
Matrix Modelling

Pierre Flener
Uppsala University

Uppsala
Sweden

Alan M. Frisch
University of York

York
England

Brahim Hnich, Zeynep Kızıltan
Uppsala University

Uppsala
Sweden

Ian Miguel, Toby Walsh
University of York

York
England

Abstract

We argue that constraint programs with one or more
matrices of decision variables provide numerous
benefits, as they share many patterns for which gen-
eral methods can be devised, such as for symmetry
breaking. On a wide range of real-life application
domains, we demonstrate the generality and utility
of such matrix modelling.

1 Introduction
Many companies have scheduling, assignment, supply chain,
and other problems that could be solved with a constraint pro-
gramming (CP) toolkit. Although the solution of these prob-
lems is of vital commercial importance, CP toolkits are not
widely used because there is insufficient expertise available
to model problems as constraint programs. How then can
we take the writing of efficient constraint programs out of
research laboratories and specialised consultancies, and into
everyday programming practice? How can we release the
proven power of constraint programming to a wide user base,
and thereby help improve industrial competitiveness?

As in other areas of software engineering, many patterns
occur frequently in constraint programs. To date, these have
only been given informally by practitioners, at the level of
off-the-cuff remarks in reports. To tackle the modelling bot-
tleneck, we need to identify, formalise, and document these
patterns. We identify some patterns common to constraint
programs taken from a wide range of domains. The basis for
these patterns comes from identifying the central role played
in many constraint programs by matrices of decisions vari-
ables, and the common types of constraints posted on them.

2 Matrix models
A matrix model has (one or more) matrices of decision vari-
ables. For example, a natural model of a sports scheduling
problem has a 2-d matrix of decision variables, each of which
is assigned a value corresponding to the game played in a
given week and period [HMPR99]. In this case, the matrix
is obvious in the solution to the problem: we need a table of
fixtures. However, as we demonstrate in the following ex-
amples, many problems that are less obviously defined in
terms of matrices can be efficiently represented and effec-
tively solved using a matrix model. Sometimes, the matrix

model contains multiple matrices of variables. Channelling
constraints are then used to link the different matrices to-
gether [CCLW99; Smi00; Wal01].

There are a number of benefits of matrix models.

Symmetrical variables: We can call upon some standard
methods to deal with rows and/or columns that are sym-
metrical. For example, we can use lexicographic order-
ing constraints to partially break row and column sym-
metry [FFH

�
01]. Such techniques can also easily be

extended to deal with partial symmetries.

Indistinguishable values: The same techniques for dealing
with symmetrical variables can be applied to deal with
indistinguishable values. A variable

�
that takes a sin-

gle value or a set of values from a domain of � indistin-
guishable values can be replaced by a vector of � vari-
ables. each with the 0/1 domain. A value of 1 in position�

of the vector indicates that value
�

is in the set of val-
ues assigned to

�
. The effect of this transformation is

that the value symmetry in the domain of
�

has been
replaced by symmetry among the variables in the vec-
tor. For example, in the social golfers problem (see Sec-
tion 5), players, which are the values in the model, are
indistinguishable. Converting this value symmetry into
variable symmetry adds an extra dimension to the matrix
model, which can be handled by our multi-dimensional
symmetry method.

Variable indexing: We can give much more compact and ef-
ficient models when we can index into matrix models
using variables. This is exploited in our matrix model of
the progressive party problem (see Section 7).

Improved propagation: Matrix models can allow global
constraints to be posted or linear models to be defined
that can be passed to a simplex solver. For example,
in the warehouse location problem (see Section 7), a 2-d
matrix model gives an integer linear program for the cost
function that is efficiently handled by a simplex solver.

Ease of statement: Many messy side constraints can be ef-
ficiently and effectively represented by channelling into
a matrix model. For example, the steel mill slab design
problem (see Section 6) is a bin packing problem with
a side constraint restricting the number of “colours” of
orders placed on any slab. This side constraint is easily
implemented by channelling into a 2-d matrix model.

