Christian Bessiere Brahim Hnich Zeynep Kiziltan
Toby Walsh (Eds.)

Modelling and Solving
Problems with Constraints

Fifth International Workshop
Edinburgh, Scotland, 31 July 2005

Proceedings

Held in conjunction with the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI 2005)

Preface

Constraint Programming (CP) is a powerful technology to solve combinato-
rial problems which are ubiquitous in academia and industry. The last ten
years have witnessed significant research devoted to modelling and solving
problems with constraints. CP is now a mature field and has been success-
fully used for tackling a wide range of real-life complex applications.

As constraint solving is intractable in general, problems can become diffi-
cult to solve as their size increase. Therefore, there is always a need for more
efficient solvers to cope with ever difficult problems. Techniques such as the
design of specialised filtering algorithms for recurring constraints, sophisti-
cated search techniques, heuristics to guide the search, symmetry breaking
have significant impact on the time spent to solve problems. Efficiency can
be improved also by bridging the gap between CP and the other communi-
ties such as Operations Research, Local Search, SAT, Planning, and Machine
Learning.

Formulating an effective model for a given problem often requires trying
alternate models and using “modelling tricks” such as redundant modelling
and channelling. This could be a challenge even for modelling experts. The
increasing use of CP necessitates higher level modelling languages to facilitate
the exploitation of the available technology and to make CP reachable to a
wider user base. The hope is that the next generation modelling languages
will assist modellers by for instance helping acquire and validate constraints,
automatically generating alternate models and selecting the most appropriate
one for the application in hand, and synthesising propagators for complex
constraints.

It is desirable to extend the classical framework for modelling and solv-
ing with constraints to adapt to some real-life scenarios. For instance, many
problems contain uncertainty and thus the user may require robust solutions.
In some cases, problems are over-constrained and the user has preferences for
which constraints to relax. Explanations can be necessary to understand the
solution process. Real-life problems are often optimisation problems and the
users might want to improve the quality of their solutions as quickly as pos-
sible.

This workshop provides a forum for researchers who share these goals.
It is the 5th in the series, following the successful earlier workshops held
alongside ECAT 2000, IJCAI 2001, ECAI 2002, and ECAI 2004. The papers
in these proceedings present research into many aspects of modelling and
solving problems with constraints such as modelling, symmetry breaking,
propagation algorithms, applications, hybrid systems, and extensions to the
classical framework. In order to help push the field further, the workshop
hosts a modelling challenge. Finally, the workshop includes an invited talk
which gives insight into modelling and solving problems with constraints
using an open-source constraint programming system called Choco.

We would like to thank all the authors who submitted papers; the in-
vited speaker Narendra Jussien; the organisers of the modelling challenge;
the members of the programme committee; the additional reviewers for their
help, and Emmanuel Hebrard and Paolo Torroni for their support in the
preparation of these proceedings.

The proceedings can be found online at http://4c.ucc.ie/“brahim/
ijcaiObws.

June 2005 Christian Bessiere
Brahim Hnich

Zeynep Kiziltan

Toby Walsh

(Workshop Organizers)

IT

Workshop Organizers

Christian Bessiere, LIRMM-CNRS, France

Brahim Hnich, 4C, University College Cork, Ireland

Zeynep Kiziltan, Universita di Bologna, Italy (Chair)

Toby Walsh, NICTA and University of New South Wales, Australia

Programme Committee

Claire Bagley, Oracle Corporation, U.S.A.

Roman Bartak, Charles University, Czech Republic

Nicolas Beldiceanu, Ecole des Mines de Nantes, France
Carmen Gervet, IC-Parc, Imperial College London, U.K.
Esther Gelle, ABB Switzerland Corporate Research, Switzerland
Warwick Harvey, IC-Parc, Imperial College London, U.K.
Jimmy Lee, The Chinese University of Hong Kong, Hong Kong
Pedro Meseguer, IITA-CSIC, Spain

Michela Milano, Universita di Bologna, Italy

Wim Nuijten, ILOG, The Netherlands

Patrick Prosser, Glasgow University, U.K.

Jean-Francois Puget, ILOG, France

Jean-Charles Regin, ILOG, France

Thomas Schiex, Institut National de La Recherche Agronomique, France
Peter Stuckey, University of Melbourne, Australia

Edward Tsang, University of Essex, U.K.

Mark Wallace, Monash University, Australia

Modelling Challenge Organizers

Ian Gent, Ian Gent, University of St. Andrews, U.K.
Barbara Smith, 4C, University College Cork, Ireland

Additional Referees

Remi Coletta, Emmanuel Hebrard, Alessandro Zanarini

I11

Table of Contents

Invited Talk

The Choco Constraint Programming System 1
Narendra Jussien

Modelling and Symmetry Breaking

A SAT Encoding for the Social Golfer Problem 2
Ian P. Gent and Ines Lynce

Modelling and Solving the Stable Marriage Problem Using Constraint Pro-
GraMINING oottt e et e 10
David F. Manlove and Gregg O’Malley

Modelling and Dynamic Symmetry Breaking in Constraint Programming 18
Karen E. Petrie

Propagation Algorithms

Exploring the Use of Constraint Programming for Enforcing Connectivity

during Graph Generationot 26
Kenneth N. Brown, Patrick Prosser, J. Christopher Beck, and Christine
Wei Wu

An n-ary Constraint for the Stable Matching Problem 32
Chris Unsworth and Patrick Prosser

Applications and Hybrid Systems

Modelling Multi-Agent Systems as Constraints for Model-based Diagnosis 39
Meir Kalech and Gal A. Kaminka

A Constraint-Based Planner for Data Production 46
Wanlin Pang and Keith Golden

Combining Constraint Processing and Pattern Matching to Describe and
Locate Structured Motifs in Genomic Sequences 53
Patricia Thebault, Simon de Givry, Thomas Schiex, and Christine Gaspin

Extensions

D3G? A: the New Distributed Guided Genetic Algorithm for CSOPs ... 61
Bouamama Sadok and Ghedira Khaled

v

A Generalisation of Generalised Arc Consistency from Constraint Satisfaction

to Constraint-Based Inference L. 68
Le Chang and Alan K. Mackworth
On the Relation among Open, Interactive and Dynamic CSP 76

Santiago Macho-Gonzalez and Pedro Meseguer

The Choco Constraint Programming System

Narendra Jussien

Ecole des Mines de Nantes, LINA FRE CNRS 2729, France

Abstract. The CHOCO (CHic, un Outil Contraintes avec des Objets —
great, a constraint programming tool with objects) constraint program-
ming system is an emanation of the French OCRE (Outil Contraintes
pour la Recherche et I’Enseignement — a constraint tool for research and
teaching) group. Choco is a java library for constraint satisfaction prob-
lems, constraint programming, and explanation-based constraint solving.
It is built on an event-based propagation mechanism with backtrackable
structures.

This talk is composed of two parts. In the first part, we will describe and
illustrate the inner mechanisms and features of Choco. Then, we will
focus on the modelling and solving tools of the system illustrating the
different domains and constraints provided with Choco. This first part
will be concluded with one of the key features of Choco: its extensibility.

But Choco is much more than a classical constraint programming sys-
tem. In the second part of the talk, we will focus on the new features
of our solver. Explanations as both an analysing and solving tool for
constraint programming will be introduced and we will show how they
are smoothly integrated within Choco, thanks to the Java programming
language. Moreover, search mechanisms which were not previously in-
tegrated in a modular and generic way will be presented including the
decision-repair and the logical Benders decomposition schemes.

Finally, we will conclude with the status of Choco regarding its use for
teaching, research or economical purposes and call for participation in
its development.

A SAT Encoding for the Social Golfer Problem

lan P. Gent
School of Computer Science
University of St Andrews
Fife, Scotland
ipg@dcs.st-and.ac.uk

Abstract

When given a combinatorial problem, one has two
major tasks: to model the problem and to solve the
selected model. Whilst much work in SAT algo-
rithms is for building efficient solvers, we argue
that many modeling decisions have a direct im-
pact on the solvers performance. We focus on a
particular combinatorial problem: the social golfer
problem, and we show how to encode this problem
into SAT. An important feature of the social golfer
problem is the presence of symmetries, which can
be tackled by adding more clauses to the encod-
ing. Our empirical evaluation shows that different
encodings can improve or degrade search dramati-
cally depending on the solver. We also show empir-
ically that by choosing the right encoding one may
exploit the heavy-tail behavior.

1 Introduction

Recent years have seen remarkable progress in propositional
satisfiability (SAT), with significant theoretical and practical
contributions. Indeed, SAT solvers can currently be used to
solve hard benchmark problems. State-of-the-art SAT solvers
(e.g. [Moskewicz et al., 2001; Goldberg and Novikov, 2002;
Een and Sorensson, 2003; Kautz et al., 2004; Ryan, 2004]),
are with no doubt very competitive. And every year a new
SAT competition is run with new solvers and new bench-
marks. All solvers and benchmarks are classified according
to three categories: industrial, handmade and random. Every
year, almost all the previous year winners for each category
are beaten by a new, more efficient solver. Also, the new
solvers are able to solve part of the benchmark problems that
were not solved in the previous year in a reasonable amount
of time.

The progress in SAT solving has attracted the attention
of researchers that usually use other technologies to solve
their problems. Encoding problems in CNF format and solv-
ing them with SAT solvers is indeed a competitive approach.
SAT has the advantage of being very easy in its formulation.
Nonetheless, the simplicity of the CNF format makes its use
very restrictive. For example, a constraint problem with a few
dozen of variables may result in a SAT problem with thou-
sands of variables and millions of clauses. Also, one may ar-

Inés Lynce
IST/INESC-ID
Technical University of Lisbon
Lisbon, Portuga
ines@sat.inesc-id.pt

gue that a cause of inefficiency is the loss of structure during
problem reductions.

Even though the SAT community is extremely motivated
for continuously improving SAT solvers performance, there
is much to be done with respect to SAT encodings. We believe
that many applications do not benefit from the efficiency in
SAT solving due to inefficiencies introduced while producing
SAT encodings. Moreover, there is a tight relation between
encodings and solvers: different encodings are more or less
effective depending on the solvers.

Encodings into SAT are constructed every time a new prob-
lem is converted into CNF. In this paper we focus on encod-
ing a particular problem, the social golfer problem, studying
the effect that encoding decisions have on performance. This
work contributes to better understanding the interplay of sat-
isfiability modeling and solving on combinatorial problems.

The rest of the paper is organized as follows. The next
section gives some insights on how to encode a problem into
SAT. Section 3 describes a particular combinatorial problem:
the social golfer problem. Section 4 explains how to en-
code the social golfer problem into SAT, including how to
break symmetries in this highly symmetric problem. After-
wards, experimental results are given for running both a lo-
cal search and a backtrack search solver (walksat and siege,
respectively) for the two encodings of the social golfer prob-
lem: one with no symmetry breaking and other with sym-
metry breaking. Finally, we conclude the paper and suggest
future work.

2 Encoding a Problem into SAT

Encoding combinatorial problems as SAT problems has been
mostly motivated by the recent advances in SAT solvers. The
new solvers are capable of solving very large, very hard real-
world problem instances, which more traditional SAT solvers
are totally incapable of.

Nonetheless, only a few problems are naturally encoded
as SAT problems. Combinational electronic circuits are the
most paradigmatic example. Indeed, more sophisticated log-
ics are frequently more adequate to represent most of the
problems. Consequently, encoding such problems as CNF
formulas may require a significant effort. Hopefully this
effort will be counterbalanced by the performance of SAT
solvers.

To encode a combinatorial problem into SAT one must de-
fine a set of variables and a set of constraints on the variables.
Usually we represent SAT problems as CNF formulas, and
therefore a formula is a conjunction of clauses, a clause is a
disjunction of literals and a literal is a variable or its negation.

The set of variables may be defined based on different cri-
teria: the most intuitive variables set, the set with minimum
cardinality, the set that will require the smallest number of
clauses, etc. Choosing the most adequate variables is more
an art than a science. Moreover, the definition of the set of
constraints may require the definition of additional auxiliary
variables. In some cases, these variables are really essential;
in other cases, we prefer to have more variables rather than
more clauses.

Recent advances in encodings include identifying and
breaking symmetries [Crawford et al., 1996; Brown et al.,
1988; Smith, 2001]. There has been a significant effort for
studying the effect of symmetry breaking in constraint satis-
faction, which has further motivated the study of symmetry
breaking in SAT encodings.

Symmetries cause the existence of redundant search paths,
which is a clear drawback for backtrack search. Breaking
symmetries reduces the search space: this is a clearly advan-
tage for problems having no solution, which implies travers-
ing the whole search space to prove unsatisfiability. For the
same reason, breaking symmetries is also an advantage when
all the solutions must be found. (Even though symmetri-
cal solutions have to be computed from the solutions found.)
Moreover, experimental evaluation has shown that (partially)
breaking symmetries can also be useful for finding one solu-
tion [Ramani and Markov, 2005]. Observe that with symme-
try breaking the freedom of the search is restricted.

On the other hand, there is often a trade-off between the
cost of eliminating symmetries and the savings derived from
having done so. Complete symmetry breaking make solvers
to return a unique solution from each set of symmetrically
equivalent ones, which is the one found first by the variable
and value ordering heuristics. But usually one is interested in
finding any solution as quickly as possible, rather than guar-
anteeing only distinct solutions are returned.

One may envision three main different ways of eliminating
symmetry:

1. Remodel the problem [Smith, 2001]. A different encod-
ing, e.g. obtained by defining a different set of variables,
may create a problem with less symmetries.

2. Add constraints to the model [Crawford et al., 1996;
Aloul et al.,, 2003]. Such constraints merge symme-
tries in equivalent classes. In practice, only one as-
signment satisfies these constraints, instead of n assign-
ments, where n is the number of elements in a given
equivalent class.

3. Change the search process to avoid symmetrically equiv-
alent states [Brown et al., 1988; Gent and Smith, 2000;
Fahle et al., 2001]. This can be done by adding con-
straints to ensure that any assignment symmetric to one
assignment already considered will not be explored in
the future, or by performing checks that symmetric
equivalents have not been visited. This is done for both

satisfying and unsatisfying assignments. However, this
approach has not found success in SAT. This is unsur-
prising, because of the reliance of SAT solvers on very
small time between branching decisions, limiting the
overheads that can be accepted and ruling out these sym-
metry breaking techniques.

Another approach that aims reducing symmetry was pro-
posed by Pedro Meseguer and Carme Torras [Meseguer and
Torras, 2001]. The idea is to use symmetry to guide the
search. The authors suggest the use of variable and value se-
lection heuristics to direct the search towards subspaces with
high density of non-symmetric states.

3 The Social Golfer Problem

The social golfer problem is derived from a question posted
tosci . op-resear ch in May 1998:

The coordinator of a local golf club has come to
you with the following problem. In her club, there
are 32 social golfers, each of whom play golf once
a week, and always in groups of 4. She would like
you to come up with a schedule of play for these
golfers, to last as many weeks as possible, such
that no golfer plays in the same group as any other
golfer on more than one occasion.

In other words, this problem can be described more explic-
itly by enumerating four constraints which must be satisfied:

1. The golf club has 32 members.

2. Each member plays golf once a week.
3. Golfers always play in groups of 4.
4

. No golfer plays in the same group as any other golfer
twice.

Since 1998, this problem has become a famous com-
binatorial problem. It is problem number 10 in CSPLib
(http://ww. csplib.org/). A solution is said to be
optimal when maximum socialisation is achieved, i.e. when
one golfer plays with as many other golfers as possible.
Clearly, since a golfer plays with three new golfers each
week, the schedule cannot exceed 10 weeks. This follows
from the fact that each golfer plays with three other golfers
each week. Since there is a total of 31 other golfers, this
means that a golfer runs out of opponents after 31/3 weeks.

For some years, it was not known if a 10 week (and there-
fore optimal) solution for 32 golfers exists. In 2004, Aguado
found a solution using design-theoretic techniques [Aguado,
2004]. No constraint programming technique has yet solved
this instance, so it remains a valuable benchmark for the
constraint programming community. The best known solu-
tion from constraint programming is from Stefano Novello,
who posted a 9-week solution, along with the source of the
ECL*PS® program used to find it.

Even though the social golfer problem was described for
32 golfers playing in groups of 4, it can be easily general-
ized. An instance to the problem is characterized by a triple
w — p — g, where w is the number of weeks, p is the num-
ber of players per group and g is the number of groups. The

week groupl group 2

1 12 34
2 13 24
3 14 23

Figure 1: A solution for the social golfer problem 3-2-2.

original question therefore is to find a solution to the w-4-8
problem, with w being the maximum, i.e. to find a solution
to 10-4-8 (or prove that none exists). For example, Figure 1
gives a solution for the social golfer problem 3-2-2, i.e. for
scheduling 4 golfers playing in 2 groups of 2 golfers each for
3 weeks.

The social golfer problem is related with other well-known
combinatorial problems. Indeed, this problem is a general-
isation of the problem of constructing a round-robin tour-
nament schedule, the main difference being that in the so-
cial golfer problem the number of players in a group may be
greater than two. Also, the social golfer problem of finding
a 7 week schedule for 5 groups of 3 players (7-3-5) is the
same as Kirkman’s Schoolgirl Problem, where the main goal
is to arrange fifteen schoolgirls in rows of three so that each
schoolgirl walks in the same row with every other schoolgirl
exactly once a week.

The social golfer problem is also well-known for being
a case study of symmetry for constraint programming (e.g.
see [Smith, 2001]). This problem is highly symmetric, ex-
hibiting the following symmetries:

e Golfers within a group are interchangeable. Order has
no significance for groups of golfers.

e Groups within a week are interchangeable. Again, order
has no significance when considering groups within a
week.

e Weeks are interchangeable.
straints with respect to weeks.

There are no order con-

The exact group of symmetries that arises from this will de-
pend on the encoding chosen. For example, in the model con-
sidered by Harvey, Kelsey and Petrie [Harvey et al., 2003],
this gives the wreath product of Sg with S1¢. This means that
the 8 groupings in each week can be permuted in any way,
giving Ss, and that the 10 weeks can also be permuted in any
way, giving S1o.

Eliminating the above symmetries is not expensive and can
bring significant enhancements. For example, considering
again the solution given in Figure 1, one may assume that
symmetries have been eliminated: this explains why golfers
are ordered within groups, groups are ordered within weeks
with respect to the first player and weeks are ordered with
respect to the second player of the first group.

There is also one final symmetry that is not considered
above.

e Golfers are interchangeable. That is, the names of the 32
golfers are insignificant.

In the model just mentioned, the additional symmetry
would give a semi-direct product of the previous group with
S32. This combination of symmetries makes symmetry

breaking much more difficult, and to date no efficient method
to break all symmetries has been presented. From the very
beginning, the social golfer problem has been extensively
studied as a paradigmatic problem with a significant num-
ber of symmetries [Smith, 2001; Puget, 2002]. In this paper,
we concentrate only on the initial group of symmetries of the
problem, disregarding the more complicated combination for
simplicity. It would certainly be interesting to consider ap-
proaches to breaking the full group of the problem, following
for example [Aloul et al., 2003], but that is outside the scope
of this paper.

4 A SAT Encoding for the Social Golfer
Problem

To encode the social golfer problem as a SAT problem we
must define:

e A set of variables.

e A set of constraints (represented by clauses) on the vari-
ables.

The set of constraints must guarantee that each golfer plays
golf once a week, golfers always play in groups of a given
size and no golfer plays in the same group as any other golfer
twice.

41 TheModd

We have defined SAT variables based on the golfers. Appar-
ently, for a social golfer problem w—p—g it should be enough
to have w x (p x g) x g variables. The value of each vari-
able would allow us to conclude whether, in a given week, a
certain golfer is scheduled to play in a particular group.

However, we have chosen a more expressive model. Even
though this model has more variables, these variables are
quite useful for defining the problem constraints. Instead of
wx (px g) x g variables, this new model has w x (px g) x (p x
g) variables. When compared with the other model, the dif-
ference is that we introduced an additional order relation for
golfers within groups. This means that the value of each vari-
able indicates whether golfer 4 is scheduled to play in group &
of week [as the j* player, with 1 < i < (pxg),1<j<p,
1<k<gand1l <1 < w. (Inwhat follows we will refer
to z = p x g as the number of golfers.) Although the or-
der of players is irrelevant within groups (as well as the order
of groups within weeks and the order of weeks), this model
requires most constraints to be at-least-one and at-most-one
clauses.

The next step consists in adding clauses to specify that:

e Each golfer plays exactly once per week, i.e.:

— Each golfer plays at least once per week.
— Each golfer plays at most once per week.

e Each group in each week has exactly p players, i.e.:

— At least one golfer must play as the ;j** golfer, with
I<j<p.

— At most one golfer can play as the j** golfer, with
I1<j<p

Let us now consider the social golfer problem w — p —
g, with the number of golfers being given by © = p x g.
Consider GOLFER;;; to be a variable equivalent to having
golfer i playing as the j** player of group & during week I,
withl <i<z, 1<j<pl<k<gandl<Il<w.

Each of at-least-one clauses referring to golfers has size
x = p X g and is obtained as simply as follows.

w

T g
/\ /\ \/ \/ GOLFER; 1

11=1j=1k=1

The at-most-one clauses referring to golfers are encoded
with two sets of binary clauses. The first set of clauses guar-
antees that each golfer plays at most once in the same group.

w

xT
/\ /\ /\ /\ /\ —~GOLFER;j3; V ~GOLFER;m i

I=1j=1k=1m=j+1

The second set of clauses guarantees that each golfer plays
at most once per week.

z w p g g P
/\/\/\/\ /\ /\ “GOLFER;jki V 7"GOLFER;nmi

i=11=1j=1 k=1 m=k-+1n=j+1

Let us now consider the clauses referring to groups of
golfers. Each at-least-one clause has size x and is obtained
as follows.

w g p =z
/\ /\ /\ \/GOLFERZ-W

Finally, the at-most- clauses for groups of golfers are en-
coded by a set of binary clauses.

AAAN

With the set of variables and clauses described above we
have encoded all the constraints of the problem, except the
one that mentions that “no golfer plays in the same group
as any other golfer twice”. To guarantee this condition, we
introduce a set of auxiliary variables and a ladder matrix.

The set of auxiliary variables allows us to know exactly
which golfers are scheduled to play in each match. Hence, we
must have = x g x w additional variables. Clearly, the value
of these new variables depends on the value of the variables
GOLFER described above. Consider these new variables to
be a set of variables denoted as GOLFER’;x;, meaning that
golfer ¢ is scheduled to play in group % during week [, with
1<i<z,1<k<gandl <[<w. lItiseasy to establish
an equivalence relation between each variable GOLFER’ ;;
and the corresponding GOLFER variables. (Each equivalence
may be readily converted into a set of clauses.)

p
GOLFER’ ;1 < \/ GOLFER;
j=1
These new variables will now be used by the variables in

the ladder matrix in such a way that no golfer plays in the
same group as any other golfer more than once.

x

/\ ~GOLFER; i V “GOLFER; 11

11 12 21 22 31 32
34 T T F F F F
23T T T T T T
24| T T T T F F
12| T F F F F F
13/ T T T F F F
4T T T T T F

Figure 2: The ladder matrix for the solution given in Figure 1.

The ladder matrix [Gent and Prosser, 2002; Ansbtegui and
Manya, 2004; Gent and Nightingale, 2004] is characterized
by a set of (3) x (g x w) Boolean ladder variables and a set
of ladder clauses. Intuitively, one would say that the value
of each variable denotes whether two golfers are scheduled to
play together in a given group of a given week. But we can do
better. We can guarantee that every two golfers play together
at most once.

Consider the ladder variables to be denoted as LADDER,,,
withl <y <) and 1 < z < gxw. Acomplete assignment
of the ladder variables is said to be valid if and only if every
row is a sequence of zero or more true assignments followed
by false assignments. In other words, after a ladder variable
being set to FALSE, no subsequent variables in the same row
can be assigned TRUE, i.e.:

V,—3, e LADDER,, = FALSE A LADDER,,+1 = TRUE

The behavior of the ladder matrix can be used to guar-
antee that no two golfers play more than once in the same
group. Actually, having an adjacent pair of variables with
values TRUE and FALSE identifies precisely in which group
of which week two golfers played together.

Whenever a ladder variable is satisfied, there is a set of
adjacent variables that must be satisfied. This can be achieved
by unit propagation adding the following set of clauses.

(3)—1gxw
/\ /\ —Ladder,,+1 V Ladder,.

y=1 z=1

For example, consider the solution for the social golfer
problem 3-2-2 given in Figure 1. This solution corresponds
to the ladder matrix given in Figure 2. Each line in the ma-
trix corresponds to a pair of golfers. For example, the first
line named 3.4 indicates when golfers 3 and 4 play together.
Each column in the matrix corresponds to a group of golfers.
For example, the second column named 1.2 specifies the sec-
ond group of golfers playing in the first week. Each pair of
adjacent entries within a line with values T/F indicate when
two golfers play together. For example, the values of the two
entries in bold indicate that golfers 3 and 4 play together in
the second group of the first week. Observe that due to the
ladder matrix constraints no golfer can play with any other
golfer more than once.

Finally, the variables in the ladder matrix must be re-
lated with the auxiliary variables described above (denoted
as GOLFER’). Having GOLFER’;;; and GOLFER’,,x; Sat-
isfied means that both golfers ¢+ and m play in the same
group k in the same week [. This is equivalent to

having Ladder[(zgi)m_ﬂ(lxk) assigned value TRUE and
Ladder[(ki

S i) Em—i(ixkt1) assigned value FALSE. Formally:

z—1 =z
/\ —GOLFER’;3; V "GOLFER’ 111

\/Ladder[(z;i)_,_m_i} (Ixk)

X
/\ —GOLFER’;3; V "GOLFER ;111

I=1k=1i=1 m=i+1 \/_‘Ladder[(z_L)+m—i](l><k+1)
2

x
/\ Ladder[(m—i)+m4](1xk+1) v

! X 2
ST SLadder(e) i V
2

—GOLFER’ ;1

/\ Ladd(i?”[(a:;i)+m_i](lxk+1) v

S e ﬁLadder[(I;i)+m—i](lxk) \

—GOLFER’ 11

4.2 Symmetry Breaking

After establishing the model described above, we consid-
ered predicates for breaking symmetries in our SAT encod-
ing for the social golfer problem. Clearly, this problem (and
therefore our model) is highly symmetric: golfers within a
group are interchangeable, groups within a week are also in-
terchangeable and finally weeks are interchangeable. We sug-
gest to tackle these symmetries by adding more clauses to the
encoding.

The symmetries between players within the same group are
eliminated by forcing players in the same group to be in lex-
icographic order, i.e. in increasing numerical order. In prac-
tice, this is done by adding a set of binary clauses as follows.

g w i—1

T P
A A AN /\ ~GOLFER;j1 V ~GOLFER,, 1)k

i=1j=1k=11=1m=1

These clauses guarantee that if a golfer is scheduled to play
as the j*" golfer, then the (5 +1)*" golfer has to be in a higher
numerical order.

Similarly, we impose the first players of the groups within
the same week to be in lexicographic order. Obviously, golfer
#1 must be scheduled as the first golfer in the first group
within each week. In addition, we use binary clauses to en-
code symmetry breaking within each week.

w i—1

/\ —GOLFER;1) V =GOLFER 1 (k41):

These binary clauses impose first golfers of subsequent
groups to be in lexicographic order.

Finally, additional clauses are used to break symmetries
between weeks. This is simply achieved by imposing lexico-
graphic order between the second golfer of the first group of
each week. This is encoded as follows.

1
—GOLFER;2x; V ~GOL FERm2k(1+1)
1

w1

z g
i=1lk=1l=1m

These three sets of binary clauses suffice to break the sym-
metries that were initially mentioned. Observe that the so-
lution given in Figure 1 satisfies all the constraints we have
specified for symmetry breaking. As we mentioned earlier,
we leave for future work the interesting question of how best
to tackle the combination of these symmetries with the free
interchanging of players.

5 Experimental Results

In this section we evaluate empirically our encodings for the
social golfer problem®. We compare our encoding with and
without symmetries. We use two state-of-the-art SAT solvers:
walksat and siege.

Experimental results are given for a set of 29 benchmark
problems. All these problems are satisfiable. Otherwise, they
would not be solved by local search. Moreover, many of the
unsatisfiable problem instances of the social golfer problem
are trivially found to be unsatisfiable. On the other hand, it
is widely accepted that symmetry breaking helps proving un-
satisfiability (e.g. see [Ramani and Markov, 2005]), but not
much has been said about finding exactly one solution.

Table 1 characterizes each problem instance (named as
w — p — g) by giving the number of variables and clauses.
The larger instances have thousands of variables and around a
million of clauses. We have observed that most of the clauses
are either binary or ternary, which makes the average clause
size (AvgCS) to be between 2 and 3. We have also observed
that the additional clauses for breaking symmetries (SBCIs),
which are all binary clauses, may augment the number of
clauses in the initial model for about 30% for the larger in-
stances (for smaller instances this value is smaller).

5.1 Local Search: Walksat

Walksat [Kautz et al., 2004] is a local search solver. The
algorithm is quite simple:

e Start with a random truth assignment.
o With probability p:

— Pick a variable occurring in some unsatisfied clause
and flip its truth assignment.

e With probability 1 — p:
— Make the best possible local move.

e Repeat the last two steps until the assignment satisfies
all clauses.

We have tried to run walksat on our benchmark problems
of the social golfer problem. Even though we tried many dif-
ferent configurations, walksat was far from being competitive
on solving these problems, specially those including clauses
for symmetry breaking. (We also tried other local search

For all experimental results a P-IV@1.7 GHz Linux machine
with 1 GByte of physical memory was used.

Problem #Vars #Cls AvgCS % SBCls
3-2-2 108 446 2.43 9%
5-3-2 495 2547 2.46 10%
4-3-3 864 5598 241 17%
7-4-2 1456 8556 2.46 12%
9-5-2 3375 21665 2.45 13%
5-4-4 4000 35032 2.35 24%
11-6-2 6732 46026 2.45 14%
7-6-3 9450 79965 2.38 21%
13-7-2 12103 86751 2.44 15%
6-5-5 13500 147950 2.30 28%
7-7-3 14406 127302 2.38 21%
5-8-3 14880 135780 2.37 22%
3-6-6 15876 207054 2.26 31%
15-8-2 20160 149912 2.44 15%
6-7-4 21756 227402 2.33 26%
3-8-5 24480 303260 2.28 29%
5-7-5 28175 339185 2.29 29%
17-9-2 31671 242541 2.44 16%
4-7-6 32340 440013 2.26 31%
3-9-5 34020 432360 2.28 29%
10-9-3 41310 388341 2.37 22%
6-9-4 43740 484614 2.32 26%
8-10-3 44400 426435 2.37 22%
19-10-2 47500 372630 2.43 16%
3-9-6 48843 701811 2.25 32%
5-10-4 49000 554140 2.32 27%
4-8-7 63616 995876 2.23 34%
5-10-5 76250 991925 2.28 30%
4-9-7 88452 1419075 2.23 34%

Table 1: Social golfer problems: number of variables and
clauses.

solvers without success.) This is as suggested by Prestwich,
that symmetry breaking constraints reduce the number of so-
lutions and therefore make it harder for local search to find
solutions [Prestwich, 2001].

Nonetheless, we have run a problem for a significant num-
ber of seeds. Figure 3 compares the average number of flips
per second and the total CPU time for including or not includ-
ing symmetry breaking clauses on the encodings (SymBreak
and NoSymBreak, respectively). Results were obtaining run-
ning walksat with 1500 seeds for problem 7-4-2. From these
results, which we believe to be representative of our SAT
benchmark problems of the social golfer problem, we may
conclude that:

e Walksat performs more flips per second (in average)
without clauses for symmetry breaking. This may be
explained by the overhead produced by the additional
symmetry breaking clauses.

e Walksat requires more CPU time to solve instances with
symmetry breaking clauses.

e Adding clauses to break symmetries affects negatively
both the number of flips and the CPU time, although the
consequences are more negative for the CPU time. In-

deed, for the encoding with symmetry breaking clauses
we may observe an extremely fluctuation on the ex-
pected time to find a solution, which is probably associ-
ated with a heavy-tail distribution [Gomes et al., 2000].

5.2 Backtrack Search: Siege

Siege [Ryan, 2004] is a randomized backtrack search SAT
solver enhanced with clause recording. The data structures
are carefully implemented and the decision heuristic is very
efficient, specially for structured problems.

Siege has been shown to be quite competitive on solving
our benchmark problems. We have run siege on each prob-
lem for 1500 seeds. Figure 4 compares the number of nodes
(median and mean, using a logarithmic scale) for including
or not including symmetry breaking clauses. Figure 5 makes
the same comparison for the CPU time. Apparently, includ-
ing symmetry breaking clauses often does not compensate.
Furthermore, results for including symmetry breaking clauses
are more negative for the number of nodes rather than for the
CPU time. The same holds for the median values when com-
pared with the mean values.

With the aim of clarifying the differences between me-
dian and mean values, we have run one of the problems
where those differences could be observed (problem 6-7-4)
for 10000 seeds. Figure 6 gives the number of nodes and the
CPU time. From these plots we may conclude that adding
symmetry breaking clauses seems to avoid a heavy-tail be-
havior exhibited by the encoding with no symmetry break-
ing. Hence, we claim that adding symmetry breaking clauses
may avoid the heavy-tail behavior, in particular for the most
difficult instances.

6 Conclusions and Future Work

Recent advances in SAT solving motivate an increasing num-
ber of combinatorial problems to be encoded into SAT. We
argue that modeling decisions have an impact on the solver’s
performance. We have encoded the social golfer problem
into SAT. Two different encodings - with and without sym-
metry breaking - have been empirically evaluated with local
search and backtrack search solvers. A somewhat surprising
observation is that some of the encodings, depending on the
solvers, may exhibit a heavy-tail distribution. In such circum-
stances, choosing the right encoding can make the difference
between heavy-tail behavior or not. In a near future, we plan
to do a more comprehensive evaluation, which includes eval-
uating more instances, trying different encodings and also en-
coding new problems.

References

[Aguado, 2004] Alejandro Aguado. A 10 days solution to
the social golfer problem, 2004. Manuscript.

[Aloul et al., 2003] F. Aloul, K. A. Sakallah, and 1. Markov.
Efficient symmetry breaking for boolean satisfiability. In
Proc. 1JCAI, pages 271-276, August 2003.

[Ansotegui and Manya, 2004] Carlos Ansotegui and Felip
Manya. Mapping problems with finite-domain variables
into problems with boolean variables. In Proceedings of

700000
NoSymBreak Flips per sec
680000 -
660000 -
640000 -

620000 -

Number of Flips

560000 -|
540000 |- -
520000

500000

480000 T T T T T T T

SymBreak Flips per sec ---—- -

0 200 400 600
Run Number

800 1000 1200 1400 1600

3000

NoSymBreak Time
SymBreak Time ----+ -

2500
2000

1500

CPU Time (seconds)

1000 -

500 A

0 e ; \ ; \ \
0 200 400 600 800 1000 1200 1400 1600
Run Number

Figure 3: Walksat: average number of flips per second and total CPU time for problem 7-4-2.

the International Conference on Theory and Applications
of Satisfiability Testing, May 2004.

[Brownetal., 1988] C. A. Brown, L. Finkelstein, and
P. W. Purdom Jr. Backtrack searching in the presence of
symmetry. In 6" International Conference, on Applied Al-
gebra, Algebraic Algorithms and Error-Correcting Codes,
volume 357 of Lecture Notes in Computer Science, pages
99-110. Springer-Verlag, 1988.

[Crawford et al., 1996] J. M. Crawford, M. L. Ginsberg,
E. Luks, and A. Roy. Symmetry-breaking predicates for
search problems. In Proceedings of the International Con-
ference on Principles of Knowledge and Reasoning, pages
148-159, 1996.

[Een and Sorensson, 2003] N. Een and N. Sorensson. An
extensible SAT solver. In Sixth International Conference
on Theory and Applications of Satisfiability Testing, May
2003.

[Fahle et al., 2001] T. Fahle, S. Schamberger, and M. Sell-
mann. Symmetry breaking. In Proc. CP 2001, pages 93—
107, 2001.

[Gent and Nightingale, 2004] Ian P. Gent and Peter Nightin-
gale. A new encoding of alldifferent into sat. In AM Frisch
and | Miguel, editors, Proc. 3rd International Workshop
on Modelling and Reformulating Constraint Satisfaction
Problems, CP2004, pages 95-110, 2004.

[Gent and Prosser, 2002] lan P. Gent and Patrick Prosser. Sat
encodings of the stable marriage problem with ties and in-
complete lists. In Fifth International Symposium on The-
ory and Applications of Satisfiability Testing, May 2002.

[Gent and Smith, 2000] lan P. Gent and Barbara M. Smith.
Symmetry breaking during search in constraint program-
ming. In Proc. ECAI, pages 599-603, 2000.

[Goldberg and Novikov, 2002] E. Goldberg and Y. Novikov.
BerkMin: a fast and robust SAT-solver. In Proceedings of
the Design and Test in Europe Conference, pages 142149,
March 2002.

[Gomes et al., 2000] Carla P. Gomes, Bart Selman, Nuno
Crato, and Henry A. Kautz. Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems. Journal
of Automated Reasoning, 24(1/2):67-100, 2000.

[Harvey et al., 2003] Warwick Harvey, Tom Kelsey, and
Karen Petrie. Symmetry group generation for CSPs.
Technical Report APES-60-2003, APES Research
Group, July 2003. Available from http://www.dcs.st-
and.ac.uk/"apes/apesreports.html.

[Kautz et al., 2004] Henry Kautz, Bart Selman, and David
McAllester. Walksat in the 2004 sat competition. In Pro-
ceedings of the International Conference on Theory and
Applications of Satisfiability Testing, 2004.

[Meseguer and Torras, 2001] P. Meseguer and C. Torras. Ex-
ploiting symmetries within constraint satisfaction search.
Artificial Intelligence, 129(1-2):133-163, 2001.

[Moskewicz et al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Engineering an efficient
SAT solver. In Design Automation Conference, pages
530-535, June 2001.

[Prestwich, 2001] Steven Prestwich. First-solution search
with symmetry breaking and implied constraints. In Work-
shop on Symmetry in Constraint Satisfaction Problems,
2001.

[Puget, 2002] Jean-Frangois Puget. Symmetry breaking re-
visited. In Pascal Van Hentenryck, editor, Proc. CP 2002,
pages 446-461. Springer-Verlag, 2002.

[Ramani and Markov, 2005] A. Ramani and I. L. Markov.
Automatically exploiting symmetries in constraint pro-
gramming. In Recent Advances in Constraints, volume
3419 of Lecture Notes in Computer Science, pages 98-
112. Springer-Verlag, 2005.

[Ryan, 2004] L. Ryan. Efficient algorithms for clause-
learning SAT solvers. Master’s thesis, Simon Fraser Uni-
versity, February 2004.

[Smith, 2001] Barbara M. Smith. Reducing symmetry in a
combinatorial design problem. In Proceedings of the Third
International Workshop on Integration of Al and OR Tech-
niques, pages 351-359, 2001.

NoSymBreak Nodes (median)

1e+07

1e+06

100000

10000

1000

100

10

T T T T T T T
1 10 100 1000 10000 100000 1le+06 1le+07
SymBreak Nodes (median)

NoSymBreak Nodes (mean)

1e+07

1e+06

100000 -

10000 -

1000 +

100 1

10 1

T T T T T T T
10 100 1000 10000 100000 1e+06 1e+07

SymBreak Nodes (mean)

Figure 4: Siege: comparison of the number of nodes (median and mean) for a set of problems.

NoSymBreak Time (median)

1000

100 +

10 +

0.1 4

0.01
0.01

T T T T
10 100

SymBreak Time (median)

1000

NoSymBreak Time (mean)

1000

100

10

0.1

0.001

0.001

T T T T T
0.01 0.1 1 10 100
SymBreak Time (mean)

1000

Figure 5: Siege: comparison of the CPU time (median and mean) for a set of problems.

Number of Nodes

1.8e+06

1.6e+06 -

1.4e+06

1.2e+06 -

1le+06

800000

600000

400000

200000 o

NoSymBreak Nodes
SymBreak Nodes

0

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Run Number

CPU Time (seconds)

600

400

300 -

200

100 +

NoSymBreak Time

SymBreak Time -------

0

T T T T T
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run Number

Figure 6: Siege: number of nodes and CPU time for problem 6-7-4.

1

Modelling and Solving the Stable Marriage Problem
Using Constraint Programming

David F. Manlove*T and Gregg O’Malley*

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: {davidm,gregg }@dcs.gla.ac.uk

Abstract

We study the Stable Marriage problem (SM), which
is a combinatorial problem that arises in many prac-
tical applications. We present two new models of
an instancd of SM with » men andn women as
an instance/ of a Constraint Satisfaction Problem.
We prove that establishing arc consistency.Jin
yields the same structure as given by the established
Extended Gale/Shapley algorithm for SM as ap-
plied to I. Consequently, a solution (stable match-
ing) of I can be derived without search. Further-
more we show that, in both encodingd| stable
matchings inf may be enumerated in a failure-free
manner. Our first encoding is 6#(n®) complex-

ity and is very natural, whilst our second model,
of O(n?) complexity (which is optimal), is a de-
velopment of the Boolean encoding[i@entet al.,
2001, establishing a greater level of structure.

Introduction

a matching in/. A modified version of this algorithm — the
Extended Gale/Shapley (EGS) algorith@usfield and Irv-
ing, 1989, Section 1.2]4- avoids some unnecessary steps by
deleting from the preference lists certain (man,woman) pairs
that cannot belong to a stable matching. Moreover the EGS
algorithm aids the development of some useful structural
properties of SMGusfield and Irving, 1989, Section 1.2.4
The man-orientedversion of the EGS algorithm (henceforth
referred to as the MEGS algorithm) involves a sequence of
proposals from the men to the women, provisional engage-
ments between men and women, and deletions from the pref-
erence lists. A pseudocode description of MEGS algorithm is
given in Figure 1 (the terrdelete the pailp, w) means that

p should be deleted from’s list and vice versa.) The stable
matching returned by the MEGS algorithm is called rthen-
optimal (or equivalentlywoman-pessimalstable matching,
denoted byM, since each man has the best partner (accord-
ing to his ranking) that he could obtain, whilst each woman
has the worst partner that she could obtain, in any stable
matching. A similar proposal sequence from the women to
the men yields thevoman-orientedEGS (WEGS) algorithm.
This gives rise to thewvoman-optimalor man-pessimalsta-

The classical Stable Marriage problem (SM) has been thele matching, denoted b/, with analogous properties.
focus of much attention in the literature over the last few Upon termination of the MEGS algorithm, the reduced
decade$Gale and Shapley, 1962; Knuth, 1976; Gusfield andpreference lists that arise following the deletions are referred
Irving, 1989; Roth and Sotomayor, 199@n instance of SM to as theMGS-lists Similarly, theWGS-listsarise upon ter-
comprisesn men,my, ..., my, andn women,ws, . .., wy, mination of the WEGS algorithm. The intersection of the
and each person has a preference list in which they rank aliGS-lists with the WGS-lists yields th&S-lists[Gusfield
members of the opposite sex in strict order. A matchliig and Irving, 1989, p.16 Some important structural properties
is a bijection between the men and women. We denote thef the GS-lists are given by the following theorem.

partner inM of a persony by M(q). A (man,woman) pair

(m;,w;) blocksa matchingM, or forms ablocking pair of
M, if m; prefersw; to M (m;) andw; prefersm; to M (wj;).
A matching that admits no blocking pair is said todiable

Theorem 1 (Gusfield and Irving, 1989, Theorem 1.2.5.
For a given instance of SM:

(i) all stable matchings are contained in the GS-lists;

otherwise the matching isnstable SM and its variants arise (i) no matchingM contained in the GS-lists can be blocked
in important practical applications, such as the annual match by a pair that is not in the GS-lists:

of graduating medical students to their first hospital appoint-
ments in a number of countries (see ¢Rpth, 1983). (iii) in the man-optimal (respectively woman-optimal) stable

Gale and ShaplejGale and Shapley, 1962howed that matching, each man is partnered by the first (respec-
every instancd of SM admits a stable matching, and gave an tively last) woman on his GS-list, and each woman by
O(n?) algorithm, linear in the instance size, for finding such the last (respectively first) man on hers.

*Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01.
fSupported by Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship.

