint (9) has n2 conjuncts.

We have implemented a generic channelling constraint whose input is a
schema of the form E → E′ or E ↔ E′. Rather than instantiate the schema to
generate all the conjuncts, it uses a generic demon that performs the appropri-
ate action whenever the domain of a variable among the (implicitly represented)
conjuncts is modified. The time and space required by this schematic implemen-
tation is independent of the number of conjuncts in the channelling constraint.

This schematic implementation dramatically improves the runtime of the
channelling constraint, which is reflected in the efficiency of models that use
channelling. As an example, consider Langford’s problem (prob024 in CSPlib),
parameterised by (k, n). This permutation problem is to compose a sequence
containing exactly k occurrences of each integer from 1 to n so that each occur-
rence of the number m is m positions from the last. An efficient model represents
the permutations with primal and dual matrices and channelling of the form of
(9). On the instance (4, 16) a naive implementation, which imposes 4096 bi-
implications, takes 635.6 seconds to prove that there is no solution. In contrast,
an efficient schematic channelling constraint takes 32.9 seconds. On the instance
(4, 17) the results are 2259.6 and 107.9 seconds respectively.

6 Conclusions

We have identified the matrix of decision variables as a common pattern in
constraint programming and one, we claim, whose study would reveal powerful
generalizations. In support of this claim we have shown how alternative matrix
models of the BACP can be derived in a somewhat systematic manner and how
two common patterns within matrix models—index symmetry and channelling
constraints—can be handled. Stepping back, let us now see how these are first
steps towards a world in which the formulation bottleneck is reduced or elimi-
nated and also see what other steps are necessary.

From the somewhat systematic derivation of matrix models for the BACP
one can see that formulations for similar problems could be derived in a similar
manner. By examining a range of such derivations one could formulate general,
more systematic, patterns of formulation. Ultimately we would like to automate
this process in the form of a compiler that translates a high-level specification
into structures—such as matrices of decision variables—that are supported by
current constraint programming toolkits. The field is beginning to make progress
in this direction through the development of systems such as CGRASS [10],
ESRA [5, 8] and NP-SPEC [1].
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A closely-related problem is the design of an appropriate high-level constraint
language. As suggested by our high-level specification of the BACP, we envision
a language that supports sets, functions and relations as well as related con-
cepts such as partitions, projections, subsets, and relational composition and
transposition. ESRA [5, 8], and OPL [20] can be seen as providing a step in this
direction.

We have identified index symmetry as a pattern that is common in matrix
models and have developed methods of reducing it. Though these methods have
proved to be effective in a range of problems, we suspect that more complete
methods will be required to effectively solve certain other problems. More am-
bitiously, we envision a system that can identify symmetries automatically and
choose appropriate methods of reducing them. Whilst identifying symmetry is
computationally expensive in general, it is much easier to identify index symme-
try. Finally, an ideal reformulation system would also be able to choose variable
and value orderings for search that do not adversely interact with the symmetry-
breaking constraints it introduces.

We have identified channelling as a constraint pattern that arises frequently
in matrix models. This can be taken much further by addressing these additional
questions: What other constraint patterns arise frequently in matrix models?
Computationally, what is the best way to handle these constraints? Linguisti-
cally, what is the best way to package these patterns in a constraint modelling
language?

Our long-term aim is to advance the capability of modelling tools to the
point where programming with today’s tools looks like programming in assembler
language.
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