Matrix: � � blocks
� �

���������	���
� ���	���	���� ���
�����	� �	�� � �� �
��� �	���	�
objects

��� ��� ����� ���	�� ���� ��� ���	��� ����	���
��� �� ��
Constraints:

(row sum) ����� � � �������
(column sum) � � � � ����� ���
(scalar product) �������� � � ����� � ���"! �$#

Benefit:
partial row and column symmetry breaking

Figure 1: Matrix model for the BIBD generation problem

In the next five sections, we catalogue a wide range of
problems that can be formulated using matrix models. In each
case, we identify which of the benefits above applies. Despite
the diversity of application domains, a number of common
patterns are very apparent. For example, symmetry can often
be broken using the same methods. The matrix models we
give are not necessarily the best in each case. This is not the
point. Rather, the focus is on the generality and utility of this
modelling method.

3 Combinatorial problems
Many combinatorial problems can be naturally modelled as
constraint satisfaction problems using matrix models. For ex-
ample, Balanced Incomplete Block Design (BIBD) genera-
tion is a standard combinatorial problem from design theory.
It has applications in experimental design and cryptography,
and is prob028 in CSPLib (www.csplib.org).

As presented in Figure 1, a BIBD is an arrangement of %
distinct objects into & blocks such that each block contains
exactly

�
distinct objects, each object occurs in exactly

�
dif-

ferent blocks, and every two distinct objects occur together in
exactly

#
blocks. A BIBD instance is thus explained by its

parameters '(%*)+&,) �) �) #.- . One way of modelling a BIBD is in
terms of its incidence matrix

�
, which is a % by & 0/1 matrix

with exactly
�

ones per row,
�

ones per column, and with a
scalar product of

#
between any pair of distinct rows.

This matrix model has row and column symmetry since
we can permute any row or column freely without affecting
any of the constraints. We can partially break this symme-
try by lexicographically ordering both the rows and columns
[FFH

�
01].

The benefit of the matrix modelling for this problem is
to be able to partially break a large number of symmetries.
In a recent study on BIBD, a binary CSP model encoded in
SAT is proposed to solve several BIBD instances using SATZ,
WSAT, and CLS [Pre01]. All instances in [Pre01] could be
solved much faster with our model. For instance, the instance

'(/0) �21)+3�) 1)54 - that was impossible to solve in a reasonable
time with any algorithm or encoding could easily be solved
with the matrix model in 6747/ seconds.

Many other combinatorial problems can be naturally mod-
elled using matrix models; e.g., problems concerning block
codes, quasigroup existence (prob003 in CSPLib), magic
squares (prob019 in CSPLib), and projective planes (prob025
in CSPLib).

4 Configuration problems
Many configuration problems can be naturally formulated as
matrix models. For example, the Rack Configuration Prob-
lem (discussed in [VH99]) is to plug cards into racks so that
the total power demand and number of connectors required
by the cards do not exceed those available for a rack of the
chosen type. The maximum number of racks that can be de-
ployed is � .

This can be represented with a matrix model. First, we use
a 0/1 2-d matrix 8 indexed by the rack types and

�79:9
� , such

that 8 ��� is 1 if there is a �<;(= occurrence of rack type
�
. Since

at most � racks can be deployed and every rack must be of
some rack type, each rack type may occur at most � times
in a solution. In this model, we thus do not represent racks
explicitly. We instead represent different occurrences of each
rack type. Second, we use a 3-d 0/1 matrix > indexed by the
rack types,

�79:9
� , and the cards, so that > ���?! is 1 if card

�
is

plugged into the �<;(= occurrence of rack type
�

(see Figure 2).

Matrices:� � rack types
� �

8 ��� �	���	� �� ����	� ��79:9
�

�	���	� �� �	���	� �
cards

� � � ���
> ���?! @ �
��� � ���� �
��� � ���� � �
��� � ����<9A9

�
� �
��� � �� � �
��� �� � rack types

� �
Constraints:

(matrix sum) � ��� 8 ���CB �

(slice sum) � � � ��� > ���?! � �
(row sum) � � � � ! > ���?! B�DFE � �HG,IKJ E,� �
(weighted row sum) � � � � ! > ���?!L��M E,N G � ! B M E,N G � �
(channelling) � � � � > ���?! � � � 8 ��� � �

Benefits:
partial 3-d symmetry breaking
improved propagation
indistinguishable values

Figure 2: Matrix model for the rack configuration problem

2

The 2-d matrix 8 has symmetry since different occur-
rences of each rack type are indistinguishable. We can break
this symmetry by ordering the different occurrences of each
rack type. The 3-d matrix > also has symmetry since we can
permute any occurrences of the same type, or any cards with
the same number of connectors and power demand (i.e., with
the same card type). We can break some of this symmetry by
a lexicographic ordering of part of the matrix [FFH

�
01].