10

assign each person to be free; 1.1 Related work
while some mann is freeand m has a nonempty lidbop

w := firstwoman onn’s list; {m ‘proposes’ tow}
if some mam is engaged ta then
assignp to be free;

The Stable Marriage problem has its roots as a combina-
torial problem, but has also been the subject of much in-

end if; terest from the Game Theory and Economics community

assignm andw to be engaged to each other; [Roth and Sotomayor, 199@nd the Operations Research

for each successgrof m onw’s list loop community [Vate, 1989. In recent years SM and SMI
delete the paitp, w); have also been the focus of interest from the Constraint

end loop Programming communityAldershof and Carducci, 1999;

end loop Dye, 2001; Gentet al, 2001; Lustig and Puget, 2001;
Figure 1: The man-oriented Extended Gale/Shapley algoGent and Prosser, 2002a; 2002b; Green and Cohen, 2003;
rithm for SM and SMI. Thorn, 2003. These papers have presented a range of encod-

ings of SM and its variants as an instance of a Constraint Sat-
isfaction Problem (CSP). In all references apart fi@Gentet

sume that a person’s preference list is ordered with his/he Iani?gghstrtégg;a| rr(()a I?Oar:%;g:sgg?ge;nndﬂl]ée ?rff eﬂ)gf}’ArC
most-preferred partner leftmost.) This figure also indicates Y propag gin,

those preference list entries that belong to the GS-listd, In and the GS-lists were not explored in detail, nor did the au-

the man-optimal stable matchifig, and the woman-optimal thors consider th(_a aspect of fallure.-free enumeration.
stable matching/Z, are as follows: However such issues were considered by Gent ¢Gant

o et al, 2001, who proposed two CSP encodings of SMI. For

Mo = {(m1,w1), (m2,ws), (M3, w2), (ma, wa)} each model, it was shown that AC propagation can be used
M. = {(m,ws), (m2, w1), (m3,wa), (M4, w2)}. to achieve similar results to the EGS algorithm in a certain
The extension SMI of SM arises when preference lists magense. The first encoding creates a CSP instahaasing

be incomplete. This occurs when a person may find a mema set of ‘conflict matrices’ to encode an SMI instarceln

ber of the opposite semnacceptable If a personp finds a .j;, AC may be established i@ (n*) time, following which

persong unacceptabley does not appear on the preferencethe variables’ domains correspond to the GS-listg.ofThe

list of p. In the SMI case, a matchindy/ in an instancel second encoding creates a Boolean CSP instdncén Js,

of SMI is a one-one correspondence between a subset of th&C may be established i(n?) time, however the variables’

men and a subset of the women, such thatw) € M im- domains after AC propagation only correspond to a weaker

plies that each ofn andw finds the other acceptable. Given structure called th&XGS-listsin I, which in general are su-

a matchingM in an SMI instance, a paifm,w) blocks a persets of the GS-lists ifi. (The XGS-list for a persop

matchingM if each ofm andw finds the other acceptable, consists of all entries ip’s preference list between the first

and each is either unmatched M or prefers the other to and last entries of his/her GS-list inclusive.) In both encod-

their partner inM. If a persorp finds a persory unaccept- ings the set of all stable matchingsiirtan be enumerated in

able, therp andq cannot be paired in any stable matching, a failure-free manner (using a value-ordering heuristic in the

nor can they form a blocking pair. Hence, from the point of case of the first encoding).

view of finding stable matchings, we lose no generality by

assuming tha findsp unacceptable also, so that preference TR

lists areconsistent It is straightforward to adapt the EGS 1.2 Our contribution

algorithm to the SMI casgGusfield and Irving, 1989, Sec- The work of[Gentet al, 2001 left open the question as to

tion 1.4.3 - see Figure 1 for a pseudocode description. Thevhether there exists aBi(n?) CSP encoding of SM that cap-

woman-oriented algorithm is analogous. In the SMI context aures exactly the structure of the GS-lists. In this paper we

stable matching need not be complete; however the same sgfesent two encodings of an instanEef SMI (and so of

of men and women are matched in all stable matchiGgde SM) as a CSP instancé. Again, for each encoding, we

and Sotomayor, 1985 Furthermore, the concept of GS-lists show that AC propagation achieves the same results as the

can be extended to SMI, with analogous properties (for PropEGS algorithm in a precise sense. The first model is a natural

erty (i) in Theorem 1, each person with a non-empty GS-list(» + 1)-valued encoding of SMI; it bears some resemblance

should be matched if/; for Property (iii), each person with to the encoding of SM given ifLustig and Puget, 200&and

an empty GS-list is unmatched in both stable matchings). develops the ‘conflict matrices’ model fBentet al., 2001.

In this model we show that AC propagation may be carried

outin O(n3) time. Our model is more intuitive, and is more

An example SM instancé is given in Figure 2. (We as-

ml:MuZ n;hz}tls 3 w1W;1Tﬁ£Sn2§t:11 time and space-efﬁ_cient, than the ‘conflict matrices’ model.
Ma? ws Wy Wy Wa Wl My M My My Our second model is a more compact 4-valued encod|'ng that
s Wy W4 Wy Ws Ws: s My My Mo de_velops the Boolean encoding frd@entet al, 200]].— in
Tt Wa Wy Wy ws Wt M Ty Ty Ty this case we show that AC propagation may be carr|eq outin
== e O(n?) time. For both models we prove that the GS-lists in

))) I correspond to the domains remaining after establishing AC
Figure 2: An SM instance with 4 men and 4 women; prefer-in . Furthermore, we show that, for both encodings, we are
ence list entries that belong to the GS-lists are underlined. guaranteed a failure-free enumeration of all stable matchings

11

in I using AC propagation combined with a value-ordering We define a CSP encodinffor an instancd of SMI by
heuristic inJ. Our second encoding therefore answers thentroducing2n variables to represent the men and women in
question left open bjGentet al,, 2001. the original instancd. For each mamn; € M, we intro-
Our results show that, provided the model is chosen careduce a variable:; in J whose domain, denoted llpm(z;),
fully, AC propagation within a CSP formulation of SMI cap- is initially defined aslom(z;) = {1,2,...,I""} U {n + 1}.
tures the structure produced by the EGS algorithm. MoreSimilarly, for each womam; €)V, we introduce a variable
over our second encoding indicates that AC propagation cag; in J whose domain, denoted lapm(y;), is initially de-
be achieved within the same time complexity as the (optimalfined asdom(y;) = {1,2,...,l’} U {n + 1}.
MEGS algorithm for SMI, producing equivalent structural re- ~ An intuitive meaning of the variables is now given. In-
sults. This strengthens the assertion@entet al, 2001 formally, if z; = p (1 < p < [7), thenm,; marries the
regarding the applicability of constraint programming to thewomanw; such thatrank(m;,w;) = p, and similarly for
general domain of stable matching problems. Furthermore, ithe case thay; = ¢ (1 < ¢ < [}’). More formally, if
many practical situations there may be additional constraintg,in dom(z;) > p (1 < p < I™), then the pairm;, w;)
that cannot be accommodated by a straightforward modificanas been deleted as part of the MEGS algorithm applied to
tion of the EGS algorithm. Such constraints could however bg, for all w; such thatrank(m;,w;) < p. Hence ifw; is
built on top of either of the two models that we present herethe woman such thatank(m;, w;) = p, then eithem; pro-
Possible extensions could arise from variants of SMI that ar@oses taw; during the execution of the MEGS algorithm or
NP-hard[Ronn, 1990; Ng and Hirschberg, 1991; Kato, 1993;the pair(m;, w;) will be deleted before the proposal occurs.
Manloveet al., 2003. Similarly if mindom(y;) > ¢ (1 < ¢ < I¥), then the pair
We remark that, independently, Unsworth and Prosser havgnhwj) has been deleted as part of the WEGS algorithm
formulated a specialised-ary constraint for SMI, such that applied tor, for all m;, such thatrank(my, w;) < q. Hence
AC propagation gives rise to the GS-lists, where the comif ,, is the man such thatank(w;, m;) = ¢, then either
plexity of establishing AC i€)(n?) [Unsworth and Prosser, . proposes ton; during the execution of the WEGS algo-
20054. They have also constructed a specialised binary corvithm or the pair(m;, w;) will be deleted before the proposal
straint for SMI that yields the same structure, where AC mayoccurs. Ifz; = n + 1 (respectivelyy; = n + 1) thenm,
be established i®(n?) time [Unsworth and Prosser, 2005b (respectivelyw;) is unmatched upon termination of each of
In both cases, all stable matchings may be generated usingtge MEGS or WEGS algorithms applied fo
failure-free enumeration.] . The constraints used for tie + 1)-valued encoding are
The remainder of this paper is organised as follows. Secshown in Figure 3. In the context of Constraints 1 and 4,
tion 2 contains thén+1)-valued encoding. We show thatAC ; is the integer such thatank(m;, w;) = p; alsoq =
may be established i@(n*) time, proving the structural re- 7.qpnj(w;, m,). In the context of Constraints 2 and:3s the
lationship between AC propagation and the GS-lists. This isnteger such thatank(w;, m;) = ¢; alsop = rank(m;, w;).
followed bythe failure-free enumeration result for this model. An interpretation of Constraints 1 and 3 is now given (a
In Section 3 we present the 4-valued encoding, following asimilar interpretation can be attached to Constraints 2 and 4
similar approach, however in this case we show that AC mayyith the roles of the men and women reversed). First con-
be established iD(n*) time. Finally, Section 4 contains sjder Constraint 1, a stability constraint. This ensures that

some concluding remarks. if a manm, obtains a partner no better than hi&-choice
womanw;, thenw; obtains a partner no worse than léf-
2 (n+ 1)-valued encoding choice manmn;. Now consider Constraint 3, a consistency

. . constraint. This ensures that if man is removed fromw;'s
2.1 Overview of the encoding list, thenw; is removed fromn;’s list.

In this section we present am + 1)-valued binary CSP . . .
encoding for an igstancda(of SI\/I)I. We assum):a that 2.2 Arc consistency in the(n + 1)-valued encoding
M = {mi,ma,...,m,} is the set of men and¥ = We now show that, given the above CSP encodingf an
{wy1,wa,...,w,} is the set of women id (it is not difficult SMl instancel, the domains of the variables ihfollowing
to extend our encoding to the case that the numbers of meAC propagation correspond to the GS-lists/ofThat is, we
and women are not equal, but for simplicity we assume thaprove that, after AC is established, for aiy (1 < 4, j < n),
they are equal). For each man € M and womanu; € W, w; € GS(my;) if and only if p € dom(z;), and simi-
the length ofim;’'s andw;’s preference list is denoted By larly m; € GS(w;) if and only if ¢ € dom(y;), where
and!} respectively. We lef. denote the total length of the rank(m;, w;) = p andrank(w;, m;) = q.

preference lists inf. Also, for any persorr € M U W,
we let PL(z) denote the set of persons eis original pref-

erence list inZ, and we letG'S(z) denote the set of persons L ozizp=y;<q¢ (I<sisnl<ps lZ-Z)
on z's GS-list in I. For each mann; € M and woman 2. yjzgq=r<p (1<j<mnl<qg< l{-U)
wj € PL(m;), we denote the position af; onm;’s original 3. yiFa=w#p (1< jEnl<qsl)
preference list (regardless of any deletions that may be carried |4 Zi#p=y;#q (1<i<n1<p<I")

out by the MEGS/WEGS algorithms) bynk(m;, w;), with
rank(w;, m;) being similarly defined. Ifv; € W\PL(m;), Figure 3: The constraints for tHe + 1)-valued encoding of
thenrank(m;,w;) andrank(w;, m;) are undefined. an instance SMI.

12

The proof is presented using two lemmas. The first lemmaeither (i) m; proposed taw;, or (ii) the pair (m;,w;) was
shows that the arc consistent domains are equivalent to subeleted, whereank(m;,w;) = p andrank(w;,m;) = q.
sets of the GS-lists. This is done by proving that the deletion§Ve consider the two cases below:
made by the MEGS and WEGS algorithms applied tawme Case (i)If m; proposed tow; during the execution of the
correspondingly made during AC propagation. The secon®EGS algorithm, then all men ranked below; onw;’s list
lemma shows that the GS-lists correspond to a subset of thare deleted, i.ey; < ¢ as required.
domains remaining after AC propagation. This is done byCase (ii)If (m;,w;) was deleted during the execution of the
proving that the GS-lists fof give rise to arc consistent do- MEGS algorithm them; must have received a proposal from
mains for the variables id. amanm;, whom she prefers tov;, whererank(w;, my) = s
Lemma 2. For a giveni (1 < i < n), letp be an integer (s < ¢). Therefore the MEGS algorithm deletes all those
(1 < p < I™) such thatp € dom(z;) after AC propagation. Menm. from w;’s list such thatrank(w;, m.) > s, i.e.
Then the womany; such thatrank(m,,w;) = p belongs ~¥j < s < g asrequired.

to the GS-list ofn;. A similar correspondence holds for the ~ Next consider Constraint 3. Suppose that # ¢, so
women. that during an execution of either the MEGS or WEGS algo-

rithms, m; is deleted fromw;’s list, whererank(w;, m;) =
Proof. The GS-lists are constructed as a result of the deleg. To ensure that the preference lists are consistent, the same
tions made by the MEGS and WEGS algorithms applied taalgorithm deletesw; from m;’s list, i.e. 2; # p, where
I. We show that the corresponding deletions are made to theunk(m;, w;) = p, as required.
relevant variables’ domains during AC propagation. In the \Verifying Constraints 2 and 4 is similar to the above with
following proof, only deletions made by the MEGS algorithm the roles of the men and women reversed and the MEGS al-
are considered; a similar argument can be used to prove thgorithm exchanged for the WEGS algorithm. O
result for an execution of the WEGS algorithm.]

We prove the following fact by induction on the number of _ The two lemmas above, together with the fact that AC algo-
proposals: during an executio of the MEGS algorithm. If fithms find the unique maximal set of arc consistent domains,
proposalz consists of mams,; proposing to womam;, with ~ 1€ad to the following theorem.
rank(m;,w;) = p andrank(w;,m;) = g, thenz; > p, Theorem 4. Let I be an instance of SMI, and let be a
y; < ¢ and for each mam, such thatrank(w;,m;) = s CSP instance obtained by the (n+1)-valued encoding. Then
(q < s <1¥), x1 # r, whererank(my, w;) = r. the domains remaining after AC propagation ih corre-

First consider the base case where= 1. Thenp = 1. spond to the GS-lists dfin the following sense: for anjy j
Sincez; > 1, propagation of Constraint 1 yieldg; < (1<14,j<n),w; € GS(m;)ifand only ifp € dom(x;),

g. Then for eachs (g < s < [¥¥), propagation of Con- and similarlym; € GS(w;) if and only if¢ € dom(y;),

straint 3 givesz, # r whererank(w;,mi) = s and whererank(m;, w;) = p andrank(w;, m;) = q.
rank(mp, w;) = r. The constraints shown in Figure 3 may be revise®{n)

Now suppose that = ¢ > 1 and that the result holds for time during propagation, assuming that upper and lower
z < c. We consider the cases where= 1 andp > 1. bounds for the variables’ domains are maintained. Hence the
Case (i). Forp = 1 the proof is similar to that of the base time complexity for establishing AC i (ed), wheree is the
case. number of constraints andlis the domain sizévan Henten-

Case (ii). Now suppose that > 1. Letw; be any woman yck et al, 1994. For this encoding we have = O(n?)
such thatrank(m;,w;) = r < p. Thenw, has been deleted andq = O(n), therefore AC may be established Gr(n?)
from m;’s list during the MEGS algorithm. Now suppose time; also the space complexity@¥ L). These complexities
rank(wi,m;) = s1. Thenm; was deleted fromu;’s pref- represent an improvement on the ‘conflict matrices’ encod-
erence list because she received a proposal from arman ing in [Gentet al, 2001, whose time and space complexities
whom she prefers teq;, whererank(w;, my) = s2 < s1. areO(n*) andO(L?) respectively. Moreover we claim that
Sincem;, proposed taw; before thec' proposal, we have the model that we present in this section is a very natural and
by the induction hypothesis thgt < s,, so thaty, # s intuitive encoding for SMI.

andz; # r. Butw, was arbitrary and hence; # r for Theorems 4 and 1(jii) show that we can find a solution to
1 <r <p-1,sothate; > p. The rest of the proofis similar the CSP giving the man-optimal stable matchirg without
to that of the base case. L) search: for each mam; € M, we letp = min dom(z;). If

Lemma 3. For eachi (1 < i < n), define a domain of values P = n—+ 1 thenm,; is unmatched i/, otherwise the partner

dom(z;) for the variablez; as follows: ifG:S(m;) = 0, then ~ ©f 7 iS the womarnw; € W such thatrank(m;, w;) = p.
dom(z;) = {n+1}; otherwisedom (z;) = {rank(m;, w;) : Considering they; variables in a similar fashion gives the
w; € GS(m;)}. The domain of each; (1 < j < n)is Woman-optimal stable matching..

defined analogously. Then the domains so defined are arc. In fact we may go further and show that the CSP encoding
consistent inJ. yields all stable matchings ih without having to backtrack

due to failure. That is, we may enumerate all solutions of
Proof. To show that the variables’ domains are arc consistenf in a failure-free manner using AC propagation.rcom-
we consider each constraint in turn. bined with a value-ordering heuristic. The following theo-
First consider Constraint 1 and suppose that p. Then rem, proved ifManlove and O’Malley, 2005 describes the
during the execution of the MEGS algorithm appliedlto enumeration procedure.

13

Theorem 5. Let I be an instance of SMI and létbe a CSP proposal sequence and can be interpreted as each man ini-
instance obtained using the + 1)-valued encoding. Then tially proposing to the first woman on his list during the
the following search process enumerates all solutiong in MEGS algorithm. Constraint 2 states that(if.;, w;) has
without repetition and without ever failing due to an incon- been deleted by the MEGS algorithm for al} such that
sistency: rank(m;,w;) < p, and (m;,w;) has also been deleted,

Wheremnk(m,;, w;) = p, then(m;, w;) has been deleted by

— AC is established as a preprocessing step, and after eachl by MEGS algorithm for alls, such that-ank(ms, w;) <

3;?32?;221iegfr'ﬁar}h!”d”d'ng the decision to remove ap. Hence, ifp + 1 < 7", m; will subsequently propose to

the womanw; such thatrank(m;,w;) = p + 1 during the

— if all domains are arc consistent and some variable MEGS algorithm, or the paifm;,w;) will be deleted before
has two or more values in its domain, then the searchthe proposal occurs. Constraint 3 states that if a woman’s
proceeds by setting; to the minimum valug inits do- ¢t"-choice partner is deleted during an iteration of the MEGS
main. On backtracking, the valyeis removed from the algorithm, then hetq + 1)*"-choice partner should also be
domain ofz;; deleted. Constraint 4 shows a stability constraint: this en-

sures that if mamn; obtains a partner no better than, then

w; obtains a partner no worse thag. Lastly Constraint 5

is a consistency constraint: this ensures that;ifis removed

. from w;’s list during the MEGS algorithm themn; is also re-

3 4-valued encoding moved fromm;’s list. Constraints 6-10 have a similar mean-

3.1 Overview of the encoding ing with the roles of the men and women reversed, and with

MEGS replaced by WEGS.
In this section we present a CSP encoding of SMI that is more)))
complex but more efficient than tffe + 1)-valued encoding 3.2 Arc consistency in the 4-valued encoding

given in Section 2.1. We assume the notation as defined fafye now prove that, given the above CSP encodingf an
an instance of SMI in the first paragraph of Section 2.1. g instance, the domains of the variables ih following
~ We construct a CSP encodinfgfor an SMI instancd by AC propagation correspond to the GS-listslofThat is, we
introducing L variables, each of which represents a prefer-show that, after AC is established, for any (1 < 4, j < n),
ence list entry. For each man; (1 < i < n)we introduce), ¢ GS(m;) if and only if {2,3} C dom(z;,,), and simi-
I7" variablesr; , (1 < p < I}"), corresponding to the mem- |arly ;m, € G:5(w;) if and only if {2, 3} C dom(y;), where
bers of PL(m;). Similarly for each womam; (1 < j < n) rank(m;,w;) = p andrank(w;, m;) = q.

— when a solution is found, it is reported and backtracking
is forced.

we introducel}” variablesy;, (1 < g < I¥). As before the In order to establish this correspondence, we defin&te
domain of a variable is denoted bylom(z); initially each domainsfor the variables inJ as follows. Initially let each
variable is given the domaif0, 1, 2, 3}. variable in.J have domain{0, 1, 2, 3}. Run the MEGS algo-

An intuitive meaning of the variables’ values is given in rithm on instanced. Then use rules (i), (i) and (v) in Figure 4
Figure 4. The table indicates that deletions carried out byo remove Q’s and 2's from the appropriate domains, obtain-
the MEGS and WEGS algorithms applied kare reflected ing CSP instancd’ from J. Next run the WEGS algorithm
by the removal of elements from the relevant variables’ do-on the original instancé. Now use rules (iii), (iv) and (vi)
mains. In particular, removal of the value 2 (respectivelyin Figure 4 to remove Q's and 3's from the appropriate do-
3) from a variable’s domain corresponds to a preference lisimains inJ’, obtaining CSP instanc&’. The domains of the
entry being deleted by the MEGS (respectively WEGS) al-variables inJ” are referred to as th8S-domains
gorithm applied tol. Note that potentially a given prefer- As in Section 2.2, two lemmas are used to prove that en-
ence list entry could be deleted by both algorithms. Alsoforcing AC gives the GS-lists. The first lemma shows that
if the value 0 is removed frondom(z;,) (1 < ¢ < n, the domains remaining following AC propagation are equiv-
1 < p <), then eithern, proposes taw; during the MEGS alent to subsets of the GS-lists. This is done by proving that
algorithm (whererank(m;,w;) = p) or the entry is deleted if a deletion is made as part of either the MEGS or WEGS
prior to the proposal occurring. Similarly if the value 0 is algorithms, then a corresponding deletion is made during AC
removed fromdom(y;,) (1 < j < n, 1 < ¢ < [¥), then propagation. The second lemma shows that the GS-lists cor-
eitherw; proposes ten; during the WEGS algorithm (where respond to a subset of the domains remaining after AC is en-
rank(w;, m;) = q) or the entry is deleted prior to the pro- forced. This is done by proving that the GS-domains for
posal occurring. are arc consistent.

The constraints for this encoding are Iisteq in Figure 5. Il amma 6. For a giveni
the context of Constraints 4 and 19,is the integer such
that rank(m;, w;) = p; alsoqg = rank(w;,m;). In the
context of Constraints 5 and 9,is the integer such that
rank(w;j, m;) = ¢; alsop = rank(m;,w;). Further, we
remark that Constraints 4 and 9 are present onjyfl < 1% Proof. The GS-lists are obtained through deletions made by
andp + 1 <" respectively. the MEGS and WEGS algorithms. We prove that the cor-

An interpretation of each constraint is now given. Firstly responding deletions are made to the relevant variables’ do-
consider Constraint 1. This constraint is used to start thenains during AC propagation. In particular, suppose that

(1 < i < n), letp be an integer
such that{2,3} C dom(z; ;) after AC propagation. Then
the womanw; such thatrank(m;,w;) = p belongs to the
GS-list ofm;. A similar correspondence holds for the women.

14

() 0¢dom(z,,)
(i) 2 ¢ dom(z;yp)
(i) 3 ¢ dom(w;p)
(iv) 0¢dom(yjq)
(V) 2 ¢ dom(y;,)
(Vi) 3¢ dom(yj,q)

p=1or2¢dom(z;,)foralr (1<r<p) (i.e.man

m;’s r**-choice woman is removed from his list as part of 1
MEGS algorithm applied t@, for all (1 < r < p));
manm,’s pt"-choice woman is removed from his list

as part of the MEGS algorithm applied fp

manm;’s pt"-choice woman is removed from his list

as part of the WEGS algorithm applied &p

g=1or3¢dom(y;,) foralls (1 <s<gq) (i.e.woman
w;’s st"-choice man is removed from her list as part of
the WEGS algorithm applied th for all s (1 < s < q));
womanw;’s ¢*"-choice man is removed from her list

as part of the MEGS algorithm applied fp

womanw;’s ¢**-choice man is removed from her list

as part of the WEGS algorithm applied o

Figure 4: Intuitive variable meanings for the 4-valued SMI encoding.

m; € M andw; € PL(m;). Letp = rank(m;,w;) and
g = rank(wj, m;). Then we prove:
— (m;,w;) deleted during MEGS algorithre z; ,, # 2
andy; , # 2.
— (m;,w;) deleted during WEGS algorithee z; ,, # 3
andy;, # 3.

Case (i)For p = 1 the proof is similar to that of the base
case.

Case (ii)Now assume thap > 1. Let w; be any woman
such thatrank(m;,w;) = r < p. Thenw; has been deleted
from m;’s list during the MEGS algorithm. Now suppose
that rank(w;,m;) = s;. Thenm; was deleted fromw,’s
list because she received a proposal from a manwhom

In this proof, only deletions made by the MEGS algorithm ghe prefers ton;, whererank(w;, my) = s < s1. Since
are considered; a similar argument can be used for deletions, proposed tau, before ther!” proposal, by the induction

made by the WEGS algorithm.

It suffices to prove the following by induction on the num-

ber of proposals during an executioi’ of the MEGS algo-
rithm. If proposalz consists of mamn; proposing to woman
wj, With rank(m;, w;) = p andrank(w;, m;) = ¢, then
Tip > 0,y # 2 (¢ < s < 1Y), and for each mamy
such thatrank(w;, mi) = s (¢ < s < l}"), xg,r # 2, where
rank(my, w;) = r.

First consider the base case where= 1. Thenp = 1.
By Constraint 1,z;,; > 0, and by Constraint 4 we have
Yj.q+1 # 2. Hence by Constraint 3, it follows thg , # 2
for eachs (¢ < s < 1¥). Also for each such, propagation of
Constraint 5 ensures that . # 2, whererank(w;, my) = s
andrank(mg, w;) =r.

Now suppose that = ¢ > 1 and that the result holds for
z < c¢. We consider the cases where= 1 andp > 1.

hypothesis it follows that:; . # 2. However sincaw; was
arbitrary, it follows thatr; , # 2for1 < r < p — 1. From
Constraint 1 we have; ; > 0, and hence the propagation of
Constraint 2 ¢ — 1 times) yieldsz; , > 0. The rest of the
proof is similar to that of the base case. O

Lemma 7. The GS-domains (corresponding to the GS-lists
in I) are arc consistent ity.

Proof. We consider each constraint in turn to show that the
GS-domains are arc consistent.

Clearly Constraint 1 is satisfied, as= 1 in rule (i) of
Figure 4, i.e.xz;; > 0. Now consider Constraint 4 and
suppose that; , > 0. Then during the execution of the
MEGS algorithm, either (iyn; proposed tow;, or (ii) the
pair (m;, w;) was deleted, whereank(m;,w;) = p and

1. T 1 >0 (1§z§n)
2. (Tip#2A2ip>0) =2y >0 (1<i<n1<p<i?—1)
3. YjgF 2= Yjgr1 #2 (1<j<n1<qg<I¥-1)
4, zip > 0= yjgr1 #2 (1<i<n,1<p<iM
5. yj,q#2:>l'i,p7é2 (1§j§n,1SCI§Z§P)
6. yj1>0 (1<j<n)
7. Wig #3MNYjg>0) = yjgn >0 (1<j<nl<qg<Iy—1)
8. Zip#3=Tipt1 #3 (1<i<n,1<p<i™-1)
9. Yjq>0=>zp41 #3 (1<j<n1<g<ly)
10. z;, #3=>yjq #3 (I1<i<n,1<p<ImM

Figure 5: The constraints for the 4-valued encoding of an instance SMI.

15

rank(wj, m;) = ¢. Assumingg + 1 < [¥, we consider
the two cases separately.

Case (i)If m; proposed tow; during the execution of the
MEGS algorithm, them; deletes all those men ranked below
m; on her preference list, so that in particulaf, 1 # 2.

Case (i) If the pair (m;, w;) was deleted during the execu-
tion of the MEGS algorithm, thew; must have received a
proposal from a mam; whom she prefers ta;. Conse-
quently, all men ranked below;, onw;’s list are deleted by
the MEGS algorithm, so that in particulag, ;1 # 2.

Now suppose thay; , # 2. Then by construction of the
GS-domains, the MEGS algorithm deleted the mansuch
thatrank(w;, m;) = ¢. Soin addition, 2 is removed from the
domain ofz; ,, whererank(m;,w;) = p, satisfying Con-
straint 5. Also, as in Case (ii) abovg; ,+1 # 2, satisfying
Constraint 3.

Now consider Constraint 2 and suppose that # 2 and
z;p > 0. Thenw; has been removed from the list of;,
whererank(m;, w;) = p. Also z;, > 0 implies that either
(i) p=1,0r (i) z;» # 2 (1 < r < p). We consider the two
cases separately.

Case (j)If p = 1, we haver;; # 2, and hencer; » > 0 by
construction of the GS-domains.

Case (ii)As z; , > 0, it follows thatz; , # 2 (1 < r < p).
Also z;, # 2. Hencexz;, # 2 (1 < r < p), so that
z; p+1 > 0 by construction of the GS-domains.

A similar argument can be used to verify that Constraints

As in Section 2, we may go further and show that the CSP
encoding yields all stable matchings irwithout having to
backtrack due to failure. As before we enumerate all solu-
tions of I in a failure-free manner using AC propagation in
J combined with a value-ordering heuristic, however in this
case, maintenance of AC is much less expensive. The fol-
lowing theorem, proved ifManlove and O’Malley, 2005
describes the enumeration strategy in this context.

Theorem 9. Let I be an instance of SMI and Igtbe a CSP
instance obtained froni using the 4-valued encoding. Then
the following search process enumerates all solutiong in
without repetition and without ever failing due to an incon-
sistency:

— AC s established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

— if all domains are arc consistent and some variable
z;, has{0,1,2,3} in its domain, then we lgt be the
unique integer such thatom(z; ,) = {1,2,3} and we
choosep’ to be the minimum integép < p’) such that
dom(z;) ={0,1,2,3};

— the search proceeds by removing the value 3 from the do-
main ofz; ;. On backtracking, the value 2 is removed
from the domain ofj; 4, whererank(m;,w;) = p and
rank(wj, m;) = g;

6-10 are satisfied. Here the roles of the men and women are — When a solution is found, it is reported and backtracking

reversed and MEGS is replaced by WEGS. O

is forced.

The two lemmas above, together with the fact that AC algo4 Concluding remarks

rithms find the unique maximal set of arc consistent domains

lead to the following theorem.
Theorem 8. Let I be an instance of SMI, and Idtbe a CSP

In this paper we have described two models for the Stable
Marriage problem and its variant SMI as a CSP. Ouir first en-
coding is very natural and may be used to derive the GS-lists

instance obtained by the 4-valued encoding. Then the dQ"oIIowing AC propagation, although the time complexity for

mains remaining after AC propagation ihcorrespond to the
GS-lists off in the following sense: for aniy j (1 < i,j <
n), w; € GS(m;) if and only if{2,3} C dom(z;,), and
similarly m; € GS(w;) if and only if{2,3} C dom(y;,),
whererank(m;,w;) = p andrank(w;, m;) = q.

In general AC may be establishedded”) time, where
e is the number of constraintg,the domain size, and the
arity of each constrainiBessere and Rgin, 1997. In the
context of the 4-valued encoding, it follows that= O(L),
d = 4 andr = 2, and hence AC may be enforced in time
O(L) = O(n?). The time complexity ofD(L) is linear in

establishing AC is worse than that of the EGS algorithm. Our
second encoding, whilst more complex, again yields the GS-
lists, but this time the time complexity for AC propagation
is optimal. Using both encodings we are able to find all sta-
ble matchings for a given instance of SMI using a failure-free
enumeration without search.

A natural extension of this work is to the case where there
is indifference in the preference lists. It has already been
demonstratedGent and Prosser, 2002a; 2002hat the ear-
lier encodings ofGentet al,, 2007 can be extended to the
case where preference lists in a given SMI instance may in-

the size ofl and gives an improvement over the encodingclude ties, suggesting that the same should be possible with

presented in Section 2.1. Moreow@(L) is also the time
complexity of the EGS algorithm, which is known to be opti-
mal[Ng and Hirschberg, 1990The space complexity of the
4-valued encoding is also(L).

the models that we present here. Another direction is to con-
sider the Hospitals / Residents problem (HR) (a many-one
generalisation of SMI). Th¢n + 1)-valued encoding from
this paper, and the specialised constraints fliamsworth

Theorems 8 and 1(iii) show that we can find a solution toand Prosser, 2005a; 2005have already been generalised to

the CSP giving the man-optimal stable matchivig without
search: for each mam, € M, if {2,3} Z dom(z;) for
eachr (1 <r <) thenm,; is unmatched i/, otherwise
we letp be the unique integer such thatm(z; ,) = {1, 2, 3}
and define the partner of; to be the womam; € W such
that rank(m;,w;) = p. Considering they; variables in a
similar way gives the woman-optimal stable matchivg.

16

the HR case (seanloveet al, 2009 for further details).

Finally, it remains to conduct an empirical investigation of
the encodings presented in this paper, based on randomly-
generated and real-world data. Such investigations have al-
ready been carried out for other encodings for SM and its
variants [Gent and Prosser, 2002a; 2002b; Unsworth and
Prosser, 2005a; 200kb

Acknowledgements [Lustig and Puget, 20011.J. Lustig and J. Puget. Program

We would like to thank Rob Irving and Patrick Prosser for does not equal program: constraint programming and its
helpful comments on earlier drafts of this paper. We would ~Télationship to mathematical programmingnterfaces
also like to thank Patrick Prosser for suggesting that previous 31:29-53, 2001.

(man-oriented and woman-oriented) versions of the modelfvianlove and O’Malley, 2005 D.F. Manlove and

that we present here could be amalgamated. G. O'Malley. Modelling and solving the stable mar-
riage problem using constraint programming. Technical

References Report TR-2005-192, University of Glasgow, Department

[Aldershof and Carducci, 1999B. Aldershof and O.M. Car- of Computing Science, 2005.
ducci. Refined inequalities for stable marriag€on- [Manloveet al, 2003 D.F. Manlove, R.W. Irving,
straints 4:281-292, 1999. K. lwama, S. Miyazaki, and Y. Morita. Hard vari-

[Bessére and Rgin, 1997 C. Besstre and J-C. Bgin. Arc ants of stable marriageTheoretical Computer Science
consistency for general constraint networks: Preliminary 276(1-2):261-279, 2002.
results. InProceedings of IJCAI '9;/olume 1, pages 398— [Manloveet al, 2009 D.F. Manlove, G. O'Malley,
404. Morgan Kaufmann, 1997. P. Prosser, and C. Unsworth. A Constraint Program-

[Dye, 2001 J. Dye. A constraint logic programming ap- ming Approach to the Hospitals /.Resi.dents Problem.
proach to the stable marriage problem and its applica- 1echnical Report TR-2005-196, University of Glasgow,
tion to student-project allocation. BSc Honours project Department of Computing Science, 2005.
report, University of York, Department of Computer Sci- [Ng and Hirschberg, 1990C. Ng and D.S. Hirschberg.
ence, 2001. Lower bounds for the stable marriage problem and its vari-

[Gale and Shapley, 19bD. Gale and L.S. Shapley. College ants.SIAM Journal on Computing9:71-77, 1990.
admissions and the stability of marriagemerican Math- [Ng and Hirschberg, 1991C. Ng and D.S. Hirschberg.
ematical Monthly69:9-15, 1962. Three-dimensional stable matching proble®sAM Jour-

[Gale and Sotomayor, 19B®D. Gale and M. Sotomayor. ~ nal on Discrete Mathematicg:245-252, 1991.

Some remarks on the stable matching problédiscrete [Ronn, 1999 E. Ronn. NP-complete stable matching prob-
Applied Mathematicsl1:223-232, 1985. lems. Journal of Algorithms11:285-304, 1990.

[Gent and Prosser, 2002&P. Gent and P. Prosser. An em- [Roth and Sotomayor, 19PA.E. Roth and M.A.O. So-
pirical study of the stable marriage problem with ties and tomayor. Two-sided matching: a study in game-theoretic
incomplete lists. IrProceedings of ECAI '02pages 141- modeling and analysjsolume 18 ofEconometric Society
145.10S Press, 2002. Monographs Cambridge University Press, 1990.

[Gent and Prosser, 200Rb.P. Gent and P. Prosser. ~SAT JRoth, 19834 A.E. Roth. The evolution of the labor market
encodings of the stable marriage problem with ties and {or medical interns and residents: a case study in game the-

incomplete lists. InProceedings of SAT '022002. ory. Journal of Political Economy92(6):991-1016, 1984.
http://gauss.ececs.uc.edu/Conferences/ . .
SAT2002/Abstracts/gent.ps) [Thorn, 2003 M. Thorn. A constraint programming ap-

proach to the student-project allocation problem. BSc

[Gentetal, 2001 I.P. Gent, R.W. Irving, D.F. Manlove, Honours project report, University of York, Department
P. Prosser, and B.M. Smith. A Constraint Programming ¢ Computer Science, 2003.

Approach to the Stable Marriage Problem Proceedings

of CP '01 volume 2239 ot ecture Notes in Computer Sci- LUnsworth and Prosser, 2005&. Unsworth and P. Prosser.

ence pages 225-239. Springer-Verlag, 2001. An n-ary constraint for the stable marriage problem. To
[Green and Cohen. 20D3M.J. Green ar;d DA Cohen appear irProceedings of the Fifth Workshop on Modelling

Iving Probl ith trai :
Tractability by approximating constraint languages. In and Solving Problems with Constrain2005
Proceedings of CP '03volume 2833 oLecture Notes in LUnsworth and Prosser, 2005K. Unsworth and P. Prosser.
Computer Sciencg@ages 392—406. Springer-Verlag, 2003. A specialised binary constraint for the stayble marriage
[Gusfield and Irving, 1999D. Gusfield and R.W. Irving. problem. To appear iRroceedings of SARA 05, Lecture

The Stable Marriage Problem: Structure and Algorithms Notes in Computer SciencBpringer-Verlag, 2005.)

MIT Press, 1989. [van Hentenryclet al, 1993 P. van Hentenryck, Y. Deville,
and C-M. Teng. A generic arc-consistency algorithm and
its specializations. Artificial Intelligence 57:291-321,
1992.

[Vate, 1989 J.E. Vande Vate. Linear programming brings
marital bliss.Operations Research Lettei®(3):147-153,
1989.

[Kato, 1993 A. Kato. Complexity of the sex-equal stable
marriage problem.Japan Journal of Industrial and Ap-
plied Mathematics10:1-19, 1993.

[Knuth, 1978 D.E. Knuth. Mariages Stables Les Presses
de L'Universie de Montéal, 1976. English translation in
Stable Marriage and its Relation to Other Combinatorial
Problems volume 10 of CRM Proceedings and Lecture
Notes, American Mathematical Society, 1997.

17

Modelling and Dynamic Symmetry Breaking
in Constraint Programming

Karen E. Petrie
Cork Constraint Computation Center
University College Cork

Cork, Ireland
k.petrie@4c.ucc.ie

Abstract

Symmetry in constraint satisfaction problems can
give rise to redundant search. The aim in symmetry
breaking is to avoid such redundancy by excluding
all but one example of each equivalence class of so-
lutions. Two methods that have been developed to
do this dynamically are Symmetry Breaking Dur-
ing Search and Symmetry Breaking via Dominance
Detection. Modelling in CP means to move from
a natural language specification of a problem, to
a CSP formulation. This paper presents two case
studies on the interaction between dynamic sym-
metry breaking and modelling.

1 Introduction

Combinatorial search is arguably the most fundamental as-
pect of Artificial Intelligence (AI) [2]. It is an extremely ac-
tive research area, and has become very important commer-
cially, through Constraint Programming (CP). Software pack-
ages such as ECL!PS® from IC-Parc [4] and ILOG Solver
[17] are widely used on problems such as work force man-
agement at BT, resulting in savings of many millions for the
companies concerned.

A Constraint Satisfaction Problem (CSP) consists of a set
of variables each of which has a domain of values, and a set
of constraints on the variables and values: a solution is an al-
location of values to variables consistent with the constraints.
A constraint solver searches for this solution by alternating
phases of branching and inference to find an assignment of
values to a set of variables which satisfies the constraints. The
branching phase selects a variable and a possible value for it
and seeks a solution in which it has that value. If no solution
is found, then another value is tried. Branching thus causes
the system to explore a tree of possible partial assignments,
seeking one that can be completed. In the Inference phase,
the solver attempts to deduce consequences of the constraint
and the current partial assignment.

Modelling in CP means to move from a natural language
specification of a problem, into a CSP instance consisting
only of variables, values and constraints. It may be possible to
find more than one model of a problem, in which case a model
is sought that can efficiently lead to a solution through CSP
solving techniques. This is where variable and value ordering

18

heuristics fit into modelling process. This paper concentrates
on the interaction of modelling and search with symmetry.
Constraint Satisfaction Problems (CSPs) are often highly
symmetric. Symmetries may be inherent in the problem, as
in placing queens on a chess board that may be rotated and
reflected. Additionally the modelling of a real problem as a
CSP can introduce extra symmetry: problem entities which
are indistinguishable may in the CSP be represented by sepa-
rate variables leading to n! symmetries between n variables.

Definition of Symmetry Given a CSP L, with a
set of constraints C, a symmetry of L is a bijective
Sunction f which maps a representation of a search
state o to another search state, so that the following
holds:

1. If « satisfies the constraints C, then so does
fla).
2. Similarly, if « is a no-good, then so too is

f(a). [18]

Symmetries can give rise to redundant search, while search-
ing for solutions a partial assignments may be considered
which is symmetric to one previously examined. If a partial
assignment does not lead to a solution, neither will any sym-
metric assignment, and if it does lead to a solution, the new
solution is symmetrically equivalent to one already found.
To avoid this redundant search constraint programmers try
to exclude all but one in each equivalence class of solutions.
Many methods have been developed for this purpose. These
symmetry exclusion methods can be divided into two classes:
static and dynamic. Static symmetry breaking methods oper-
ate before search commences, and dynamic symmetry break-
ing methods operate during search.

In some classes of problems, the symmetry can be removed
by remodelling the problem. For example, the golfers prob-
lem is: 32 golfers want to play in 8 groups of 4 each week,
in such a way that any two golfers play in the same group at
most once. How many weeks can they do this for? This prob-
lem is highly symmetric. A possible model for this problem
decides which group each player is assigned to in each week:
the groups and the weeks (as well as the players) can be in-
terchanged. By remodelling this problem using set variables,
much of the symmetry can be removed [21].

Another static symmetry breaking method, involves adding
constraints to the basic model. For instance, many problems

(including the golfers problem above), have symmetry due
to indistinguishable variables. Often, this symmetry can be
removed by adding constraints that the value of these vari-
ables must be in ascending order. Crawford, Ginsberg, Lux
and Roy developed a technique for constructing symmetry
breaking ordering constraints for more general symmetries.
It involves listing all possible permutations for each symme-
try, then creating appropriate ordering constraints which al-
low only the first permutation to remain [5]. This technique
effects the CP model both by the addition of constraints, and
by fixing the variable ordering to be used during search.

In more recent years, Flener er. al. have concentrated
on symmetry constraints for matrix models; where ”a ma-
trix model is a constraint program that contains one or more
matrices of decision variables” [7]. For example the golfers
problem can be modelled as a 3-d boolean matrix whose di-
mensions correspond to weeks, players and groups. A vari-
able x;;, = 1 iff in week ¢, player j plays in group k [21].
The orderings constraints which are proposed deal with row
and column symmetries, where a row(column) symmetry of
a 2-d matrix is a bijection between the variables of two of
its rows(columns) that preserve solutions and non-solutions.
Two rows(columns) are indistinguishable if their variables
are pairwise indistinguishable due to a row (column) sym-
metry. A matrix model has row(column) symmetry iff all the
rows(columns) of one of its matrices are indistinguishable.
In the above matrix model of the golfers problem, the groups,
weeks and the players are all indistinguishable, this results in
row(column) symmetries.

In contrast to static symmetry breaking methods, dynamic
symmetry breaking methods operate during the search pro-
cess. The two dynamic symmetry breaking we will concen-
trate on in this paper are, symmetry breaking during search [1;
13], and symmetry breaking via dominance detection [6;
8]. More recently, computational group theoretic versions of
these methods have been devised, namely GAP-SBDS [12]
and GAP-SBDD [14].

Symmetry breaking during search (SBDS), was developed
by Gent and Smith [13], having been introduced by Backofen
and Will [1]. The search tree is built from decision points,
where a decision point has two possible choices; either as-
sign a value to a variable, or do not assign that value to that
variable. When a decision point is first reached during search
a value is assigned to a variable; if at a later stage in search the
decision point is revisited then a constraint is imposed that the
variable should not have the previously assigned value. SBDS
operates by taking a list of symmetry functions (provided by
the user) and placing related constraints when backtracking
to a decision point and taking the second branch.