The problem can be modelled in a different way by rep-
resenting the racks explicitly. Since at most � racks are to
be used, we create � variables, each representing a potential
rack. A 1-d matrix indexed by

�79:9
� thus gives the rack type

for each potential rack. If such a rack is not used in the so-
lution, then a dummy rack type is assigned to that rack. Ad-
ditionally, we use a 2-d matrix indicating how many cards of
a given card type are plugged into a rack. This model does
not have the card symmetry that the model above has because
card types instead of individual cards are represented in the
2-d matrix.

Since each card is to be plugged into exactly one rack, the
assignment of racks to cards can also be modelled as a 1-d
matrix indexed by cards ranging over racks. This 1-d matrix
has partial column symmetry since cards of the same card
type are indistinguishable. We can easily break this symme-
try by a lexicographic ordering of the corresponding columns.
On the other hand, values assigned to cards, namely racks,
also are indistinguishable. In this model, we cannot easily
break this symmetry. By introducing a 2-d 0/1 matrix, whose
second dimension corresponds to the racks, we convert indis-
tinguishable values into indistinguishable variables on which
symmetry can be broken easily. Another advantage of this
2-d matrix model is the ease with which the problem con-
straints can be stated. The weighted sum constraint for each
rack, which states that the total power of the cards assigned
to a rack does not exceed its power capacity, in the 2-d matrix
model corresponds to a weighted-occurrences constraint on
the racks in the 1-d model, which would be inefficient to state
in the absence of a weighted-occurrences global constraint.

However, better propagation is achieved in the 3-d model
than in the 2-d model, resulting in a much more efficient prob-
lem formulation. For instance, an instance that was solved in3 9�� hours using the 2-d model could easily be solved using
the 3-d model in

1��
seconds [KH01].

5 Scheduling problems
The Social Golfers Problem is a class of problem instances
parameterised by ' N)��)�� - . The decision problem is to de-
termine if it is possible for � � � golfers to play in � groups,
each of size � , in each of

N
weeks in such a way that any two

golfers play in the same group at most once. Observe that this
problem has three sets of indistinguishable objects: the set of
golfers, the set of groups, and the set of weeks.

A straightforward way of modelling this problem has been
employed by Stephano Novello in his Eclipse program (avail-
able at www.icparc.ic.ac.uk/eclipse/examples/golf.pl.txt).
The model employs a 2-d matrix � of sets, where each row
is a different week and each column is a different group.
Each element � ��� of the matrix is a set of � golfers that play

together as group
�

in week � . We call this Model A.
A solution to the ' 6)540)54 - instance of the Social Golfers

Problem is shown in Figure 3. The figure also shows the gen-
eral constraints for all instances of the problem class.

Matrix:
� ��� � � groups

� �� � �)?6)54
	 � 1) �)��
	 � 3�)5/0)��	
weeks

� �) 1)K3�	 � 6) �)?/�	 � 4)��)��	�
Constraints:

(socialisation) ��� �) ��� �� � ���) � � ��� � ����� � ������� � B �
(group size) � � ��� � ��� � � �

Benefit:
partial 3-d symmetry breaking

Figure 3: Matrix model for the social golfers problem

In this model there are three kinds of symmetry. The weeks
(i.e., the rows of the matrix) are indistinguishable, the groups
(i.e., the columns of the matrix) are indistinguishable, and the
players (i.e., the elements of the value sets) are indistinguish-
able. Notice that if we employed a model in which each group
were represented by a list (rather than a set) of � distinct play-
ers, then there would also be symmetry among the positions
in this list.

Our model, called Model B, is a modification of Model A
in which each set is replaced by a 0/1 vector of length � � �
representing the characteristic function of the set. For ex-
ample, the set of golfers

� �) �)�) � 4
	 is represented by the
vector [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0]. Thus Model B has a
3-d matrix, which we call � . As in Model A, the indices of
the first dimension are indistinguishable, as are those of the
second dimension. The indices of the third dimension of B,
which represent the players, are also indistinguishable. Thus,
the value symmetry in Model A that results from indistin-
guishable players has been replaced in Model B by variable
symmetry in the third dimension. This is an advantageous
replacement as we have effective ways to deal with variable
symmetry. In particular, Model B partially breaks the symme-
try in all three dimensions by imposing a triple-lexicographic
ordering constraint.

Into Model A we have introduced some simple partial sym-
metry breaking. In particular, player symmetry is partially
broken by fixing the assignments for the first week. In par-
ticular, for all

� B � B � we set
��� �

to the set of golfers� �:� � � � � � � �)!�A� � � � � � � 6�) 9 929) � � �"�#	 . Furthermore,
we add the constraints that for every week except the first, the
first group must contain golfer 1 and the second group must
contain golfer 2. This partially breaks the symmetry caused
by the indistinguishable groups.

A simple experiment shows that Model B eliminates sig-
nificantly more symmetrical solutions than does Model A. On
instance ' 4) 1) 1 - , Model A finds a total of 1,327,104 solutions
and takes 4,137 seconds to do so, whereas Model B finds only
576 solutions and takes 79 seconds to do so.

3

6 Design problems

Many design problems can be efficiently and effectively for-
mulated as matrix models. For example, the Steel Mill
Slab Design Problem is a difficult problem that reduces
to variable-sized bin-packing with colour side-constraints
[FMW01]. We are given a number of orders, each with a par-
ticular weight and colour, and a fixed number of slab sizes.
We want to assign orders to slabs and sizes to slabs so that
the total weight of orders assigned to a slab does not exceed
the slab capacity, and so that each slab contains at most �
colours (� is usually 2). Potentially redundant variables are
used to cope with the fact that the number of slabs in an op-
timal solution is unknown. If we assume that the greatest or-
der weight does not exceed the maximum slab size, the worst
case assigns each order to an individual slab. Hence, we need
as many slab variables as orders. As some slabs may remain
unused, the zero element is added to the domain of each slab
variable to represent when a slab is not used.

Matrices: � � slabs
� �

� � 1 4�4	4 ���
���	�
� � orders

� �� ��� ���	�����
� �	���� ���	� ���
���	���
slabs

� �������	���	���� ��� �����
���	���
� � colours

� �D �������	� � �� ��� ��� �
slabs

� ����� �� ������ �
Constraints:

(row weighted sum) ��� � � 8 G � ��� J � � � ��� B � �
(column sum) � � � � � ����� �
(row sum) ��� � � D ���CB �
(channelling) � � � � ����� � � D����	�
������"� � �

Benefits:
partial row and column symmetry breaking
ease of statement
indistinguishable values

Figure 4: Matrix model for the steel mill slab design problem

A 2-d 0/1 matrix is used to represent which orders are as-
signed to which slabs (see Figure 4). This matrix has par-
tial row symmetry since slabs of the same size are indis-
tinguishable and partial column symmetry since orders of
the same size and colour are also indistinguishable. As in
the rack configuration problem, we can break this symme-
try by a lexicographic ordering on the corresponding rows
and columns. Breaking this symmetry is more difficult in

a 1-d matrix that simply assigns orders to slabs. On a 16-
order subset of real industrial data, a model employing lex-
icographic ordering finds an optimal solution in 94,000 fails
and 18 seconds, whereas a model without lexicographic or-
dering requires nearly 600,000 fails and 50 seconds. In addi-
tion, a 1-d representation necessitates the use of specialised
‘weighted occurrence’ constraints, not commonly found in
constraint toolkits, to express the slab capacity constraints.

A second 0/1 matrix is used to model the colour con-
straints. Channelling constraints are used to connect this to
the order matrix. In this case, the benefit of matrix modelling
is in the ease with which the colour constraints can be stated.
Without this second matrix, we have large-arity constraints
on the first matrix that can only be efficiently implemented
by means of a complex daemon.