A feature of SBDS is that it only breaks symmetries which
are not already broken in the current partial assignment: this
avoids placing unnecessary constraints. A symmetry is bro-
ken when the symmetric equivalent of the current partial as-
signment is not consistent with that assignment. The follow-
ing expression explains how SBDS works:

A& g(A) & var # val = g(var # val)

where A is the partial assignment made so far during search,
g(A) is the symmetric equivalent of A and g(var # wval) is

19

the symmetrical equivalent to this failed assignment. If A is
the current partial assignment and it has been established that
var # wval, it needs to be ensured that an unbroken symmetry
is being dealt with, so a check is undertaken that g(A) still
holds. Then to ensure that the symmetrically equivalent sub-
tree to the current subtree will not be explored, the constraint
g(var # val) is placed. An SBDS library is now available in
the ECL?PS® constraint programming system [4]. As previ-
ously mentioned, SBDS requires a function for each symme-
try in the problem describing its effect on the assignment of
a value to a variable. If these symmetry functions are correct
and complete, all the symmetry will be broken; as a result
of this only non-isomorphic solutions will be produced. Al-
though SBDS has been successfully used with a few thousand
symmetry functions, many problems have too many symme-
tries to allow a separate function for each.

To allow SBDS to be used in situations where there are
too many symmetries to allow a function to be created for
each, Gent et. al. [12] have linked SBDS in ECL'PS® with
GAP (Groups, Algorithms and Programming) [10], a system
for computational algebra and in particular computational
group theory (CGT). Group theory is the mathematical study
of symmetry. GAP-SBDS allows the symmetry group to be
specified compactly, using a set of generators, or for ‘stan-
dard’ groups by a canonical name. This avoids specifying
individual group elements, which is not practical for large
groups. GAP is used when a value is assigned to a variable,
at a decision point, to find the stabiliser of the current par-
tial assignment, i.e. the subgroup which leaves it unchanged.
Then if the decision point is revisited on backtracking, the
constraints are dynamically calculated from the stabiliser and
placed accordingly. GAP-SBDS allows the symmetry to be
handled more efficiently than in SBDS; the elements of the
group are not explicitly created which is akin to what the
symmetry functions represent in SBDS. However, there is an
overhead in communication necessitated between GAP and
ECLPS®.

Symmetry Breaking via Dominance Detection (SBDD) [6;
8] performs a check at every node in the search tree to see if
it is dominated by a symmetrically equivalent subtree already
explored, and if so prunes this branch. In SBDD, the domi-
nance detection function is based on the problem symmetry
and is hard-coded for each problem. This means in practice
SBDD can be difficult to implement, as the design of the dom-
inance detection function may be complicated; the user has to
ensure that all the symmetry of the problem is incorporated
within the function to enforce full symmetry breaking.

Gent et. al. [14] have recently developed GAP-SBDD, a
generic version of SBDD that uses the symmetry group of
each problem rather than an individual dominance detection
function and links SBDD (in ECL?PS®) with GAP. At each
node in the search tree, ECL?PS® communicates the details
of that node to GAP, and GAP returns false if dominance has
been detected and that branch can be pruned, or true other-
wise. Occasionally full dominance is not detected but there
are variable/value pairs which are easily detected as being el-
igible for domain deletion; at which point GAP returns true
followed by a list of variable/value pairs for which this is the
case. ECL'PS® removes these values from the corresponding

variables domains before search continues.

It is clear that static symmetry breaking methods effect the
choice of model for a CSP. This situation is less clear for
dynamic symmetry breaking methods. In general, dynamic
symmetry breaking methods do not fix the CSP model, the
only proviso is that the symmetry should be definable in terms
of the search variables. This paper presents two cases studies
which show how dynamic symmetry breaking and modelling
techniques can interact. The first study shows that by consid-
ering both the model of the problem and the chosen symme-
try breaking method an efficient method can be derived. The
second study shows how the model chosen for a given prob-
lem can affect the choice of most efficient dynamic symmetry
breaking method.

2 Case Study: SBDS and ‘Peaceable Armies
of Queens’

Robert Bosch introduced the “Peaceably Coexisting Armies
of Queens” problem in his column in Optima in 1999 [3].
It is a variant of a class of problems requiring pieces to be
placed on a chessboard, with requirements on the number of
squares that they attack: Martin Gardner [11] discusses more
examples of this class. In the “Armies of Queens” problem,
we are required to place two equal-sized armies of black and
white queens on a chessboard so that the white queens do not
attack the black queens (and necessarily v.v.) and to find the
maximum size of two such armies. Bosch asked for an inte-
ger programming formulation of the problem and how many
optimal solutions there would be for a standard 8 x 8 chess-
board.

A straightforward model of the problem has a variable s;;
to represent a square on row ¢, column j of the board:

si; = 1 if there is a white queen on square (4, j)
= 2 if there is a black queen on square (i, j)
= 0 otherwise

If M is the region that is attached by a given square than,
we can express the ‘non-attacking’ constraints as:

Siyji = 1= Siajo 7é 2
and Siijy = 2= Sigjo 75 1 for all ((’il,jl), (iz,jg)) eM
or more compactly as:
Sija + Singo 7é 3 for all ((ilajl)a (iQan)) eM

Tests in ECLPS® show that, the single constraint gives
the same number of backtracks as the two implication con-
straints, but is faster.

Constrained variables w, b count the number of white and
black queens respectively (using the counting constraint: 0C-
currences, provided in ECL!PS®). The last constraint is
w = b, and the objective is to maximise w. This is achieved
by adding a lower bound on w whenever a solution is found,
so that future solutions must have a larger value of w; when
there are no more solutions, the last one found has been
proved optimal.

The model has n? search variables and approximately 4n>
binary constraints, as well as the counting constraints which
have arity n2.

Table 1 gives results for finding the optimal number of
queens and proving that it is optimal, as well as for find-
ing all optimal solutions. These experiments were run with
a simple static variable ordering heuristic which searches the
board: top row, left to right, then second row, left to right, and
so on. The value ordering heuristic is the standard ECL!PS®
one, which assigns values in numerical order starting with the
smallest. The result for finding all solutions when n = 8 are
missing as this result was not obtainable within the cut-off
imposed of 1 hour.

2.1 SBDS in ‘Armies of Queens’

The ‘Armies of Queens’ problem has the usual symmetry of
the chessboard (reflection in the horizontal, vertical and both
diagonal axes, and rotations through 90°, 180° and 270° and
the identity); in addition, in any solution we can swap all the
white queens for all the black queens, and we can combine
these two kinds of symmetry. Hence the problem has 16 sym-
metries. SBDS is ideal for problems such as this since it only
requires a simple function to describe the effect of each sym-
metry (other than the identity) on the assignment of a value
to a variable. Hence, in this case, just 15 such functions are
required.

The seven chessboard symmetry functions are labelled z,
y, d1, d2, r90, r180, 270. The function which interchanges
black and white is labelled BW; and the functions which
combine the chessboard symmetries with interchanging black
and white, are labelled as the board symmetries prefixed with
BW . The symmetry functions takes a variable, s;; and a pos-
sible value for this variable, v before returning the symmetric
variable and the symmetric value as:

Sijy U = Sin+1—35,V

Sij, U — Sp41—i,j,V

dl : Sij, VU — S5,V
d2: Sij, U — Sp4l—jnt+1—i)V
90 s;,v —
7180 :
7270 :

bw: si;,v—

Sjin+1—i, U
Sij, UV — Sp4l—imn+1—5,0
Sij, U — Sp41—j,i, U

Sij,[if v=0then 0 else 3 — v]
bwz @ s, v — Sipt1—j,[if v=0then0else3 —]

bwy : 8ij,v = Spy1-i, [if v =0then 0 else 3 — v

bwdl : si;,v— 854, [if v=0then0else3 —v]
bwd2: s;;,v — Spi1-jnti—i,[if v =0then 0else 3 —]
bwr90 : 555, = Sjnt1-i, [if v ="0then 0 else3 — 1]
bwrl80: 85,V = Sny1—in+i—j, [if v =0then 0else 3 — v]
bwr270 : 5,0 = Spy1-ji, [if v =0then 0 else 3 — 1]

Suppose that n = 8 and the first assignment places a white
queen in the top left corner: s;; = 1. The symmetric as-
signments are: = : s18 = 1,y : sg1 = 1,dl : s11 =1,

Finding Optimal Finding All Optimal Solutions
No. of Backtracks Total Optimal Number Number

to find first Number of | Number of | Time of of Time
n | optimal solution | Backtracks Queens (secs) | Backtracks | Solutions | (secs)
2 0 1 0 0.0 1 1 0.0
3 1 2 1 0.0 17 16 0.0
4 4 28 2 0.01 149 112 0.02
5 190 265 4 0.16 383 18 0.20
6 1344 4998 5 3.63 9623 560 5.24
7 21882 93532 7 87.95 189013 304 132.99
8 802255 2716158 9 3215.2 - - -

Table 1: Results: Basic Model with no Symmetry Breaking

d2 : 58,8 = 1, r90 : 51,8 = 1, r180 : 58,8 = 1, r270 :
sg1 =1L, bw :s11 =2, bwz : 518 = 2,bwy : 531 = 2,
bwdl : 517 = 2, bwd2 : sgg = 2, bwr90 : s18 = 2,
bwrl80 : sgg = 2, bwr270 : sg; = 2. All the sym-

metries which swap black and white, apart from bw are in-
consistent with s;; = 1, because the symmetrically equiv-
alent assignment would place a black queen in one of the
corners where it could be attacked by the first assignment,
so these symmetries are no longer considered on this branch.
On backtracking to the first choice point, where 511 = 1 is
set, and taking the alternative branch of s; ; # 1, the sym-
metry functions are used to calculate the symmetric variables
(SymVar) and values (SymV al). Lastly constraints of the
form SymVar # SymVal are placed in order to stop the
subtree symmetric to this from ever being explored. This pro-
cess ensures that if a white queen can not be placed in the top
corner, then a queen is never placed in any of the corners.
This can be seen in figure 2.1 where all the symmetry break-
ing constraints placed by SBDS are indicated by <.

all colour
m interchanging

symmetries
broken on
this branch

Figure 1: SBDS operating on the armies of queens problem

Table 2 shows the empirical results when SBDS is inte-
grated into the simple CP model outlined in section 2. Com-
paring this with Table 1 shows that SBDS gives a factor
greater than 5 improvement in number of backtracks for the
n = 8 case. However, the runtime increases when SBDS is
used. This is because the first value chosen by the value order-
ing heuristic represents an empty square on the chessboard.
The symmetry breaking constraints placed by SBDS when
backtracking from these assignments, will forbid placing an

21

empty square in a symmetrically equivalent position. These
constraints occur an overhead and are not useful in steering
search towards improved solutions. In fact as better, solu-
tions with more queens on the board are found they become
redundant. Later on in search, when leaving empty squares
has been tried, values 1 then 2 will be allocated, which relate
to placing white and black queens respectively. When SBDS
is triggered through backtracking past failed cases of these
assignments more useful constraints are returned. These con-
straints are the ones that operate to reduce the number of
backtracks so significantly. In general, when trying to antici-
pate the effect of SBDS on a given model, it is worth consider-
ing the variable and value ordering heuristics. If these heuris-
tics will lead to placing constraints early in search which, will
have little effect at the time, then become vacuous at a later
stage of search, it is worth considering if a better heuristic can
be found.

2.2 Value Ordering and SBDS

The value ordering heuristic which places empty squares first
can also hinder the optimisation process. The first solution
to be found has 0 allocated to every square, which is equiv-
alent to an empty board. This gives a lower bound of 0 for
the maximum number of white queens which can be placed
on the board. A constraint is then posted which says that the
next number of white queens must be greater than this lower
bound which in this case would be > 0. The process contin-
ues by increasing the lower bound in integer increments until
the optimum number (m) is found. At this point, the pro-
gram searches for a solution with maximum number of white
queens m + 1; on failing to find one it has proven that m is
indeed the optimum. If instead of allocating empty squares
in the initial stages, queens are placed on squares first, the
earliest solution found gives, a better lower bound for the op-
timum. In this case the program commences by placing as
many white queens as possible then as many black queens
as possible, only allocating empty squares when no queens
can be placed. The lower bound then becomes the number
of black or white queens (there is a constraint to ensure they
are equal) on the board (p). Optimisation continues as before,
by setting a constraint which states that the next value found
must be greater than p. This value ordering heuristic is also
potentially a good heuristic with respect to SBDS. The first
decisions made relate to placing queens on the board, if these

Finding Optimal All Solutions
No. of Backtracks Total Optimal Number Number

to find first Number of | Number of Time of of Time
n | optimal solution | Backtracks Queens (secs) | Backtracks | Solutions | (secs)
2 0 1 0 0.1 1 1 0.0
3 1 2 1 0.03 2 1 0.03
4 4 9 2 0.10 16 10 0.10
5 68 70 4 0.60 64 3 0.52
6 462 886 5 7.30 1286 35 9.19
7 6994 15538 7 138.16 24106 19 181.310
8 298235 473141 9 445445 - - -

Table 2: Results: Basic Model with SBDS

decisions are backtracked past at a later stage, than SBDS
can place constraints which state that a queen should not be
placed in the given square. These constraints are useful in di-
recting search. In optimisation problems, by considering the
best heuristic for a problem through knowledge of the opti-
misation process, than a good heuristic for SBDS may also
be derived, as the extra information given to the optimisation
process can relate to SBDS placing more informative symme-
try breaking constraints. In general, by considering the best
heuristics for a given problem, a good heuristic will also be
found with respect to SBDS, as the heuristic chosen will build
a search tree which starts by trying the mostly likely value for
a variable, this relates to the scope of constraints that SBDS
can place.

It is possible to implement this new strategy as a value
ordering heuristic which tries 1 before 2, before 0; hence
it implements allocating queens to squares on the board be-
fore leaving them empty. However, this heuristic does have a
time overhead as a decision process has to be undertaken at
each search variable to see which value should be allocated.
A less complex approach is to reassign the values so that
0 = white queen, 1 = black queen and 2 = empty square.
Then allocate O before 1, before 2 as before. In SBDS this
approach does necessitate a minor change to the symmetry
functions which interchange black and white queens.

2.3 Variable Ordering and SBDS

In the previous experiments in section 2.1, a static variable
ordering heuristic was used which assigned the top row of the
board from left to right followed by the second row from left
to right until all the variables were assigned. If constraints
were being used to break the symmetry this static ordering
may be mandatory, as often the variable order must be defined
before search commences, in order to ensure these methods
are complete and no solutions are lost [5]. Tf SBDS is the
symmetry breaking method chosen, this information is not
needed before search commences, so the use of dynamic vari-
able ordering is permitted, and can be easily integrated with
the SBDS library. A dynamic variable ordering chooses the
next variable to be allocated during search, according to the
search decisions and the resulting propagation to that point.
A common and well proven heuristic is smallest domain first
(SDF), which allocates the next variable to be assigned a
value to be the one with the smallest number of entries in

22

its domain.

2.4 Experimental Results of Combining Variable
and Value Ordering Heuristics with SBDS

Table 3 Contains the results of combining the value ordering
heuristic outlined in section 2.2 and SDF variable ordering as
discussed in section 2.3 with SBDS.

Comparing the previous results for the basic model with
SBDS shown in table 2 with the more advanced model results
shown in table 3, shows a large reduction in time for all cases.
For N = 8 the reduction in time is 10 fold to find the optimal
number of ‘Queens’ that can be placed on the board, where N
is the length of one side of the chess board. The reduction in
the total number of backtracks for N = 8 is equally impres-
sive at 10 fold again, but the most impressive reduction comes
in the number of backtracks to find the first optimal solution
which is reduced by a factor greater than 1000 for the N =8
case. This means that good lower bounds for the optimum are
being found early in search. In the N = 8 case it can be seen
that the lower bound is 6 for the new value ordering, whereas
it was 0 in the original case, the actual optimal value is 9 so 6
is a good approximation.

Turning to finding all the solutions to the problem it can
be seen that there is a great reduction in both backtracks and
time, between the original model and the current model. It
is possible to prove that there are 71 non-isomorphic results
for N = 8, with the approved variable and value ordering
heuristic, this is a new result.

Looking back at the results without SBDS (table 1) it can
be seen that these new results outperform those, both in terms
of time and backtracks, in all cases. Studying the model with
the variable and value ordering heuristics but with SBDS (not
shown due to space constraints) it can be seen that the ad-
dition of SBDS offers a saving in both time and number of
backtracks. This shows that the combination of modelling
techniques and the SBDS library can be very powerful in ef-
ficiently solving problems.

3 Case Study: SBDS versus SBDD and
‘Graceful Graphs’

There is limited past work comparing GAP-SBDS and GAP-
SBDD. Harvey [15] studied the algorithms theoretically and

Finding Optimal All Solutions
Lower | Optimum No. of Bt. to Total

bound on No. of find first Number of | Time | Number | Time
n | optimum | Queens | optimal solution Bt. (secs) of Bt. (secs)
2 0 0 0 1 0.0 1 0.0
3 1 1 0 2 0.02 2 0.0
4 2 2 0 4 0.05 12 0.05
5 3 4 3 12 0.17 23 0.22
6 4 5 1 153 1.79 405 3.16
7 5 7 9 2231 21.23 5186 47.90
8 6 6 266 46894 406.39 | 106940 | 752.11

Table 3: Results: SBDS with SDF Variable Ordering & Value Ordering heuristic

Figure 2: Graceful labelings of K5 x P» and the Double
Wheel DW5

concluded that SBDS and SBDD are closely related, the dif-
ference being where in the search tree, and how, symmetry
breaking is enforced. Gent et al. [14] applied GAP-SBDS
and GAP-SBDD to instances of the balanced incomplete
block design (BIBD) problem and showed that GAP-SBDD
could solve much larger problems, and was faster than GAP-
SBDS on the smaller problems which both could solve. They
surmised that this was due to the communication overhead be-
tween GAP and ECLPS®, since the overhead in GAP-SBDD,
which usually returns only a Boolean answer, is less than in
GAP-SBDS, where a set of constraints is returned.

On the other hand, Petrie and Smith [19] found that in
Graceful Graphs problems, GAP-SBDS outperformed GAP-
SBDD on all instances studied. In the next section, the reason
for this difference in performance is identified.

3.1 Graceful Graphs

A labeling f of the vertices of a graph with g edges is graceful
if f assigns to each vertex a unique label from {0,1,...,q}
and, when each edge zy is labeled with |f(z) — f(y)|, the
edge labels are all different [9]. (Hence, the edge labels are a
permutation of 1,2, ..., q.) Figure 3.1 shows an example.

Lustig and Puget [16] give a constraint model for find-
ing a graceful labeling of a graph. A basic CSP model has
a variable for each node 1, o, ..., x,, each with domain
{0,1, ..., ¢} and a variable for each edge di,ds, ..., d4, each
with domain {1,2,...,q}. The constraints of the problem
are: if edge k joins nodes ¢ and j then dy = |z; — z;;
T1, %3, ..., T, are all different; and dy, d>, ..., d, are all dif-
ferent.

23

ECL?PS® provides two different levels of propagation for
the alldifferent constraint. It can either be treated as a clique
of binary # constraints or as a global alldifferent which does
more propagation. We use the global alldifferent on the edge
variables and the binary # version on the node variables.
They are treated differently because the values assigned to the
edge variables form a permutation and hence give more scope
for domain pruning than the node variables, which have more
possible values than variables. The node variables are used
as the search variables. More information on the modeling of
this problem and the symmetry group is given by [19].

The graph K5 x P5, shown in Figure 3.1, consists of two
copies of K5, with corresponding vertices in the two cliques
forming the vertices of a path P,. The symmetries of K5 X P»
are: first, any permutation of the 5-cliques which act on both
in the same way. Second, inter-clique symmetry: all the node
labels in the first clique can be interchanged with the labels of
the adjacent nodes in the second. Third, complement symme-
try: every vertex label x; can be replaced by its complement
q — ;. The graph symmetries and the complement symme-
try can be combined with each other. Hence, the size of the
symmetry group is 5! x 2 x 2. In general, K,,, x P, graphs
have a symmetry group of size m! x 2 x 2. This study con-
centrates on symmetry breaking in 3 such graphs, with m =
3, 4 and 5. The results of finding all graceful labelings of
these graphs using either GAP-SBDS or GAP-SBDD can be
found in Table 4. (All experiments in the paper were run on a
1.6GHz Pentium 4 processor with 512MB of memory, using
ECLPS® version 5.7 and GAP version 4.2.) From Table 4, it
can be seen that GAP-SBDD is slower than GAP-SBDS for
all instances. This is also true for other graphs, as shown by
[201.

3.2 Analysis

To explain why GAP-SBDS is faster than GAP-SBDD for
finding graceful labelings of graphs with symmetry, we have
analysed the behaviour of GAP-SBDS and GAP-SBDD for
the three graphs K3 X Ps, K4 X P5 and K5 X Py. The reasons
for the differences in search are consistent, but for simplicity
only the results for K5 x P» are presented here.

It should be noted that Table 4 gives the number of deep
backtracks. We use the term deep backtrack when the search
has progressed beyond a decision point, but then later has to
revisit it. A shallow backtrack occurs when propagating the

BT ECL'PS® GAP Total

time time time

GAP- K3 X Ps 13 0.23 0.50 0.73
SBDD K, x P, | 173 7.18 2.72 9.90
K5 x Py | 4402 337.69 88.20 426.89

GAP- K3 X Py 9 0.20 0.33 0.53
SBDS Ky x Py | 165 7.15 1.35 8.50
K5 x Py | 4390 352.10 36.61 388.71

Table 4: Comparison of GAP-SBDS and GAP-SBDD show-
ing backtracks (bt) and the time (in seconds) for finding all
graceful labelings of K3 x Ps, Ky X Po, K5 X Ps.

E = {1,4,6,7,8}

[T

EF ={1,4,6,7,8}
F={1,3,6,7,8}

CF = {1,4,6,7,8} 2 = (1,3,6,7,8}

Figure 3: The domains of the node and the edge variables
after propagating C' = 5, using GAP-SBDD

constraint var = val on the left branch of a decision point
causes a failure, and the var # wval branch is taken instead.
Most constraint programming systems count the number of
deep backtracks, but in this case it does not accurately reflect
differences in search. In GAP-SBDS, symmetry-breaking
constraints can be added whenever the left (var # val)
branch is followed, including after a shallow backtrack.

Figure 4 shows the search trees created by GAP-SBDS and
GAP-SBDD in finding all graceful labelings of K3 x P, from
the point where the first difference occurs, which is after the
first two solutions (from 4 in total) have been found. The vari-
able names A to E in Figure 4 correspond to the nodes shown
in Figure 3; the edges and corresponding edge variables are
named by a pair of letters corresponding to the nodes defining
the edge.

After assigning C' = 5, GAP-SBDS immediately reverses
from this decision to follow the C' # 5 branch (a shallow
backtrack), whereas GAP-SBDD continues, setting £ = 1,
before returning to take the C' # 5 branch later in search (a
deep backtrack).

The difference in the search trees is due to differences
in constraint propagation. GAP-SBDD arrives at the search
state shown in Figure 3. One of the edges must be labeled
9 (the number of edges in the graph) and the adjacent nodes
must be labeled 0 and 9. At this stage A = 0 and B and
C are labeled with values other than 9; hence D, the only
other node adjacent to A, must take the value 9, and this in-
ference is made by constraint propagation. Figure 3 shows
the variable domains at this point. Because there are already
edges labeled 2 (AB) and 3 (BC), the edges DFE and DF
cannot have those values, and hence E and F' cannot have the

24

values 6 or 7. Using GAP-SBDS, the domains of the vari-
ables are also reduced by symmetry-breaking constraints pre-
viously added on this branch. Those that are relevant in this
case are symmetric equivalents of B # 1, namely E # 1,
F # 1, F # 8 and F' # 8. (Because of the graph symmetry,
nodes E and F' are symmetric to node B, and the value 8 is
symmetric to the value 1 because of the complement symme-
try.) The only remaining value in the domains of both £ and
F' is 3, and since these variables must have different values,
this branch fails.

Most of this propagation cannot occur in GAP-SBDD.
GAP just returns a boolean to indicate whether the current
node is dominated or not, and possibly a list of values to
prune from the domains of specific search variables. In the
current implementation, a variable/value pair is returned for
domain pruning if its assignment would cause dominance to
be detected. In this case E/1, F/1, E/8 and F'/8 are not re-
turned. Although GAP-SBDD successfully breaks the sym-
metry (in this case by detecting dominance when the assign-
ment £ = 1 is tried) posting SBDS constraints at an earlier
stage can clearly lead to earlier pruning.

The reason this difference between GAP-SBDS and GAP-
SBDD is highlighted by experimentation on this problem, as
oppose to on the other problems consider by Gent et al. [14],
relates directly to the model of the problem; Specifically to
the fact that the search variables are not the most constrained
variables with the model. GAP-SBDS breaks symmetry by
placing constraints, these constraints can propagate with all
the variables within the model. GAP-SBDD provides no in-
formation which could be related to the variables not directly
involved in search.

4 Conclusion

Symmetry exclusion methods can be divided into two classes:
static and dynamic. Static symmetry breaking methods op-
erate before search commences, whereas dynamic symme-
try breaking methods operate during search. Static symmetry
breaking methods generally require a fixed model with static
variable and value ordering heuristics. Dynamic symmetry
breaking methods give the CP practitioner more freedom as
to which model to chose; the only proviso is that it must be
possible to define the symmetry in terms of the search vari-
ables.

In this paper, through the use of two case studies, we have
shown how the CP model, can interact with dynamic sym-
metry breaking methods. The first case study illustrated how
dynamic symmetry breaking and modelling can interact to
provide an efficient method for solving a problem. The sec-
ond case study shows how the model chosen for a given prob-
lem, can affect the choice of most efficient dynamic symme-
try breaking method.

This paper represents a preliminary study, showing that,
by combining modelling techniques and dynamic symmetry
breaking, more efficient solving techniques can be derived
than by considering either of these aspects individually. Fur-
ther work in this area is needed if the exact relationship be-
tween symmetry breaking and modelling is to be fully under-
stood.

GAP-SBDS

a deep-backtrack was made at this point

GAP-SBDD

decision made due to propagation, deep-backtrack commences above

Figure 4: The search tree branch where GAP-SBDS and GAP-SBDD differ

References

(11

(2]

(31

(4]

[5]

(6]

(71

(81

[91

R. Backofen and S.Will. Excluding symmetries in
constraint-based search. In Joxan Jaffar, editor, Proc.
of CP’99, LNCS 1713, pages 73-87. Springer, 1999.

Roman Bartak. Guide to Constraint Programming.
Technical report, Charles University Prague, 1998.

Robert A. Bosch. Peaceably coexisting armies of
queens. Optima (Newsletter of the Mathematical Pro-
gramming Society), 62:6-9, 1999.

A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf,
K. Shen, and M. G. Wallace. ECLiPSe: An introduc-
tion. Technical Report IC-Parc-03-1, IC-Parc, 2003.
www. icparc.ic.ac.uk/eclipse/ .

James Crawford, Matthew L. Ginsberg, Eugene Luki,
and Amitabha Roy. Symmetry-breaking predicates
for search problems. In Luigia Carlucci Aiello, Jon
Doyle, and Stuart Shapiro, editors, KR’96: Principles
of Knowledge Representation and Reasoning, pages
148-159. Morgan Kaufmann, San Francisco, Califor-
nia, 1996.

Torsten Fahle, Stefan Schamberger, and Meinolf Sell-
mann. Symmetry breaking. In Toby Walsh, editor, Proc.
of CP’01, LNCS 2239, pages 93-107. Springer, 2001.

P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel,
J. Pearson, and T. Walsh. Breaking row and column
symmetries in matrix models. In P. Van Hentenryck,
editor, Proc. of CP’02, LNCS 2470, pages 462—476.
Springer, 2002.

Filippo Focacci and Michela Milano. Global cut frame-
work for removing symmetries. In Toby Walsh, edi-
tor, Proc of CP’01, LNCS 2239, pages 77-92. Springer,
2001.

J.A. Gallian. A Dynamic Survey of Graceful Label-
ing. In The Electronic Journal of Combinatronics,2002.
(http://www.corbinatorics.org/Surv

eys) .

25

Algo-
2000.

[10] The GAP Group.
rithms, and Programming,
(http://www.gap—system.org)

[11] Martin Gardner. Chess queens and maximum

unattacked cells. Math Horizon, pages 12—-16, Novem-
ber 1999.

I. P. Gent, W. Harvey, and T. Kelsey. Groups and con-
straints: Symmetry breaking during search. In P. Van
Hentenryck, editor, Proc. of CP’02, LNCS 2470, pages
415-430. Springer, 2002.

I. P. Gent and B. M. Smith. Symmetry breaking in co-
nstraint programming. In Proc. of ECAI-2002, pages
599-603. IOS Press, 2000.

Ian P. Gent, Warwick Harvey, Tom Kelsey, and Steve
Linton. Generic SBDD Using Computational Group
Theory. In Francesca Rossi, editor, Proc. of CP’03,
LNCS 2833, pages 333-347. Springer, 2003.

Warwick Harvey. Symmetry Breaking and the Social
Golfer Problem. In Proc. SymCon-01: Symmetry in
Constraints, pages 9-16, 2001.

GAP — Groups,
Version 4.2,

[12]

[13]

[14]

[15]

[16] 1.J.Lustig and J.-F. Puget. Program Does Not Equal Pro-
gram: Constraint Programming and Its Relationship to
Mathematical Programming. In INTERFACES, volume

31(6), pages 29-53, 2001.
[17] ILOG. ILOG Solver 5.0 User’s Manual, 2001.

[18] 1. McDonald and B. M. Smith. Partial symmetry break-
ing. In Proc. of CP’02, LNCS 2470, pages 431-445.
Springer, 2002.

[19] K. E. Petrie and B. M. Smith. Symmetry breaking in
graceful graphs. In Proc. of CP’03, LNCS 2833, pages
930-934. Springer, 2003.

[20] Karen Petrie. Why SBDD can be worse than SBDS.
In Proc. SymCon-03: Symmetry in Constraints, pages
168-176,2003.

[21] Barbara M. Smith. Reducing Symmetry in a Combi-
natorial Design Problem. Technical report, School of
Computer Studies, University of Leeds, January 2001.

Exploring the use of constraint programming for enforcing connectivity during
graph generation

Kenneth N. Brown', Patrick Prosser?, J. Christopher Beck® and Christine Wei Wu'!

!Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Ireland.
{k.brown,cwwl}@cs.ucc.ie
2Department of Computer Science, University of Glasgow, Scotland
pat@dcs.gla.ac.uk
3Toronto Intelligent Decision Engineering Laboratory,

Department of Mechanical and Industrial Engineering, University of Toronto, Canada.
jeb@mie.utoronto.ca

Abstract

We discuss the problem of using constraint models
to force generated graphs to be connected. We rep-
resent the graph as a simple adjacency matrix, and
then attempt to post constraints ensuring connectiv-
ity. Doing this using standard modelling primitives
is harder than expected, because of a problem with
our use of the implication operator. We develop a
global constraint connected-graph, and show that
it does save time over a class of graph generation
problems, but most of the gains come from sim-
ple pre-search filters applied to insoluble instances.
We finish by discussing a new constraint, graphi-
cal, which simply ensures that a partially instanti-
ated graph can be completed.

1

We consider the problem of enforcing connectivity while gen-
erating graphs, a problem which appears embedded within
many practical applications. For example, in computational
chemistry, generating all possible single molecules formed
from a set of atoms involves generating connected multi-
graphs (where atoms are represented by vertices, valencies
are represented by the degrees, and bonds are represented by
edges [Wu, 2004]). In telecommunications network plan-
ning, base stations and hubs are vertices, the communica-
tion links are edges, and the network must clearly be con-
nected. From Operations Research, solving the Travelling
Salesperson Problem involves constructing a minimal length
path which visits every node: i.e. a connected graph where
every vertex has degree 2. Many such problems come with as-
sociated side constraints - for example, legal bonds between
atoms or acceptable delays on communications links - and
thus a constraint programming solution may be desirable. In
this paper, we attempt to develop a constraint model which
ensures that generated graphs are connected. There has been

Introduction

26

some previous work on reasoning about properties of graphs
using constraint models. For example, [Le Pape et al., 2002]
present a new variable type representing paths in a graph,
[Sorlin and Solnon, 2004] discusses a global constraint for
graph isomorphism problems, and [Pesant and Soriano, 2002]
generate optimal cycle covers for networks. Graph theoretic
algorithms have been used extensively in constraint program-
ming; see [Régin and Gomes, 2004], for example, or [Simo-
nis, 2004] for a survey.

‘We have investigated a pure version of the problem, con-
structing undirected connected simple graphs with no self
loops over a set of vertices with known degrees. First, we
represent the undirected simple graphs with no self loops. We
assume that we are given an empty adjacency matrix and a
degree sequence, and that the search process is free to select
or reject any edge. Our goal is then to construct constraint-
based models which will allow us to enforce connectivity
while searching for all graphs that realise a given sequence.

We start by presenting a constraint encoding for produc-
ing the basic graphs with the specified degree sequence. We
then consider how to enforce connectivity on these graphs
using standard constraints, but run into problems. We then
present connected-graph, a global constraint for maintaining
connectivity, and describe a first implementation based on
a ‘connected-components’ algorithm. We then extend that
implementation to include some limited propagation. We
present some results indicating that the constraint is effective
when searching for all solutions to a set of degree sequences,
but that most of the efficiency gains come from sequences
which have no connected realisation. We then conclude by
looking at a more limited constraint which simply enforces
graphicality - that is, it ensures that a partially instantiated
graph can in fact be fully realised as a graph.

2 Graph Theory Preliminaries

‘We assume the necessary constraint background, and concen-
trate here on introducing the graph theory terminology and

basic graph-theoretic results. See [Gould, 1988] for a more
comprehensive (and readable) account.

A graph G is afinite set V = {1,2,...,n} of vertices, and
acollection E = ({v1,w1},...,{vm,wn}) of edges, where
each v;,w; € V. If the edges in E are ordered pairs rather
than sets, then E is a directed graph. If the list F is a set, then
G is a simple graph; if E contains multiple copies of an edge,
then G is a multigraph. If {v;,v;} € E, then it is a self-loop.
From now on, we will assume that £ is an undirected simple
graph with no self loops.

If {v;,v;} € E, then v; and v; are adjacent, and the edge
{vi,v;} is incident on both v; and v;. Two vertices vy and vy,
are connected if there is a path P = (v1,va ..., v;) of ver-
tices, such that Vi < k, {v;,v;11} € E. A graphis connected
if Vi, j, v; and v; are connected. A connected component, C;,
is a set of vertices such that v; € C; < Vv, € Cj, v; and vy,
are connected. A connected graph has exactly one connected
component. A connected graph must have at least n—1 edges.
A graph has at most n * (n — 1)/2 edges.

The degree of a vertex is the number of edges incident on it.
By the handshaking lemma, the sum of the degrees of a graph
is twice the number of edges, and so, as a corollary, the sum
of the degrees of the vertices must be even. Let degree(i) be
the degree of vertex i. Then D = (degree(1),...degree(n))
is the degree sequence of G. We can now pose the question:
given V (aset of n vertices), and D (a sequence of n integers),
does there exist a graph G that realises D? That is, can we
construct an edge set E such that D is the degree sequence of
G = (V, E)? Further, can we ensure that G is connected, and
can we generate all connected realisations?

3 Representing a simple graph with a given
degree sequence

Representing a simple graph with a given degree sequence
[Shiloach, 1981] is straightforward. For a problem with n
vertices, we create an n x n array, A, of constrained 0/1
variables. When Ai,j] == 1, there is an edge from 1
to j, and when A[z, j] 0, there is no edge from ¢ to
j. Since our graphs are undirected, we post the constraint
Ali, j] == Alj,i] for each pair ¢ < j. To stop self-loops
we add the constraint A[i,i] == 0 for each i. If we then
assume that D is an array of integers, such that D[i] is the
degree of vertex ¢, then we can post a constraint for each
row ¢ of A to ensure that the vertices have the correct degree:
S, Aliy) == degli].

We can now ask the solver to generate all solutions. For
a degree sequence (2,2,2,1,1), we will get 7 solutions: 6
of them will be paths, and the 7th will consist of two com-
ponents, one with a pair of connected vertices (K3), and
the other a triangle (/3). Obviously, the first 6 are isomor-
phic to one another, and the 7th is disconnected. For a de-
gree sequence (2,2, 1,1, 1), there are no solutions, since the
sum of the degree sequence is odd (from the handshaking
lemma). Our model, however, requires search to discover
this. Therefore there are two extensions required: we must
detect choices which would lead to a disconnected graph, and
need to identify degree sequences which cannot be realised.

27

4 Enforcing connectivity: a first attempt

Since connectivity is defined in terms of paths, we first con-
sidered enforcing connectivity by introducing n? path vari-
ables P[i, j], such that P[i,j] = 1 if there is a path from
vertex ¢ to vertex j. The path variables are not intended to
be decision variables, but will be linked to the adjacency ma-
trix. Each time we set two vertices to be adjacent (i.e. set
Ali,j] = 1), we also set P[i,j] = 1, and propagate recur-
sively to other path variables. Therefore, we add constraints
Ali,j] == 1 — Pli,j] == 1 (for each pair 7 and 7), and
(Pli,j] == 1 A P[j, k]) — Pli,k] == 1 (for all
triples i, j and k). We then add a constraint forcing every
vertex to be connected to vertex 1: P[1,j] == 1 forall j.

But this doesn’t work, and it doesn’t work because we have
relied on implication. P — (@ is true when () is true and
P is false, so our encoding allows a solver to cheat by set-
ting P[i¢,j] = 1 whenever it needs to, and thus our path-
connectivity constraint is trivially satisfied.

5 Enforcing connectivity: a second attempt

There are two standard algorithms for checking whether or
not a graph is connected ([Cormen et al., 2001]): depth-first
search, and CONNECTED-COMPONENTS(G). This second
algorithm maintains data structures for the connected sub-
components of the graph, and its outline is sketched below:

Connected-Components (G)

1. for each vertex v in V(G)
2 MakeSet (v)

3. for each edge (v,u) in E(G)

4 if FindSet (u) != FindSet (v)

5. Union (u,v)

The algorithm starts by producing an individual set for
each vertex in the graph, such that each set contains exactly
one vertex. We then iterate over the edges of the graph, com-
bining pairs of sets if they span an edge. On termination, the
sets represent the components of the graph: if there is only
one component, then the graph is connected, and otherwise it
is disconnected. In line 2, MakeSet(v) creates a new set con-
taining vertex v. In line 4, FindSet(u) returns the set that con-
tains u, and in line 5, Union(u,v) unions the sets that contain
u and v. Let n be the number of vertices, and e the number of
edges. We assume that Union(u,v) takes O(|v|) operations,
and that FindSet and MakeSet take O(1). For a connected
graph, n — 1 of the edges require an application of Union
(to establish that each of the remaining vertices connects to
the first). In the worst case, the algorithm always applies
Union(u,v) when u is a singleton set, and |v| steps from 1 to
n—1, and thus requires 1 +2+. ..+ (n—1) = (n—1)n/2 op-
erations, plus n operations for the initial sets. Thus the worst
case running time is O(n?). The space required is O(n) (for
initially n singleton sets, and finally 1 set of n elements).

We attempted to construct a declarative constraint encod-
ing of this algorithm using the set variables provided in
Choco. We introduced n set variables S[i], where S[i] is ini-
tialised with the value {i}. Then, when search selects the
edge (i,7), we want to combine sets S[i] and S[j]. So we
added the following constraint:

ViVj Ali, j] =1 — ((S[i] < S[5]) A (Sli] € Sil))

But now we are back to the implication problem. We could
change Ali, j] above to PJi, j], and turn the implication into
an ‘if and only if’, but we then have the same problem as
before linking PJi,j] back to the adjacency matrix!. The
problem is because we are introducing auxiliary variables,
but only putting them on the right hand side of an implica-
tion, and thus setting the value of an auxiliary variable only
partially constrains the decision variables. In terms of the im-
plication operator, the auxiliary variables also need to appear
on the left hand side of an implication, with a decision vari-
able on the right (or on the right of a chain of implications).

6 Enforcing connectivity: the connected-graph
global constraint

Instead of continuing to try different modelling primitives?,
we decided to implement a global constraint, which uses the
CONNECTED-COMPONENTS(G) algorithm to update its
internal data structures (the components) after each value as-
signment. The constraint takes the adjacency matrix, A, and
the degree sequence, D, as input. It does no propagation, but
will be violated if all the variables in A are instantiated and
there is more than one component remaining. It requires three
reversible data structures (reversible so that their values can
be restored when the search process backtracks). C is a list
of components, and each component is a list of integers rep-
resenting vertices. P is an array maintaining for each vertex
the index of its component in C. c is the number of compo-
nents. To initialise, we create a unique component for each
vertex. Whenever the search process assigns the value 1 to
Ali, 7] (i.e selects the edge between ¢ and j), where ¢ and j
were in different components, we update the data structures.
We take the smaller of the two components, move all of its
vertices into the larger, and update P for each of those ver-
tices to point to the new component. Finally, we decrement
c. When we reach a leaf node, if ¢ == 1 then the graph is
connected; if ¢ > 1, then the graph is disconnected.

The data structures require O(n) space, to store each vertex
in a component, and to store the names of the components. If
we assume that we always merge the shorter component into
the larger, the updating requires at most n/2 operations to
merge two components, and n/2 operations to update P, and
thus is O(n) at each node of the search tree. However, on a
complete branch from root to leaf, we require n — 1 updates,
and thus O(n?) operations. This is the same cost as it would
be to run the CONNECTED-COMPONENTS(G) algorithm
afresh at each leaf node. In addition, however, we have the
cost of updating the data structures on the branches that fail
because of other constraints. Therefore, if this constraint is to
be effective, we need to extend it by pruning or by detection
of search nodes which have no connected realisations below
them in order to save enough operations to account for the
overhead.

'and we also found that Choco wouldn’t let us do it anyway,
reporting that the opposite of C was not defined.

Zalthough we have one more model, suggested by lan Miguel,
which we have not yet tried.

28

7 Adding propagation to connected-graph

We can improve the constraint by reasoning about the resid-
ual degrees of vertices and components during search, and by
including some of the basic graph theory results. During a
search, if vertex ¢ has had k of its possible edges instantiated,
then its residual degree is degree(i) — k. Let the residual de-
gree of a component be the sum of the residual degrees of its
vertices. The residual degree of a partially instantiated graph
is the sum of the residual degrees over all vertices. To main-
tain information on the residual degrees, we need the follow-
ing additional reversible data structures:

e an array RV of integers, maintaining the residual degree
of each vertex. Each time we instantiate Az, j] to 1, we
subtract 1 from RV [i] and RV [j].

an integer 7, maintaining the residual degree of the par-
tial graph. Each time we instantiate any edge variable
to 1, we subtract 2 from 7 (since each edge reduces two
individual residual degrees by 1 each).

an array RC of integers, maintaining the residual degree
of each component. Each time we instantiate A[i, j] to
1, we find the components p and ¢ of 7 and j respec-
tively using the array P. If they are the same component
(i.e. p == q), then we subtract 2 from RC/p]; if they
are different components, then we will merge them as
before. Let p’ be the merged component. We then set
RC[p'] = RC[p] + RC[q] — 2.

We can identify a number of cases in which violations can be
identified on initialisation:

1. if any vertex has initial degree of less than 1, and there is
more than 1 vertex, then no connected graph is possible,
since that vertex must be isolated;

. if any vertex has an initial degree of more than n—1, then
no graph is possible, since there are not enough other
vertices with which to create the edges;

. if the sum of the initial degrees is odd, then no graph is
possible, by the handshaking lemma;

. if the sum of the initial degrees is less than 2n — 2,
then no connected graph is possible, since there are not
enough edges to connect all the vertices;

. if the sum of the initial degrees is greater than n x (n —
1), then no graph is possible, since there are not enough
vertices to occupy all the edges;

We can also identify two cases for intermediate search nodes
where the constraint must be violated, based on residual de-
gree:

6. if the residual degree of a component drops to 0, and
there is more than one component, then no completion
of the partial graph can be connected, since all vertices
in the component have used up all the edges, and none
of those edges connect to the second component (by the
definition of a component), then the first component can
never become connected to the second;

. if the residual degree of the graph drops to less than
2¢ — 2, where c¢ is the number of components, then no

completion of the partial graph can be connected. This
is by analogy to 4, in which we replace vertices by com-
ponents - in order to ensure one component is connected
to all the others, we will need to use at least one edge per
remaining component (i.e. ¢ — 1 edges). Each edge con-
tributes 2 to the residual degree, and therefore we need
at least 2c — 2 edges to get a connected graph.

Finally, based on these violation checks, we can develop the
following propagations:

8. if n > 2, then for all pairs of vertices ¢ and j with initial
degree of 1, force ¢ and j to be not adjacent (since if we
connect two vertices with degree of 1, then they must
form an isolated component, and cannot be connected
into a larger graph).

. if C[i] is a component with residual degree of 2, and
there is more than one component, then if there is a pair
j and k in C[i] each with residual degree of 1, force j
and k to be non-adjacent (if there is such a pair, then
if we were to connect them together, there would be no
more edges able to be instantiated incident on C'[i], and
so C/[i] could not be connected to the rest of the graph).
We apply this when RC|i] is reduced to 2.

10. if C[i] and CJj] are two components with residual de-
gree of 1, and there are more than two components, for
the vertices v in C[i] and w in C[j] with residual de-
gree of 1, force v and w to be non-adjacent (since each
component must have exactly one vertex with residual
degree > 0, and if we connect them, then the new com-
bined component would have residual degree of 0, and
so could not be connected to the rest of the graph). We
apply this when RCYi] is reduced to 1.

11. if the residual degree of the graph is 2¢ — 2, and there
is more than one component, then for all components
with residual degree greater than 1, force all pairs of ver-
tices internal to the component to be non-adjacent (by
the same analogy to 7, we need at least ¢ — 1 edges to
connect up the components, and hence residual degree
at least 2¢ — 2, so if we connect two vertices that are
already in the same component, then we will not have
enough edges remaining to connect up the other compo-
nents). We apply this when 7 is first reduced to 2¢ — 2.

Propagation 8 is carried out at initialisation; the rest are car-
ried out at nodes of the search tree.

The space requirement is still O(n). The updates to the
data structures are O(n) as before, since the new updates each
require only O(1). The initialisation takes O(n?), because of
8. For propagation 9 we require at each search node at most
n checks to find 2 vertices. For propagation 10, we require
at most n checks to find both vertex v and all other vertices
representing w. For propagation 11 there are at most (n — 1)2
pairs, and thus we require O(n?) checks. All four propaga-
tions only force values of 0, but are only triggered by vari-
ables being set to 1, and thus there is no cycle of propagators
(although they may be invoked again if the other constraints
set a variable to 1).

29

8 Experiments on connected-graph

We have implemented the adjacency matrix and the global
connected-graph constraint in Ilog Solver 6.0. Each of the
dead-end checks and propagations can be switched on or off
independently. Recall that our purpose is not to generate all
connected graphs as quickly as possible, but to develop a con-
straint that can be used with an external search procedure on
problems with side constraints, to enforce connectivity. In
particular, we have not considered symmetry, and there are
many symmetries in these problems. We view symmetry as
a separate feature, to be maintained independently from con-
nectivity, and in other work we have begun to detect sym-
metries during the search [Wu, 2004]. However, we do want
to evaluate the effectiveness of our model, and so we have
tested it on pure connected graph generation problems. We
have generated all possible degree sequences of lengths rang-
ing from 6 to 10, with maximum vertex degree of 4. For
each of these sequences, we then search for all possible so-
lutions, and we have recorded for each length the total num-
ber of solutions (i.e. connected graphical realisations), the
total number of backtracks-on-failure, and the total running
time. We have run the algorithm with full propagation (all),
with propagation 11 turned off (-77), with propagation only
in the initialisation phase (init), with the odd degree initiali-
sation filter and leaf node violations checks only (even), and
with only checks at the leaf nodes (leaf) (i.e. no propaga-
tion and no other violation checks). We use the variable or-
dering heuristic I1oChooseMinSizeInt (minimum do-
main), and a lexicographic value ordering. The experiments
were carried out under Linux, with a 2.6 MHz processor. The
results are presented in table 1.

Running with the leaf node violation checks only (leaf)
is significantly slower than the four other methods which
use some degree of filtering. However, we note that most
of the improvement in running time for the other methods
comes from even, the simple initialisation filter which fails
sequences with an odd sum (which cannot have graphical re-
alisations). The search with full propagation, all, is reducing
the backtracks on failure by up to 10% compared to even, but
is not significantly faster - in fact, for some of the smaller n,
it is slightly slower. There could be a number of reasons for
this. It is possible that our implementation is inefficient. Sec-
ondly, our propagations are relatively shallow - that is, they
remove values which are likely to have been discovered at the
next one or two depths in the tree, and so much of the work
may be wasted. Finally, in this paper, we have only reasoned
about residual degrees. We have not yet considered the conse-
quences of setting an edge variable to O (i.e. rejecting the edge
from the graph). We expect to be able to do more reasoning
about the absence of edges to discover that subcomponents
cannot be connected. However, even if we do improve our
algorithms, when we compare the total fails for even with the
total number of solutions, it appears that there is simply not
that much propagation to be done - once we filter out those
sequences of odd degree, only approximately 15% of the leaf
nodes in the full search tree are not connected.

n # solutions fails time
6 84 703 all 193 0.14
-11 193 0.14
init 219 0.15
even 259 0.13
leaf 1243 0.18
7 120 10544 all 1811 0.37
-11 1817 0.43
init 2112 0.38
even 2303 0.40
leaf 18449 0.58
8 165 249569 all 38538 4.56
-11 38604 4.48
init 42512 4.46
even 44010 4.51
leaf 379152 8.25
9 220 7742661 all 1169783 127.19
-11 1170429 127.08
init 1230572 126.70
even 1242061 127.03
leaf 11764916 241.37
10 286 345052878 all 51550046 5717.91
-11 51558645 5750.86
init 52780580 5731.06
even 52916767 5733.59
leaf 478361894 10420.87

Table 1: finding all solutions for all degree sequences: n is
the length of the sequence, # is the number of sequences of
that length, solutions is the number of connected realisations,
fails is the number of backtracks-on-failure for each method,
and time is the total time in seconds for each method. Note
that solutions, fails and time are the aggregated results over
all sequences of the indicated length.

9 The Erdos-Gallai theorem

Since the solution density is so high in realisable sequences,
it appears that graphicality may be more significant than con-
nectivity, and so cheaper propagation to cut out non-graphical
sequences, followed by leaf node checks on connectivity,
might improve efficiency. We have therefore begun to inves-
tigate specific graphicality properties. The Erdos-Gallai the-
orem [Erd6s and Gallai, 1960] states when a given degree se-
quence is graphical, i.e. under what conditions a graph can be
produced with a given degree sequence. The theorem states
that given a degree sequence 0 = dy > dg > ... > d,, this s
graphical if and only if equation (1) holds for all k£ < n.

k n
S odi < k(k—1)+ Y min(k,d;) (1)
i=1 i=k+1

This leads to the Havel-Hakimi algorithm [Havel, 1955;
Hakimi, 1962] for a realisation of that sequence. We repro-
duce it below, in a version taken from [Gould, 1988], and it
tests if the degree sequence o is graphical.

1 If there exists an integer d in o such that d > n — 1 then
halt and report failure. That is, we cannot have a vertex
that is adjacent to more than n — 1 other vertices.

30

If there are an odd number of odd numbers in ¢ halt and
report failure. That is, there must be an even number of
vertices of odd degree.

If the sequence o contains a negative number then halt
and report failure.

If the sequence o is all zeros then halt and report success.
5 Reorder o such that it is non-increasing.

Delete the first term dy from o and subtract one from the
next d; terms to form a new sequence. Go to step 3

Note that sequence o = 0,0, 0, 0 is graphical and realisable,
and so there is nothing in the theorem or algorithm that states
that the graph must be connected.

10 Using the Havel-Hakimi algorithm as a
constraint

In the generation of graphs, edges are selected or rejected by
the search process. Could the selection or rejection of an edge
result in a dead end because equation (1) is violated? The
answer is yes, and the (existence) proof follows.

Proof: Assume we have a degree sequence S = 2,1, 1.
This is graphical and can be realised as the path graph.
Assume also that vertex vy has been constrained to have a
degree of 2, and vertices v, and v3 are to have a degree of
1. Further assume that the search process starts by selecting
the edge (v, v3). In the residual graph v; must have degree
2 and vertices vo and vz have a residual degree of 0. This is
not a graphical sequence. O

Therefore we should expect that our search process can
generate dead-ends because equation (1) is violated, and early
detection of this may result in reduced search effort. Note that
step 2 of the above algorithm is redundant within the con-
straint encoding, i.e. if at the top of search the sequence o
contains an even number of odd numbers this will continue to
be true during search. We prove this by considering 3 cases.

Proof: In case (1) search selects an edge (v, u) where the
residual degree of v and w is even. When we add the edge
we decrement the residual degrees and we now have two
more vertices of odd degree. (2) search selects (v,u) and
both vertices have an odd residual degree. When the edge
is added we decrement the residual degrees and we remove
two vertices of odd degree. (3) v has odd residual degree
and u has even residual degree or conversely v has even
residual degree and u has odd residual degree. We decrement
both residual degrees and have the same number of vertices
of even and of odd residual degree. Consequently such a
constraint would serve no purpose. O

It is worth noting that in [Mihail and Vishnoi, 2002] it is
claimed that for a sequence to be graphical and potentially
connected it is necessary and sufficient that (1) holds and that
the sum of the degrees is at least 2(n — 1), i.e. there are at
least enough edges to produce a spanning tree. However, no
algorithm is given for realising this other than to produce a
spanning tree and then use the Havel-Hakimi algorithm on
the residual graph.

n nGSeq nCSeq Sol nodes- nodes+
4 11 6 9 6 9
5 31 19 61 62 62
6 102 68 787 1018 1017
7 342 236 15384 21329 21286
8 1213 863 580950 843812 841574

Table 2: Effect of the graphical constraint: n is the length of
the sequence (with no maximum degree), nGSegq is the num-
ber of graphical sequences, nCSeq is the number of those
that had connected realisations, Sol is the total number of
connected realisations, nodes- is the number of nodes gen-
erated during the search without the graphical constraint, and
nodes+ is the number of nodes generated using the constraint.

We have coded up the Havel-Hakimi algorithm as a con-
straint graphical. The constraint takes as arguments an ad-
jacency matrix of 0/1 constrained variables and a degree se-
quence. The constraint is tested whenever an edge is selected
or rejected, i.e. a test is performed to determine if the residual
graph continues to be graphical. If the residual graph is not
graphical a contradiction is raised and a backtrack is forced.
We have tested the effect of the constraint, and the resuls are
shown in Table 2. Note that the results in this table are not
comparable to the results in Table 1, since we have used a dif-
ferent experimental set-up. In particular, the sequences now
have no maximum degree, only graphical initial sequences
were considered, and a different connectivity filter was ap-
plied during search. From the results, we can see that the
graphical constraint does propagate, even in the search for
realisations of sequences that are initially graphical, and that
the effect does increase as we move to larger problems.

11 Conclusion and Future work

We have described some explorations of constraint program-
ming in graph generation, concentrating on forcing the graphs
to be connected. We have presented a straightforward en-
coding of the simple graph generation problem. We have
briefly described two failed attempts to model the connectiv-
ity constraint using standard modelling primitives. We have
discussed a new global constraint, connected-graph, and de-
veloped some violation checks and propagations. We have
tested the constraint on some pure generation problems, and
we have shown that the constraint does reduce search time.
However, perhaps because of the very high solution density,
almost all of the efficiency gains come from a filter reject-
ing non-graphical degree sequences, rather than from reason-
ing about connectivity. We have then discussed an alternative
constraint, graphical, which simply enforces graphicality.
As stated in the introduction, the problem of enforcing con-
nectivity during graph generation has practical applications,
and we are continuing to develop constraint-based solutions
for those applications. Although there does not appear to be
much scope for propagation in the pure problem, based on
the ratio of the number of solutions to the total leaf nodes,
we intend to develop better propagators based on reasoning
about the rejection of an edge, and on other methods based
on graph theory. Our first step will be to unify the different

31

methods discussed in this paper. We will also compare the
degree-sequence model to the cardinality matrix constraint
[Régin and Gomes, 2004], which could be used to enforce
a degree sequence. The most scope for improvement in the
application problems is in symmetry detection, and we have
begun to categorize and break the symmetries in the graphs.

12 Acknowledgments

We thank Tan Miguel and Barbara Smith for comments on
an earlier version of this paper. We are grateful for support
from Science Foundation Ireland ((00/P1.1/C075), Enterprise
Ireland (SC/2003/81) and Ilog SA.

References

[Cormen et al., 20011 T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein. Introduction to Algorithms. 2001.

[Erdos and Gallai, 1960] P. Erdos and T. Gallai. Graphs with
prescribed degrees of vertices. Mat. Lapok, 11:264-274,
1960.

[Gould, 1988] R. J. Gould. Graph Theory. 1988.

[Hakimi, 1962] S.L. Hakimi. On the realization of a set of
integers as degrees of the vertices of a graph. J. SIAM
Appl. Math., 10:496-506, 1962.

[Havel, 1955] V. Havel. A remark on the existence of finite
graphs. Casopis Pest. Mat., 80:477—480, 1955.

[Le Pape et al., 2002] C. Le Pape, L. Perron, J.-C. Régin,
and P. Shaw. Robust and parallel solving of a network de-
sign problem. In CP2002 (ed. P. van Hentenryck), LNCS
2470, pages 633-648, 2002.

[Mihail and Vishnoi, 2002] M. Mihail and N. K. Vishnoi. On
generating graphs with prescribed vertex degrees for com-
plex network modelling. In ARACNE 2002, pages 1-11,
2002.

[Pesant and Soriano, 2002] G. Pesant and P. Soriano. An op-
timal strategy for the constrained cycle cover problem. An-
nals of Mathematics and Artificial Intelligence, 34:313—
325, 2002.

[Régin and Gomes, 2004] J.-C. Régin and C. Gomes. The
cardinality matrix constraint. In CP2004 (ed. M. Wallace),
LNCS 3258, pages 572-587,2004.

[Shiloach, 1981] Y. Shiloach. Another look at the degree
constrained subgraph problem. Inf. Proc. Letters, 12:89—
92, 1981.

[Simonis, 2004] H. Simonis. Constraint applications using
graph theory results. CPAIOR 2004 masterclass, 2004.
http://www.icparc.ic.ac.uk/ hs/.

[Sorlin and Solnon, 2004] S. Sorlin and C. Solnon. A global
constraint for graph isomorphism problems. In CPAIOR
2004, LNCS 3011, pages 287-301, 2004.

[Wu, 2004] C. W. Wu. Modelling chemical reactions using
constraint programming and molecular graphs. In CP2004
(ed. M. Wallace), LNCS 3258, page 808, 2004.

An n-ary Constraint for the Stable Marriage Problem*

Chris Unsworth, Patrick Prosser
Department of Computing Science
University of Glasgow, Scotland
{chrisu,paj @dcs.gla.ac.uk

Abstract Men’s lists || Women's lists

. 1:136245| 1:156324

We present an n-ary constraint for the stable mar- 2461253 2:246135
riage problem. This constraint acts between two 3145362l 3436251
sets of integer variables where the domains of those 4653421l 4135426
variables represent preferences. Our constraint en- 5:231456| 5:326145
forces stability and disallows bigamy. For a sta- 6:312654| 6:513642

ble marriage instance with men andn women
we require only one of these constraints, and the

complexity of enforcing arc-consistency (&(n?) Figure 1: An SM instance with 6 men and 6 women
which is optimal in the size of input. Our computa- Men's lists I Women's lists
tional studies show that our n-ary constraint is sig- 11 T1
nificantly faster and more space efficient than the 2: 9 2:92
encodings presented {8]. We also introduce a 34 346
new problem to the constraint community, the sex- 4653 4: 3
equal stable marriage problem. 556 5 645
6:365 6:564

1 Introduction

In the Stable Marriage problem (SN2; 5 we haven men Figure 2: the corresponding GS-lists
andn women. Each man ranks thewomen into a prefer-

ence list, as do the women. The problem is then to produce a \y asent a simple constraint encoding for the stable mar-
matching of men to women such that it is stable. By a match-

ing we mean that there is a bijection from men to women riage problem. We introduce a specialised n-ary constraint

and by stable we mean that there is no incentive for partne
to divorce and elope. A matching is unstable if there are tw
couples(m;, w;) and(mg, w;) such thatn; prefersw; to his
current partnetw;, andw; prefersm; to her current partner

r\/vith only three methods, where each method is ho more than
3ix lines of code. We show how enforcing arc-consistency in
%his encoding results in the male-oriented Gale-Shapdty. li
This minimal encoding cannot be used in search and only
achieves directed arc-consistency, from men to women. We
m’?:'. 1i inst fthe stabl . bl Huen go on to show how we can extend this encoding by in-
hasl%urrr?enlzgg g?/v?)rrl?:no Figusr: 1es¥1n:v[/rslat%ee ppr?ob?erpﬁ ?r: oduc_ing a modest am(_)unt of additional code, such t_hat_the
tially, with each man and Woman’s preference list. Figure 2_encod|ng can be used in search,. can be e.mbedQed in richer
shov(/s the intersection of the male and female-oriénted—GalérnIDure problems where the stability of marriages 1 oniy par
Shapley lists (GS-lists}5], where the GS-lists are reduced of a larger problem, and the male and female oriented G$-list

preference lists. A man-optimal (woman-pessimal) stabl are produced. Our empirical results suggest, that although

matching can now be found by marrying men (women) to ur encodings ha®(n?) time complexity, the same as the
their most (least) preferred choices in there GS-lists. -ConOptlmal encoding proposed iB], our constraint significantly

. ; utperforms this encoding in both space and time.
versely, we can produce a woman-optimal (man-pessmaﬁ)

matching by marrying women (men) to their most (least) pre- .
ferred choice in their GS-lists. An instance of SM admits at2 The Extended GaIeShapIey Algor'thm

least one stable matching and this can be found via the Ex- (EGS)
tended Gale-Shapley algorithm in tini®n*), where there we now describe the male-oriented Extended Gale-Shapley

aren men and» women. (EGS) algorithm (shown in Figure 3). In particular, we ex-
*The first author is supported by EPSRC. Software support waplain what is meant by proposa) anengagementnd for a
given by an ILOG SA's academic grant. man to becoméree. We will use this later to show that this

32

algorithm and our constraint encoding are equivalent.

The EGS algorithn[5] produces a stable matching be-

tween menn; to m,, and womenw; to w,,, where each man

wherempl[i][j] is the t* man’s " preference, and similarly
wpl[j] is the preference list for thg?” woman. Using our
problem in Figure 1, if we consider o8¢ man he will have

(woman) ranks each of the women (men) into preference ora preference listwpl[3] = (1,4, 5, 3,6, 2).
der. Via a process of proposals from men to women the algo- We also assume we have the inverse of the preference

rithm delivers reduced preference lists, called GS-li&islé-

lists, i.e. mPw and wPm, where mPuwl[i][j] is the it"

Shapley lists), such that if each man (woman) is paired withman’s preference for th¢'* woman andwPm/[k][l] is the
his (her) best (worst) partner in their GS-list the marriage k* woman’s preference for thé”l man. Again, consider-

will be stablet

1 assign each person to be free

2 VH LE (sonme man mis free)

3 DO BEG N

4 w:= first woman on ms |ist

5 IF (sonme man p is engaged to w)

6 THEN assign p to be free

7 assign mand wto be engaged

8 FOR (each successor p of mon ws |ist)
9 DO BEG N

10 delete p fromw s |ist
11 delete wfromp’'s |ist
12 END

13 END

ing the 3 man in Figure 1, his inverse preference list will
bemPw([3] = (1,6,4,2,3,5), mPw[3][2] is his preference
for the 2"¢ woman, and that is 6, i.e. woman 2 is in &
position of man 3’s preference list.

We associate a constrained integer variable with each man
and each woman, such thei] is a constrained integer vari-
able representing th&" manm; in stable marriage instance
I and has a domaidom(x[i]) initially of 1 to n. Similarly,
we have an array of constrained integer variables for women,
such thaty[j] represents thg!" womanw; in I. The values
in the domain of a variable correspond to preferences, such
that if variablez[i] is assigned the valuethis corresponds to
m; being married to hig!” choice of woman, and this will
be womanmpl[i][a]. For example, ifz[2] (in Figure 1) is
set to 3 then this correspondsiie, marrying his3? choice,

Figure 3: The male-oriented Extended Gale/Shapley algow; (and conversely[1] would then have to be assigned the

rithm.

We will assume that we have an instantef the stable
marriage problem, and that for any perspm I, PL(q) is
the ordered list of persons in the original preference lisi o
andGS(q) is the ordered list of people in the GS-list fgr
and initially GS(q) equalsPL(q). In aproposalfrom man
m to womanw, w will be at the head of the man’s GS-list
GS(m). This leads to amngagemenwherem is no longer
free and all men thav prefers less tham are removed from
her GS-list, i.e. the last entry if.S(w) becomesn. Further,
when a marp is removed fromGS(w) that woman is also
removed from his GS-list, i.ew is removed fromGS(p),
consequently bigamy is disallowed. Therefateandw are
engaged whem is no longer freeyw is head ofGS(m), and
m is at the tail ofGS(w). A manp becomesreewhenp was
engaged tav (i.e. the head of7S(p) is w) andw receives
a proposal from mam that she prefers tp. On becoming
free,p is added to the list of free men andis removed from
GS(p).

value 5). Again referring to Figure 1 06" man’s domain
is dom(z[6]) = (1,2,3,4,5,6), as is everyone else’s, and in
Figure 2dom(z[6]) = (1,4, 5). We also assume that we have
the following functions, each being 6i(1) complexity, that
operate over constrained integer variables:

o getMin(v) delivers the smallest value dom(v).
e getMazx(v) delivers the largest value itom(v).
e getVal(v) delivers the instantiated value of

e setMazx(v,a) sets the maximum value dom(v) to be
min(getMax(v), a).

e setVal(v,a) instantiates the variableto the value.
e remVal(v,a) removes the value from dom(v).

We assume that constraints are processed by an arc-
consistency algorithm such as AC%] or AC3[7]. That is,
the algorithm has a stack of constraints that are awaitivig re
sion and if a variable loses values then all the constratis t
the variable is involved in are added to the stack along with

The algorithm starts with all men free and placed on a listhe method that must be applied to those constraints, iee. th
(line 1). The algorithm then performs a sequence of progosastack contains methods and their arguments. Furthermere, w

(lines 2 to 13). A mamn is selected from the free list (line 2),
and his most preferred womanis selected (line 4). Ifv is
engaged, then her partnpgbecomes free. The pait andw
then become engaged (lines 7 to 12).

3 Préiminaries

also assume that a call to a method, with its arguments, ys onl
added to the stack if it is not already on the stack. We'llrefe
to this stack as theall stack

4 An n-ary Stable Marriage Constraint
(SM2N)

We assume that the men and women’s preference lists ha¥W¥e now give a description of our n-ary stable marriage con-

been read into two 2-dimensional integer arrayg andwpl
respectively. mpl[i] is the preference list for th&” man

!Strictly speaking, the given algorithm produces MGS-ithe
male GS-lists. But for the sake of brevity we will refer to thas
GS-lists.

33

straint, where arc-consistency on such an encoding is equiv
alent to an application of the male-oriented EGS algorithm.

2The inverse of the preference lists can be created whemgadi
in the preference lists such thatPw[i][mpl[i][j]] = j, and this
does not affect the overall complexity of constructing ourdel.

Note that the constraint as described minimally cannot béo deltaMax(j) (line 2). Within the loop a; that has been
used within a search process, however we will later showemoved fromdom(y[j]) is selected (line 3) and then; is
how this can be done. Our constraint is n-ary in that itremoved fromdom(z[i]). When all relevant men have had
constrains: men andn women such that stability is main- their domains’ altered (line 5)ub is updated (line 6).

tained and bigamy is disallowed, although it achieves only

h . . 1. del taMax(j)
2-consistency.In a stable marriage problem withmen and 2. FOR (k = getMax(y[j])+1 to yub[j])
n women we will then require only one of these constraints. 3. i = yPx[j][K]
We now start by describing the attributes of the constraint 4. remval (x[i],xPy[i][j])
and the three methods that act upon it. We will use a java- 5. END FOR LOOP
like pseudo-code such that thédot) operator is an attribute 6. yub[j] = get Max(y[j])
selector, such that.b delivers the attribute ofa. init()
41 Theattributes Theinit method is called when the constraint is created, and

_))) is simply a call tadeltaMin for each of thex men variables.
A n-ary stable marriage constraint (SM2N) is an object that | init()

acts between men and» women, and has the following at- 5’ FOR (i =1 to n)
tributes: 3. del taM n(i)
¢ 1 andy are constrained integer variable arrays represent- 4- END FOR LOOP

ing the men and women that are constrained, such that
x[i] is the constrained integer variable corresponding to .
m; andyl[j] corresponds ta;. 5 Comparison to EGS

e xpl andypl are 2-dimensional integer arrays which con- We now compare the behaviour of our n-ary constraint model
tain the male and female preference lists respectively(SM2N) to the male-oriented EGS algorithm. In our compar-
such thatzpl[i] equalsPL(m;) andzpl[i][j] contains ison we will describe steps inthe EGS algorithnitédics and
m;'s j*" choice woman. the SM2N constraint encoding in normal font. Sometimes we

will use m andw as a particular person (rather than and

e xPy andyPzx are 2-dimensional integer arrays which ; : ;
conytain thye male and female inverse greferen)ge lists re-?) andz andy as particular variables (rather thai] and
spectively, such that Py[i][j] contains man’s prefer- y[7]) for sake of brevity. Additionally, we assume we have the

function fiance(yl[i]) and that it delivers the integérwhere
ence fory;. k = wpl[i][maz(dom(y[i])], i.e. x[k] is the least preferred
e yub is an array of integer variables which contain the partner ofy[i].
previous upper bounds of allvariables. All are set te
at the start of search and are updated by the deltaMax(i)
method detailed below.

e Initially the EGS algorithm sets all men to be free by
adding them to the free list (line 1Equivalently, when
propagation starts the call tmit() will cause the set
of calls {deltaMin(i)|1 < i < n} to be added to the
empty call stack.

e EGS picks a mam from the free list and he then pro-
poses to his first choice woman (lines 4 to 7). Ini-

4.2 The propagation methods

We now describe three methods that achieve male-oriented
arc-consistency.

deltaMin(i) tially the call stack will contaim calls to thedeltaMin
This method is called when the lower bound dafm ([4]) method, called directly vianit. When executing the
increases. The lower bound @m(x[i]) increasing signifies call deltaMin(i), manz[i] will make the equivalent of

thatm; has been rejected by his favourite choice of partner a proposal to his first choice woman (as described next).
and thus must propose to his new favourite available partner o \whenm makes a proposal te all values that appear

To do this we first findm,'s favourite available partnew; in GS(w) after the proposing man are removed (lines
(line 2), then remove all men from the list of she likes less 8 to 10), i.e. they become engagetiVhen the call
thanm; (line 3). deltaMin(i) is made, wherg]j] is x[i]’s favourite, the

1. del taM n(i) maximum ofdom(y[j]) is set toy[j]’s preference for

2. j = xPy[i][getMn(x[i])] x[i], therefore removing all less preferred men. Effec-

3. set Max(y[j],yPx[jl1[i]) tively, z[7] andy[j] become engaged.
deltaM ax(j) e To maintain monogamy EGS removes the newly engaged
This method is called when the upper bounddofn(y[j]) woman from the GS-lists of al! men that have just been
is reduced. To maintain consisteney needs to be removed removed from her preference list (line 1Erom the ac-

from the domains of all men that have been removed fromher ~ tion above, the maximum ofom(y[;]) has been low-
domain. This is done by looping once for each value thathas ~ €red, consequently a call #itaM ax(j) will be added

been removed from the tail aform(y[j]) since the last call to the call stack. In that call tdeltaMazx(j), y[j] is
removed fromdom(z[k]) for all k wherek has been re-

%A detailed explanation of just what we mean by 2-consistency ~ moved from the tail otlom(y[j]). Therefore;[k] and
in this model is given in section 6. y[4] can never be married.

34

e In EGS, ifm makes a proposal ta, who is already Because there arevalues in the domain of variabjethe
engaged top, thenw’s previous fiancep is assigned worse case complexity for all possible calls&dtaM az(5)
to be free and added to the free list (lines 5 and 6.)is O(n). Equally there are values in the domain of variable
On initiating the calldeltaMin(i) wherey[j] is z[i]’s x and thus the worse case complexity for all possible calls to
favourite available womany[j]’s fiance corresponds to deltaMin(i) is O(n). Therefore because there are vari-
the maximum value irlom(y[j]), because all less pre- ables and: variables, the total worst case complexity for all
ferred men will have been removed (as above). Therepossible calls taeltaMin(i) anddeltaMaz(j) is O(n?).
fore if y[j] receives a proposal from[i] via the call
deltaMin(i), andy[j] prefersz[i] to her current fi- 8 Enhancing the model

ancex[k] (wherek = fiance(y)) the maximum of tpe gy GS-Lists are the union of the male and female Gale-
dom(y[j]) will be set lower than her preference fofk] -~ gpapey fists remaining after executing male and femate ori
and therefore her preference fofk] will be removed ghteq versions of EGS. It has been proven that the same lists
from dom(y[j]). Consequently, the callcltaMax(j) can pe produced by running the female orientated version of
will then be put on the call stack, which will remove EGS on the male-oriented GS-li§6. Because SM2N pro-
z[k]'s preference fop|j] from dom(x[k]). Becauselj] qyces the same results as EGS the full GS-Lists can be pro-
wasz|k|'s previous favouritez[k]'s preference fop[j] qyced in the same way. But because of the structure of this
would have beemin(dom(x[k])). Therefore removing ghecigjised constraint it is also possible to combine thie ma
that value will increase|k]'s domain minimum, and the - 5 female orientated versions of SM2N into one constraint.
call deltaMin(k) will then be added to the stack. And Thjs combined gender free version of SM2N will then pro-

this effectively assigns mar(k] to be free. duce the full GS-List with only one run of the arc-consistenc
. . algorithm. To create the gender free version all of the meth-
6 Arc-consistency in the Model ods presented in this paper must then be symmetrically im-
On the completion of arc-consistency processing, the blria Plemented from the male and female orientations. _
domains can be considered@s$ — domains. Thatis,a € The SM2N constraint as presented so far has only consid-
dom(z[i]) — w; € GS(m;) A j = mpl[i][a]. Furthermore, ered domain values being removed by the constraint’s own
b € dom(y[j]) < m; € GS(w;) A i = wpl[j][b]. methods. If we were to use the constraint to find all possible
The GS-domains are 2-consistent such that if manis ~ Stable matchings, unless arc consistency reduces alblaria
married to a womaw; (i.e. z[i] = a A a € dom(z[i]) A j = domains to a singleton, it will be necessary to assign and re-

mpl[i][a]) then any womany, can then marry some man Move values from variable domains as part of a search pro-
my without forming a blocking pair or a bigamous relation- Ccess. Therefore, we need to add code to SM2N to maintain

ship. That is, for an arbitrary woman, there exists a value consistency and stability in the event that domain values ar

b € dom(y[l]) such thatk = wpl[l][p] A (mPwli][j] < removed by methods other than those within SM2N. Itis im-

mPuwl[i][l] V wPm[l][k] < wPm[l)[i]) Ai # kA j # 1. Portant to note that these external domain reductions could

Furthermore if a mam; is married to a woman; then any ~ &lS0 be caused by side constraints as well as a search process

other manm, can then marry some womai, wherel # ;. There are four types of domain reduction that external
Itis important to note, that although our constraint is p-ar €vents could cause: a variable is instantiated; a varible’

it only achieves 2-consistency. It is our opinion that thetco Minimum domain value is increased; a variable’s maximum

of achieving a higher level of consistency would be of little domain value is reduced; one or more values are removed

advantage. This is so because by maintaining 2-consistendyjom the interior of a variable’s domain. We now describe

and using a suitable value ordering heuristic in the model du wo additional methodsy.st andremoveV alue, and the en-

ing search we are guaranteed failure-free enumeratiori of alancements required fdeltaMin. We note thatleltaM ax

solutions[3]. does not need to change, and describe the required enhance-
In [5] Theorem 1.2.2 it is proved that all possible execu-ments for incomplete preference lists.

tions of the Gale-Shapley algorithm (with men as proposersanst(i)

yield the same stable matchings. Our encoding mimics thehe methodnst(i) is called when a variable]i] is instanti-

EGS algorithm (as shown in section 5) and we claim (with-ated.

out proof) that the encoding reaches the same fixed point for 1 inst(i)

all ordering of the revision methods on the call stack. 2. For (k = 0 to getVal (x[i])-1)
3. j o= xPy[il[kl

7 Complexity of the model 4. set Max(y[j], yPx[j][i]-1)

. . . . 5. END FOR LOCP
In [5] section 1.2.3 it is shown in the worst case there is at g j = xPy[i][getVal (x[i])]
mostn(n — 1) 4+ 1 proposals that can be made by the EGS 7. setVal (y[j1,yPx[jll[il)
algorithm, and that the complexity is thén(n?). We argue 8. For (k = getVal (x[i])+1 to n)
that the complexity of our SM2N encoding is aléfn?). 9. jo= xPy[i][k]
First we claim that the call to our methaktitaMin() is of 10. renval (y[j],yPx[j][i])
complexityO(1). ThedeltaMazx() method is of complexity 11 END FOR LOOP

O(r), wherer is the number of values removed from the tail This method removes all values from the seyofriables
of variable since the last call telta M ax() for this variable. to prevent variable:[i] being involved in a blocking pair or

35

inconsistency. To prevent] from creating a blocking pair, IncompleteLists (SMI)

all the values that corresponds to men less preferreditfian The encoding can also deal with incomplete preference lists
are removed from the domains of all women tht prefers j e, instances of the stable marriage problems with incom-
to his assigned partner (lines 2-5). Sing¢] is matched to pjete Jists (SMI). For a SM instance of sizewe introduce
ylj], y[j] must now be matched tefi] (lines 6,7). To main- the value:+ 1. The valuen+ 1 must appear in the preference
tain cons[stency[z] is removed from the domains of all other |ists y,p; [i] andwpl[j] as apunctuationmark, such that any
women (lines 8-11)). The complexity of this methodli$n) people aften. + 1 are considered unacceptable. For example,
and because there aner variables and each can only be in- if e had an instance of size 3 and a preferenceistm;) =
stantiated once durln.g propagation, the total time conifylex (3 2) we would construetpl[i] = (3,2,4, 1) and this would
of all possible calls tanst(i) is O(n?). resultin the inversewPw(i] = (4,2, 1,3). Consequently|[i]
removeVvalueli,a) would always prefer to be unmatched (assigned the value 4)

. N) . than to be married tg[1]. We now need to modify thenit
]:I'hls method is callgd r\]/yhen lthe .|nteg(.e[]vamhes {emoved method such that it sets the maximum valuelém (z[i]) to
Jﬁf&ﬁ?ﬁ%ﬁ?(’mﬁ% this value is neither the largest nor yq,, by, (][5, + 1]. These modifications will only work in the

’ fullimplementation (i.e. it requires the above enhancesjen

1. renoveVal ue(i, a) . .

2. i = xPy[i][a] Reversibleintegers

3. remval (y[j1.,yPx[j1[i]) In this encoding we have used two variable arrays which con-

The woman the value corresponds to is found (line 2) then f&in dynamic data.yub andlb are initialised ton and 1
2[i] is removed from her domain (line 3), and this must be®SPectively, but these values will be updated as the pmoble
done to prevent bigamy. is being made arc-consistent. If we are only looking for the

first solution then we need only use normal integers to hold
Enhancementsto deltaMin(i) these values. However, when the constraint solver badigrac
Up till now we have assumed that all values removed from@nd values that had been removed from the domain of a vari-
the head oflom (x[i]) are as a result af; being rejected by ~ able are reintroduced then the values helgkih andzb will
somew;. We now drop this assumption in the following en- no longer be correct. To fix this problem we have to tell the
hanced version. In this method we add a new variable arragolver that when it backtracks it needs to reverse the clsange
namedrlb, and this is similar to thgub array except it holds to yub andxzlb as well as the variables domains. This is done
the previous lower bound of. All elements inzlb are ini- py using a reversible integer variable. This class should be
tialised tol and are updated and used only by #héta)Min gypplied in the constraint solver toolkit. The solver wiien

method. store the values of each of the reversible variables at each
1. del taM n(i) choice point and restore them on backtracking.
L Lot
. setMax(y[jl,yPx[jll[i . .
4. FOR (k = xIb[i] to getMn(x[i])-1) 9 Computational Experience
5 J = xPy[i][K] S We implemented our encodings using the JSolver toblkit
675' ESN%t E/BO);()IiEJJO]D yPxUpItil-1) i.e. the Java version of ILOG Solver. In a previous pdgér
8 xIb[i] = getMn(x[i]) we presented a specialised binary constraint (SM2) for the

stable marriage problem, and presented some results compar
Lines 1 to 3 are as the original. The next four lines (lines 4-ing the SM2 constraint with the two constraint encoding in
7) cycle through each of the values that have been remove@]. Here we show a chopped down version of those results,
from the head oflom(z[i]) since the last call tdeltaMin(i) with the results obtained by running SM2N on the same set
(line 4). y[4], which the removed value corresponds to, is therof test data included. The other model shown in the results
found (line 5), and then all values that are not strictly ¢gea table is the optimal boolean encoding (Bool) as presented in
than her preference fafi] are removed frordom (y[j]) (line [3]. Our experiments were run on a Pentium 4 2.8Ghz pro-
6). The lower bound of the man variabi¢] is then updated cessor with 512 Mbytes of random access memory, running
(line 8). Microsoft Windows XP Professional and Java2 SDK 1.4.2.6

. with an increased heap size of 512 Mbytes.
No enhancementsto deltaM ax(j)

We now consider the situation where some process, other sizen

than a proposal, removes values from the taillaf(y[7]), model | 100 | 200 | 400 | 600 | 800 | 1000
i.e. when the maximum value @fon(y[j]) changes. The Bool | 1.2 | 44 | ME | ME | ME | ME
deltaM az method will be called, and the instance contin- SM2 10231 05 [1821 4211 802 12.47
ues to be stable as all values remaininglimn(y[j]) corre- SVM2N 1002 006 0211 0511 095 2.11

sponding to menw; prefers to the removed values. How-
ever, we need to prevent bigamy, by removingfrom the
correspondingilom(x) variables removed from the tail of
dom(y[j]), and this is just whadeltaM az does. Therefore,
no enhancement is required.

Table 1: Average computation times in seconds to produce
the GS-lists, from 10 randomly generated stable marriage
problems each of size

36

Our first experiment measures the time taken to generate Bool | SM2 | SM2N
a model of a given SM instance and make that model arc- time O(n?) | O(n3) | O(n?)
consistent, i.e. to produce the GS-lists. Table 1 shows the constraints spaceé O(n?) | O(n?) | O(n?)
average time taken to produce the GS-lists for ten randomly variables space| O(n?) | O(n) | O(n)

generated instances of size 100 up to 1000. Time is measured

in seconds, and an entdf £ means that an out of memory . .
error occurred. We can see that the SM2N constraint domiTalble 3: Summary of the complexities of the three SM con-

nates the other models. straint models

sizen sizen
model | 100 | 200 | 400 | 600 | 800 | 1000 problem| 1000 | 1200 | 1400 | 1600 | 1800 | 2000
Bool | 2.02| 6.73| ME ME ME ME AC 2.11] 312 | 593 | 871 | 11.59| 20.19
SM2 | 0.47| 1.97| 10.13| 27.27| 54.98| 124.68 All 335] 5.09] 88 | 12.92] 18.96] 26.81
SM2N | 0.03| 0.07| 0.24 | 0.73 | 1.56 | 3.35

Table 4: Average computation times in seconds from 100 ran-
Table 2: Average computation times in seconds to find aldomly generated stable marriage problems each ofisize

solutions to 10 randomly generated stable marriage prablem

each of sizex L
10 Sex equal optimisation

This second experiment measures the time taken to ger-he sex equal stable marriage problem (SESMP) as posed in
erate a model and find all possible stable matchings. TablEs] as an open problem, is essentially an optimisation prob-
2 shows the average time taken to find all solutions on théem. A male optimal solution to an SMP is where all men get
same randomly generated instances used in the first expethere best possible choices from all possible stable magshi
ment. Again it can be seen that the SM2N model dominategand all women get there worst), and in a woman optimal so-
the other models. In summary, when the boolean encodintyition all women are matched to there best possible choices
solves a problem the n-ary constraint does so nearly 10&timgand all men to there worst). A sex equal matching is where
faster, and the n-ary constraint can model significantiydar both the men and the women are equally well matched. This
problems than the boolean encoding. problem has been proven to be NP-HEsH

Tables 1 and 2 raise the following question, if the Bool en- In a SESM P all men will have a score for each woman
coding is optimal then why is it dominated by the SM2 encod-and all women will have a score for each man, mafs score
ing, when SM2 i€ (n?) time and the Bool encoding@®(n?) forwomanw; is mScore[i][j] and womany;’s score for man
time? The main reason for this is that there is no significantn; is wScore[j][i]. In an unweighteds ESM P all scores
difference in the space required to represent variablgs witwill be the same as the preferencesmsScoreli][j] would
significant differences in domain size, because domains arequalm Pw[i][j] andwScore[j][i] would equakw Pm/[j][i].
represented as intervals when values are consecutiveidzonsIn a weightedS E'S M P this is not so, but the same ordering
ering only the variables, the Bool encoding uék®?) space must be maintained meaningScoreli|[j] < mScore[i][k]
whereas the SM2 model us€$n) space. For example, with iff mPw[i][j] < mPuw[i][k]. For any matchingy/ all men
n = 1300 the Bool encoding runs out of memory just by and women will score the matching determined by which
creating the2.13002 variables whereas the SM2 model takespartner they are match to ih/. If man m; is matched to
less than 0.25 seconds to generate the required 2600 wiabWwomanw; in matchingM thenm; will give that matching
each with a domain of 1 to 1300. Theoretically the spacea score ofmScoreli][j] and womanw; will give it a score
complexity of the constraints used by SM2 and Bool are theof wScore[j][i]. The sum of all scores given by men for a
same. In practise this is not the case as SM2 requires exactigatching) equalssumM (M) and the sum of the women'’s
n? constraints to solve a problem of sizavhereas Bool re- scores issumW (M). A matchingM for an instancel of
quires2n + 6n? constraints. Therefore the Bool encoding the stable marriage problem is sex equal iff there exists no
requires more variables and more constraints, resultirg in matchingM such that the absolute difference between the
prohibitively large model. The same argument also appliesumM (M) andsumW (M) is less than the absolute differ-
to the performance of the SM2N constraint, i.e. the n-aryence betweesumM (M) andsumW (M).
constraint is more space efficient that the Bool encoding, is Because the values in the domains of thendy variables
of the same time complexity, and this results in superior perare preferences, it makes finding an unweighted sex equal
formance. The space and time complexities of these modelsatching withSM 2N simple. All that is required is to add a
are tabulated below. Note that thén?) constraint-space for search goal to minimise the absolute difference between the
SM2N is a consequence of the storage of the preference lissim of all x variables and the sum of ajl variables. We
and their inverses. tested this using the same test data as in Table 4 and the re-

This Third experiment shows how SM2N can handle largeisults are tabulated below. These results can be compared to
problems. Table 4 shows the average time taken to both prdhose in Figure 6 of8], where the Bool encoding failed to
duce the GS-Lists and find all solutions for one hundred ranmodel problems with 300 or more men and women, and at
domly generated instances of size 1000 up to 2000, again the = 1000 the SM2 model was more than 15 times slower
times are in seconds. than the SM2N model. We believe that this demonstrates the

37

versatility of our constraint, in that we can easily use the-c
straint as part of a richer problem.

(1
(2]

sizen
problem| 1000 | 1200 | 1400 | 1600 | 1800 | 2000
SE 3.65| 5.02 | 8.73 | 14.44| 1759 22.44

[3]
Table 5: Average computation times in seconds to find all
solutions to 100 randomly generated sex-equal stable mar-
riage problems, each of size modelled using the SM2N
constraint. [4]

11 Implementation (5]

The SM2N constraint was originally developed using the
choco constraints tool kit, and the way the constraint ha;I»G]
been introduced reflects that. In choco to implement a
user defined constraint, théstract LargeIntConstraint

class is extended. This class contains the methodk]
awake, awakeOnlInf, awakeOnSup, awakeOnRem and
awakeOnlInst. These methods are the equivalent of the onegg
used to introduce the constraintwake is the same agnit,
awakeOnlInf andawakeOnSup are the same a<aMin
anddeltaM ax and awakeOnlInst is the same agst. To [l
implement a constraint in llog JSolver we first state when the
constraint needs to be propagated, i.e. when a domain value
is removed, when the range changes (meaning the upper or
lower bound changes) or just when a variable is instantiated
We then need to define a method that will handle propaga-
tion when such an event occurs. For the SM2N constraint
we stated it was to be propagated every time the range of a
variable changed. We then used conditional statements to as
certain which bound had changed, and used the methods as
presented above to handle the propagation.

12 Conclusion

We have presented a specialised n-ary constraint for the sta
ble marriage problem, possibly with incomplete lists. The
constraint can be used when stable marriage is just a part
of a larger, richer problem. Our experience has shown that
this constraint can be implemented in a variety of constrain
programming toolkits, such as JSolver, JChoco, and Koalog.
The complexity of the constraint i9(n?). Although this is
theoretically equal to the optima&P(n?) complexity of the
Boolean encoding if8], our constraint is more practical, typ-
ically being able to solve larger problems faster. For examp
we have been able to enumerate all solutions to instances of
size 2000 in seconds, wheread 4 the largest problems in-
vestigated were of size 60. We have also presented the first
study of SESMP using a constraint solution, i.e. where the
stable matching constraints are part of a richer problem.