Another example of a design problem that can naturally be
formulated as a matrix model is the Template Design Prob-
lem (prob002 in CSPLib). It arises from printing products
(e.g., cartons for cat food) of same brand with several varia-
tions (e.g., flavours for cat food) from thin board. Such varia-
tions have different colour and/or text displayed on them, but
are identical in shape and size so they can be printed on the
same mother sheet of board. Each mother sheet is printed
from a template that has � slots on each of which the design
of the variations is imprinted. The problem is to decide how
many pressings of each template are needed, and how many
copies of which variation to include on each template such
that the minimum number of pressings for each variation is
met, every slot in each template is occupied by a variation,
and the total number of templates being produced is min-
imised.

One way of tackling this problem is to fix the number of
templates and then to minimise the total number of press-
ings. This can be modelled using a 1-d matrix >�� � giving
the number of pressings of each template, and a 2-d matrix �
specifying how many copies of which variation are included
on which template (see Figure 5).

The 1-d matrix has column symmetry since all templates
are indistinguishable. This symmetry can easily be broken by
ordering the number of pressings. The 2-d matrix has par-
tial row and column symmetry because variations with equal
demands and templates with equal number of pressings are
indistinguishable. We can break some of this symmetry by
a lexicographic ordering on the corresponding rows and the
columns.

The benefit of the matrix modelling for the template design
problem is first the ease in which the problem constraints can
be stated. Every template is related to more than one vari-
ation, and every variation can be related to more than one
template. The matrix model thus provides a very natural way
of representing the problem. Second, assume that every vari-
ation is to be assigned to exactly one template, in which case
a 1-d matrix giving the template assigned to every variation
would suffice. This model would suffer from value symmetry
because templates are indistinguishable. However, some of
this symmetry can easily be broken in the 2-d matrix formu-
lation by translating value symmetry into variable symmetry.

4

The 2-d matrix model of the problem was previously stud-
ied in [PS97], though the symmetry between the templates
with equal number of pressings was not tackled. We tested
our model with the instances provided in [PS97], and found
better optimal solutions than the results of the CP formulation
in [PS97]. For instance, the cat food problem was solved with6 templates with the objective value being

1*� 3�) � 1 4 , and with4 templates with the objective value being
1 � 3)K373 / as op-

posed to
10� /0) �<�7� and

1<� /0) �<�7� respectively found in [PS97].

Matrices: � � templates
� �

>�� �
� ���) �7�<� � � 3) �7�<� 6 �7�) �7�7�� � templates

� �
� ��� � � �

� � �� 4 � �
variations

� � 6� � � 6� 3 �� � 1
Constraints:

(row weighted sum) ��� � � > � �
� � � ��� ��� G���� �	� �

(column sum) � � � � � ��� � �
Benefits:
partial row and column symmetry breaking
indistinguishable values
ease of statement

Figure 5: Matrix model for the template design problem

7 Assignment Problems
Many assignment problems can be formulated as matrix mod-
els. For example, the Warehouse Location Problem [VH99]
arises when a company considers opening warehouses on
some candidate locations in order to supply its existing stores.
Each warehouse has a maintenance cost, and a capacity des-
ignating the maximum number of stores that it can supply.
Each store must be supplied by exactly one open warehouse.
The supply cost to a store depends on the warehouse. The ob-
jective is to determine which warehouses to open, and which
of them should supply which stores such that the total cost is
minimised.

This problem can be represented by a 1-d 0/1 matrix
� �.G �

giving the open warehouses, and a 2-d 0/1 matrix
 � � ����
designating if a store is supplied by a warehouse (see Fig-
ure 6). One could replace this 2-d matrix with a 1-d one in-
dexed by stores ranging over warehouses. Stating the prob-
lem constraints on the 2-d matrix, however, generates only
linear constraints. This results in a pure ILP model that could
efficiently be handled by powerful MIP solvers like CPLEX,
using advanced techniques such as cutting planes and pre-
solve reductions that speed up the proof of optimality. We

experimented with the small instance provided in [VH99] and
the CP model is as efficient as the ILP model. We expect that
the ILP model will be much more efficient than the CP model
on the instances where proving optimality is harder.