Acknowledgements

We are grateful to ILOG SA for providing us with the JSolver
toolkit via an Academic Grant licence. We would also like to
thank our four reviewers.

38

References

ILOG JSolver. http://www.ilog.com/products/jsolver/.

D. Gale and L.S. Shapley. College admissions and the
stability of marriage.American Mathematical Monthly
69:9-15, 1962.

I.P. Gent, R.W. Irving, D.F. Manlove, P. Prosser, and
B.M. Smith. A constraint programming approach to
the stable marriage problem. @P’01, pages 225-239,
2001.

I.P. Gent and P. Prosser. An empirical study of the sta-
ble marriage problem with ties and incomplete lists. In
ECAI'02, 2002.

D. Gusfield and R. W. IrvingThe Stable Marriage Prob-
lem: Structure and AlgorithmsThe MIT Press, 1989.

Akiko Kato. Complexity of the sex-equal stable marriage
problem.Japan Journal of Industrial and Applied Math-
ematics (JJIAM)10:1-19, 1993.

A. K. Mackworth. Consistency in networks of relations.
Artificial Intelligence 8:99-118, 1977.

C. Unsworth and P. Prosser. A specialised binary con-
straint for the stable marriage problem SARA052005.

Pascal van Hentenryck, Yves Deville, and Choh-Man
Teng. A generic arc-consistency algorithm and its spe-
cializations.Artificial Intelligence 57:291-321, 1992.

1

Modelling multi-agent systems as constraints for model-based diagnosis

Meir Kalech and Gal A. Kaminka
The MAVERICK Group
Computer Science Department
Bar llan University
Ramat Gan, Israel
{kalechm, galk}@cs.biu.ac.il

Abstract

With increasing deployment of multi-agent and dis-
tributed systems, there is an increasing need for
failure diagnosis systems. While successfully tack-
ling key challenges in multi-agent settings, model-
based diagnosis has left open the diagnosis of co-
ordination failures, where failures often lie in the
boundaries between agents, and thus the inputs
to the model—with which the diagnoser simulates
the system to detect discrepancies—are not known.
However, it is possible to diagnose such failures
by modelling the coordination between the agents
as constraints. This paper formalizes model-based
coordination diagnosis as a constraints satisfaction
problem, using two coordination constraints (con-
currence and mutual exclusion). The diagnosis pro-
cess is needed, once some of the constrains are not
satisfied. The goal of the diagnosis is to find a min-
imal set of assignments (by the agents) which vi-
olate the satisfiability of the constraints. We de-
fine the consistency-based and abductive diagnosis
problems within this formalization, and show that
both are NP-Hard by mapping them to other known
problems. This modelling offers opportunities for
cross-cutting research.

Introduction

Model-based diagnosisviBD) [Reiter, 1987; de Kleer and

a message that another agent, due to a broken radio, did not
receive. As aresult, the two agents come to disagree on an ac-
tion to be taken. Lacking an omniscient diagnoser that knows
of the sending of the message, the receiver has no way to
detect and diagnose its fault, since the context—the message
that can be fed into a model of the radio of both agents—is
unobservable to the diagnoser.

Surprisingly, it is still often possible to detect and diagnose
coordination failures, given the actions of agents, and mod-
elling the coordination between the agents as constraints that
should ideally be satisfied. In the example above, knowing
that the two agents should be under the constraint of agree-
ment as to their actions, and seeing that their actions do not
satisfy the constraint (are not in agreement), is sufficient to
(1) show that a coordination failure has occurred; and (2) to
propose several possible diagnoses for it (e.g., the first agent
did not send a message, the second agent did not receive it,
etc.).

Some previous works frame the model-based diagno-
sis problem of a single system as a constraint satisfaction
problem[Stumptner and Wotawa, 2003; Sachenbacher and
Williams, 2004. However, they did not address of typ-
ical multi-agent systems’ failures which take place at the
boundaries between the agents and their environment. There
are approaches within diagnosis for diagnosing such fail-
ures, however, they suffer from key limitations. Fault-
based techniqudsiorling et al, 2001; Pencolét al, 2002;
Lamperti and Zanella, 2003utilize pre-enumerated interac-
tion fault models. When the faults are observed, they trig-

Williams, 1987 relies on a model of the diagnosed system,ger possible predicted diagnoses. However, the interactions
which is utilized to simulate the behavior of the system givenamong system entities, in multi-agent system, are not known
the operational context (typically, the system inputs). The rein advance since they depend on the specific conditions of the
sulting simulated behavior (typically, outputs) are comparecenvironment in runtime and the appropriate actions assigned
to the actual behavior to detect discrepancies indicating failby the agent$Micalizio et al, 2004. [Kalech and Kaminka,
ures. The model can then be used to pinpoint possible failing003 propose a technique in which the reasoning of the two

components within the system.

multi-agent systems (e.g[Frohlich et al, 1997; Rooset

al., 2003; Lamperti and Zanella, 2003 While success-
fully addressing key challenges, MBD has been difficult tochallenge of formalizing diagnosis of coordinatioimtér-
apply to diagnosing coordination failur¢sticalizio et al,,

agents, leading to their mis-coordinated actions, is re-traced,

MBD is increasingly being applied in distributed and to determine the roots for their selection. However, this tech-

nique is specific to disagreements.
This work takes a first step towards addressing the open

agen) failures using constraints satisfaction in terms of

2004. This is because many such failures take place at thenodel-based techniques. We model the coordination between
boundaries between the agent and their environment, includigents as a graph of concurrence and mutual exclusion con-
ing other agents. For instance, in a team, an agent may setraints on agents’ actions. The diagnosis process begins with

39

an observation of the agents’ actions and inferring, by comtheir approach was specific only to agreements.
paring to the coordination model of the constraints, the mini-

mal number of agents that deviate from the expected coord3 Coordinated Multi-Agent Systems

nation (i.e., a minimal set afbnormal agents We adopt a model-based approach to diagnosis of coordina-

ba-ls-gg ;ﬁ:ﬂmaall)“dzlit:lt?vr:e Zligvfogigfmrg'&grgg b;r:g Cgﬂff;fgg’,;“ n failures. To do this, we formalize an agent, a multi-agent
9 P ’ P %@stem, and the coordination between the agents.

approaches to their solution. While the formalization does no
commit to centralized or distributed diagnosis settings, the3 1 The Agent Model

initial methods we provide are centralized. For consis_tenc_:y%\n agent is an entity that perceives its environment through

sensors and takes actions upon its environment using actua-

lem. For abductive diagnosis, we take an approach based dars: Obviously, there are many different possible models that

constraint satisfaction problem. Both of these problems ar&a" D€ used to describe agents. Our focus is on the coordina-
thus NP-Hard. ion of multiple agents through their actuators and their sen-

sors, and thus we will use a simplified model, of completely
reactive agents, composed only of sensor and actuator com-
2 Related Work ponents. The connections between the sensors and actuators
re described logically.
definition 1. An agentis a pair (CM P,CON) of com-

diagnosis can be mapped to the minimal vertex cover pro

[Stumptner and Wotawa, 2003; Sachenbacher and William
2004 models the diagnosis problem as a constraints satisfa H . .
tion problem, and try to use CSP algorithms to compute th g%eNntZ%]\:/F[P’ r?nd ggwectmnsfole\)f. ICMP IS t?l pair

diagnosis rapidly. However, they modelled centralized sys-)) where IS a Set of boolean variables rep-

tems where all the components belongs to the same syste'iﬂsent'ng the sensors and tHE'T is a set of boolean vari-
like boolean circuit. On the other hand, in multi-agent sys-ables representing the actiosO.V is a set of logical conse-
tems beyond the diagnosis to each single agent, the cooro‘ﬂ:uencfe statements, wherg me II_?erallj’gé\] are onﬂshe_ler]:i
nation between the agents should be modelled and diagnosé%fjg ot consequences, and the fitera areontherng

::%%sltrr]atizltz paper we propose to model the coordination bf At any time, the agent may sense through a number of sen-

. . . sors, but may only select one action. Thus multiple literals
[Pencoléet al, 2002; Lamperti and Zanella, 20D@se a in SEN may be true, but at any time exactly one literal of

fault-model approach, where the distributed system is mod- :

eled as a discrete event system, and the faults are model%ﬁ%ﬂu{gftebj g:l;e.vTo ecfzrg%thls, V)Vznaggligngflﬁj‘f&‘aefs
in advance. The diagnoser infers unobservable fault even N LV |[ACT|

by computing possible paths in the discrete event system th&g<clusionformulasyi, j=(ACT; A ACT;).

match observable eventfHorling et al, 2001 and[Mical- xample 1. Suppose we model a scout robot who looks for

izio et al, 2004 use causal models of failures and diagnoseé(’jv.ounded' Th.(tehr(t)\sot has two senlsor c%mpone;ts, Og?h's ara-
to detect and respond to multi-agent and single-agent faildi0 Sensor with two message valugs:ck, found} and the
other is a camera sensor which indicates if the wounded is

ures. A common theme in all of these is that they require .
pre-enumeration of faulty interactions among system entitie ound. The actions of the ronGEEK, WAIT} are se- .
However, in multi-agent systems, these are not necessari cted based on _the sensor read_mgs. Once t_he ro_bot receives
known in advance since they depend on the specific run-tim@ 5¢¢k message it selects the actiSw £ K . It will switch to

e actionV AIT upon finding the wounded (via its camera),

conditions of the environment, and the actions taken by th S)
agents. Or upon receiving a message that it was found (by someone

o else).
[Frohlich et al, 1997, and later[Rooset al, 2003 use ~ ~“y& represent this agent as follows:
a consistency-based approach to diagnose a spatially dis-
tributed systems. A set af agents are responsible for diag- SEN = {SENradio_seeks SENradio_found, SENcamera_found}

nosingn sub-systems, correspondingly. Every agent makesA¢T = {SEEK, WAIT}
a local diagnosis to its own sub-system and then all agent§ON = {SENraaio scek A "SENcamera_founds = SEEK,
compute a global diagnosis. In order to build a global diag- SENradio_found V SENcamera_founda = WAIT}

nosis set, each agent should consider the correctness of thog¢ addition, we should verify that only one action is selected
inputs of its subsystem that are determined by other agentgy the agent, using the followingpmpletenesand mutual-
But, Roos et al. and Frohlich at al. assume that each diexclusionaxioms:

agnoser agent knows the context of its sub-system and so it
may make the diagnosis. However in our multi-agent system
the diagnoser does not have the context so it is impossible to
make a diagnosis to every agent separately, unless we supply
a model of the coordination between the agents. o
[Kalech and Kaminka, 2004presented a consistency- 3-2 A Model of Coordination

based diagnosis procedure for behavior-based agents, whidtihe multi-agent systems of interest to us are composed of
utilized a model of behaviors that the agents should be irseveral agents, which (by design) are to satisfy certain coor-
agreement on (i.e., concurrence coordination). Howeverination constraints. We call this type of systerteam to

WAIT v SEEK
~(WAIT A SEEK)

40

distinguish it from general multi-agent systems in which it isbehaviors. Onced; or A, find the wounded, they send a
possible that no coordination constraints exist. found_message to the other agents in the team, thdn
Definition 2. A teamT is a set of agentsT” = {4;...4,,} and A, transport to thé¥V AIT action, while A3 transports
where A; is an agent. Given a teaffi, AS represents the to JOIN action. Again we can see tlwencurrence coordi-
set of the action literals of the agents. Formally,A&t'T; be nationconstrains between these behaviors. In addition, when
the set of actions of agent; thenAS = | J;__, ACT;, where agentA; is being charged({H ARGE behavior), there are
AS;; represents thg'th boolean action variable of agent,. no constraints between the agents. The correspon@dirdgs

As a shorthand, we us&S; to denote the boolean action lit- formally defined as follows:

eral of agentd; whose value is true. We call.S; theactive

selectionof agentA;. V= {AS1y a0 AS20arr AS1eppr AS2smmics
The actions of agents in a team are coordinated. We utilize ASspppar AS3 08 ASsonarcs)

two coordination primitives—eoncurrenceandmutual exclu- E= {CCRN(AS1yy o 1s AS2yy 4 1)
sion—to define the coordination constraints. Concurrence CCRN(AS14ppx: AS265pk)
states that two specific actions must be taken jointly, at the MUEX (AS24 o1+ AS3p g ar)
same time. Mutual exclusion states the opposite, i.e., that CCRN(AS2y 412 AS3,0n)

two specific actions may not be taken at the same time. MUEX (AS1gppr> ASsrppar)
Definition 3. A concurrence coordination (CCRNpnstraint CCORN(AS1yy 4,0, AS3 0,50}

between two actions of different agents mandates that the two
actions must be true concurrently. Logically, we represent
this constraint in a DNF (disjunctive normal form). For two

actionsAS;, andAS;, (actionz of agentA; and actiory of
agentA;) as follows: A, A,
CCRN(ASiz, Asjy) = (ASiz A Asjy) V (mASiz A ﬁASJ‘y) ’

Definition 4. A mutual exclusion coordination MUEonN-
straint between two actions of different agents mandates that

they cannot be true concurrently. Logically, for two actions
Az

’

MUEX (ASiz, ASjy) = (ASiz A—ASjy) V
(=ASiy A ASjy) V
(=ASis A ~AS;y)

Figure 1:The coordination graph for team {A;, A5, As}.

Once we defined the coordination types, we can model the

7w . Given a coordination grapf'G and a tean?’, we can de-
coordination between the agents formally with a set of coor=. . L TRt
dination constraints, defining a graph: fine a multi-agent system description as a set of implications

Defiion 5. A coorinaton rapor a team i ur- 0 1S 0TEI 0 10 ageis e e satelactonof e o
rected graptCG = {V, E'}, where the vertices séf repre- : P 9

sents the boolean variables of the actions of the agents, an rr_ng!ly-functlonmg_multl-agent system. _
the set of edge& is the set of coordination constraints be- efinition 6. A multi agent system description (MASB)

- \ a set of implications from the normality of agents in a team
tween the actions. We uséG,, to refer to them’th con- . } A
straint withinE. CG(AS;,, AS;,) denotes the constraint re- cTo:(r)egGo.nd-li—:ee:ngﬁ?:g%gr:;igirggeglncr?é?ggl)]l;”ti?]at the
lating AS;, and AS;,. CG,, is considered true if the con- P 94ag (9)-
straint holds and false otherwise.
Example 2. Figure 1 presents a coordination graph. The
concurrence constraints are represented by solid lines, and
the mutual exclusion constraints are represented by dashed
lines. Assume a team of three agefits;, A>, As}. A; and
A, are scout robots as described in Example 1, Agds a 4 Diagnosis of Coordination Faults
paramedic robot who has one radio sensor with one message, ;i -+ ook :
value {found_messageland three actiongJOIN, TREAT, %€violation of the coordination constraints may be the result

- of a fault in one of the sensors or other agent components
CHARGE} AgentsA; and A, have _the_ same ro_Ie in the 1 Given anM ASD and a set of normality assumptions, it is
team so they haveoncurrence coordinatioconstraints be-

. - e . ible to infer that a fault exists (and t nerate hypoth
tween their actions. At the beginning; and A, receive possible to infer that a fault exists (and to generate hypotheses

a seek message so they select the acti®A EK while As g? tthoelgsgfrirs]tg)tis?;/tigzgrg whether the observed actions

may select any action excePptRE AT, meaning it can not
treat a wounded, while the other robots seek. We can see *itmay also be the result of a fault in the environment, e.g., when
the mutual exclusion coordinatioconstraints between these a message is lost in transit. This is treated as a fault in the receiver.

MASD = {-~AB(A;) A ~AB(A;) = CG(ASis, AS;y)
|CG(AS,z, AS;y) € CG A A;, Aj € T}

41

Let us formalize the coordination diagnosis in terms ofwhose selection and subsequent setting ofAti-) clause
model based diagnosis: would eliminate the inconsistency (consistency-based diag-
Definition 7 Coordination Diagnosis Problem Given nosis, Section 4.1), or explain it (abductive diagnosis, Sec-
{T,MASD, AS} whereT is a team of agent§A;...A,}, tion 4.2). In terms of CSP, the set of abnormal agents would
MASD is a multi agent system description defined o¥er explain the constraints satisfaction violation. A coordination
(Def. 6), andAS is the set of the actions of the agents (Def. diagnosis (a set of abnormal agents) is minimal, iff no proper
2), then thecoordination diagnosis problem (CDRjrises subset of it is a coordination diagnosis.
when Once the set of such abnormal agents is found, the diag-
noser infers the abnormal components (in our case, sensors)
within the abnormal agents. This is done using straightfor-
ward back-chaining through the SEON (Def. 1) of logical
We use the following example to illustrate. consequence statements connecting sensors to actions (e.g.,
Example 3. Suppose we are given the followidd ASD, T, as in[Kalech and Kaminka, 2008
and AS (only the true literals imAS are shown):

MASD U {=AB(A;)|A; € TFU AS + L

4.1 Consistency-Based Coordination Diagnosis

T = (A1, Az, Az, Ay, A5, Ag) We begin by defining consistency-based coordination diagno-
MASD = {=AB(A1) A —~AB(As) = MUEX(AS11, AS41), sis.
~AB(A;) A —=AB(A2) = CORN(AS12, AS21), Definition 8. A consistency-based global coordination diag-
~AB(A1) A ~AB(Ag) = CCRN(AS12, ASe1), nosis (CGCDJ)s a minimal setA C T such that:
~AB(As) A ~AB(As) = CCRN(ASa2, ASa1),
—~AB(A2) A ~AB(As) = CCRN(ASas, ASs1), MASD| J{AB(Ai)|A; € A} J{~AB(A:)|A; e T — A} J AS ¥ L

—AB(A3) A ~AB(Ag) = CCRN(ASa1, ASe1),
~AB(Ag) A ~AB(A4) = MUEX (ASs2, AS4s),
~AB(Asg) A ~AB(As) = CCRN(ASs1, AS51)}

AS = {AS11, AS21, AS31, AS41, ASs1, ASe1}

The first step in this process to determine which agents are in

conflict (violate the constraints between them):

Definition 9. Two agentsa andb are calledconflict pair

(a,b), if there exist a constrair@G; that relates; andb and
Figure 2 shows the coordination graph for tishP. Whose value is false.

Assuming all the agents are not abnormal, the ac- . ~O0.)

tions of certain agents violate the constraints satisfac- Va,b €T, 3i,j, k 5.t 2CG(ASaj, ASp) = (a, b)

tion and so they are not consistent with the coordina-Definition 10. A local conflict sets a set of the all conflict

tion graph. For instance, the actionkS;; = t¢rue and pairs in the system, and is denoted by

AS4y1 = true causes an inconsistency ilG;, as it Example 4. LC in the graph of example 3 iSLC =

produces a false value M UEX (AS11,ASs1), though, {(A1, As) (A1, As), (A1, As), (A2, A3), (As, As5)}

MUEX (AS11,ASy41) should be true, given the normality The local conflict set forms the basis for ti&ZCD, be-

assumptions~AB(A;),~AB(A4). On the other hand, if cause for each conflict pair, at least one of the agents is ab-

the actionsAS,o, ASo1, AS30, AS41, ASs9, ASg were true normal. However, th&GC'D is not a simple combination

(implying that the other actions were false), they would haveof all agents in the.C pairs, as arbitrary selection of agents

been consistent with the coordination graph. may lead to diagnosis sets that are themselves inconsistent.
For instance, treating each pair in the compufgd in Ex-
A, ample 4 by itself, produces the following subset of possible

{) (A2)}

(A1, As) = {~AB(A,), AB(A,)}

() (Aa)}
))

4& diagnoses:
L A1 AQ = {AB(AI),_\AB A2

A1, Ay) = {AB(A1),~AB(A4
<A1,A4 = {ﬁAB(Al),AB(/Ll }

It is easy to see that combining these diagnoses
-- may produce inconsistency (for instance, combining
@ﬁ) the first and last implications would produce the set
{AB(A1), 7AB(A;),~AB(A1), AB(A4)}).

Therefore, we cannot diagnose every conflict pair by itself
_ o _) and then combine the results. Rather, we should compute the
Figure 2: The coordination graph and active selection diagnoses setA considering the dependencies between the
(gray circles) of the teamT = { Ay, Az, A3, Ay, As, As} conflict pairs. To do this, we should look for the abnormal

agent(s) in every conflict pair.

Given aCDP, the goal of the coordination diagnosis We achieve this goal by generating a hitting-set of agents,
process is to determine a minimal set of abnormal agentselecting at least one agent as abnormal from every conflict

42

pair, such that the resulting agents cover between them aill. Intuitively, such diagnoses correspond to eliminating the
conflict pairs. We want to maintain a minimal number of suchabnormal agents from consideration, rather than suggesting
agents. This is somewhat similar to Reiter's HS-Tire@87, that they change their actions. For such diagnoses, there may
or de Kleer and Williams’ techniqud 987. It is also related be no actions that the abnormal agents could take in such a
to minimal model techniques used in non-monotonic reasonway that the constraints it/ AS D will be satisfied.

ing [Olivetti, 1992; Niemeld, 1996 We plan to explore these For instance, in Example 5 the diagnosis $et;, As}
connections in the future. represents a minimal set of abnormal agents, but chang-

We achieve this goal by transforming the conflict set intoing their actions(A;; = false, A1z = true, As; =
a graph, and finding the vertex cover for this graph. Let usfalse, As; = true) will leave the constraints system un-
define a conflict graplez = {V’, E’} whereE’ is a set of satisfied WithCCRN (AS12, AS21) = false. On the other
the conflict pairs and’’ is a set of the agents involved in hand, changing the actions of the agents in the other diag-
the conflict set. In order to compute the diagnosis we run amoses{A4;, Az, As}, {Aa, A4, Ag}) will eliminate the incon-
algorithm to find a minimal vertex cover—a set of vertices sistency.
that involve all edges. A vertex cover set is guaranteed to . o))
be a diagnosis since all the edges, namely the conflict pairé-2 Abductive Coordination Diagnosis
are covered by this set, namely by a set of abnormal agent¥he implication is that stronger conditions on the solution sets
We are looking for all the possible minimal vertex cover setsmay be needed. Such conditions correspond to abductive di-
since the diagnosis contains all the possibilities of abnormahgnosis, in which changing the actions of the abnormal agents
agents. Minimal vertex covers guarantee minimal diagnosisgntails the coordination graph:
since a vertex cover is minimal only if no proper subset of itDefinition 11. An abductive global coordination diagnosis
is a vertex cover. (AGCD)is a minimal seA C T' such that:

Determining a minimal vertex cover is known to be NP-

Complete, however the problem of determining the set of MASD|J{AB(A)|A; € A} J{~AB(A)|A; e T — A} JAS ¥ L
minimal vertex covers is NP-HariBkiena, 1990 A sim-

ple O(2!V1) exact algorithm for its solution is to find all the and,

possible vertex covers in size one, then continue to find the
possible vertex covers in size two, under the condition that it
is not a superset of a previous vertex cover, and so on up tavhere, we make the active selection of agdnt(Def. 2),
the max size of the graph. The complexity of computing theAS;, false, and forced; to choose a different action,
CGCD is thus the same as in single-agent diagnosis meth-
ods, e.g.[de Kleer and Williams, 1997

Example 5. Figure 3 presents the graph of the conflict pairs
that were computed in example 4. The vertex cover set oT he first condition in Def. 11 is exactly as in Definition 8 (i.e.,
size one is empty, for size two it 8C; = {4, A>}, and CGCD) to satisfy the consistency requirement. The second
there are two sets of size thre®:Cy = {A;, A3, A5} and condition requires that for any abnormal agents found, it will
V3 = {A,y, Ay, Ag} (there are more vertex cover sets which be possible to change their active selection, in order to entail
are superset of 1), it is unnecessary to continue to check the coordination graph and thus satisfy the coordination con-
the vertex cover in size four and more since every such vertestraints. Note that the entailment here is of the coordination
cover will be a superset of the formers. By building the vertexgraph, not the fuld/ ASD.

cover sets we obtain the global coordination diagnaSis—= The unsound diagnosis s€td;, As}, given by the
{A1,As}, Ao = {A1, A3, A5}, Az = {Ag, Ay, Ag}}. consistency-based approach (in Example 5), will not pass this
second condition, since the alternative actions of aggnt
and of agen#d, do not entail the coordination graph.

In order to satisfy Definition 11, the diagnosis process
needs to go beyond pinpointing suspect agents, to verifying
that by changing their actions, coordination will be restored.
Thus in contrast with consistency-based approach, we do not
utilize conflict pairs to compute the diagnoses, but instead ex-
amine all action literals assignments that entail the coordina-
tion graph, i.e., all actions which will satisfy the coordination
constraints. Then the process compares the existing truth val-
ues to those that will satisfy the coordination, and computes
aminimalset of changes.

)] o Example 6. Let us compute thelGC D of the Example 3.
Figure 3:A graph of the conflict pairs in example 4 Table 1 presents the satisfying truth assignments for the ac-
tions of agentsA; ... Ag. There are only two such assign-

A disadvantage of the consistency-based approach is thatents. In order to find the minim&GCD, we should com-
it may produce diagnoses that are unsound, in the sense thgdre the actions of the agents with these assignments and
while they eliminate the inconsistency, they do not explainpoint out the agents that deviate. Consider the actions in

{AB(A;)|A; € AYJ{~AB(A)|A; e T — A} AS = CG

AB(A;) = —AS; A (ASi1 V...V AS; ac))

43

EXample 3 (Where‘lSu, ASQl, ASgl, AS41, 145517 AS@l are 5 Summary and Future WOI’k
true, and the other action literals are false). Then, in the fir
row AS1; = false, but we haveAS;; = true. We thus
mark actionAS;; as faulty. The second value in the table is
AS15 = true, but we haved S, = false, so we again mark
this as faulty, and so on for each one of the actions. For t
first entry in the truth table we got the following faulty ac-
tions: AS11, AS12, AS31, AS3a, AS51, AS5.. From this list,
we can determine the abnormal agents by finding the agen
whose actions are faulty. We thus conclude that a minima
AGCDis A; = {A;, A3, Ag} for this row. From the sec- X :
ond row, we simil{arly findA, }: {As, Ay, Ag}. Setting these ously shoyvn ifKalech and.Kammka, 2008 . .
agents to abnormal, and thus forcing them to select different W& defined both a consistency-based and abductive diag-

actions, would satisfy the coordination constraints nosis versions of coordination diagnosis, and proposed initial
' ' algorithms for both. The consistency-based approach finds

[#] A [A [A [A:s [A5 |45 | the local conflicts. betwepn pairs of agents, then'contin'ues
C[i[z[1]2]1]2[1[2]1[2]1[2] to compute the diagnosis by combining the confllcts'usmg
TToTITIT6T0 LTI ToTo I To a minimal vertex cover algorithm. We showed that this ap-
sTiTol ol 11110l ol T T Torol proach is unsound, in that it may produce diagnoses that are
impossible since any transformation of their value will not
satisfy the constraints between the agents. The second ap-
proach maps the abductive coordination diagnosis problem
to that of satisfiability, finding a minimal set of truth-value
changes that satisfy a given proposition. Here, our initial ap-
proach pre-computes all the possible coordination-satisfying
%(Etion assignments, and then uses these during on-line diag-
nosis by comparing the actions of the agents to each one of

Thus theAGC D problem is essentially that of finding all the Instances of _the satisfying action assignments.
sets of truth assignments that will satisfy a target proposition, OUr 9oal in this paper was to take a first step towards the
an NP-Hard problem. A detailed discussion of satisfiability, US€ ©f model-based diagnosis techniques in multi-agent sys-
and the rich literature offering efficient exact and approxi- € MS: by representing it as CSP. Naturally, much is left for fu-
mate solution methods is well beyond the scope of this papea[%ire research. First, the algorithms we proposed are related to
However, we point at two diagnosis-specific mechanisms th ey techniques in diagnosis, constraint-satisfaction, and non-

can potentially be used to alleviate computational load in ouf’oNotonNic reasoning. We plan to explore these connections,
to bring to bear on this diagnosis problem. Second, we inten-

tionally avoided the use of complex multi-component agent
1. Ordered binary decision diagram (OBDOBryant, models, and focused on simple coordination primitives. We
1997 can be used to efficiently reason about diagnosishope to explore richer models of both in the future. In addi-
satisfying assignmentlorasso and Torta, 2003 By tion, while this paper has adopted the perspective of a cen-
restricting the representation, boolean manipulation betralized single diagnoser, we plan to tackle distributed algo-
comes much simpler computationally. We can com-rithms next. Representing the model-based diagnosis of co-
pactly represent the coordination graph using OBDDsordination as CSP opens new opportunity to inspire both of
(an off-line construction process), and then truth assignthe areas: distributed CSP as well as diagnosis of multi-agent
ments can be computed in linear time in many cases. systems.

2. Assumption-based truth maintenance systems (ATMS)
[de Kleer, 198Bcan be used to build the satisfying as- Acknowledgments
signments incrementally. We exploit the fact that it is)
unnecessary to check all the assignments since the leghis research was supported in part by BSF grant 2002401.
assignments depend each on the other. For instance, a4 gratefully acknowledge a generous gift from IBM. As al-
sume a concurrence coordination betweeandb and ~ Ways, thanks to K. Ushi and K. Ravit.
betweerb andc:

S\tNe presented a novel formalization for diagnosing coordina-
tion failures in multi agent systems by representing the co-
ordination as constraints between agents which must be sat-
h- fied. We model such coordination using two coordination
constraints (concurrence and mutual exclusion). In the diag-
nosis process the diagnoser observes the actions of the agents,
{Qen it finds the candidate abnormal agents who violated the
onstraints by the coordination model, and finally continues

o compute the abnormal sensors by back-chaining (previ-

Table 1:Coordination-satisfying actions in Example 6.

Obviously, we should consider only the minimaGCD.
We fulfill this requirement by comparing every new hypoth-
esized coordination diagnosis to the former coordination di
agnoses, and checking whether it is a subset, a superset,
different than the former diagnoses.

(a A D)V (=a A —b)) References
A [Bryant, 1992 Randal E. Bryant. Symbolic Boolean ma-
/\ ((bAc)V(=bA =) nipulation with ordered binary-decision diagramaCM
Instead of computing the full truth table of b andc, Computing Survey24(3):293-318, 1992.
(2%), we can use an ATMS, which given these justifica- [de Kleer and Williams, 1997J. de Kleer and B. C.
tions will provide only two assignmentga = true, b = Williams. Diagnosing multiple faults.Artificial Intelli-
true,c = true) or (a = false,b = false,c = false). gence 32(1):97-130, 1987.

44

[de Kleer, 198F Johan de Kleer. An assumption-based truth[Stumptner and Wotawa, 20p3arkus ~ Stumptner and
maintenance systemArtificial Intelligence 28:127-162, Franz Wotawa. Coupling csp decomposition methods
1986. and diagnosis algorithms for tree-structured systems. In

o s . In Proceedings of the International Joint Conference on
[Fr\(/)vhllchet al, 1997 Peter Frohlich, lara de Almeida Mora, Artificial Intelligence (IJCAI) 2003.
olfgang Nejdl, and Michael Schréder. Diagnostic agents
for distributed systems. IModelAge Workshqppages [Torasso and Torta, 20p®ietro Torasso and Gianluca
173-186, 1997. Torta. Computing minimum-cardinality diagnoses using
OBDDs. Advances in Atrtificial Intelligence (lecture notes

[Horling et al, 2001 Bryan Horling, Brett Benyo, and Vic- 5 ificial intelligence) 2281:224-238, 2003.

tor Lesser. Using Self-Diagnosis to Adapt Organizational
Structures. Proceedings of the 5th International Confer-
ence on Autonomous Agentsiges 529-536, June 2001.

[Kalech and Kaminka, 2003Meir Kalech and Gal A.
Kaminka. On the design of social diagnosis algorithms for
multi-agent teams.in International Joint Conference on
Artificial Intelligence (IJCAI-03)pages 370-375, 2003.

[Kalech and Kaminka, 2004Meir Kalech and Gal A.
Kaminka. Diagnosing a team of agents: Scaling-uip.
Proceedings of the International Workshop on Principles
of Diagnosis (DX 2004)ages 129-134, 2004.

[Lamperti and Zanella, 2003Gianfranco Lamperti and Ma-
rina Zanella. Diagnosis of Active System&luwer Aca-
demic Publishers, 2003.

[Micalizio et al, 2004 R. Micalizio, P. Torasso, and
G. Torta. On-line monitoring and diagnosis of multi-agent
systems: a model based approacln Proceeding of
European Conference on Artificial Intelligence (ECAI
2004) 16:848-852, 2004.

[Niemela, 1998 I. Niemela. A tableau calculus for minimal
model reasoning. IRroceedings of the fifth workshop on
theorem proving with analytic tableaux and related meth-
ods 1996.

[Olivetti, 1992 N. Olivetti. A tableaux and sequent calcu-
lus for minimal model entailmentJournal of automated
reasoning 9:99-139, 1992.

[Pencoléet al, 2009 Y. Pencolé, M.O. Cordier, and
L. Rozé. Incremental decentralized diagnosis approach
for the supervision of a telecommunication netwdiEE
Conference on Decision and Control (CDC'Q2)ages
435-440, December 2002.

[Reiter, 1987 R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence 32(1):57-96, 1987.

[Rooset al, 2003 Nico Roos, Annette ten Teije, and Cees
Witteveen. A protocol for multi-agent diagnosis with
spatially distributed knowledge.in Proceedings of Au-
tonomous Agents and Multi Agent Systems (AAMAS-03)
pages 655-661, July 2003.

[Sachenbacher and Williams, 2Q0Martin ~ Sachenbacher
and Brian Williams. Diagnosis as semiring-based con-
straint optimization. IrfProceedings of the 16th European
Conference on Artificial Intelligence (ECAI-2002004.

[Skiena, 199D Steven Skienamplementing Discrete Math-
ematics: Combinatorics and Graph Theory with Mathe-
matica Addison-Wesley, 1990.

45

A Constraint-Based Planner for Data Production

Wanlin Pang'

Keith Golden

NASA Ames Research Center
Moffett Field, CA 94035
{wpang, kgolden}@email.arc.nasa.gov

Abstract

This paper presents a graph-based backtrack-
ing algorithm designed to support constraint-
based planning in data production domains.
This algorithm performs backtracking at two
nested levels: outer-backtracking following the
structure of the planning graph to select plan-
ner subgoals and actions to achieve them and
inner-backtracking inside a sub-problem asso-
ciated with a selected action to find action pa-
rameter values. We show that this algorithm
works well in a planner applied to automat-
ing data production in an ecological forecasting
system. We also discuss how the idea of multi-
level backtracking may improve the efficiency
of solving semi-structured constraint problems.

1

Earth-science data processing (ESDP) at NASA is a data
production problem of transforming low-level observa-
tions of the Earth system, such as remote sensing data,
into high-level observations or predictions, such as crop
failure or high fire risk. Given the large number of so-
cially and economically important variables that can be
derived from the data, the complexity of the data pro-
cessing needed to derive them and the many terabytes
of data that must be processed each day, there are great
challenges and opportunities in processing the data in a
timely manner, and a need for more effective automation.
Our approach to providing this automation is to cast it
as a planing problem: we represent data-processing op-
erations as planner actions and desired data products as
planner goals, and use a planner to generate data-flow
programs that produce the requested data products.
Many of the recent advances in planning, such as state-
based heuristic search or reduction to satisfiability prob-
lems, are not readily adapted to ESDP problems, due
to some of its particular features, such as incomplete in-
formation, large and dynamic universes, complex data
types, and complex constraints, just to name a few.

Introduction

1QSS Group Inc

46

We take the approach, like many other researchers
[van Beek & Chen, 1999; Lopez & Bacchus, 2003;
Do & Kambhampati, 2001; Smith, Frank, & Joénsson,
2000], of translating the planning problem into a con-
straint satisfaction problem (CSP). However, since data
processing domains are substantially different from other
planning domains that have been explored, our ap-
proach to translating planning problems to CSPs dif-
fers as well. For example, [Do & Kambhampati, 2001]
use variables to represent goals and domains to repre-
sent available planner actions achieving the goals. Con-
straints are used to encode mutual exclusion relations.
While this is an effective approach for propositional plan-
ning problems, we also need variables to represent ob-
jects and action parameters, and constraints to rep-
resent relations among them. Thus, our encoding is
somewhat more complex, and the CSPs resulting from
our encoding are hard to solve by the search methods
employed in other planners [van Beek & Chen, 1999;
Lopez & Bacchus, 2003; Do & Kambhampati, 2001;
Smith, Frank, & Jénsson, 2000].

We have developed a constraint-based planner, called
DoPPLER, for data processing planner. From a data
processing task, the planner constructs a lifted planning
graph, from which it derives a CSP representation of the
planning problem and then searches the CSP for a solu-
tion. Whereas a conventional planning graph [Blum &
Furst, 1997] is a grounded representation, consisting of
ground actions and propositions, a lifted planning graph
contains variables. This is not only a much more concise
representation than an ordinary planning graph, but it
also is the only practical way that we know to represent
potentially infinite sets of ground actions. Even though
the CSP derived from a lifted planning graph is difficult
to solve by many existing CSP search methods such as
chronological backtracking (BT), forward checking (FC)
or conflict-directed backjumping (CBJ), it has certain
structural properties inherited from the planning graph.
We have developed a search algorithm based the struc-
ture of the planning graph to improve the efficiency of
solving the CSP.

In this paper, we report on our work applying
DoPPLER to automating data production problems. We
discuss how the data production problem is cast as a

planning problem which, in turn, is translated into a
CSP, and how the planning graph is used to improve
backtracking in solving the CSP. Section 2 discusses data
processing as a planning task and our planning approach.
Section 3 describes the graph-based planning search al-
gorithm. Section 4 presents the preliminary testing re-
sults, and Section 5 discusses related and future work.

2 Planning for Data Processing

Data processing is a task of transforming data products
into other data products. A common sequence of data
processing steps is: 1) gather data from multiple sources;
2) convert the data into a common representation; 3)
combine the data and perform other transformations; 4)
feed the data into science models and then run the mod-
els; 5) convert the output of the model into some form
suitable for visualization; 6) repeat some or all these
steps depending on the requirements. To formalize data
processing as a planning problem, we represent data-
processing operations as planner actions, desired data
products as planner goals, and available data sources as
part of the initial state.

Planning in DoPPLER is a two-stage process. The
first stage consists of a Graphplan-style reachability
analysis [Blum & Furst, 1997] to derive heuristic distance
estimates for the second stage, a constraint-based search.
These stages are not entirely separate, however; con-
straint propagation occurs in both graph-construction
and constraint search stages, and the graph is refined
during the constraint search phase.

2.1 Actions and Conditions

An action is a tuple (Z, 0, P, 11, &, x), where Z,0,P are
the input variables, output variables and parameters, re-
spectively. All these variables are typed. II is the pre-
condition, £ is a list of effects and y is a procedure for
executing the action that may reference any variable in
7 UP and must set every variable in O.

A full discussion of preconditions and effects in
the Data Processing Action Description Language
(DPADL) can be found in [Golden, 2002]; for the pur-
poses of this paper, it suffices to observe that many
goals and preconditions consist of requirements on the
attributes of variables in Z and many effect conditions
consist of assignments to the attributes of variables in O
and creation of new objects (which themselves are speci-
fied in terms of assignments on attributes). These condi-
tions can be expressed in the concise canonical form v =
(a1, as2,...,a,), where v is a variable and (a1, aa, . .., a,)
is a structure specification, where each attribute a; may
be a variable, constant, structure specification, or @ (un-
specified). For example, suppose the attributes of a file
are name, format, and size. A file can be represented as
a tuple(name, format, size). To specify the goal of find-
ing a file f named “foo.txt” whose size is greater than
100, we could write f = ("foo.txt", @, s) A s > 100.

Like goals, effects can also have @-attributes, but the
meaning is different. In goals, @ means don’t care. In

47

effects, it means default. Any variable o € O or new ob-
ject may be specified as a copy of some variable d € Z,
in which case attributes of o default to the same value
as attributes of d. If nothing else were specified, then o
would be a perfect copy of d. However, what we are in-
terested in is typically not perfect copies, but imperfect
ones. For example, there are many actions that change
just one or two properties of an object, such as file for-
mat, projection, resolution, size, or name. Specifying
the outputs of those actions as copies of their inputs
allows us to list only the attributes that are changed
[Golden, 2003]. In our canonical form, an effect that
changed only one attribute of o would be of the form
0={0,0,...,n,...0,0), where n is the new value for
the attribute that changed. All other attributes take on
the corresponding value from d.

2.2 Lifted Planning Graphs

From the planning problem specification, the planner
incrementally constructs a directed graph, similar to a
planning graph [Blum & Furst, 1997], but using a lifted
representation (4.e., containing variables). Arcs in the
graph are analogous to causal links [Penberthy & Weld,
1992]. A causal link is triple (as,p,a,), recording the
decision to use action « to support precondition p of
action a,. However, instead of an arc to record a com-
mitment of support, we use it to indicate the possibility
that «g supports p. The lifted graph contains multiple
ways of supporting p; the choice of the actual supporter
is left to constraint search. We add an extra term to
the arc for bookkeeping purposes — the condition Ty
needed in order for o to achieve p. A link then becomes
(s, 75 p. ap).

Given an unsupported precondition p of action c,, our
first task is to identify all the actions that could support
p. Because the universe is large and dynamic, identifying
all possible ground actions that could support p would
be impractical, so instead we use a lifted representation,
identifying all action schemas that could provide sup-
port. Given an action schema «, we determine whether
it supports p by regressing p through «,. The result of
regression is the formula ~p=. If 7= =1, then a; does
not support p. Initial graph construction starts from
the planner goal and terminates when all preconditions
have support or (more likely) a potential loop is detected.
Section 2.5 discusses the planning graph construction in
more detail.

2.3 From Planning to Constraints

After the graph is constructed, heuristic distance esti-
mates for guiding the search are computed, and a con-
straint network representing the search space is incre-
mentally built. It is incremental because the planning
graph comprises a compact representation of the search
space, in which each action node can represent multi-
ple concrete actions in the final plan. Since the number
of possible actions can be large, even infinite, we can-
not simply generate all of them at once but do so lazily
during search. This is handled using a dynamic CSP

(DCSP), in which new variables and constraints can be
added for each new action and causal link in the plan.

However, it is not always necessary to ground out all of
the actions in the CSP. As discussed in [Golden & Frank,
2002|, our constraint reasoning techniques can handle
constraints that include universally quantified variables,
and we use this to our advantage when solving univer-
sally quantified goals or preconditions in domains that
are highly symmetric. For example, consider the subgoal
of constructing a mosaic, using the LAZEA projection,
from all tiles covering the continental US for a given day
and satellite data product. A precondition of the mosaic
action will be that the input tiles are all in the LAZEA
projection. This precondition can be satisfied for any
given tile by using the reproject action.

Just as one node in the graph can represent multiple
concrete actions, one concrete action can be represented
by multiple nodes. That is, two nodes in the graph might
actually unify. We don’t commit at planning time to
whether a condition is supported by a new or existing
action, and having two separate nodes for a given ac-
tion schema (or two action variables in the constraint
network) does not necessarily mean that there are two
distinct instances of that schema in the plan. Similarly,
two object variables may both designate the same object.
The burden this least commitment approach imposes on
the constraint network is an additional O(n?) constraints
for every set of n variables that could conceivably unify.
For example, suppose we have two action variables a
and as, both representing instances of reproject, which
has one output. We will represent the output variables
of a;and as as a;.out and ay.out, respectively. Since two
distinct actions cannot have the same output, if both
outputs variables are forced to codesignate (for exam-
ple, because each is constrained to be the sole input of
a single concrete action), then the action variables must
also codesignate: (aj.out = ag.out) = (a1 = az). Simi-
larly, if the actions codesignate, then their corresponding
inputs and parameters must also codesignate. We are ex-
ploring an alternative representation of these constraints
that avoids explicitly generating all O(n?) constraints.

The constraints generated for a given planning prob-
lem are simply a naive translation of explanatory frame
axioms corresponding to the planning problem. We have
boolean variables for all of the arcs (causal links) and
conditions in the plan. For each condition ¢, we have
a constraint specifying that exactly one of the possible
causal links /; supporting that condition is chosen:

ImpliesXOR(¢, 11, ..., 1), e, c =11 ®...Q Ly,

For each link [and each condition ¢, that the link can
support (a link can support multiple conditions when
each condition is an attribute of an immutable object),
we have a constraint stating that if [is chosen, then ¢y
is true iff a condition en(l, ¢), obtained by regressing cy,
through the action, is true.

ImpliesEqual(l, en(l, ¢), c):l = en(l,c,) = ¢k

Conditions such as en(l, ci), which is obtained by goal re-
gression, may correspond to fairly complex expressions.

48

These are represented in a very straightforward manner.
For example, given the expression z = yV(z = 1Ay = 2),
we introduce new boolean variables vy, Vand, Veq, V1, V2,
and the following constraints

CondOr(vor, Veq: Vand): Vor < Veq V Vand
CondAnd(vand, V1, V2): Vand < V1 A U2
CondEqual(veg, z,y): veg & =1y
CondEqual(vy,2,1): vy & ax =1
CondEqual(vs, y,2): vo &y =2

In summary, the constraint problem derived from the
planning graph contains: 1) boolean variables for all
arcs, nodes and conditions; 2) variables for all param-
eters, input and output variables and function values; 3)
for every condition in the graph, a constraint specify-
ing when that condition holds (for conditions supported
by arcs, this is just the XOR of the arc variables); 4) for
conjunctive and disjunctive expressions, the constraint is
the respective conjunction or disjunction of the boolean
variables corresponding to appropriate sub-expressions;
5) for every arc in the graph, constraints specifying the
conditions under which the supported fluents will be
achieved (i.e., 7y = p, where 7 is the precondition
of a needed to achieve p) ; 6) user-specified constraints;
and 7) constraints representing structured objects.

2.4 Planning Search

Guided by heuristic distance estimates extracted from
the planning graph, the planner first selects planner sub-
goals to achieve and actions to achieve them, which form
a lifted plan. After the subgoal and action selection, the
CSP solver finds values for variables representing plan-
ner action parameters. This is necessary to make actions
executable. During the search, propagation is performed
whenever a value is assigned to a variable. The search is
an iterative process involving possible backtracks; that
is, if there are no valid parameters for a chosen action,
the planner has to search for another plan; if it is impos-
sible to extract a plan from the current planning graph,
the planning graph has to be extended, or the planner
admits the failure of finding a plan.

2.5 A Simplified Example

A typical data processing task consists of gathering data
files, transforming them, feeding them into a science
model (e.g., a fire-risk model), and producing a final data
file so that a decision maker can assess the fire risk of a
particular region. For simplicity, we ignore much of the
complexity of the data processing domain and focus on
one sub-problem: spatial aggregation. So a simplified
task becomes to take some regions from thousands of
available regions and compose them to create a mosaic
that covers a specified region.

Specifically, a region is a pair of points (ul,lr) where
ul is the upper-left corner and Ir the lower-right corner.
A point is a pair of coordinates (z,y). Normally = and y
would be longitude and latitude, but as a further simpli-
fication, we will assume both x and y are non-negative

input &
preconditions - l
man S i
output &
effects

Figure 1: The planner actions : the dots inside actions
are inputs and outputs. Parameters are not shown.

integers. Further, we assume there are only 3 actions
the planner may take: compose two regions horizontally
(comp2h) or vertically (comp2v), and compose 4 regions
(comp4) as in Figure 1.

A problem instance we consider here consists of some
unit squares; that is, squares of (ul,lr) where ul.x +1 =
Ir.x and ul.y +1 = Ilr.y. The goal is to compose a re-
gion covering ((0,0),(3,2)) . As in Figure 2, the re-
gion ((0,0), (3,2)) consists of 6 unit squares denoted by
By, Bs,...,Bs . For example, B; refers to the region
((0,0),(1,1)), and B;Bs together refer to the region
((0,0),(2,1)). These unit squares are available in the
initial state.

The planning graph construction starts with the plan-
ner goal. For the goal, the planner finds 3 possible ac-
tions that can achieve the goal and add 3 nodes in the
graph linked to the goal. By regressing the goal through
each supporting action, the planner identifies the sub-
goals to be achieved. This process continues until all
subgoals added to the graph have support either from
supporting actions or from the initial state. The plan-
ning graph created by the planner is in Figure 2.

At a high level, the planner finds a lifted plan by
selecting subgoals and actions, shown in Figure 2 as a
path from the initial state to the goal with dark arrows.
This plan may not be executable because actions are not
grounded. For example, the action comp/ is selected
because it has support from the initial state and it
supports the action comp2h, but its parameters are not
determined yet. The constraint solver then finds values
for action parameters, which are shown in Figure 2 as
groups of shaded rectangles.

It turns out that finding a lifted plan is a relatively
easy task because it is a problem of finding a consistent
assignment to a small number of variables in a very big
constraint problem; whereas finding values for action pa-
rameters is a difficult CSP search problem. To address
the issue, we developed a graph-based search algorithm,
which is discussed in the rest of the paper.

3 Graph-based Backtracking

A constraint satisfaction problem (CSP) consists of vari-
ables, domains that contain possible values the variables
may take, and constraints that limit the values the vari-

49

NI S
Am‘sz‘sa‘,’.
Pt % A

Ay
‘54‘ B5. BG‘
i

=

(/ comp2v \\;‘
&

BS‘ /‘BS:BG

N

comp:)]

\\ 77777%77/ /, g .)

A
B1!B2 B3 -
”J”L”A-
B4, B5.B6
.

Figure 2: A planning graph: objects in a dotted rectan-
gles are inputs to an action; an object divided by dashed
lines is a composed object; single objects are available in
the initial state.

able can take simultaneously. In finite domain CSPs, a
constraint over a variable subset can be represented ex-
tensionally as a subset of the Cartesian product of the
domains of variables in the constraint. However, in the
data production domain we are interested in, the CSPs
derived from the planning problem contain variables that
usually have infinite domains. An infinite domain is rep-
resented as an an interval (for numeric types), regular
expression (for string types), or symbolic set (for object
types). Because of infinite domains, the constraints are
not represented extensionally as relations, but as proce-
dures [J6nsson, 1996]. A procedural constraint consists
of a set of variables (the scope) and a procedure (i.e.,
an enforce() method) that enforces the constraint by
eliminating inconsistent values from the domains of vari-
ables in the scope. If enforcing a constraint results in an
empty variable domain, enforce() returns failure, indi-
cating the violation of the constraint.

3.1 Structure-based Decomposition

Solving a CSP, in general, is NP-complete. How-
ever, many practical problems possess certain proper-
ties that allow tractable solutions. A class of structure-
based CSP-solving algorithms, called decomposition al-
gorithms, has been developed [Gottlob, 2000; Gyssens,
Jeavons, & Cohen, 1994; Dechter, 1990; Dechter & Pearl,
1989]. Decomposition algorithms attempt to find solu-
tions by decomposing a CSP into several simply con-
nected sub-CSPs based on the underlying constraint

graph and then solving them separately. Once a CSP is
decomposed into a set of sub-CSPs, all solutions for each
sub-CSP are found. Then a new CSP is formed where
the original variable set in each sub-CSP is taken as a
singleton variable. The technique aims at decomposing
a CSP into sub-CSPs such that the number of variables
in the largest sub-CSP is minimal and the newly formed
CSP has a tree-structured constraint graph. In this way,
the time and space complexity of finding all solutions for
each sub-CSP is bounded, and the newly formed CSP
has backtrack-free solutions. The complexity of a de-
composition algorithm is exponential in the size of the
largest sub-CSP. The class of CSPs that can be decom-
posed into sub-CSPs such that their sizes are bounded
by a fixed number k is tractable and can be solved by
decomposition in polynomial time. This is the strength
of CSP decomposition. A fatal weakness of CSP de-
composition, however, is that the decomposition is not
applicable to solving a CSP that is not decomposable,
that is, its decomposition is itself. A secondary draw-
back of CSP decomposition is that, even if the CSP is
decomposable, finding all solutions for all the sub-CSPs
is unnecessary and inefficient.

We propose a graph based backtracking (GBT) algo-
rithm, based on our previous work in [Pang & Goodwin,
2003, to address these two issues: decomposability and
efficiency of solving sub-problems.

3.2 Algorithms

The original GBT [Pang & Goodwin, 2003] uses the same
strategy used by decomposition algorithms to decom-
pose the constraint graph into a tree of subgraphs and
then performs backtracking at two nested levels: inner-
backtracking inside a subgraph and owuter-backtracking
following the subgraph tree obtained from the graph de-
composition. It shares the merits of CSP decomposi-
tion and it does not need to find all solutions for all the
sub-CSPs. However, its performance and applicability
largely depend on the underlying graph decomposition.
In the planning problem at hand, we tried a variety of
graph decomposition algorithms and were unable to de-
compose the constraint graph into a tree of subgraphs
in a satisfactory way, even for simplified problems. It is
still an on-going research effort to evaluate the process
of translating the planning problem to a CSP aiming at
optimizing the constraint problem in terms of its size
and structural properties.

As an alternative, we decompose the CSP into sub-
CSPs based on the planning graph instead of the con-
straint graph, each sub-CSP containing a group of vari-
ables that are relevant to a node in the planning graph
representing a lifted action. In most of the cases, the sub-
CSPs may not form a tree, which makes the traditional
decomposition methods inapplicable. However, the GBT
algorithm can be adapted easily: outer-backtracking is
performed to select the planner subgoals and actions fol-
lowing the planning graph, inner-backtracking to find
values for action parameters by solving the associated
sub-CSP.

50

The planning-graph-based backtracking algorithm is
outlined in Algorithms 1 and 2. At the high level,
the planner performs Best-First Search (BFS) to select
the planner subgoals and actions achieving the subgoals.
Once an action is chosen for a subgoal, it collects a subset
of variables relevant to the action and calls a constraint
solver, SBT, to find a consistent assignment for the col-
lected variables. SBT performs a local backtracking to
search for a solution to the sub-problem that is also con-
sistent with solutions to the sub-problems preceding the
current one. If SBT fails, the high-level search BFS takes
control, tries another action for the current selected sub-
goal or backtracks to a previously selected subgoal. At
the end of the selection of subgoals and actions, SBT is
called again to find values for certain variables that may
have been missed during the previous search.

Both algorithms interleave search with propagation,
which is a process of continuously enforcing constraints
as long as variable domains change. The propa-
gation performs a partial generalized arc-consistency
(GAC)![Bessiere & Ch, 1997; Katsirelos & Bacchus,
2001], and it is an essential part of solving the con-
straint problem, not only because it reduces the search
space by eliminating some inconsistent values, but also
because the constraint problem at hand contains vari-
ables with infinite domains which cannot be enumerated
by search. If enforcing a constraint fails, propagate()
returns failure, which implies that the current assign-
ment of values to variables is inconsistent. Because the
propagation is not limited to a sub-problem even if it is
invoked by the SBT solving the sub-problem, it ensures
the solutions to local sub-problems are globally consis-
tent with respect to the variables in the other solved
sub-problems.

3.3 The Example Again

We take a look at the simplified example again and de-
scribe how the graph based search algorithm works.
The task is to make a region covering ((0,0), (3,2)),
which consists of regions referred to asB;, B, ..., Bg, all
available from the initial state. At the beginning of
the planning search, the active goals G’ contains only
the planner goal of making ((0,0),(3,2)). Ignoring the
planning heuristics, we assume that the planner chooses
the action comp2h, which composes two regions horizon-
tally. These two regions are the parameters of the action
that are not determined in BFS. The inner-backtracking
solver SBT is created with these parameters and it is
called to find values for the parameters. It quickly
finds the values for the parameters; that is, two regions
((0,0),(2,2)) and ((2,0),(3,2)) for output parameters
of action comp2h, and it also remembers its current sta-
tus so that when it backtracks, it can find the next so-
lution (in this case it is the regions ((0,0),(1,2)) and
((1,0),(3,2)), (see Figure 2) . The planner adds the two
subgoals, making the region ((0,0),(2,2)) and making

1We call it partial GAC for two reasons: 1) not every con-
straint procedure enforces the GAC; and 2) not every con-
straint is enforced in the propagation.

Algorithm 1 BFS

Given a set of subgoals in the lifted planning graph G
and a family of action sets A = {A(g)|g € G}, each A(g)
is a set of actions achieving subgoal g. Let G’ C G be a
set of active subgoals to be achieved (initially, the goals
in the goal state), P = (X, D, C) the CSP derived from
the lifted planning graph, and X’ a subset of searchable
variables:

BFS(G, A4, P,G")
1. while (G’ # () do
(a) g <+ a goal removed from G’

(b) for each action a € A(g)

i. if (propagate(P,{a}) returns failure)
continue for the next action

ii. X’ « variables relevant to a
iii. while (SBT(P, X’) returns success) do
A. G, «— conditions of a
B. add G, to G’ and sort G’
C. if (GBFS(G, A, P,G’) returns success)
return SBT(P, X)

iv. continue for the next action

(c¢) return failure

2. return success

Algorithm 2 SBT
Given a CSP P = (X, D, (), and let X’ C X be a set of
searchable variables:
SBT(P, X')
1. if (X’ = 0) return success
2. select z; € X
3. for each value v € d(w;)

(a) @i —w
(b) if (propagate(P,{z;}) returns success)
i. update X'
ii. if (SBT(P, X') returns success)
return success

4. return failure

o1

the region ((2,0),(3,2)), to the active goals, and then
continues recursively with the next best goal, which is
one of the newly added two subgoals.

4 TOPS Application

We have applied the DoPPLER planner to the Ter-
restrial Observation and Prediction System (TOPS,
http://ecocast.arc.nasa.gov) [Nemani et al., 2002], an
ecological forecasting system that assimilates data from
Earth-orbiting satellites and ground weather stations to
model and forecast conditions on the surface, such as soil
moisture, vegetation growth and plant stress. The plan-
ner identifies the appropriate input files and sequences
of operations needed to satisfy a data request, executes
those operations on a remote TOPS server, and displays
the results, quickly and reliably.

We have developed a TOPS planning domain, which
specifies the data operations and data object types
in TOPS. Data operations include running simulation-
based models, reprojection, scaling, and construction of
color composites, mosaics, and animations, etc. To cre-
ate a planning problem instance (i.e., a TOPS task),
the user needs only to specify the planner goal, which
is a description of a desired data product. A sample
TOPS task would be something like “display Gross Pri-
mary Production (GPP) for continental US on May 5th,
2004”.

The motivation of developing the graph based plan-
ning search is to speed up the search process so that the
planner can produce the requested data product within
a time limit acceptable to the user. Even though it is dif-
ficult for us to compare DoPPLER planner with publicly
available planners, which cannot handle data-processing
problems, we have compared DoPPLER to itself by turn-
ing on or off the inner-backtracking SBT. Without inner-
backtracking SBT, for most of the TOPS tasks, it usu-
ally takes a few tries with different variable ordering
heuristics to solve a problem; sometimes it fails within
a specified time limit (e.g., 5 minutes). With inner-
backtracking SBT turned on, the same TOPS tasks can
be solved quickly without trying the additional variable
ordering heuristics. However, we are currently conduct-
ing experiments on more TOPS tasks and artificial prob-
lems like the one in Section 2.5.

5 Conclusions

We have discussed the data production problem and how
we reduce it to planning and solve the planning problem
with a constraint search and propagation approach. A
key element of our approach is the lifted planning graph,
which we use as a basis for our CSP encoding, and use
further to guide the planning and constraint search. The
graph-based backtracking algorithm presented here has
proved to be effective in our planner; it is also a gen-
eral CSP solver that we intend to evaluate further on
structured or semi-structured problems and to compare
to other search and decomposition methods.

There has been little work in planner-based automa-
tion of data production. Two notable exceptions are
Collage [Lansky, 1998] and MVP [Chien et al., 1997].
Both of these planners were designed to provide assis-
tance with data analysis tasks in which a human was in
the loop, directing the planner. In contrast, our plan-
ner does not require human interaction, since domains
like TOPS require data production to be entirely auto-
mated; there is simply too much data for human inter-
action to be practical. Pegasus [Blythe et al., 2003] is a
workflow planning system for computation grids, a prob-
lem similar to ours, though their focus is on mapping
pre-specified workflows onto a specific grid environment,
whereas our focus is on generating the workflows.

References

[Bessiere & Ch, 1997] Bessiere, C., and Ch, J. 1997.
Arc-consistency for general constraint networks: Pre-
liminary results. In Proceedings of IJCAI-97, 398-404.

[Blum & Furst, 1997] Blum, A., and Furst, M. 1997.
Fast planning through planning graph analysis. AIJ
90(1-2):281-300.

[Blythe et al., 2003] Blythe, J.; Deelman, E.; Gil, Y.;
Kesselman, C.; Agarwal, A.; Mehta, G.; and Vahi,
K. 2003. The role of planning in grid computing.
In Proc. 13th Intl. Conf. on Automated Planning and
Scheduling (ICAPS).

E.;

[Chien et al., 1997] Chien, S.; Fisher, F.; Lo, ;
Mortensen, H.; and Greeley, R. 1997. Using artificial
intelligence planning to automate science data analy-
sis for large image database. In Proc. 1997 Conference
on Knowledge Discovery and Data Mining.

[Dechter & Pearl, 1989] Dechter, R., and Pearl, J. 1989.
Tree clustering for constraint networks. Artificial In-
telligence 38:353-366.

[Dechter, 1990] Dechter, R. 1990. Enhancement schemes
for constraint processing: backjumping, learning, and
cutset decomposition. Artificial Intelligence 41:273—
312.

[Do & Kambhampati, 2001] Do, M., and Kambham-
pati, S. 2001. Planning as constraint satisfaction:
Solving the planning graph by compiling it into CSP.
Artificial Intelligence 132:151-182.

[Golden & Frank, 2002] Golden, K., and Frank, J. 2002.

Universal quantification in a constraint-based planner.
In AIPS02.

[Golden, 2002] Golden, K. 2002. DPADL: An action
language for data processing domains. In Proceedings
of the 8rd NASA Intl. Planning and Scheduling work-
shop, 28-33. to appear.

[Golden, 2003] Golden, K. 2003. An domain description
language data processing. In ICAPS 2003 Workshop
on the Future of PDDL.

[Gottlob, 2000] Gottlob, G. 2000. A comparison of
structural CSP decomposition methods. Artificial In-
telligence 124:243-282.

92

[Gyssens, Jeavons, & Cohen, 1994] Gyssens, M.; Jeav-
ons, P.; and Cohen, D. 1994. Decomposing constraint
satisfaction problems using database techniques. Ar-
tificial Intelligence 66:57-89.

[Jonsson, 1996] Jénsson, A. 1996. Procedural Reasoning
in Constraint Satisfaction. Ph.D. Dissertation, Stan-
ford University.

[Katsirelos & Bacchus, 2001] Katsirelos, G., and Bac-
chus, F. 2001. GAC on conjunctions of constraints.
In CP-2001.

[Lansky, 1998] Lansky, A. 1998. Localized planning with
action-based constraints. Artificial Intelligence 98(1-
2):49-136.

[Lopez & Bacchus, 2003] Lopez, A., and Bacchus, F.

2003. Generalizing graphplan by formulating planning
as a CSP. In Proceedings of IJCAI-2003.

[Nemani et al., 2002] Nemani, R.; Votava, P.; Roads, J.;
White, M.; Thornton, P.; and Coughlan, J. 2002.
Terrestrial observation and predition system: Integra-
tion of satellite and surface weather observations with
ecosystem models. In Proceedings of the 2002 Inter-
national Geoscience and Remote Sensing Symposium

(IGARSS).

[Pang & Goodwin, 2003] Pang, W., and Goodwin, S. D.
2003. A graph based backtracking algorithm for gen-
eral CSPs. In Proceedings of 6th Canadian Conference
on Artificial Intelligence (CAI-2008), 114-128.

[Penberthy & Weld, 1992] Penberthy, J., and Weld, D.
1992. UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proc. 3rd Int. Conf. Principles of
Knowledge Representation and Reasoning, 103—114.

[Smith, Frank, & Jénsson, 2000] Smith, D.; Frank, J.;
and Joénsson, A. 2000. Bridging the gap between plan-
ning and scheduling. Knowledge Engineering Review
15(1):61-94.

[van Beek & Chen, 1999] van Beek, P., and Chen, X.
1999. CPlan: A constraint programming approach
to planning. In Proceedings of AAAI-99.

Combining constraint processing and pattern matching to describe and locate
structured motifs in genomic sequences

Patricia Thébault, Simon de Givry, Thomas Schiex, and Christine Gaspin
{pat,degivry, tschiex,gaspin}@toulouse.inra.fr
INRA Biometrics and Artificial Intelligence
Toulouse, France

Abstract

In molecular biology and bioinformatics, search-
ing RNA gene occurrences in genomic sequences
is a task whose importance has been renewed by
the recent discovery of numerous functional RNA,
often interacting with other ligands. Even if several
programs exist for RNA motif search, no program
exists that can represent and solve the problem of
searching for occurrences of RNA motifs in inter-
action with other molecules.

In this paper, we present a CSP formulation of this
problem. We represent such RNA as structured
motifs that occur on more than one sequence and
which are related together by possible hybridiza-
tion. Together with pattern matching algorithms,
constraint satisfaction techniques have been im-
plemented in a prototype MilPat and applied to
search for tRNA and snoRNA genes on genomic
sequences. Results show that these combined tech-
niques allow to efficiently search for interacting
motifs in large genomic sequences and offer a sim-
ple and extensible framework to solve such prob-
lems.

1

Our understanding of the role of RNA has changed in recent
years. Firstly considered as being simply the messenger that
converts genetic information from DNA into proteins, RNA is
now seen as a key regulatory factor in many of the cell’s cru-
cial functions, affecting a large variety of processes includ-
ing plasmid replication, phage development, bacterial viru-
lence, chromosome structure, DNA transcription, RNA pro-
cessing and modification, development control and others (for
review [Storz, 2002]). Consequently, the systematic search of
non-coding RNA (ncRNA) genes, which produce functional
RNAs instead of proteins, represents an important challenge.

RNA sequences can be considered as texts over the four
letter alphabet {A,C,G,U}. Unlike double-stranded DNA,
RNA molecules are almost exclusively found in an oriented
(left or 5’ to right or 3’) single-stranded form and often fold
into more complex structures than DNA by making use of so
called complementary internal sequences. This characteristic

Introduction

93

allows different regions of the same RNA strand (or of several
RNA strands) to fold together via a variety of interactions to
build structures that are essential for the biological function.
The level of organization relevant for biological function cor-
responds to the spatial organization of the entire nucleotides
chain and is called the tertiary structure. The most prevalent
interactions which stabilize folded molecules are stacking and
hydrogen bonding between nucleotides on strands oriented
in antiparallel directions. Similarly to what exists in DNA,
hydrogen bonds appear mostly between specific pairs of nu-
cleic acids to form G—C and C-G or A-U and U—-A bonds.
Therefore the interactions inside an RNA molecule usually
involve one part of a molecule and the nucleic acid comple-
ment of a another part of the same molecule (for example,
5’-ACUCGA-3’ and 5’-UCGAGU-3’), and the two antipar-
allel regions bind together.

All together, these interactions define the molecule three-
dimensional structure which is essential to characterize its
function and interactions with other molecules. Due to the
difficulty of determining such three dimensional RNA struc-
tures, one first explores the so-called RNA secondary struc-
ture, a simplified model of the RNA three dimensional tertiary
structure.

This secondary structure gives only a subset of those inter-
actions represented by C-G, G—C, A-U, and U—-A pairs and
provides an important constraint for determining the three di-
mensional structure of RNA molecules.

An RNA molecule secondary structure can be represented
on a circular planar graph where the N nucleotides of the se-
quence are represented as vertices and are connected by edges
representing either (along the circle) covalent bonds between
successive nucleotides in the RNA sequence or (inside the
circle) hydrogen bonds between nucleotides from different
regions. Such a graph gives rise to characteristic secondary
structural elements (see Fig. 1) such as helices (a succession
of paired nucleotides), and various kinds of loops (unpaired
nucleotides surrounded by helices).

A more complete definition of secondary structure of RNA
allows for crossing edges in the representation graph making
possible the representation of another type of helix usually
called a pseudoknot (see Fig. 1). RNA structures can also
include nucleotide triples inside triple helices...

This definition extends the usual definition which is of-
ten limited to planar structures (therefore excluding pseudo-

~=K— HELIX WITH | MISMATCH

HELIX WITH 1 INSERTION

Figure 1: A representation of a secondary structure as a planar
graph. Thick edges represent covalent bonds. Thin edges rep-
resent hydrogen interactions. Dotted edges represent a pseu-
doknot. Helices may contain local mismatches which cover
three different types of errors which are: insertions of nu-
cleotide(s), also called bulges when only on one side, dele-
tions when the insertion is on the opposite side of the he-
lix and internal loops, when nucleotides are located on both
sides of the same helix. Insertion and deletion of nucleotides
are considered as symmetric operations, an insertion on one
side corresponding to a deletion on the other complementary
region.

knots and multiple helices) and is always restricted to intra-
sequences interactions.

In this paper, we use the extended definition where the
secondary structure of an RNA gene is defined as the set
of paired nucleotides which appear in the folded RNA, in-
cluding possible pseudoknots, triple helices but also duplexes
which are possible bindings forming helices with other RNA
molecules.

Screening a sequence database with tools designed for se-
quence similarity search quickly reveals similarities between
the query sequence and a range of database sequences. This
can be achieved for ribosomal rRNA sequences and other
ncRNAs recently reported in the literature (although it is dif-
ficult to establish the beginning and end of the RNA in ques-
tion). But the nucleotide sequence of the RNA itself is poorly
conserved, the observation that the functionally important
structural regions are usually conserved in an RNA family
(see for example Fig. 2) allows one to search for those ele-
ments that characterize the family more precisely.

Thus, the information contained both in the sequence itself
and the secondary (tertiary) structure can be viewed as a bi-
ological signal to exploit and search for. Thus, whatever the
method, it appears necessary to include both conserved pri-
mary sequence elements and higher order structure elements
as signals to screen for. These common structural charac-
teristics can be captured by a signature that represents the
structural elements which are conserved inside a set of related
RNA molecules.

We focus here on the problem of searching for new mem-
bers of a gene family given their common signature. Solving

this problem requires (1) to be able to formalize what a sig-
nature is and what it means for such a signature to occur in a
sequence (2) to design algorithms and data-structures that can
efficiently look for such occurrences in large sequences. For
sufficiently general signatures, this is an NP-complete prob-
lem [Vialette, 2004] that combines combinatorial optimiza-
tion and pattern matching issues.

Traditionally, two types of approaches have been used for
RNA gene finding: signatures can be modelled as stochastic
context free grammars (excluding pseudo-knots or complex
structures) and then searched using relatively time consum-
ing dynamic programming based parsers. This is e.g. used
in [Sakakibara et al., 1994; Eddy and Durbin, 1994] for RNA
genes or in [Bockhorst and Craven, 2001] for terminators.

Another approach defines a signature as a set of interre-
lated motifs. Occurrences of the signature are sought us-
ing simple pattern-matching techniques and exhaustive tree
search. Such programs include RnaMot [Gautheret et al.,
1990], RnaBob [Eddy, 1996], PatScan [Dsouza et al., 1997],
Palingol [Billoud et al., 1996] and RnaMotif [Macke er al.,
2001]. Although most allow pseudo-knots to be represented,
they have very variable efficiencies and are all restricted to
single RNA molecule signatures.

In this paper, we clearly separate the combinatorial aspects
from the pattern matching aspect by modelling a signature as
a CSP. The CSP model captures the combinatorial features of
the problem while the constraints use pattern matching tech-
niques to enhance efficiency. This combination offers an ele-
gant and simple way to describe several RNA motifs in inter-
action and a general purpose efficient algorithm to search for
occurrences of such motifs.

2 Methods

The CSP formalism (see e.g. [Dechter, 2003]) is a power-
ful and extensively used framework for describing combi-
natorial search problems in artificial intelligence and oper-
ations research. This is usually well adapted to the defi-
nition of mathematical problems raised by molecular biol-
ogy (see [Gaspin and Westhof, 1994; Muller er al., 1993;
Altman et al., 1994; Major et al., 1991; Barahona and Krip-
pahl, 1999]) and has been used to model the structured motif
search problem in [Eidhammer ef al., 2001; Policriti et al.,
2004].

2.1 Structured motifs as CSPs

The elements that may characterize an RNA gene family are
usually described:

e in terms of the gene sequence itself (e.g. it must contain
some possibly degenerated pattern);

e in terms of the structures the sequence creates: loops,
helices, hairpins and possible duplexes with other
molecules;

e by specifying how these various elements are positioned
relatively to each other.

A possible occurrence of such a structured motif on a ge-
nomic sequence can be described by the positions of the var-
ious elements on the genomic sequence. A true occurrence is

31 ELCEEEEE Wr CCCE AGCCW. EGCCAA AFEE & WEEGE CUCAGEE CCCEFA WEECFATAFFCOUEC FUEEE MICALMT CCCAE COCCCECA
22 GCCFCCGE WA GCUC AGCC CGGG. & GAGD & CCCGE CUEAAGA CCGEF NI GUIC CEGEEE MNICAAGT CCCCE CEGCEECA
33 GEECCCE A O AFCUC_GET. & GAGC = CUCGEE CUCATAE CCOFAG UE. GUIC AGGEFE WNTCARAT CCCCYT CEEEFCCCAE
g4 GFFFCCCE UC FICT AGCC WEENT, & GFAC ¢ CUECC CUEACED FFCAF AA......... BTC CWUGFE WICARGT CCCAG CEEFCCCA
25 GCEECCGE WC GIOCT AGITCY. GEANTE GRAC - CUEGC CUMICCAA GCCAF WA AT CCGEEE WNICAZAT CCCGE CEECCECAE
36 GFLCEEEGE T FCCWT AGCC UEEFTCAR GEEC G CCEEA CUCATEAE WCOCEE UTC. MIC CCGEEE MICERAT CCCEE CCCCEECA
87 GEECCEE Ta GUCT AGC. . GF&A. (A& GFAT & CCCGC CUCGCEC GOGEE AF. AUC CCGEE TMICEAAT CCCEE CCEFITCCA
38 ELGEEEE TE CCCE AGCCA GEICAA ARGE & CAGGE WICAGGT CCCUG WEECHTARFCCUEC GUEEGE MICAAAT CCCAC CCCCCECA
39 ELGGEEEE TE CCCE AGCCA EEICAA AFEE & CAGFEE CUCAARE CCCUGE WEGCHTAEFCCUEC GUEEE MICEAMT CCCAE COCCCECA
210 GEECUCE WA GCUC AGC. . GGG, & GAGD = CCECC MMIGCGA GECEF A GCOC GCGEE MNICAZAN CCCGC CEAGTCCA

I?l = Helix2 T o Helix3 = ' | Helix 4 == | '

Heliz= 1

Figure 2: Alignment of a subset of ten sequences of the tRNA family extracted from the RFAM RNA database
(http://www.sanger.ac.uk/cgi-bin/Rfam). Each line gives the tRNA gene sequence. Both sides of each helix are under-
lined for each sequence of the alignment. Consensus helices are identified by boxes at the end of the alignment. tRNA genes
include four helices corresponding respectively to helix 1 called A-stem (7 nucleotide pairs), helix 2 called D-stem (from 3 to
4 nucleotide pairs), helix 3 called C-stem (5 nucleotide pairs) and the last fourth helix, called, T-stem (5 nucleotide pairs). Six
loops corresponding respectively to the single strand between A-stem and D-stem (sequence UN with U invariant), D-loop (4 to
14 nucleotides), the single strand between D-stem and C-stem (one nucleotide), C-loop (6 to 60 nucleotides), the single strand
between C-stem and T-stem (also called V-loop, 2 to 22 nucleotides), T-loop (NUC) allow to build a signature of the family.
Note several hundred tRNA sequences are now available from biological databanks (see in particular RFAM).

such that the required patterns, structures actually appear in
the genomic sequence and are correctly positioned relatively
to each other. Note that a genomic sequence is represented as
a string defined over the RNA alphabet {A,U,G,C}.

A natural CSP model emerges from this description: the
variables will represent the positions on the nucleotide se-
quence of the elements of the description. More formally,
each variable x; € X will represent a position on an associated
RNA sequence (denoted #;). The initial domain of variable x;,
unless otherwise stated, will therefore be equal to [1,]#]]. In
order to represent information on required patterns, structures
and on relative positions of these elements, constraints will
be used. To describe a constraint we separate the variables
Xj,...,X; involved in the constraint (its scope) and possible ex-
tra parameters p1, ..., px that influence the actual combination
of values that are authorized by the constraint. Such a con-
straint will be denoted as name [py, ..., pi](%i, ...,x;). We now
introduce the basic constraint types which are useful for RNA
signature expression:

composition|word,error,typee](x;)

this unary constraint is satisfied iff some given sequence (a
pattern) occurs at position x; on sequence #;. The pattern that
must occur is specified by the following constraint parame-
ters:

e word is a word on the so-called ITUPAC alphabet which
includes meta-characters that match several characters
of the RNA alphabet.

e error specifies the maximum number of tolerated mis-
matches between an occurrence and the specified string.

e type., indicates if the error count is interpreted under
the Hamming or Levenstein distance metric [Smith and
Waterman, 1981].

95

An example of possible use of this constraint is illustrated in
Fig. 3(1) where variable x; is constrained to a position where
the AGGGCUAG pattern must appear with no error. A posi-
tion satisfying this constraint (or occurrence of the pattern) is
indicated by the arrow.

distance(lmin, lmax] (Xi; , Xiy)
this binary constraint is use to enforce the relative position of
elements. It is satisfied iff

Imin < Xin — Xi; < lmax

The parameters |pmin, Imax specify the bounds for the differ-
ence between the two position variables. It is a simple usual
arithmetic constraint.

helix[rule, €rror, tYPeem Imina |max: bmina bmax] (xi] axi2 sxig axi4)
this 4-ary constraint is used to enforce the existence of an he-
lix between the sequence regions delimited by [x;,,x;,] and
[Xi5,Xi,]. This constraint assumes that the four variables are
related to the same sequence (it models intra-sequence in-
teractions) and each region represents a substring of this se-
quence. The length and distances between these regions are
also constrained. The constraint must be specified by the fol-
lowing parameters:

e rule: a binary relation on the RNA alphabet that char-
acterizes which pairs of nucleotides are allowed inside
an helix. For an RNA helix, one typically uses Watson-
Crick (A-U and G-C) pairs,possibly extended with Wob-
ble (G-U) pairing.

e error: the maximum number of tolerated mismatches be-
tween the two regions (nucleotides that do not satisfy the
previous paring relation).

e typee,: the Hamming or Levenstein distance metric for
error counts.

(case 1)

X,
AGGGCUAGG >

D

(case 2)

genomic sequence

\ A |
AAAAGAGGGCUAGGAAAAGCAGGAPTGGGUAGGGGGGGGgAGACACC(ECUAGCCCJGAAGGGCCC

X, @v Xz
v, @A@

Y.

(case 3)

GCAACGsB UCUGUGGFAAGGCA

target sequence

genomic sequence

AAAAGCiU UCC\UAG(‘{CG,‘AAGCAlGGAQG(;UCgCGGGG(‘{GGCA%CACCC(.EUCUGFClLJGGCAﬁACCGGA

(case 4)

X,
P—

X5

(case 5)

Figure 3: Basic constraints. (case 1): occurrence of a pattern at one position (variable). The constraint graph contains one
variable with a unary constraint represented by a loop. (case 2): an helix and a loop defined by two related segments separated
by specified lengths. The constraint graph contains four variables, four implicit distance constraints represented by edges
and one hyper-edge (for the helix constraint) connecting all four variables with a rectangle in the middle. (case 3): a duplex
composed of two independent substrings (from two sequences). The constraint graph is similar to the previous one (two distance
constraints are removed). (cases 4 and 5): two helix constraints can describe a pseudo-knot (4) or a triple helix (5).

® |nin,Imax: the interval specifying possible lengths of the
two substrings.

® boin,bmax: the interval specifying the possible distance
between the two substrings (i.e., x;; — x;3).

This constraint is illustrated in Fig. 3(2), involving variables
X1, X2, x3 and x4. Assuming Watson-Crick pairing, no error
and suitable lengths, the constraint is satisfied for the values
indicated by arrows on the sequence below.

duplex[lminy |max} (X] ,X2,Y3,y4)

this 4-ary constraint is used to enforce the existence of a
(Watson-Crick based) duplex between the regions delimited
by [x1,x2] and [y3,ys4]. Although semantically equivalent
to the previous one, it does not assume that the two sub-
strings represented by the two regions belong to the same
sequence. This has important computational impact. Only
Watson-Crick pairing is considered. This constraint is used
to model RNA-RNA interactions between possibly different
molecules.

o6

® lnin,Imax: the interval specifying possible lengths of the
two substrings.

The constraint is illustrated in Fig. 3(3) involving x{, x; (on
one sequence) and y3 and y4 on another sequence. Values
satisfying the constraint (an occurrence) is indicated by the
arrows.

Note that together these constraints can describe more
complex structures like pseudo-knots (Fig. 3(4)), triple he-
lices (Fig. 3(5)), and so on.

The flexibility of the CSP formalism using simply the four
previous basic constraints can be illustrated on famous RNA
gene families. The tRNA signature is represented in Fig. 4
where tRNA genes include four helices. The corresponding
CSP is build from 16 variables (the variable numbering fol-
lows the 3’ — 5’ orientation) with 15 distance constraints
(one constraint between each successive pair of variables), 2
composition constraints and 4 hel1ix constraints.

The same process can be applied to the snoRNA signa-
ture depicted in Fig. 5. snoRNA genes include a C box
(RUGAUGA) with one error allowed, a single strand from
22 to 44 nucleotides, a duplex with a target RNA from 9

Figure 4: (A) Signature of tRNA genes family. White cir-
cles : nucleotides with unknown composition, black circles
: known composition, little circles : number of nucleotides
given by an interval, and edge : interaction between two nu-
cleotides. (B) Corresponding CSP model.

to 15 nucleotides and a D box (CUGA) with one error al-
lowed. The corresponding CSP is build from 4 variables cor-
responding to positions on the genomic sequence and a pair
of additional variables associated with the target RNA. The
first set of variables is linked with 3 distance constraints
and 2 composition constraints. The second set with one
distance constraint. Both sets are connected through one
duplex constraint.

2.2 Algorithms and implementation

Given such CSPs, our problem is to find all solutions. Com-
pared to usual applications of the CSP formalism, this one is
characterized by the potential huge domain size (the length
of a complete pseudo-molecule can be greater than several
million of nucleotides) and its specific constraint types (ex-
cept for the distance constraint which is a usual arithmetic
constraint). For efficiency and memory space reasons, it is
not possible to represent variable domains exhaustively and to
enforce arc consistency on them. As it is done in Constraint
Programming [Dechter, 2003], we represent the domain of
each variable x; by an interval [/b;,ub;] and reason only on
domain bounds as done in arc-bound consistency [Lhomme,
1993]. This limited bound filtering is done at each node inside
a usual tree search algorithm. For n-ary constraints, the typ-
ical form of local consistency used enforces the fact that the
bounds in the domain of one variable in the constraint scope
must participate in at least one tuple that is authorized by the
constraint and the other domains. The exploration method we
used is a depth-first search algorithm with a refutation mech-
anism (during backtracks, it propagates the removal of values

o7

" ’
.
A .~ target

22t0 48 bases ¥ o e

- 00000080000 e WS-G0 .

D Box

C Box N
| snoRNA
.

target

snoRNA

Figure 5: Signature of snoRNA genes family including its
target interaction.

already explored).

Dedicated constraint propagation

For each type of constraint, we developed specific filtering
algorithm using appropriate pattern matching algorithms (ex-
cept for the distance constraint where we used the filtering
algorithm described in [Hentenryck et al., 1992]):

e composition]...](x;): to enforce arc consistency on
the lower bound of the domain of x;, one can simply
update this to the position of the first occurrence of the
pattern after /b; in the text ¢;. To find this occurrence, the
algorithm of Baeza-Yates and Manber [Baeza-Yaltes and
Gonnet, 1992; Wu and Manber, 1991] is used. This algo-
rithm is based on a boolean representation of the search
state and exploit the intrinsic parallelism of bitwise logi-
cal operations in modern CPU. It has a linear complexity
for exact string search and a complexity in O(m x n) for
the Levenstein distance (m being the length of the text
and 7 that of the pattern sought). A similar processing
can be done on the other bound (but is not used in our
prototype).

helix[...](xi,,%i,,Xi;, %,): Consider for example vari-
able x;,. To filter x; domain, we must find the first helix
(a support) that satisfies the parameters of the constraint.
By first we mean the helix with the smallest position of
the 5° extremity of the first arm (pointed by x;). The
problem for helices (which can be seen as two related
substrings) is more complex than for composition
since the two strings are initially unknown. This makes
it impossible to use string matching algorithms rely-
ing on a preprocessing of the string searched. The
most naive approach that successively tries all possi-
ble positions for the first and second string is obviously
quadratic. However, in our case, the distance between
the regions where the words may appear is constrained
by the length parameters b, and bpax. Together with
parameters |pi, and |na«, this makes the complexity of
the naive approach linear in the text length. This is there-
fore the method implemented. A similar approach can
be used for other bounds.

duplex|...](x1,X2,y3,y4): this constraint differs from
the previous one by the precise fact that there is no

UACUACA
1234567

UACU
ACUA
CUAC
UACA

Figure 6: The k factor tree (with k = 4) for UACUACA. This
data structure represents the set of substrings of length 4 of
the text.

possible bpin and bpay parameters since the two in-
teracting substrings do not necessarily appear on the
same sequence. The previous naive approach is there-
fore impractical. We decided to use a specialized ver-
sion of suffix-trees [McCreight, 1976; Ukkonen, 1992]
that captures occurrences of patterns of bounded length.
This data structure, called a k-factor tree [Allali and
Sagot, 2003] allows to perform string search in time
linear in the length of the pattern searched (indepen-
dently of the text length). The data structure, illustrated
in Fig. 6, is built once before the search, in space and
time linear in the length of the text [McCreight, 1976;
Ukkonen, 1992]. The associated filtering algorithm does
not enforce generalized bound arc consistency but is
only triggered when one of the two variables x; or y3
is assigned. All the occurrences of the Watson-Crick re-
verse complement can then be efficiently found in the
k-factor tree and used to update the bounds of the other
variables (the position of the first and last possible oc-
currences define the new bounds).

Because these constraint propagation are quite expensive
compared to the simple distance constraint, and in or-
der to avoid repeated useless applications of the filtering al-
gorithms, once a support is found it is memorized and will
not be sought again until one of its value is deleted (as in
AC2001 [Bessiere and Regin, 2001]).

3 Results and discussion

This approach has been implemented in C++ and results in a
specific solver called MILPAT: Motifs and Inter-moLecular
motifs searching tool using csP formAlism and solving
Techniques. We tested our approach on different RNA gene
search problems in order to assess its efficiency and mod-
elling capacities.

3.1 tRNAs

The tRNA structure and sequence profiles are perhaps the best
studied among RNAs; hence, they are very appropriate for a
first benchmarking.

tRNA genes include four helices corresponding respec-
tively to A-stem (7 nucleotide pairs), D-stem (from 3 to 4
nucleotide pairs), C-stem (5 nucleotide pairs) and T-stem (5
nucleotide pairs), six loops corresponding respectively to the
single strand between A-stem and D-stem (sequence UN with
U invariant), D-loop (4 to 14 nucleotides), the single strand

o8

Software E. coli S. cereviciae
(genome size) (4.610% (12.0710%)
PatScan 1 min. 32 1h40
RnaMotif 4. 8h40
RnaMot 2 min. 92 h
MILPAT (order A) 39s 1h52
MILPAT (order B) 39s 20 min.

Table 1: Comparison of the time efficiency.

between D-stem and C-stem (one nucleotide), C-loop (6 to
60 nucleotides), the single strand between C-stem and T-stem
(also called V-loop, 2 to 22 nucleotides), T-loop (NUC).

The signature of tRNAs used here is deliberately a simple
one that can be modelled in all existing general purpose tools.
We have concentrated on finding sequences that can adopt
a cloverleaf-like secondary structure within given ranges of
stem and loop lengths. We searched the Escherichia coli and
Saccharomyces cerevisiae genomes.

We compared the time execution of MILPAT with three
other general purpose programs. The tRNA signature used
in our comparisons is from Gautheret and al. [Gautheret et
al., 1990]. Tt includes four helices constraints, 14 distance
constraints and 2 composition constraints (see Fig. 4). The
results of this comparison are shown in Table 1. For each
genome search test, all the programs gave the same number
of solutions (545 solutions are found for the E. coli genome
and 849982 for the S. cerevisiae genome).

On the computing efficiency basis, three groups may be
formed from the slowest to the fastest: (i) RnaMot and
RnaMotif, (ii) Patscan and MILPAT with variable selection
order A, and (iii) MILPAT with variable selection order B. It
is well known that variable assignment order may have a sig-
nificant influence on efficiency. The static order A used by
MILPAT consists in ordering variables according to the topo-
logical order of the elements in the structured motif, from 5’
to 3’. Order B is a dynamic order following the first fail prin-
ciple: most constrained variables are chosen first by the back-
track algorithm. Without this order, MILPAT already has an
execution time close to the most efficient program, PatScan.
Just changing the order leads to an early pruning of the search
tree and a considerably improved execution speed for Saccha-
romyces cerevisiae.