Matrices: � � warehouses
� �� �*G �

� ���	��� �
� � warehouses

� �

 � � ���� ��� ���	��� �� ���� �� ���	��� �

stores
��� ��� �� � ���� ����	��� �

Constraints:

(row sum) ��� � �
 � � ���� ��� � �
(channelling) � � ��
 � � ���� ��� B � �*G �

�
(column sum) � � � �
 � � ���� ��� B D � ��� I � J� �

Benefit:
improved propagation

Figure 6: Matrix model for the warehouse location problem

Another assignment problem is the Progressive Party
Problem that arises in the context of organising the social
programme for a yachting rally (prob013 in CSPLib). There
are a set of host boats, each with a capacity, and a set of guest
boats, each with a crew size. The problem is to assign guests
to hosts over a number of time periods, such that a guest crew
never visits the same host twice and no two guest crews meet
more than once.

A 2-d matrix is used to represent the assignment of guests
to hosts in time periods (see Figure 7). All-different con-
straints on the rows of this matrix ensure that no guest ever
revisits a host. A set of 1-d 0/1 matrices are used to rep-
resent when two guests meet on a host boat at a time pe-
riod. An occurrence constraint on each 1-d matrix allows at
most one such meeting. Finally, a 3-d 0/1 matrix is used.
This matrix replicates the information (assignment of guests
to hosts in periods) held in the 2-d matrix, but allows capac-
ity constraints to be stated concisely via weighted sums of its
columns. Furthermore, symmetry can be broken in 3 dimen-
sions on this matrix: periods are all symmetrical, as are host
boats with equal capacity and guest boats with equal crew
sizes. Three-dimensional lexicographic ordering ([FFH

�
01])

can be employed to remove much of this symmetry.
A simple means of channelling between the 2-d and 3-d

matrices is to use a set of implication constraints of the form:
� ��� � ��� D����?! � �

. The disadvantage of this approach is
that

� � � � � such constraints are necessary. An alternative
approach makes use of variable indexing into the 3-d matrix,
as presented in Figure 7. Just

� � � of these constraints are

5

necessary along with
� � � row constraints to ensure that the

remaining elements are set to 0 (also shown in the figure).
Matrix modelling provides two key advantages for the pro-

gressive party problem. Firstly, each of the matrices enables
one of the problem constraints to be stated easily, whereas the
same constraint would be much more difficult to state on the
other matrix. The second advantage is again the translation
from value symmetry (of the hosts in the 2-d matrix) to vari-
able symmetry (in the 3-d matrix), which can be dealt with us-
ing lexicographic ordering. These advantages are underlined
when we consider a problem with 7 periods, 7 hosts, and 13
guests: the model without 3-d symmetry-breaking solves this
problem in 50,000 fails whereas the model with 3-d symme-
try breaking makes just 2,000 fails.

Matrices: � periods� G,G J
� � � � �

� periods
� �"� � � � 6 � ��� � � 6� 6 � �

guests
� 6 �� ��� 6

hosts
�	� �

� �"� � � �H4 � ���?!�@ � ����� ���	���� � � �	���
guests

� ���
�� � ���� � periods
� �

Constraints:

(row sum) � � � � � G,G J
� � B �

(row all-diff) � � all-different � � �"� � � � 6 � ��� �
(col weighted sum) � � � � �
 ��� G �79 � �"� � � �H4 � ���?!B D � ��� I � J� !
(row sum) � � � � ! � �"� � � �H4 � ���?! � �
(channelling) � � � � �"� � � �H4 � ��������� �	��
��� ��� � �

� � � � � �"� � � � 6 � ��� � � �"� � � � 6 � �"!� � G,G J
�?!� � �

Benefits:
partial 3-d symmetry breaking
ease of statement
indistinguishable values
variable indexing

Figure 7: Matrix model for the progressive party problem

8 Conclusions
Matrix modelling is more than just a way to view constraint
programs containing arrays of variables. It suggests that con-
straint modelling languages should adopt matrices as first-

class objects. Constraint toolkits should provide the same sort
of matrix operations as found in a matrix manipulation lan-
guage like MATLAB. For example, matrix symmetry break-
ing predicates and the scalar product operator should be prim-
itives of the language and efficient propagators should be pro-
vided for reasoning about them.