3.2 snoRNAs

To validate the ability of MILPAT to model interactions be-
tween different molecules, we performed a computational
scan of the Pyrococcus abyssi genome for C/D snoRNA
genes. Since no existing general purpose tool allows to model
interaction between a snoRNA and its target, we compared
MILPAT to Snoscan, a tailored software for the C/D snoRNA
genes. This program sequentially identifies six specific com-
ponents of these genes (see Fig. 5): a RUGAUGA string (so
called C box), a sequence region, able to form a duplex with
another “target” sequence and a CUGA string (so called D
box). We used a S. cerevisiae tailored version of snoScan as
no archae-bacteria version is available. This fact probably ex-
plains the limited sensitivity shown in Table 2. The descriptor

Software Solutions True positives ~ Time
SnoScan 1611 27 20 min.
MILPAT 852 42 8s.

Table 2: Pyrococcus abyssi genome (1.710° characters) - 59
annotated snoRNAs.

used by MILPAT is described in Fig. 5. The missing anno-
tated genes (17 out of 59) are due to the current limitation of
the duplex constraint to Watson/Crick matches. These first
results show the modelling flexibility and solving efficiency
of MILPAT.

4 Conclusion

The main aim of our work is to offer a way of describing new
generations of RNA patterns, including the specification of
complexes which can be formed by anti-sense interactions be-
tween different regions of a genome. The use of CSP method-
ology together with efficient pattern matching data structures
and algorithms provides increased efficiency, extended mod-
elling capabilities for intermolecular interactions and an eas-
ily extensible framework.

Beyond this ability to describe inter and intra-molecular in-
teractions with a great flexibility, a number of evolutions are
possible to improve MILPAT efficiency and modelling capa-
bilities, including the ability to describe optional or alterna-
tive motifs. Within the framework of biological applications,
these possibilities are essential to be closer to the structural
reality of the molecules.

In its current version, MILPAT is just providing all the
true occurrences (satisfying all constraints). It does not op-
timize any scoring system based on mismatches, thermo-
dynamics or probabilistic parameters. Taking into account
such information would require the use of more complex
Weighted CSP algorithms such as in [Schiex er al., 1995;
Larrosa and Schiex, 2004].

References

[Allali and Sagot, 2003] J. Allali and M. F. Sagot. The at
most k-deep factor tree. Theory of Computer Science,
2003. in submission.

[Altman et al., 1994] RB Altman, B Weiser, and HF Noller.
Constraint satisfaction techniques for modeling large com-
plexes: Application to the central domain of 16s ribosomal
ra. In Proceedings of the second international confer-
ence on Intelligent Systems for Molecular Biology, pages
10-18, 1994.

[Baeza-Yaltes and Gonnet, 1992] R~ Baeza-Yaltes and
GH Gonnet. A new approach to text searching. In
Communications of the ACM, volume 35, pages 74-82,
1992.

[Barahona and Krippahl, 1999] P Barahona and L Krippahl.
Applying constraint programming to protein structure de-
termination. CP, pages 289-302, 1999.

99

[Bessiere and Regin, 2001] C Bessiere and C Regin, J. Re-
fining the basic constraint propagation algorithm. In /-
CAI, pages 309-315, 2001.

[Billoud et al., 1996] B Billoud, M Kontic, and A Viari.
Palingol: a declarative programming language to describe
nucleic acids’ secondary structures and to scan sequence
database. Nucleic Acids Res, 24(8):1395-403, 1996.

[Bockhorst and Craven, 2001] J Bockhorst and M Craven.
Refining the structure of a stochastic context-free gram-
mar. In IJCAI, pages 1315-1322, 2001.

[Dechter, 2003] R Dechter. Constraint Processing. Morgan
Kaufmann, 2003.

[Dsouza et al., 19971 M Dsouza, N Larsen, and R Overbeek.
Searching for patterns in genomic data. Trends Genet,
13(12):497-8, 1997.

[Eddy and Durbin, 1994] SR Eddy and R Durbin. Rna se-
quence analysis using covariance models. Nucleic Acids
Res, 22(11):2079-88, 1994,

[Eddy, 1996] SR Eddy. Rnabob: a program to search for rna
secondary structure motifs in sequence databases. Manual,
1996.

[Eidhammer et al., 20011 I ~ Eidhammer, D Gilbert,
I Jonassen, and M Ratnayake. A constraint based
structure description language for biosequences. Con-
straints, 6:173-200, 2001.

[Gaspin and Westhof, 1994] C Gaspin and E Westhof. The
determination of the secondary structures of RNA as a con-
straint satisfaction problem. In Frontiers in Artificial Intel-
ligence and Applications. IOS Press, editors, Advances in
Molecular Bioinformatics. S. Schulze-Kremer, 1994.

[Gautheret ef al., 1990] D Gautheret, F Major, and R Ced-
ergren. Pattern searching/alignment with RNA primary
and secondary structures: an effective descriptor for trna.
Comput Appl Biosci, 6(4):325-31, 1990.

[Hentenryck et al., 1992] V Hentenryck, P, Y Deville, and
M Teng, C. A generic arc-consistency algorithm and its
specializations. Artif. Intell., 57(2-3):291-321, 1992.

[Larrosa and Schiex, 2004] J. Larrosa and T. Schiex. Solving
Weighted CSP by maintaining Arc Consistency. Artificial
Intelligence, 159(1-2):1-26, 2004.

[Lhomme, 1993] O Lhomme. Consistency techniques for
numeric CSPs. In the 13-th International Joint Conference
on Artificial Intelligence, pages 232-238, 1993.

[Macke et al., 20011 TJ Macke, DJ Ecker, RR Gutell,
D Gautheret, DA Case, and R Sampath. Rnamotif, an
RNA secondary structure definition and search algorithm.
Nucleic Acids Res, 29(22):4724-35, 2001.

[Major et al., 19911 F Major, M Turcotte, D Gautheret,
G Lapalme, E Fillion, and R Cedergren. The combi-
nation of symbolic and numerical computation for three-
dimensional modeling of RNA. Science, 253:1255-1260,
1991.

[McCreight, 19761 EM McCreight. A space-economical suf-
fix tree construction algorithm. Journal of the ACM,
23(2):262-272, 1976.

[Muller ef al., 1993] G Muller, C Gaspin, A Etienne, and
E Westhof. Automatic display of RNA secondary struc-
tures. Cabios, 9(275):551-561, 1993.

[Policriti et al., 2004] Alberto Policriti, Nicola Vitacolonna,
Michele Morgante, and Andrea Zuccolo. Structured mo-
tifs search. In Proceedings of the eighth annual inter-
national conference on Computational molecular biology,
pages 133-139. ACM Press, 2004.

[Sakakibara et al., 1994] Y Sakakibara, M Brown,
R Hughey, IS Mian, K jolander, RC Underwood,
and D Haussler. Recent methods for rna modeling using
stochastic context-free grammars. In CPM ’94: Pro-
ceedings of the 5th Annual Symposium on Combinatorial
Pattern Matching, pages 289—-306. Springer-Verlag, 1994.

[Schiex et al., 1995] T Schiex, H Fargier, and G Verfaillie.
Valued Constraint Satisfaction Problems: hard and easy
problems. In Proc. of the International Joint Conference
in AI, Montreal, Canada, 1995.

[Smith and Waterman, 1981] TF Smith and MS Waterman.
Identification of common molecular subsequences. J Mol
Biol, 147(1), 1981.

[Storz, 2002] G Storz. An expanding universe of noncoding
rnas. Science, 296(5571):1259, 2002.

[Ukkonen, 1992] E Ukkonen. Constructing suffix-trees on-
line in linear time. In Algorithms, Software, Architecture:
Information Processing 92, pages 484-492, 1992.

[Vialette, 2004] S. Vialette. On the computational complex-
ity of 2-interval pattern matching problems. Theor. Com-
put. Sci., 312(2-3):223-249, 2004.

[Wu and Manber, 19911 S Wu and U Manber. Fast text
searching with errors. Technical report, University of Ari-
zona, 1991,

60

D’G*A: the new Distributed Guided Genetic Algorithm for CSOPs

Bouamama Sadok and Ghedira Khaled

SOIE, ISG, University of Tunis
Sadok.Bouamama@ensi.rnu.tn , Ghedira.Khaled@isg.rnu.tn

Abstract

D’G’A is a newer distributed genetic Algorithm for
CSOPs. Our approach benefits not only from autono-
mous dynamic multi-agent systems reducing GAs tem-
poral complexity but also from GAs efficiency. D°G*A
is enhanced by many newer parameters such as the Local
optima detector LOD and the species types coefficiente.
These latter allow not only diversification but also escap-
ing from local optima.

The newer approach is experimented on the Radio Link
Frequency Assignment Problem. The results show
clearly that the new approach gives many improvements.
In this paper, newer algorithms and their global dynam-
ics are furnished, and experimental results are provided.

1 Introduction

CSP formalism consists of variables associated with do-
mains and constraints involving subsets of these variables.
A CSP solution is an instantiation of all variables with val-
ues from their respective domains. The instantiation must
satisfy all constraints.

In the realms of CSP, the instantiation of a variable with a
value from its domain is called a label. A simultaneous in-
stantiation of a set of variables is called a compound label,
which is a set of labels. A complete compound label is one
that assigns values, from the respective domains, to all the
variables in the CSP.

A CSOP is a CSP with an objective function f that maps
every complete compound label to a numerical value. The
goal is to find a complete compound label S such that f(S)
gives an optimal value, and that no constraint is violated.
CSOPs make up the framework to this paper.

CSOPs are generally NP-hard. They have been dealt with
by complete or incomplete methods. The first ones, such as
Branch and Bound [Tsang, 1993] are able to provide an
optimal solution. Unfortunately, the combinatorial explo-
sion thwarts this advantage. The second ones, such as
Guided Genetic Algorithms (GGA) [Lau and Tsang, 1998]
have the property to avoid the trap of local optima. They
also sacrifice completeness for efficiency.

There is other distributed GAs known as Distributed Guided
Genetic Algorithms. These approaches have been success-
fully applied to Max-CSP [Bouamama and Ghedira, 2003a,
2003b, 2004]. Basically these distributed approaches outper-
form the Centralized Genetic Algorithms (GGAs) [Lau and
Tsang, 1998], which are especially known to be expensive
in time. As these approaches give good results with the
Max-CSPs, in terms of both optimality and quality, why not
to adopt the same idea for CSOPs. This is the aim of this
paper. Our interest in GAs is also motivated by their proven
usefulness in many fields [Michael et al., 1999].

2 CSOP Formalism

A constraint satisfaction and optimization problem [Tsang,
1993], or CSOP, is a quadruple (X, D, C, f); whose compo-
nents are defined as follows:

— Xis a finite set of variables {x;, x,, ... x,}.

— D is a function which maps each variable in X to its do-
main of possible values, of any type, and D,; is used to
denote the set of objects mapped from x; by D. D can be
considered as D = {Dy,, Dy,, ...,Dy,};

— C is a finite, possibly empty, set of constraints on an
arbitrary subset of variables in X. these constraints are
represented in Extension or in Intention.

— fan objective function which maps every instantiation to
a numerical value.

3 Dynamic Distributed Double Guided Ge-
netic Algorithm FOR CSOP

3.1 Basic principles

Our approach draws basically on the concept of both species
and ecological niches. The species consists of several
organisms having common characteristics whereas the
ecological niche represents the task performed by a given
species. Goldberg sets that the sexual differentiation based
on specialization via both the building of species and the
exploitation of ecological niches provides good results
[Goldberg, 1989]. A certain number of methods have been
settled in order to favorite the building of ecological niches
[Ghedira, 2002] in GAs.

61

So, the idea here is to partition the initial population into
sub-populations and to assign each one of them to an agent
called Species agent. A given sub-population consists of
chromosomes having their fitness values in the same range.
This range, said FVR, is called the specificity of the Species
agent Speciesgyr. Species agents are in interaction, in order
to reach an optimal solution for the problem. For this
reason, each Species agent performs its own GA. The latter
is guided by both template[Lau and Tsang, 1998] concept
and min-conflict heuristic[lMinton, 1992]. An intermediary
agent is necessary between the society of Species agents and
the user, essentially to detect the best partial solution
reached during the dialogue between the Species. This
agent, called Interface, may also possibly create new
Species agents.

3.2 Min-Conflict-Heuristic and the Template
Concept

each chromosome is attached to a template [Tsang, 1999]
that is made up of weights referred to as template;;. Each
one of them corresponds to gene;; where i refers to the
chromosome and j to the position. &;; represents the sum of
costs of violated constraints by gene;j. These weights are
updated by means of the penalty operator (see sub-section
3.7).

Templates will be used by GA in replacement. As we use
the min-conflict-heuristic, replacement have to be elitist, i.e
a chromosome is replaced by a better chromosome. For this,
heavier templates genes have more probability to be
replaced.

3.3 Preparing CSOP

Relationship between both genetic and CSOP formalisms is
outlined as below; each chromosome (respectively gene) is
equivalent to a CSOP potential solution (respectively vari-
able). Moreover, each allele corresponds to a value.

Given an objective function f, we define an fitness
function (FF) g which will be used by the optimization
process [Lau and Tsang, 1998].

8(ps) = flps) + A * X(CP; *I; (ps)) (M

Where ps is a potential solution, A is a parameter to the
algorithm called Regularization parameter. It is a parameter
that determines the proportion of contribution that penalties
have in the fitness function.

CP; is the penalty for gene; (all CP; are initialized to 0)
and /; is an indication of whether ps satisfies all constraints
or not:

I; (ps) = 1 if ps satisfies all constraints;
0 otherwise. 2)

Let us mention here that /; is specific for every gene;. for
this, we sum over the index 7 the /; values in order to express

the contribution of every gene in the solution. So if a
solution dos not satisfy all the problem constraints, the
contribution of /; will minimize the fitness function.

3.4 Agent Structure

Each agent has a simple structure: its acquaintances (the
agents it knows and with which it can communicate), a local
knowledge composed of its static and dynamic knowledge,
and a mailbox where it stores the received messages to be
later processed one by one.

Species Agent

A Specie agent has got as acquaintances the other Specie
agents and the Interface agent. Its static knowledge consists
of the CSOP data (i.e. the variables, their domains of values,
the constraints and the objective function), the specificity
(i.e. the fitness function range) and its local GA parameters
(mutation probability, cross-over probability, number of
generations, etc.). Its dynamic knowledge takes components
as the population pool, which varies from one generation to
another (chromosomes, population size).

Interface Agent

An Interface agent has as acquaintances all the Specie
agents. Its static knowledge consists of the 2CSP data. Its
dynamic knowledge includes the best chromosome (i.e. the
chromosome having the best fitness function value).

3.5 Global Dynamic

The Interface agent randomly generates the initial
population and then partitions it into sub-populations
accordingly to their specificities i.e. the fitness value range
FVR. After that the former creates Species agents to which
it assigns the corresponding sub-populations. Then the
Interface agent asks these Species to perform their
optimization processes. So, before starting its own
optimization process, i.e. its own behaviour, each Specie
agent, Speciespyg, initializes all templates and penalties
counters corresponding to its chromosomes. After that it
carries out its genetic process on its initial sub-population,
i.e. the sub-population that the Interface agent has
associated to it at the beginning. This process, which will be
detailed in the algorithms, returns a sub-population “pop”
that has been submitted to the crossing and mutating steps
only once, i.e. corresponding to one generation. For each
chromosome of pop, Specieryr computes their fitness
function values FV according to formula (1). Consequently,
two cases may occur. The first one corresponds to a
chromosome having an FV in the same range as its parents.
In this case, the chromosome replaces one of the latter
randomly chosen. In the second case, this value (FV) is not
in the same range (FVR), i.e, the specificity of the
corresponding Speciesgyr. Then the chromosome is sent to
another Speciespy if such agent already exists, otherwise it
is sent to the Interface agent. The latter creates a new agent
having FV as specificity and transmits the quoted
chromosome to it. Whenever a new Species agent is created,
the Interface agent informs all the other agents about this

62

creation and then asks the new Species to perform its
optimization process. Note that message processing is given
a priority. So, whenever an agent receives a message, it
stops its behaviour, saves the context, updates its local
knowledge, and restores the context before resuming its
behaviour.
Here we describe the syntax used in the Figures:
e sendMsg (sender, receiver, ‘message’): ‘message’ is
sent by “sender” to “receiver”.
o getMsg (mailBox): retrieves the first message in
mailBox.

Assessing-Message
1. m < getMsg (mailBox)
2. Case (m) in
3. optimization-process (sub-population):
apply-behavior (sub-population)
4. take-into-account (chromosome):
population-pool < population-pool U {chromosome}
5. inform-new-agent (Speciery): list-acquaintances <« list-acquaintances U
{Speciery}
6. stop-process: stop-behaviour

Figure 1: Message processing relative to Speciepyr

Apply-behavior (initial-population)

1. init-local-knowledge

2. fork := 1 to number-of-generations do

3. template-updating (initial-population)

4. pop < genetic-process (initial-population)

5. best-FV «- 0

6. for each chromosome; in pop do

7. FV; < compute-augmented-fitness-value (chromosome)

8. if best-FV < FV;

9. then best-FV «— FV;

10. clear (LO-chromosomes-list)

11. LO-chromosomes-list - LO-chromosomes-list U
{chromosome;}

12. if (FV; € range;)

13. then replace-by (chromosome;)

14. else if exist-agent (Specieryr)

15. then sendMsg (Species;, Speciervr, take-into-
account (chromosome;) ")

16. else sendMsg (Specieryr, Interface, ‘create-
agent (chromosome;) ")

17. end for

18. if best-FV= last-FV

19. then stat-counter <« stat counter + 1

20. else last-FV « best-FV

21. if stat-counter= LOD;

22. then last-stat-FV <« last-FV

23. penalize(LO-chromosomes-list)

24. end for

25. sendMsg (Speciery, Interface, ‘ result (one-chromosome, specificity)’)

Figure 2: Behaviour relative to Speciespyr

Genetic process

1 mating-pool < matching (population-pool)

2. template-updating (mating-pool)

3. offspring-pool-crossed < crossing (mating-pool)

4. offspring-pool-mutated <— mutating (offspring-pool- crossed)
5 return offspring-pool-mutated

Figure 3: The Genetic process

3.6 Guided Cross-over and Guided Mutation

Out of each pair of chromosomes, the cross-over operator
produces a new child as described in Figures 4 and 5. The
child inherits the best genes, i.e. the “lighter” ones, from its
parents. The probability, for a parent chromosome; (i=i; or
i), where sum = template;;; + template;;; to propagate its
gene;; to its child chromosome is equal to 1-template;;/ sum.
This confirms the fact that the “lighter” genes, i.e. having
the best FV, are more likely than the other to be passed to
the child.

For each one of its chromosomes selected according to
the mutation probability P, Speciespyr uses the min-
conflict-heuristic first to determine the gene (variable)
involved in the worst FV, secondly to select from this gene
domain the value that violates the minimal number of
constraints and finally to instantiate this gene with this value
(see Figure 6).

Cross-over (chromosome;;, chromosome;)
1.for j :=1 to size (chromosome;;) do

2.. sum « template;;;+ template;;

3. if (random-integer [0, sum — 1]< template;; ;)
4. then gene;s; <— gene;,;

5. else gene;3; < gene;;

6. Return chromosome;s

Figure 4: Cross-over operator

Crossing (mating-pool)

1. if (mating-pool size < 2)

2. then return mating-pool

3. for each pair in mating-pool do

4, if (random [0,1] < Pcross)

5. then offspring «— cross-over (first-pair, second-pair)
6. FV « compute-fitness-value (offspring)

7. offspring-pool « offspring-pool U {offspring}

8. return offspring-pool

Figure 5: Crossing process relative to Speciesgyg

Min-conflict-heuristic (chromosome;)

1. 8;j «— max (template;) /*3;; is associated to gene;; which is in turn associ-
ated to the variable vj*/

2. FV¥«0

3 for each value in domain of v; do

4 FV<« compute-fitness-value (value)

5 if (FV > FV*)

6. then FV* « FV

7 value* « value

8. value (gene;;) < value*

9. update (template;)

10. return FV*

Figure 6: Min-conflict-heuristic relative to chromosome;

If all the Species agents did not meet any better
chromosome at the end of their behaviour or they attain the
stopping criterion, they successively transmit one of their
randomly chosen chromosomes, linked to its specificity to
the Interface agent. The latter determines and displays the
best chromosome namely the one which have the best FV.

63

3.7 Penalty Operator and Local Optima Detector

To enhance the approach, the agents are given more
autonomy and more dynamicity. In fact, we add an other
GA’s parameter that we call LOD for local optima detector.
The latter represents the number of generation in which the
neighboring does not give improvement, i.e. if the FV of the
best chromosome remains unchanged for a specific number
of generations; and so we can conclude that the agent
optimization sub-process is trapped in a local optimum. In
fact if the unchanged FV is lesser than the last stationary FV
then automatically LOD have to be equal to one. Otherwise
the LOD will remain unchanged i.e. LOD is a parameter to
the whole optimization process and it will be dynamically
updated by every agent.

Let us mention that every Speciegyg have to save its best

FV for the next generations. This will be very useful not
only in the case of stationary fitness values, but also to
select the best chromosome in the species. In fact, if the
best FV remain unchanged for LOD; generation, the process
will be considered as trapped in a local optimum. Thus for
all the chromosomes having this FV, the related penalty
counter PC; of all its genes is incremented by one.
As we are in an optimization case, every Speciesrr have to
send its best chromosome to the Interface Agent. The latter
updates its local knowledge by this information. This must
be done once after every generation. The Interface Agent
will, at every attempt, compare the best chromosome he has
with the best one sent by the species agents. Only those hav-
ing the best FV will be maintained.

When the optimization process settles on a local opti-
mum, the penalty of potential solution associated to this
local optimum is increased. This helps the search process to
escape from local optima, and drives it towards other candi-
date solutions. It is worth pointing out that a slight variation
in the way that penalties are managed could make all the
difference to the effectiveness of our approach. This is done
by incrementing its penalty value by 1:

CP,= CP,+ 1 3)

3.8 Mutation and Guidance Probability

The approach, as decribed until now, can not be considered
as a classic GA. In fact, in classic GAs the mutation aims to
diversify a considered population and then to avoid the
population degeneration [Goldberg, 1989]. In this approach,
mutation operator is used improperly since it is considered
as a betterment operator of the considered chromosome.
However, if a gene value was inexistent in the population
there is no way to obtain it by cross-over process. Thus, it is
sometimes necessary to have, a random mutation in order to
generate the possibly missing gene values. Our approach is
a local search method. The first known improvement
mechanism of local search is the diversification of the
search process in order to escape from local optima [Schiex,
1995]. No doubt, the simplest mechanism to diversify the

search is to consider a noise part during the process.
Otherwise the search process executes a random movement
with probability p and follows the normal process with a
probability 1-p [Schiex, 1995].

Global optimum
Local optimum

/

a3

T

LT s se—

Figure 7: An example of attraction basin of local optima

In Figure 7, an example of local optima attraction basin
is introduced; in a maximization case, S2, which is a local
maximum, is better than S/. The passing through S/ from
§2, is considered as a solution destruction but give more
chance to the search process to reach S3, the global
optimum.

For all these reasons, the new proposed approach is
enhanced by a random providing operator which we call
guidance probability P, Thus the approach will possess
(in addition to the cross-over and mutation operators, to the
generation number and to the initial-population size) a
guidance operator.

The mutating sub-process will change; for each selected
chromosome following mutation probability P, the
mutation will be random witha probability 1-Pg,, and
guided with a probability Py, (Figure 8 line 3). So that in
the proposed mutating sub-process it’s possible to destroy a
given solution in order to enhance exploration. This process
is illustrated in Figures 8,9 and10.

Mutating (offspring-pool)
. for each chromosome in offspring-pool do
if (random [0,1]< Pmut;) then if (random [0,1]< Pyiz)
then Guided Mutation (chromosome ;)
. else Random Mutation(chromosome;)
. FV* « compute-augmented-fitness-value(chromosome ;)
. offspring-pool-mutated <« offspring-pool-mutated U {chromosome;}

1
2
3
4
5
6
7. return offspring-pool-mutated

Figure 8: Mutating process relative to Speciespyr

Random_Mutation (chromosome)

1. Choose randomly a gene;;

2. Choose randomly a value v; in domain of gene;;
3. value(gene;;) < v;

4. Return chromosome;

Figure 9: Random Mutation relative to chromosome;

Guided Mutation (chromosome ;)
1. min-conflict-heuristic (chromosome ;)
2. Return chromosome;

Figure 10: Guided Mutation relative to chromosome;

64

3.9 Dynamic Approach

The main interest of the second improvement is based on
the NEO-DARWINISM theory [Darwin, 1859] and on the
laws of nature « The Preservation of favoured races in the
struggle for life ». This phenomenon can be described, in
nature, by an animal society in which the strongest members
are luckier to be multiplied (so their crossing—over
probability is high). The power of these elements allows
them not to be infected by illnesses (mutation is then at a
lower rate). On the contrary case the weakest limbs of these
animals are frequently ill or unable to combat illnesses
(mutation is frequent), usually this kind of animals can’t
attract females (reproduction is limited). In fact to cross-
over a strong species and to give more mutation possibility
for a weak species can be very worthy.

So, from now on P, and P,,,, will be function of fitness
and of a newer operator called €. This operator is a weight
having values from 0 to 1.

Genetic process

1. mating-pool € matching (population-pool)

2. (Pcrossi, Pmuti, LODi) € count_operator (Pcross, Pmut, LOD)
3. template-updating (mating-pool)

4. offspring-pool-crossed € crossing (mating-pool)

5. offspring-pool-mutated € mutating (offspring-pool- crossed)
6. return offspring-pool-mutated

Figure 11: The new Genetic process

In the newer optimization process, described in Figures
11 and 12, each species agent proceeds with its own genetic
process. Indeed before starting the optimization process
agents have to count their parameters P, and P,,, on the
basis of their fitness values. For a given Species agent three
cases are possible as described by the new genetic process
detailed in figures 11 and 12.

Count_operator (Pcross, Pmut, LOD)

1. if FV <(max-attained-FV / 2) then
2 Pcross; «— Pcross | €

3 Pmut, < Pmut* ¢

4. LOD; « LOD/¢

5. if FV > (max-attained-FV / 2) then
6. Pcross; «— Pcross * &

7 Pmut; < Pmut / ¢

8. LOD; <~ LOD *¢

9. if FV = (max-attained-FV / 2) then

10. Pcross; <— Pcross
11. Pmut, < Pmut
12. LOD; « LOD
13. if FV < last-stat-FV

14. then LOD; « 1

15. return (Pcross;, Pmut, LOD;)

Figure 12: The operator count process

4 The Radio Link Frequency Assignment
Problems (RLFAP)

The French "Centre d'Electronique de I'Armement"
(CELAR) has made available, in the framework of the
European project EUCLID CALMA (Combinatorial Algo-
rithms for Military Applications) set of Radio Link Fre-

quency Assignment benchmark problems (RLFAP)' build
from a real network, with simplified data. These bench-
marks had been previously designed by the CELAR to as-
sess several different Constraint Programming languages.
These benchmarks are extremely valuable as benchmarks
for the CSP community and more largely for constraint pro-
gramming:

e The constraints are all binary (involving no more
than two variables), non linear and the variables
have finite domains.

e These are real-world size problems, the larger in-
stances having round one thousand variables and
more than five thousand constraints. All these in-
stances have been built from a unique real instance
with 916 links and 5744 constraints in 11 con-
nected components [Bertrand et al. 1999].

The Radio Link frequency Assignment Problem consists
in assigning frequencies to a set of radio links defined be-
tween pairs of sites in order to avoid interferences. Each
radio link is represented by a variable whose domain is the
set of all frequencies that are available for this link. The
essential constraints involve two variables F, and F,:

|Fi-F5> k;z

The two variables represent two radio links which are
"close" one to the other. The constant k;, depends on the
position of the two links and also on the physical environ-
ment. It is obtained using a mathematical model of electro-
magnetic waves propagation which is still very "rough".
Therefore, the constants ki, are not necessarily correct (it is
possible that the minimum difference in frequency between
F, and F, that does not yield interferences is actually differ-
ent from k). In practice, k), is often overestimated in order
to effectively guarantee the absence of interference. For
each pair of sites, two frequencies must be assigned: one for
the communications from A to B, the other one for the
communications from B to 4. In the case of the CELAR
instances, a technological constraint appears: the distance in
frequency between the 4->B link and the B->4 link must be
exactly equal to 238. In all CELAR instances, these pairs of
links are represented as pairs of variables numbered 2k and
2k+1. The possibility of expressing constraints such as |F;-
F5|> k;; suffices to express the graph coloring problem and
it is therefore clear that the RLFAP is NP-hard [Lau and
Tsang, 1998].

Let us mention here that we will take the same formula-
tion as that found in [Lau and Tsang, 1998]. In this case we
will consider only the solvable instances. i.e the instances
1,2,3,4,5 and 11. In fact only the these instances could be
considered as CSOP, as they have no constraint violation.

' RLFAPis available in Centre d’Electronique et de
I’ Armement (France), via
http://www.inra.fr/bia/T/schiex/Doc/CELAR.shtml

65

5 Experimentation

5.1 Experimental design

The goal of our experimentation is to compare a distributed
implementation with a centralized one of genetic algorithm
enriched by both template concept and min-conflict-
heuristic. The first implementation is referred to as Distrib-
uted Guided Genetic Algorithm (D*G®A) whereas the sec-
ond one as Guided Genetic Algorithm (GGA). The imple-
mentation has been done with ACTALK [BRI 89], a concur-
rent object language implemented above the Object Ori-
ented language SMALLTALK-80. This choice of Actalk is
justified by its convivial aspect, its reflexive character, the
possibility of carrying out functional programming as well
as object oriented programming , and the simulation of
parallelism.
In our experiments we carry out 30 times the algorithms and
we take the average without considering outliers. Concern-
ing the GA parameters, all the experimentations employ a
number of generations (NG) equal to 10, a size of initial
population equal to 1000, a cross-over probability equal to
0,5, a mutation probability equal to 0,2, a probability of
guidance equal to 0.5, LOD is equal to 3, A equal to 10 and
€ is equal to 0.6.
The performance is assessed by the two following

measures:

e Run time: the CPU time requested for solving a

problem instance,

e Fitnes function value:

algorithm.

The first one shows the complexity whereas the second
recalls the quality. In order to have a quick and clear
comparison of the relative performance of the two
approaches.

the solution guiven by the

Experimental results

In order to have a quick and clear comparison of the
relative performance of the two approaches, we compute
ratios of GGA and D*G?A performance using the Run time
and the fitness value as follows:

e CPU time Ratio=GGA CPU time / D’G’A CPU time.

e Fitness ratio= FV of D’G’A /FV of GGA

Thus, GGA performance is the numerator when
measuring the CPU time ratios, and the denominator when
measuring fitness value ratio. Then, any number greater
than 1 indicates superior performance by D’G*A.

Let us remember that we report only the solvable
instances of the RFLAP. For evry one of the latters
exepriments are repeatedly performed. The average is then
presented.

2
o
B 1.5
o
@ 1
2
= 0.5
ic

0

1 2 3 4 5 1N

Instance

Figure 13: Fitness ratios

From the solution quality point of view shown in figure
13, the D’G’A always finds better solution than GGA or
same one. This ratio is more significant for instances 4,5
and 11(see peaks in figure 13). The fitness ratios average is
1.31646. This is the result of the diversification and the
intensification used in our approach.

CPU time ratio
O = N W HAhOO

1. 2 3 4 5 1

Instance

Figure 14: CPU time ratios

Form the CPU time point of view (figure. 14), D’G*A re-
quires less time for all the instances of the problem. It re-
quires until 5.122 less time for the same example. In aver-
age the CPU time ratio is equal to 3.035.

We have come to these results thanks to agent
interaction reducing GA temporal complexity. In fact, the
comunication between agents helps them to in the solution
investigation. The CPU time is in the other hand reduced
thanks to the new proposed genetic process. In the latter,
both diversification (by random mutations and by LOD) and
guidance are used. The first one helps the optimization
process to escape from local optima. The second one,
intensifies the search helping it to attain, rapidly, better
fitness function values.

6 Conclusion And Perspectives

We have developed a newer approach called D’G?A. This
approach is a dynamic distributed double guided genetic
algorithm enhanced by three new parameters called
guidance probability P4, the local optima detector LOD
and the weight €,. The latter is a weight used by Species

66

agents to determine their own genetic process parameters on
the basis of their chromosomes Fitness values. Compared to
the centralized guided genetic algorithm and applied to
RLFAP, our new approaches have been experimentally
shown to be better in terms of fitness value and CPU time.

The improvement is due to both diversification and
guidance. The first increases the algorithm convergence by
escaping from local optima attraction basin. The latter helps
the algorithm to attain optima. Consequently D’G*A gives
more chance to the optimization process to visit all the
search space. We have come to this conclusion thanks to the
proposed mutation sub-process. The latter is sometimes
random, aiming to diversify the search process, and
sometimes guided in order to increase the best of the fitness
fonction value.

The genetic sub-process of D’G?A Species agents will no
longer be the same depending on their fitness values. This
operation is based on the species typology. The sub-
population of a species agent can be considered as strong or
weak with reference to its fitness value. For a strong
species, it’s better to increase cross-over probability and to
decrease mutation probability. However, when dealing with
a weak species, cross-over probability is decreased and
mutation probability is increased. The occurrence of these
measures not only diversifies the search but also explore
wholly its space.

No doubt further refinement of this approach would
allow its performance to be improved. Further works could
be focused on applying these approaches to solve other real
hard CSOPs and valued CSPs [Schiex et al., 1995].

References

[Briot, 1989] Briot J. P. Actalk: a testbed for classifying
and designing Actor languages in the Smalltalk-80 En-
vironment. Proceedings of the European Conference on
Object-Oriented Programming (ECOOP'89). British
Computer Society Workshop Series Cambridge Univer-
sity Press. , July 1989

[Bertrand et al. 1999] B. Cabon, S. de Givry, L. Lobjois, T.
Schiex, J. P. Warners. Radio Link Frequency Assign-
ment, Constraints 4(1): 79-89 (1999).

[Bouamama S, Ghédira, 2003a] Bouamama S and Ghédira
K. D’G?A and D*G*A: a new generation of Distributed
Guided Genetic Algorithms for Max_CSPs, In Pro-
ceedings of the World Multiconference on Systemics,
Cybernetics and Informatics (SCI°03). Orlando,Florida,
USA, 2003.

[Bouamama and Ghédira, 2003b] Bouamama S and
Ghédira K. D*G*A: a Distributed double Guided Ge-
netic Algorithm for Max CSPs, In Proceedings of the
Seventh International Conference on Knowledge-Based
Intelligent Information & Engineering Systems
(KES’03). Oxford, UK,2003.

[Bouamama S, Ghédira, 2004] Bouamama S and Ghédira
K. ED’G?A: an Enhanced version of the Distributed

Guided Genetic Algorithms for Max_ CSPs, In Pro-
ceedings of the World Multiconference on Systemics,
Cybernetics and Informatics (SCI’04). Orlando,Florida,
USA, 2004.

[Dejong and Spears, 1989] Dejong K. A. and Spears W.
M. Using Genetic Algorithms to solve NP-Complete
problems. George Mason University, Fairfax, VA,
1989.

[Darwin, 1859] Darwin C. The Origin of Species, 1859,
Sixth London Editions, 1999.

[Ghédira and Jlifi, 2002] Ghédira K & Jlifi B. A Distrib-
uted Guided Genetic Algorithm for Max CSPs. Journal
of sciences and technologies of information (RSTI),

Jjournal of artificial intelligence series (RIA), volume 16
N°3/2002.

[Goldberg, 1989] Goldberg D.E. Genetic algorithms in
search, Optimisation, and Machine Learning, edition
Addison-Wesley.1989.

[Holland, 1975] Holland J. Adaptation in natural and artifi-
cial systems. Ann Arbor: The university of Michigan
Press, 1975.

[Lau and Tsang, 1998] Lau T.L and Tsang E.P.K. Solving
The Radio Link Frequency Assignment Problem With
The Guided Genetic Algorithm, In Proceedings of
NATO symposium on radio length frequency assign-
ment staring and conservation systems , UK. Albrg,
Denmark, october 1998.

[Michael et al., 1999] Michael B., Frank M. and Yi P.
Improved Multiprocesor Task scheduling Using Ge-
netic Algorithms, In Proceedings of the twelfth Interna-
tional Florida Al Research Society Conference
FLAIRS’ 99, AAAI press, p. 140-146, 3-5 May 1999.

[Schiex et al., 1995] Schiex T., Fargier H. and Verfaillie
G., Valued constrained satisfaction problems: hard and
easy problems. In proceeding of the 14" 1JCAI, Mont-
real, Canada. august 1995.

[Tsang, 1993] Tsang E.P.K. Foundations of Constraints
Sat isfaction. Academic Press Limited, 1993

[Tiourine et al.1995] Tiourine S. Hurkens C. and Lenstra
J. An overview of algorithmic approaches to frequency
assignment problems. CALMA Symposium Schevenin-
gen. 1995

67

A Generalization of Generalized Arc Consistency:
From Constraint Satisfaction to Constraint-Based Inference

Le Chang and Alan K. Mackworth
Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, B.C. Canada V6T 174
{lechang, mack} @cs.ubc.ca

Abstract

Arc consistency and generalized arc consistency
are two of the most important local consistency
techniques for binary and non-binary classic con-
straint satisfaction problems (CSPs). Based on
the Semiring CSP and Valued CSP frameworks,
arc consistency has also been extended to handle
soft constraint satisfaction problems such as fuzzy
CSP, probabilistic CSP, max CSP, and weighted
CSP. This extension is based on an idempotent or
strictly monotonic constraint combination operator.
In this paper, we present a weaker condition for
applying the generalized arc consistency approach
to constraint-based inference problems other than
classic and soft CSPs. These problems, including
probability inference and maximal likelihood de-
coding, can be processed using generalized arc con-
sistency enforcing approaches. We also show that,
given an additional monotonic condition on the cor-
responding semiring structure, some of constraint-
based inference problems can be approximately
preprocessed using generalized arc consistency al-
gorithms.

1 Introduction

The notion of local consistency plays a central role in con-
straint satisfaction. Given a constraint satisfaction problem
(CSP), local consistency can be characterized as deriving new
constraints based on local information. The derived con-
straints simplify the representation of the original CSP with-
out the loss of solutions. Among the family of local consis-
tency enforcing algorithms or filtering algorithms, arc con-
sistency [Mackworth., 1977a] is one of the most important
techniques for binary classic CSP. It is straightforward to ex-
tend it as generalized arc consistency [Mackworth, 1977b;
Mohr and Masini, 1988] to handle non-binary classic CSPs.
To represent over-constrained and preference-based prob-
lems in the real world, researchers in the constraint pro-
cessing community are increasingly interested in so-called
soft constraint satisfaction problems. Fuzzy CSP, probabilis-
tic CSP, max CSP, and weighted CSP have been proposed
to address these requirements. Semiring CSP [Bistarelli ef
al., 1997] and Valued CSP [Schiex et al., 1995] are two

68

of the most widely studied generalized frameworks. Based
on the two frameworks, arc consistency is also extended as
soft arc consistency to handle soft constraints [Schiex, 2000;
Cooper and Schiex, 2004; Bistarelli, 2004]. The sound-
ness and completeness of soft arc consistency, within the
Semiring CSP framework, relies on the idempotency of the
constraint combination operator. Moreover, the c-semiring
used in the Semiring CSP framework has the special require-
ment of idempotency of the additive operator. The Valued
CSP framework extends soft arc consistency in the Semir-
ing CSP framework. Soft arc consistency in Valued CSP de-
pends on the strictly monotonic constraint combination op-
erator or the fair valuation structure. For most soft con-
straint proposals, the success of soft arc consistency in the
Semiring CSP framework and the Valued CSP framework
has been proven [Schiex, 2000; Cooper and Schiex, 2004,
Bistarelli, 2004]. For problems from other fields that can-
not been as optimization problems, their representations in
the Semiring CSP and Valued CSP frameworks may not be
so straightforward. Preprocessing may be needed before ap-
plying the soft arc consistency enforcing approaches to solve
these problems.

Given the representation analogues of constraint-based in-
ference (CBI) problems, including probabilistic inferences,
decision-making under uncertainty, constraint satisfaction
problems, propositional satisfiability, decoding problems,
and possibility inferences, we present in this paper a weaker
condition for applying local consistency approaches to gen-
eral constraint-based inference problems based on the com-
mutative semiring structure. The weaker condition proposed
here depends only on the existence and property of the combi-
nation absorbing element and does not depend on other semir-
ing properties. More specifically, we reduce a CBI problem
to its underlying classic CSP [Cooper and Schiex, 2004] ac-
cording to the weaker condition. All traditional arc consis-
tency techniques, the most widely studied local consistency
approaches, then can be applied without modification.

We also show that, by satisfying an additional mono-
tonic condition on the semiring structure characterizing the
problem, generalized arc consistency can also be used as
an approximate local consistency enforcing technique for
CBI problems. Here we use a user-controlled threshold
value to approximate the combination absorbing element. A
similar approach can be found in [Rina and David, 2001;

Bistarelli et al., 2002; de Givry et al., 1997].

2 Background

There are two essential operators in real world CBI problems:
(1) combination, which corresponds to an aggregation of con-
straints, and (2) marginalization, which corresponds to focus-
ing a specified constraint to a narrower scope. These two
operators allow us to use algebraic structures to generalize
CBI problem representations. More specifically, both the ab-
stract CBI representation framework and the generalized arc
consistency approach in this paper are based on the semiring
structure, an important notion in abstract algebra. This sec-
tion introduces the definition of a semiring and related prop-
erties.

Definition 1 (Semiring) Let A be a set. Let ® and ® be two
closed binary operators defined on A. Here we define opera-
tor & as taking precedence over operator ®. S = (A, @, ®)
is a semiring if the operators satisfy the following axioms:

e Additive associativity: Va,b,c € A, (a ®b) Dc=a®
(b®c);

o Additive commutativity: Ya,b € A, a Db=b® a;

e Multiplicative associativity: Ya,b,c € A, (a®b) @ c=
a® (b®c);

o Left and right distributivity: Va,b,c € A, a® (b®c) =
a®@b®a®cand (b®c)@a=bRad®c®a.

To capture the computational properties of various infer-
ence approaches, we use commutative semiring, an extended
algebraic notion of semiring, to formally represent CBI prob-
lems in this paper.

Definition 2 (Commutative Semiring) A commutative
semiring S = (A, ®,R) is a semiring that satisfies the
Sfollowing additional conditions:

o Multiplicative commutativity: Ya,b € A, a®@b=b®a;

o Multiplicative identity: there exists a multiplicative
identity element 1 € A, suchthata ® 1 =1 a = a
forany a € A;

o Additive identity: there exists an additive identity ele-
ment 0 € A, such thata ® 0 = 0 ® a = a for any
a€A;

We will show in the following sections that the applica-
tion of local consistency techniques depend on the existence
of a multiplicative (or combination) absorbing element. It is
easy to show the uniqueness of the multiplicative absorbing
element given the multiplicative commutativity of a commu-
tative semiring, according the definition below.

Definition 3 (Multiplicative Absorbing Element) An ele-
ment ag, € A is the multiplicative absorbing element of a
commutative semiring S = (A, D, ®) ifaQag = ag Qa =
Qg for any element a € A.

Similarly the additive absorbing element «g is defined as:

Definition 4 (Additive Absorbing Element) An element
ag € A is the additive absorbing element of a semiring
S=(A,®,Q)ifa®ag = ag ® a = ag for any element
a € A.

69

Furthermore, we say that @ is idempotent if a ® a = a, and
® is idempotent if @ ® a = a. For some semirings, we can
define a partial order over the elements of S if @ is idempo-
tent.

Definition 5 (Partial Order <g [Bistarelli, 2004]) Given a
semiring S = (A, @, ®), there exist a partial order <g over
S such that a<gb, Va,b € A if:

o @ is idempotent;
e adb=0.

Given a partial order <g of semiring S = (A, @, ®), we
know that the additive identity element O is the minimum el-
ement of the ordering. In other words, 0<ga, Va € A. If the
additive absorbing g exists, it will be the maximum element
of the ordering according to the partial order definition. Also
note that the two conditions are only sufficient conditions for
the existence of a partial order. For example, the commuta-
tive semiring Sprob = (R U {0}, +, X) has a partial order
while does not satisfy the two conditions.

Finally, we define two more important properties for some
commutative semirings. The two properties are the founda-
tion of applying local consistency techniques to general CBI
problems.

Definition 6 (Eliminative Commutative Semiring) A com-
mutative semiring S = (A, @, ®) is eliminative if:

o There exists the multiplicative absorbing element avg €
A;

e gy = 0, in other words, the multiplicative absorbing
element is equal to the additive identity element.