As an alternative, the adoption of sets and relations as first-
class objects in constraint modelling languages is advocated
[F01; FHK01], together with operations such as relational im-
age retrieval as well as relation composition and transposi-
tion. This is akin to ER-style conceptual modelling and OCL-
style object modelling. Such relational modelling is higher-
level than matrix modelling, and thus more ambitious, but the
latter can be argued to be a perfect implementation technol-
ogy for the former [FHK01]. It would ultimately be up to the
modellers to choose their favourite level of abstraction.

In many of our examples, symmetry was an important fea-
ture. In addition to offering standard methods to deal with
symmetry in matrix models, we should be able to identify
such symmetries automatically. Whilst identifying symmetry
is hard in general, it is much easier to identify row or column
symmetry in a matrix (or relation) model.

Acknowledgements
This research is supported by EPSRC grant GR/N16129 and
the Swedish Research Council (VR), under Research Grant
number 221-99-369. The last author is supported by an EP-
SRC advanced research fellowship.

References
[CCLW99] B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and

J.C.K. Wu. Increasing constraint propagation by
redundant modeling: An experience report. Con-
straints, 4:167–192, 1999.

[F01] P. Flener. Towards relational modelling of com-
binatorial optimisation problems. In Proceed-
ings of IJCAI-2001 Workshop on Modelling and
Solving Problems with Constraints. International
Joint Conference on Artificial Intelligence, 2001.

[FHK01] P. Flener, B. Hnich, and Z. Kızıltan. Compiling
high-level type constructors in constraint pro-
gramming. In I.V. Ramakrishnan, editor, Prac-
tical Applications of Declarative Languages,
pages 229–244. Springer-Verlag, 2001. Lecture
Notes in Computer Science 1990.

[FFH
�

01] P. Flener, A.M. Frisch, B. Hnich, Z. Kızıltan,
I. Miguel, J. Pearson, and T. Walsh.
Symmetry in matrix models. Techni-
cal Report APES-30-2001, APES group,
2001. Available from http://www.dcs.st-
and.ac.uk/ � apes/reports/apes-30-2001.ps.gz.
Short version submitted to SymCon’01 (Sym-
metry in Constraints), CP-2001 post-conference
workshop.

[FMW01] A.M. Frisch, I. Miguel, and T. Walsh. Modelling
a steel mill slab design problem. In Proceed-
ings of IJCAI-2001 Workshop on Modelling and

6

Solving Problems with Constraints. International
Joint Conference on Artificial Intelligence, 2001.

[HMPR99] P. Van Hentenryck, L. Michel, L. Perron, and
J.-C. Régin. Constraint programming in OPL.
In G. Nadathur, editor, Principles and Prac-
tice of Declarative Programming, pages 97–116.
Springer-Verlag, 1999. Lecture Notes in Com-
puter Science 1702.

[KH01] Z. Kızıltan and B. Hnich. Symmetry breaking
in a rack configuration problem. In Proceed-
ings of IJCAI-2001 Workshop on Modelling and
Solving Problems with Constraints. International
Joint Conference on Artificial Intelligence, 2001.

[Pre01] S.D. Prestwich. Balanced incomplete block de-
sign as satisfiability. In Proceedings of the 12th
Irish Conference on Artificial Intelligence and
Cognitive Science, 2001.

[PS97] L. Proll and B.M. Smith. ILP and constraint
programming approaches to a template design
problem. Available as Research Report from
http://www.comp.leeds.ac.uk/bms/papers.html.

[Smi00] B.M. Smith. Modelling a permutation problem.
In Proceedings of ECAI’2000 Workshop on Mod-
elling and Solving Problems with Constraints,
2000. Also available as Research Report from
http://www.comp.leeds.ac.uk/bms/papers.html.

[VH99] P. Van Hentenryck. The OPL Optimization Pro-
gramming Language. The MIT Press, 1999.

[Wal01] T. Walsh. Permutation problems and
channelling constraints. Technical
Report APES-26-2001, APES group,
2001. Available from http://www.dcs.st-
and.ac.uk/ � apes/reports/apes-26-2001.ps.gz.

7