Definition 7 (Monotonic Commutative Semiring) A com-
mutative semiring S = (A, ®, ®) is monotonic if:

o There exists a total order <g on A;

o The additive identity element 0 is the minimum element
w.rt. <g. In other words, 0<ga, Ya € A;

Additive Monotonic:
Ya,b,c € A;

Multiplicative Monotonic: a<gb implies a ® c<gb ® ¢,
Ya,b,c € A.

Table 1 displays some commutative semirings with their
identity and absorbing elements and properties.

In the following sections, we use bold letters to denote sets
of elements and regular letters to denote individual elements.
Given a set of elements X and an element Z € X, X_7 de-
notes the set of elements X \ {Z}. Given a value assignment
x of variable subset X and Y C X, x|y denotes the value
assignment projection of x onto the variable subset Y.

a<gb implies a ® c<gb @ ¢,

3 A Semiring-Based Unifying Framework for
CBI Problems

Constraint-Based Inference (CBI) is an umbrella term for var-
ious superficially different problems. It concerns the auto-
matic discovery of new constraints from a set of given con-
straints over individual entities. New constraints reveal undis-
covered properties about a set of entities. A constraint here is

[No. | S | @0 | ®1 | ag | ag | Eliminative | Monotonic |
1 | {true, false} | V, false | A, true | false | true Yes No
2 [0, 1] max, 0 min, 1 0 1 Yes Yes
3 RT U {0} mazx,0 | min, oo 0 00 Yes Yes
4 [0,1] max, 0 X, 1 0 1 Yes Yes
5 R~ U {0} max, —oo +,0 —0 0 Yes Yes
6 NT U {0} maz, 0 +,0 00 00 No Yes
7 RT U {0} +,0 x, 1 0 00 Yes Yes
8 RTU{0} maz, 0 x, 1 0 00 Yes Yes
9 NT U {0} min, oo +,0 00 0 Yes Yes
10 NT U {0} min, 0o x, 1 %) 0 Yes Yes

Table 1: Properties of Various Commutative Semirings

seen as a function that maps possible value assignments to a
specific value domain. Many practical problems from differ-
ent fields can be seen as constraint-based inference problems.
These problems cover a wide range of topics in computer sci-
ence research, including probabilistic inferences, decision-
making under uncertainty, constraint satisfaction problems
(CSP), propositional satisfiability problems (SAT), decoding
problems, and possibility inferences.

A CBI problem is defined in terms of a set of variables
with values in finite domains and a set of constraints on
these variables. We use commutative semirings to unify the
representation of constraint-based inference problems from
various disciplines into a single formal framework [Chang,
2005], based on the synthesis of the existing generalized rep-
resentation frameworks [Bistarelli et al., 1997; Schiex et al.,
1995; Kohlas and Shenoy, 2000] and algorithmic frameworks
[Dechter, 1996; Kask ef al., 2003; Aji and McEliece, 2000]
from different fields. Formally:

Definition 8 (Constraint-Based Inference (CBI) Problem)
A constraint-based inference (CBI) problem P is a tuple
(X,D,S,F) where:
o X ={Xy,---, X, } is a set of variables;
e D = {Dq,---,Dn} is a collection of finite domains,
one for each variable;

e S = (A ®,R) is a commutative semiring;

o F = {fi,---, fr} is a set of constraints. Each con-
straint is a function that maps value assignments of a
subset of variables to values in A

More specifically, we use Scope(f) to denote the subset
of variables that is in the scope of the constraint f. We use
Dx to denote the value domain of a variable X. Given a
variable X € Scope(f), Scope(f)_x denotes the variable
subset Scope(f) \ {X}. Then we define the two basic con-
straint operators as follows.

Definition 9 (The Combination of Two Constraints) The
combination of two constraints f1 and f5 is a new constraint
g = f1® fa, where Scope(g) = Scope(f1)U Scope(f2) and
9(W) = [1(Wscope(s1) ® f2(WScope(s)) for every value
assignment w of variables in Scope(g).

Definition 10 (The Marginalization of a Constraint)

The marginalization of X from a constraint f, where

70

X € Scope(f), is a new constraint g = @ f, where
Scope(g) = Scope(f)—x and g(w) = @zier flzi,w)
for every value assignment w of variables in Scope(g).

According to the definitions of the CBI problem and the ba-
sic constraint operators, we can define the abstract inference
and allocation tasks for a CBI problem.

Definition 11 (The Inference Task for a CBI Problem)
Given a subset of variables Z. {Z1,--,Z;} C X,
let' Y X \ Z, the inference task for a CBI problem
P = (X,D,S,F) is defined as computing:

gos1(Z) =P f

Y feF

(€]

Given a CBI problem P = (X, D, S, F), if ® is idempo-
tent, we can define the allocation task for a CBI problem.

Definition 12 (The Allocation Task for a CBI Problem)

Given a subset of variables Z = {Z1,---,Z;} C X,
let Y = X\ Z, the allocation task for a CBI problem
P (X,D,S,F) is to find a value assignment for the
marginalized variables Y, which leads to the result of
the corresponding inference task gopi(Z). Formally, we

compute:
y=agP) f

Y feF

2

where arg is a prefix of operator @®. In other words, arg ®
is an operator that returns arguments of the & operator. For
example, when ® = max, arg® = arg max that returns a
value assignment that leads to the maximal possible element
inS.

In general, ® is a combination operator in CBI problems
that combines a set of constraints into a constraint with a
larger scope; @y = @x\z is a marginalization operator
that projects a constraint over the scope X into its subset
Z, through enumerating all possible value assignments of
Y =X\Z

Many CBI problems from different disciplines can be em-
bedded into our semiring-based unifying framework [Chang,
2005]. These problems include the decision task and alloca-
tion task of CSP and SAT, Max SAT and Max CSP, Fuzzy
CSP, Weighted CSP, probability assessment, most probable

Input: A CBIproblem P = (X,D,S.F)
Output: A generalized arc consistency CBI problem P’ =
(X,D’,S,F)
1: Let Q be a queue of all the variable-constraint pairs
(X, f)
2: repeat
3: Pop the first variable-constraint pair (X, f) € Q
4: if REVISE(X, f) then
5: for each g € F with X € Scope(g) do
6: Remove all tuples in g with the value that is re-
moved from X

7: for each Z € Scope(g) and X # Z do
8: if Pair (7, g) ¢ Q then

0 Q:= QU{(Zg)}

10: end if

11: end for

12: end for

13: endif

14: until Q is empty
15: Return P’ := P

Figure 1: Generalization of Generalized Arc Consistency Al-
gorithm GGAC(P)

explanation (MPE), dynamic Bayesian networks (DBN), pos-
sibility inference with various ¢-norms, and maximum likeli-
hood decoding. In [Chang, 2005], we also generalized vari-
ous systematic inference approaches, including exact and ap-
proximate variable elimination, exact and approximate junc-
tion tree and variants, and loopy message propagation, into
this semiring-based unifying framework.

4 Applying Arc Consistency to CBI Problems

4.1 Arc Consistency and Eliminative Property

Here, we are particularly interested in CBI problems defined
on a commutative semiring S = (A, @, ®) with the elimi-
native property. More specifically, we propose in this paper
that local consistency techniques in constraint processing can
be extended to handle general CBI problems like probabil-
ity inference and maximum likelihood decoding, if the cor-
responding commutative semiring of the problem representa-
tion is eliminative. Formally, we define the generalized arc
consistency of a CBI problem as follows:

Definition 13 (A CBI Problem is GGAC) A CBI Problem
P = (X,D,S,F) with an eliminative commutative semir-
ing S is generalized arc consistent (GGAC) if: Vf € F,
VX € Scope(f), Vx € Dy, 3w, a value assignment of vari-
ables Scope(f)_y, s.t. f(z, W) # ag

Figure 1 shows a generalized version of generalized arc
consistency (GGAC) enforcing algorithm for a CBI problem
P = (X, D, S, F) with an eliminative commutative semiring
S. The procedure REVISE of GGAC is shown in Figure 2.

Theorem 1 (GGAC Enforces Generalized Arc Consistency)
Applying GGAC algorithm to a CBI problem
P = (X, D, S, F) with an eliminative commutative semiring
S = (A, ®,®) leads to a generalized arc consistent CBI
problem P’ = (X, D', S, F').

71

Input: A variable X € X and a constraint f € F
Output: TRUE if a value is removed from the domain of X
else FALSE
1: flag:=TRUFE
2: for each z € Dx do

3: for each value assignment w of Scope(f) _ do
4 if f(x,w) # ag then
5 flag .= FALSE
6: Break loop
7 end if
8 end for
9: if flag then
10: Remove x from D x
11: Return TRUE
12: endif
13: end for

14: Return FALSE

Figure 2: Procedure REVISE(X, f) for Eliminating a Do-
main Value from a Variable According to the Local Constraint

Proof: Assume there exists a constraint f/ € F’/ and a
variable X € Scopef’ that lead to generalized arc inconsis-
tency in P’. We know the pair (X, f’) must be popped from
the queue sometime since X and f’ are in P’. However, the
REVISE procedure ensures that every pair popped from the
queue is generalized arc consistent, which contradicts the as-
sumption. O

The equivalency of a CBI problem with an eliminative
commutative semiring and the generalized arc consistency
CBI problem yielded by GGAC algorithm in Figure 1 w.r.t.
the results of their inference tasks is proven by Theorem 2.

Theorem 2 (Closure of GGAC) Let P = (X,D,S,F) bea
CBI problem and the commutative semiring S = (A, ®, ®)
is eliminative. Let P’ = (X,D’, S, F') be the CBI problem
vielded by GGAC algorithm. For any subset of variables Z. C
X, the inference tasks for P and P’ are equivalent.

Proof: Let (X, f) be a pair that is revised by the pro-
cedure REVISE, where *+ € Dx is removed because
of generalized arc inconsistency. Consider the global
constraint g of the combination of all the constraints in
P = (X,D,S,F). We have g(X) = f(XLScope(f)) ®
ek 2f h(X | Scope(n))- More specifically, for any value
assignment u of variables X_x, we have g(z,u) =
F @ W, Scope) © e sy MW, Scope(sy) = 0 since
F (2, 0] geope()) = (g is the absorbing element of the oper-
ator ®. Given g(X = z,u) = ayg is also the identity element
of the operator @, the inference task of P (Equation 1) is to
compute:

gopi(Z) = @Q(XX*X)
= @(Q(X :.T,Xfx)@g(X ?éxafo))

Y
= @g(X#f,X,X)
Y

On the other hand, let us consider the global constraint g’
of P/ = (X,D',8,F"). We have: ¢'(X) = Qprcp f' =
g(X # x,X_ x) according to the GGAC algorithm in Figure
1. Then it is straightforward to get g 5;(Z) = By ¢'(X) =
gcpi(Z). O

In other words, Theorem 2 shows that when we detect that
there exists a constraint of a given CBI problem on an elim-
inative semiring structure that maps all its value assignments
with a specific value to the multiplicative absorbing element,
the value can be safely removed from the variable’s domain.
All value assignments with this value can be safely removed
from any constraint with this variable in its scope, without
modifying the computational result of the inference task.

Theorems 1 and 2 together imply the correctness of the
GGAC algorithm.

Theorem 3 (Time Complexity of GGAC) The worst case
time complexity of the GGAC algorithm in Figure 1 is O(r -
d*+1), where r is the number of constraints, d is the maximum
domain size, and k is the maximum scope size of constraints.

Proof: Basically the GGAC algorithm is a straightforward
revision of the generalized arc consistency enforcing algo-
rithm for classic non-binary CSPs [Mackworth, 1977b]. For
each constraint with at most k variables in its scope we need
d* checks. Each variable-constraint pair enters the queue at
most d times, so the total number of checks is O(r - d**1). O

‘We extend the application of Theorem 2 by introducing an-
other equivalency statement of the inference task for a CBI
problem.

Theorem 4 Solving the inference task of a CBI problem P =
(X,D,S,F) is equivalent to solving P’ (X,D,S,F),
where ' = F, U{f}, F, CFand f = ®h€F\Fp h.

Proof: Easy to prove given the definition of the inference
task of a CBI problem in Equation 1. O

Combining Theorem 2 and Theorem 4 lead to the local
consistency property of general CBI problems. We do not
have to focus on the original constraints in F of the CBI
problem P = (X,D,S,F). We can combine some origi-
nal constraints to a local constraint, then apply the conclusion
of Theorem 2 to refine the representation of the original CBI
problem.

If the allocation task can be defined on a CBI problem P =
(X,D, S, F), in other words, @ is idempotent, we have the
analogous result, as shown in Theorem 5.

Theorem 5 (Closure of GGAC for Allocation Task) Let

P = (X,D,S.F) be a CBI problem and the commutative
semiring S = (A, ®, ®) is eliminative. ® is idempotent. Let
P’ = (X,D’,S,F') be the CBI problem yielded by GGAC
algorithm. For any subset of interested variables Z. C X, we
have the allocation tasks for P and P’ are equivalent.

Proof: Similar to the proof of Theorem 2. It is easy to show
that the value x € D x cannot appear in any value assignment
that leads to the inference task’s result gopr(Z). O

Through shrinking the domain of a variable as well as
deleting possible value assignments of constraints, the size
of the original CBI problem is reduced by factor (|D x| —
1)/|D x|. Repeatedly applying the GGAC algorithm, we will

72

Input: A CBI problem P = (X,D,S,F) and a variable
subset Z of interest
Output: gcpi(Z) = EBX\Z ®feF !
I: P := GGAC(P)
2 LetY = X\ Z

3: Choose an elimination ordering 0 =< Y7,---, Yy > of
Y

4: fori = kto1ldo

5: F =0

6: foreach f € Fdo

7 if Y; € Scope(f) then

8: F :=F U{f}

9: F:=F\{f}

10: end if

11: end for

122 fhi= ®Yi ®feF/ !

132 F:=FU{f'}

14: for each X € Scope(f’) do
15: if REVISE(X, f”) then
16: P :=GGAC(P)

17: Break loop

18: end if

19: end for
20: end for

21: Return gopr(Z) := ®/6Ff

Figure 3: Generalization of Variable Elimination with Arc
Consistency Algorithm GVE-AC(P, Z)

get a series of equivalent smaller CBI problems. The general-
ized arc consistency enforcement provides opportunities for
performing inference more efficiently. We may either pre-
process the CBI problem then apply regular systematic or
stochastic inference approaches or simplify the problem dur-
ing the application of inference approaches. For example,
it is straightforward to incorporate generalized arc consis-
tency enforcing into a generalized variable elimination algo-
rithm [Chang, 20051, as shown in Figure 3, if a CBI problem
P = (X,D, S, F) has an eliminative commutative semiring
S.

4.2 Approximate Local Consistency and
Monotonic Property

Given a CBI problem P = (X, D, S, F), if the commuta-
tive semiring S = (A, ®, ®) is both eliminative and mono-
tonic, we can propose a scheme to enforce local consistency
approximately for this CBI problem. In other words, for an
eliminative and monotonic commutative semiring, we use an
element € € A to approximate the multiplicative absorbing
element a g that is equal to the additive identity element O for
an eliminative commutative semiring.

Formally, we define the generalized € arc consistency of a
CBI problem as follows:

Definition 14 (A CBI Problem is e-GGAC) A CBI Problem
P = (X, D, S, F) with an eliminative commutative semiring
S is € generalized arc consistent (e-GAC) if: Vf € F, VX €
Scope(f), Ve € Dx, 3w, a value assignment of variables

Scope(f)_, s.t. f(x,w)>ge

Input: A variable X € X, a constraint f € F, an element
e€A
QOutput: TRUE if a value is removed from the domain of X;
FALSE if else
1: flag:=TRUFE
2: for each z € Dx do
3: for each value assignment w of Scope(f) _ do

4: if e<gf(xz,w) then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then
10: Remove x from D x
11: Return TRUE
12: end if
13: end for

14: Return FALSE

Figure 4: Procedure e-REVISE(X, f,¢) for Eliminating a
Domain Value from a Variable According to the Approxima-
tion of a Local Constraint

An e-GGAC algorithm can be achieved by modifying
the REVISE procedure in Figure 2 to the procedure e-
REVISE(X, f,¢€) in Figure 4. It is straightforward to show
that the GGAC algorithm in Figure 1 with the procedure e-
REVISE leads to a e-GGAC CBI problem of the given CBI
Problem P = (X, D, S, F) with an eliminative and mono-
tonic commutative semiring S.

Theorem 6 show that e-GGAC algorithm can be used to
simplify the original CBI problem with a controlled thresh-
old. The simplified CBI problem gives a lower bound on the
estimation of the inference task.

Theorem 6 (Lower Bound Estimation of ¢-GGAC))

Given a CBI problem P = (X, D, S, F) with an eliminative
and monotonic commutative semiring S = (A, ®, ®), the e-
GGAC algorithm yields a CBI problem P’ = (X, D', S, F’)
that is an approximation of P w.rt. the results of their
inference tasks. For any value assignment z of interested
variables Z, the inference task of P', g p;(2), is a lower
bound of gopi(z), w.rt. the partial order <g of the
monotonic commutative semiring S.

Proof: Let (X, f) be a pair that is revised by the procedure
e-REVISE, where z € D x is removed because of ¢ general-
ized arc inconsistency. Consider the global constraint g of the
combination of all the constraints in P = (X, D, S, F). We
have g(X) = f(XLScope(f)) ® ®heF,h;éf ,L(XlScope(h))'
More specifically, for any value assignment u of vari-
ables X x, we have g(z,u) f(2,) scoper)) ®
®}L6F,h;éf h(uLScope(h))' Since ag SSf(l'a uLS'cope(f))SS6
and ® is monotonic, we have ag <gg(z,u).

Given that o is also the identity element of the operator
@ (S is eliminative) and @ is monotonic, the inference task
of P (Equation 1) is to compute:

gos1(Z) = Pe(X.X_x)
Y

73

= @ X =2,X_x)Dg(X #2,X_x))
Y

>s Poe(X #,X x)

Y

“)

On the other hand, let us consider the global con-
straint ¢’ of P/ = (X,D’,S,F’). We have: ¢'(X)
Qep [1 = 9(X # 2,X_x) according to the e-GGAC
algorithm. Then it is straightforward to get grz,(Z) =
D+ ¢ (X)<sgcpi(Z) for every value assignment of inter-
ested variable subset Z. O

Theorem 7 (Time Complexity of e-GGAC) The worst case
time complexity of the e-GGAC algorithm is O(r - d*+1),
where r is the number of constraints, d is the maximum do-
main size, and k is the maximum scope size of constraints.

Proof: The worst case time complexity of the e-GGAC
algorithm is the same as the GGAC algorithm, which is O(r -
dk+1)‘ O

S Arc Consistency in Probability Assessment:
An Example

Probability inference problems can be seen as constraint-
based inference by treating conditional probability distribu-
tions (CPDs) as soft constraints over variables. A Bayesian
network (BN) [Pearl, 1988] is a graphical representation for
probability inference under conditions of uncertainty. BN
is defined as a directed acyclic graph (DAG) where ver-
tices X {X1,---,X,} denote n random variables and
directed edges denote causal influences between variables.
D = {Dy,---,D,} is a collection of finite domains for
the variables. A set of conditional probability distributions
F = {f1, -, fu}, where f; = P(X;|Parents(X;)) is at-
tached to each variable (vertex) X ;. Then the probability dis-
tribution over X is given by P(X) =[]/, fi-

As a fundamental problem of probability inference, the
probability assessment problem in Bayesian networks com-
putes the posterior marginal probability of a subset of vari-
ables, given values for some variables as known evidence.
We show in [Chang, 2005] that the probability assessment
problem can be represented as a CBI problem using the com-
mutative semiring Sprob = (R U {0}, +, X). We show
in this section that our GGAC and ¢-GGAC enforcing algo-
rithms can preprocess the probability assessment problem ef-
ficiently. It is easy to show that g = 0 = 0 and Sprob is
monotonic.

The Bayesian network used here is the Insurance network
from the Bayesian network Repository [Friedman er al., 1.
The network has 27 variables and 27 non-binary constraints
(CPDs). In our experiments, we randomly choose two vari-
ables as observed. The e-GGAC algorithm is used to prepro-
cess the problem. The junction tree algorithm in Lauritzen-
Spiegelhalter architecture [Lauritzen and Spiegelhalter, 1988]
is used to infer the marginal probability of every unobserved
variable. We compare the number of binary operations re-
quired for probability assessment after using the e-GGAC al-
gorithm (shown as a fraction of the number required without
e-GGAC) and the resultant error of the marginal probability

100 T T T T
B c. ge of # Binary O| i
—+— Average Errors of inalizati

9=

80 - 10.8
b , ‘ i

60F - : :]

o
o
Average Error

50 B : : 4
a0 3 0.4

30 e —

0.3

Number of Operations (%)

201

! I 1
0.015 0.02 0.025

€

0 0.005 0.01

Figure 5: The number of binary operations required for prob-
ability assessment after using the e-GGAC algorithm (shown
as a fraction of the number required without e-GGAC) and
the resultant error of the marginal probability for the Insur-
ance network as a function of €

for the Insurance network as a function of € in Figure 5. At
each value of ¢, we collect data for 5 runs. Results of our ex-
periments are shown in Figure 5. It is clear that € controls the
tradeoff of the precision and the speed of the inference.

6 Conclusion and Future Works

As the most important local consistency techniques in con-
straint programming, arc consistency [Mackworth., 1977al
and its non-binary version, generalized arc consistency
[Mackworth, 1977b; Mohr and Masini, 1988], are widely
studied. The soft arc consistency algorithms [Schiex, 2000;
Cooper and Schiex, 2004; Bistarelli, 2004] in the Semiring
CSP [Bistarelli et al., 1997] and Valued CSP [Schiex et al.,
1995] frameworks extend successfully the notion of arc con-
sistency to the soft constraint processing. As the first result of
this paper, we propose a weaker condition of applying gen-
eralized arc consistency enforcing techniques to a broader
coverage of constraint-based inference problems, based on a
semiring-based unified framework for CBI problems [Chang,
2005]. The weaker condition proposed here depends only on
the existence and property of the combination absorbing ele-
ment and does not depend on other semiring properties. We
also present a concept of e-GGAC that simplifies the repre-
sentation of a CBI problem approximately. We show in this
paper that the approximate inference task is a lower bound of
the exact one w.r.t the total ordering of values in the commu-
tative semiring structures. We also presented several general-
ized arc consistency enforcing algorithms in this paper. The
worst time complexity of our generalization of generalized
arc consistency enforcing algorithm is O(r - d**1), where r
is the number of constraints, d is the maximum domain size,
and k is the maximum scope size of constraints. Our gener-
alization of generalized arc consistency provides opportuni-
ties to researchers in the constraint programming community
to extend their knowledge of local consistency enforcing ap-

74

proaches to other constraint-based inference problems such
as probability inference and decoding problems.

Recently, many stronger local consistencies, such as di-
rectional arc consistency [Cooper and Schiex, 2004], full di-
rectional arc consistency [Larrosa and Schiex, 2003] and ex-
istential arc consistency [de Givry et al., 2005], as well as
Soft Arc Consistency [Cooper and Schiex, 2004] have been
studied to solve Weighted CSP, Max-SAT, and Bayesian net-
works [Larrosa et al., 2005]. We intend to compare the
GGAC and e-GGAC with these stronger local consistencies
in handling different probability assessment problems in fu-
ture work. Theoretical analysis of error bounds introduced
by e-GGAC algorithm is another research direction following
the results of this paper.

Acknowledgments

We thank the anonymous reviewers for their comments on
this paper. This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada and the
Institute for Robotics and Intelligent Systems. Alan K. Mack-
worth holds a Canada Research Chair.

References

[Aji and McEliece, 2000] Srinivas M. Aji and Robert J.
McEliece. The generalized distributive law. IEEE Trans-
actions on Information Theory, 46:325-343, 2000.

[Bistarelli et al., 1997] Stefano Bistarelli, Ugo Montanari,
and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. J. ACM, 44(2):201-236, 1997.

[Bistarelli et al., 2002] Stefano Bistarelli, Philippe
Codognet, and Francesca Rossi. Abstracting soft
constraints: framework, properties, examples. Artif.
Intell., 139(2):175-211, 2002.

[Bistarelli, 2004] Stefano Bistarelli. Semirings for Soft Con-
straint Solving and Programming. Springer-Verlag, 2004.

[Chang, 2005] Le Chang. Generalized constraint-based in-
ference. Master’s thesis, Dept. of Computer Science, Univ.
of British Columbia, 2005.

[Cooper and Schiex, 2004] Martin Cooper and Thomas
Schiex. Arc consistency for soft constraints. Artificial
Intelligence, 154(1-2):199-227, 2004.

[de Givry er al., 1997] Simon de Givry, Gérard Verfaillie,
and Thomas Schiex. Bounding the optimum of constraint

optimization problems. In Proceedings of CP97, pages
405-419, 1997.

[de Givry et al., 2005] Simon de Givry, Matthias Zytnicki,
Federico Heras, and Javier Larrosa. Existential arc con-
sistency: Getting closer to full arc consistency in weighted
csps. In Proceedings of 1JCAI-05, Edinburgh, Scotland,
2005.

[Dechter, 1996] Rina Dechter. Bucket elimination: A unify-
ing framework for probabilistic inference. In 12th Conf.
on Uncertainty in Artificial Intelligence, pages 211-219,
1996.

[Friedman et al.,] N. Friedman, M. Goldszmidt, D. Heck-
erman, and S. Russell. Bayesian network repository,
http://www.cs.huji.ac.il/labs/compbio/repository/.

[Kask et al., 2003] Kalev Kask, Rina Dechter, and Javier
Larrosa. Unifying cluster-tree decompositions for auto-
mated reasoning. Submitted to the AlJ, June 2003.

[Kohlas and Shenoy, 2000] J. Kohlas and P.P. Shenoy. Com-
putation in valuation algebras. In Handbook of Defeasible
Reasoning and Uncertainty Management Systems, Volume
5: Algorithms for Uncertainty and Defeasible Reasoning,
pages 5—40. Kluwer, Dordrecht, 2000.

[Larrosa and Schiex, 2003] Javier Larrosa and Thomas
Schiex. In the quest of the best form of local consistency
for weighted csp. In Proceedings of IJCAI-03, pages
239-244, Acapulco, Mexico, 2003.

[Larrosa et al., 2005] Javier Larrosa, Thomas Schiex, Fed-
erico Heras, and Simon de Givry. Toolbar: a generic
solver for WCSP, Max-SAT, and Bayesian networks,
http://www.inra.fr/bia/t/degivry/toolbar.pdf, 2005.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J.
Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert sys-
tems. Journal of the Royal Statistical Society, Series B,
50:157-224, 1988.

[Mackworth., 1977a] Alan K. Mackworth. Consistency in
networks of relations. Artificial Intelligence, 8:99-118,
1977.

[Mackworth, 1977b] Alan K. Mackworth. On reading sketch
maps. In IJCAI77, pages 598-606, 1977.

[Mohr and Masini, 1988] Roger Mohr and G. Masini. Good
old discrete relaxation. In European Conference on Artifi-
cial Intelligence, pages 651-656, 1988.

[Pearl, 19881 Judea Pearl. Probabilistic reasoning in intel-
ligent systems: networks of plausible inference. Morgan
Kaufmann Publishers Inc., 1988.

[Rina and David, 2001] Dechter Rina and Larkin David. Hy-
brid processing of beliefs and constraints. In Proceedings
of the 17th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-01), pages 112-119, San Francisco, CA,
2001. Morgan Kaufmann Publishers.

[Schiex et al., 1995] Thomas Schiex, Hélene Fargier, and
Gerard Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In IJCAI95, pages 631-637,
Montreal, 1995.

[Schiex, 2000] Thomas Schiex. Arc consistency for soft con-
straints. In Proceedings of CP2000, pages 411-424, 2000.

75

1

On therelation among Open, I nteractive and Dynamic CSP*

Santiago Macho-Gonzalez and Pedro M eseguer
Institut d’Investigacio en Intel.ligencia Artificial, &IC
Campus UAB, 08193 Bellaterra, Spain
{smacho,pedrp@iiia.csic.es

Abstract

In previous work, the notions of Open, Interac-
tive and Dynamic CSP have been independently
defined. Open constraint satisfaction is a new
model where values are incrementally gathered
during problem solving. Domains are assumed un-
bounded. Interactive constraint satisfaction also
deals with partially known domains, assuming im-
plicitly that domains are finiteDynamicconstraint
satisfaction deals with problems of dynamic na-
ture (as configuration design or model composi-
tion) where variables, domains and constraints are
subject to frequent changes. In this paper, we study
the relationship between these three models, show-
ing that Interactive CSP can be seen as a particular
case of Open and Dynamic. We have applied two
algorithms, FOCSP (developed for Open) and LC
(developed for Dynamic) to solve Interactive CSP.
We provide experimental results of this evaluation.

I ntroduction

while in Open CSP domains remain unbounded. As conse-
quence, Interactive CSP appears to be included in the Open
CSP framework.

In a dynamic environment, tasks usually change. As a con-
sequence, CSPs that represent these tasks evolve, and vari-
ables, domains and constraints may change over time. The
Dynamic CSP modelDechter and Dechter, 19B&as de-
fined to solve CSP in such dynamic environments.

This paper brings a review of the Open, Interactive and
Dynamic CSP approaches and their relationship. In the next
sections, we will see that an Interactive CSP can be seen as
a particular case of Open CSP. In addition, Interactive CSP
can be seen as a particular case of Dynamic CSP. Therefore,
algorithms developed for Open or Dynamic models could be
used for solving Interactive CSP.

The remain of this paper is structured as follows. In Sec-
tion 2 we give a brief description of the Open CSP model,
including the FOCSP solving algorithm. In Section 3 we give
a brief description of the Interactive CSP model, showirag th
it can be seen as a particular case of Open CSP. Section 4 con-
tains an overview of the Dynamic CSP approach. In Section
5 we indicate the similarities and differences between them

With the increasing use of Internet, many problem-solvingshowing that an Interactive CSP can be seen as a Dynamic
tasks such as resource allocation, scheduling, plannidj, & CSPp. In Section 6, we present the LC algorithm, initially de-
configuration pose themselves in apensetting involving veloped for Dynamic CSP, that now can be applied to Inter-
multiple participants. Existing search-based problefwisg active CSP. Experimental results on the use of FOCSP and
techniques are based on the closed-world assumption and ree algorithms on Interactive CSP instances appear in Sec-

quire that all options be collected before problem-solvingtion 7. Finally, Section 8 contains some conclusions areslin
starts. The approach of turning the web into a virtual degaba for further research.

often leads to gathering more information than needed to
solve the problem.
In previous work[Faltings and Macho-Gonzalez, 2005; 2 Open CSP

2003, a new model called Open CSP was defined, as a Wa¥here are real problems which are difficult to solve with the

to integrate information gathering and problem solvingisTh ¢asgical CSP approach of collecting all values beforeisglv

model starts solving a C.SP from_ a state where all doma_'nfhe problem. For example in configuration, such as configur-
are possibly empty, and it dynamically asks for values while,g 3 pc or configuring a trip. On the web there are may data
the CSP has not been solved. This process stops as S00n aggyces that each apply values for each component. Query all
solution is found, optimising the number of values quer®d t o is not feasible, we are interested just in querying unti
find the solution. a solution is found. Other examples are when the number of

With a similar motivation, the Interactive CSP model was . ;
. ' . .) options can become infinitely large if they are generated on
proposed?], to deal with problems with partially defined do- yemand for example if you configure an investment portfo-

mains. It is implicitly assumed that the domains are finite,jiq v can get certain investment products in an unbounded

*“Partially supported by the Spanish REPLI project TIC-2002-number of varieties. Composing web services, configuring a
04470-C03-03. supply chain (asking for offers from suppliers until you bav

76

- function FOCSP(X, D, C
CSP |51 i<—1,k<—1()
Solver repeat {backtrack search
if exhausted(d;) {backtrack then
reset — values(d;),i «— i —1
else

@ k — maz(k,i), z; — nextvalue(d;)
IS3

more(v2,(v2,v4))

MEDIATOR

«—

options(v2,{...})
options((v2,v4),{...})

if consistent({z1..z;})theni «—i+1
if ¢ > nthenreturn {z1, ..., z,} as a solution;
— untili =0
- Is4 if exhausted(dy)
if (Vi € 1..k — 1)exhausted(d;) then return failure
else
nv « more(zy)
Figure 1:Elements of an open constraint satisfaction problem if nv # nomore then dy, < nv U d,
reorder variables so thai. becomese; (relative order of

istent ol | f bl fiztwh others remains the same)
consistent plan),..... are more examples of problems far return FOCSP(X,D,C)

the classical CSP approach is unfeasible.

To address these problems, the Open CSP appi&adt))
ings and Macho-Gonzalez, 2005; 20G2as proposed. In Figure 2: The FOCSP algorithm.
Figure 1 we show the important elements that occur in an
open setting. The problem-solving process is modelled ab&ivhen the current instand@S P
stractly as the solution of a constraint satisfaction peobl
The choices that make up domains and permitted tuples
the CSP are distributed throughout an unbounded network
information serverg Sy, 1.5, ..., and accessed through a me-
diator (Wiederhold and Genesereth, 1997

More precisely, arOpen constraint satisfaction problem

(7) has no solution. In that
ase, it usually contains a smaller subproblem that already
ﬁas no solution, and@'S P (i) can be made solvable only by
reating a solution to that subproblem. Information gather
ing thus should focus on the variables in the subproblem, as
follows. Letz; be the deepest variable that backtracking has

- . reached when trying to solv&S P(7), following a static vari-
(Open CSHFaltings and Macho-Gonzalez, 2005; 2902 able orderingz; is called thefailed variable and it is proved

a possibly infinite sequenc€SP(0), CSP(1),..) of CSP /it belon ; ;
‘ - . ; gs to the smallest subproblem without solution
instances. An instance CSP(s the tuple(V; D(i), C(i)) insideC'SP(i) [Faltings and Macho-Gonzalez, 2Q02fter

where, a failed search, an additional value is requested for that va
o V ={vy,v9,...,v,} is aset ofn variables. able, that now is considered first in the static variable onde
e D(i) = {D1(i), Ds(i), .., Dn(i)} is the set of domains and the search restarts. .
for CSP(i) where variable,, takes values itDy,(i). Do- _ In [Faltings and Macho-Gonzalez, 2Q02 is shown that
mains grow monotonically with, Dy (i) C Dy(i + 1) if the currentinstanc€’'S P () contains a minimal unsolvable
for all k. B subproblem, the FOCSP algorithm will either solve it or fall
« CG) = {c1(i)ca(d),. .., cr(i)} s a set ofr con- into a mode where it cycles through the variables in this min-

imal subproblem and gathers values for each of them. This
allows showing that the algorithm is complete even in the
presence of unbounded domains.

straints. A constraint(i) involves a sequence of vari-
ablesvar(c(i)) = (vp,...,v,) denominated its scope.
The extension of(i) is the relationrel(c(i)) defined

onwvar(c(4)), formed by the permitted value tuples on i
the constraint scope. Relations grow monotonically,3 | nteractive CSP

rel(cx(i)) € rel(cx(i+ 1)) for all k. Very related with Open CSP is the Interactive CSP model

A solutionis a set of value assignments involving all vari- introduced by{?]. An Interactive CSP (ICSP) has partially
ables such that for some each value belongs to the corre- known domains for its variables. When solving an Interac-
sponding domain irD(:) and all value combinations are al- tive CSP, new values are requested, until finding a solution o
lowed by the constraint§'(i) of C'SP(i). Solving an Open proving that no solution exists. It is implicitly assumedth
CSP requires an integration of search and information gathevariable domains are finite.
ing. It starts from a state where all domains are empty, amd th More precisely, an Interactive CSP is defined as a triple
first action is to find values that fill the domains and allow the(V, D, C'), whereV is a set ofn variables,D is a collection
search to start. As long as the available information doés naf domains and”' is a set of constraints. The new elements
include enough values to make the CSP solvable, the probletn consider in the Interactive CSP model are interactive do-
solver initiates further information gathering request®b- mains and constraints. Anteractive domairD; (the domain
tain additional values. The process stops as soon as amsolutiof variablev;) has two partsD; = Known; U Unknown;
is found. Known, is the set of available values foy, while Unknown

In [Faltings and Macho-Gonzalez, 2d02was developed as the set of not yet available values fgr An interactive
the FOCSP algorithm for solving Open CSP. It appears in Figeonstraintis a constraint including in its scope one or more
ure 2. Itis based on the idea that we gather new values onlyariables with interactive domains, so not all value corabin

7

tions are known. As soon as new values are known for thesthe sequence. The first instance is solved from scratch, and
variables, new constraint tuples are added to the constrain it is always possible to apply this method to any subsequent
Formally, an Interactive CSP can be seen as a particuiene. However, this approach presents two drawbacks,
lar case of Open CSP, where values for interactive domains
are obtained during the solving process. In this sense, we
could define Interactive CSP as a finite sequef€8P(0),
CSP(1),...) of CSP instances. An instance CHHé the
tuple (V, D(i), C(i)) defined as in the Open CSP case. We e Instability. Solving instances from scratch may result
stress two properties her@y, (i) C Dy (i + 1) for all k and in the fact that successive solutions are far or unrelated.
rel(ck(i)) C rel(ck(i + 1)) for all k. This may be unpleasant or undesired if some kind of
The main difference between Interactive and Open CSP continuity among solutions is required.
models consists on the assumed domain size. In Open CSP
domains are unbounded, so the sequence of CSP instanceﬁ
may be infinite. This is not the case for Interactive CSP, wher

¢ Inefficiency. Solving an instance from scratch could re-
peat much of the work done to solve previous instances,
which may be unacceptable for some applications.

To avoid these drawbacks, when solving an instance we
th at reusing as much as possible the solving episodes
domains are assumed finite so the sequence of CSP instan of previous instances. Obviously, the difficult case appear
is necessarily finite ffen constraints are added between consecutive instances,
L . . . _..since adding a new constraint could invalidate the previ-
In the Interactive CSP model, it is possible to use heuristiy \s'soytion. Removing constraints between consecutive in

cally some of the k.nown constraints to guide the acquisitiorgtances does not cause any problem, because the previous so-
of new values. This feature depends on the concrete appliiion is still valid.

cation to solve, but no specific condition is requested on the Several algorithms were developed for solving Dynamic

basic model. In addition, some examples suggest the use Of@SPs They can be divided into two groups:

high-level mediator, able to acquire all values consisiétit ‘ '

a specific assignment. This feature could be seen as a way toe Remember what has been discovered (Recording no-

implement the value acquisition process. goods) This method is based on recording any no-good
Some specific solving algorithms have been proposed for ~ and its justification, in order to reuse it in the framework

this model. The forward checking algorithm is modified so of any new CSP (with a new constraint or without a con-

that when domains become empty, it launches a specific re- straint) to prevent failures. The method is explained in

quest for additional values that would satisfy the constrai [Schiex and Verfaillie, 1994; Jiareg al,, 1994.

on that variable. In earlier Wor[((iucch|aragt al, 1993)*_ e Local repair methodsThis method starts from any pre-

the same authors also show how arc consistency algorithms = i 5 consistent assignment (that could be a soiution of

can be adapted with the right dependency structures so that q former CSP) and repairing it, using a sequence of

consistency can be adapted to values that might be added 55| modifications. The method is based on the charac-

later. Interactive CSP uses constraint propagation toceedu teristics of a dynamic environment, exposed before. An

the search space by pruning the assignments which cannot ap- algorithm based on this method cén be found\der-

pear in any consistent solution and to guide the searchby gen ¢ ijiie and Schiex 1994

erating new constraints at each g@pcchiaraet al,, 1997. '

An interesting application for ICSP is defined[@ucchiara . .

et al, 1997 where ICSP is used for object recognition and® | nteractive CSP as Dynamic CSP

identification in a visual system. An Interactive CSP can be seen as a particular case of Dy-
namic CSP, as follows. In Interactive CSP, the operation tha
4 Dynamic CSP passes from a problem instance to the next onacijuire

]) .) ... value getting a new value for a particular variable. Then,

As mentioned before, many interesting problems in Artificia the variable domain is extended with that value, and the rela
Intelligence such as scheduling, planning and configumatio tional part of constraints involving such variable are egeal
can be modelled as CSP. But in many situations there is nQfjith the allowed tuples that contain the new value. This pro-
complete knowledge of the environment at early stage of th@ess can be modelled in Dynamic CSP as follows. Adding a
problem; variables and constraints could evolve overthe.ti ney value is equivalent to removing a unary constraint which

A Dynamic constraint satisfaction problerfDynamic disallowed this value in the domain of the corresponding var
CSP) [Bellicha, 1993; Bessiére, 1991; 1992; Dechter andaple, so that value is now available. Enlarging the conssai
Dechter, 198Bis a finite sequencéCSP(0), CSP(1),.) of jn which the variable is involved is equivalent to replacirey

CSP instances, where each C§Rijffers from the previous moving plus adding) the previous constraints by the enthrge
one by the addition or removal of some constraints. Itis easynes. This simple idea is depicted in Table 1.

to see that all possible changes of a CSP can be expressed in
terms of constraint additions or removals. Implicitlystisu- i _
ally assumed that (i) changes between consecutive instance!NteractiveCSP | Dynamic CSP |
are local, that is, they do not affect the whole CSP, and (ii) Acquirevalue Remove unary constraint that forbidelue

solutions of consecutive instances are not very diffetbety Replace (remove and add) some constrajnts
differ in a few number of values. _ _
Solving a Dynamic CSP implies solving each instance of Table 1: Interactive CSP vs Dynamic CSP.

78

Vigb the beginning. The existence of dummy values which are re-
D placed by real values as search progresses is not a big issue
for the standard Dynamic CSP model, because the domain

V1

: # ° # ° size does not change, and dummy values are replaced by real
H |:> ones only once. This is the only extension that the standard
a Dynamic CSP model requires to include Interactive CSP. We
IcsP b Dynamic CSP call this new model th&xtended Dynamic CSFhe relation
¢ between these models appears in Figure 4.

Now, we can apply Dynamic CSP algorithms to solve In-
teractive CSP problems. In the next Section, we take thé loca
vi ?‘" ¢ changes algorithifVerfaillie and Schiex, 1994 a specific al-

; a a gorithm for Dynamic CSP, and we apply it for Interactive CSP
°7’-’_¢ |:> # solving, obtaining interesting results.
(b,a)
a

6 ThelLC algorithm

We have applied the local changes (LC) algorifirarfaillie

. . . and Schiex, 1994 originally developed for solving Dynamic
Figure 3:From an Interactive CSP to a Dynamic CSP CSP, to solve Interactive CSP instances. The LC algorithm
appears in Figure 5.

This algorithm is based on the following idea: instead of
solving from scratch the Interactive CSP every time a new
Salue is added (i.e. to = nwv) during the solving process (as
described in the FOCSP algorithm), it is possible to solee th
Interactive CSP removing all variables whose assignment is
incompatible withv = nv and entering again these variables
Sne after another without modifying the assignmert nv.

The basic idea is to extend the compatible assignment
nv and the compatible variables, into an assignment which
involves all variables.

The LC algorithm of Figure 5 works as follow% is the

ICSP b Dynamic CSP
c

An example of this reformulation appears in Figure 3.
Let us suppose that an Interactive CSP has two variabl
{V1,V2} such thatD1 = {a,b,c} andD2 = {a}. Thereis
an inequality constraint between them. If vatuie known for
V1 andV2, the problem can be transformed into a Dynamic
CSP with the same variables, two new unary constraints (on
for each remaining value df 1, V1 # b, V1 # ¢), and the
inequality constraint. In this example, acquiring a neweal
b for the variablel’1 of the Interactive CSP is equivalent to
relax the unary constraiiffl = b in the Dynamic CSP, and

adding the paih, a) as permitted in the binary constraint. set of variables with an assignment which we will not modify,

At first glance one may think that this approach requires;; i o et of variables with an assignment we could modify
to know all the values of the domains from the beginning, to

. - h —~andVj is the set of unassigned variables. The initial call to the
form the variable domains of the Dynamic CSP. However, thi Igorithm isLC(, 0, X) where X is the set of variables of
is not the case. It is enough to know the maximum number o

val for h variabl for v-. Initially. the oroblem he Interactive CSP. Functidnc- vari abl es(14, V,, V3)
alues for each variable, saly for ;. Initially, the proble returnstrue if there exists a consistent assignment for all
state is as follows. The domain of is a set ofd; dummy

values{dummy. ..., dummyg }. When valuen is found, the variables, without modifying the assignmentlaf and

. . - fal therwise. Function c-vari abl e re-
it replaces a dummy value, saymmy,, in the variable do- €0 € onc bl e(Vs, V5, v, d)

i (that b i J d turnstrue if there is a consistent assignment for variables
_mf#]n (tha ?OV_Vt ecﬁThe.[SL VT?;IW’ o “mm{%di})’ i?;Er Vi U Va U {v} without modifying the assignment &f;, and
Inthe constraints. IS point, theé changes In the COMESA 556 gtherwise. This function includes the query to get new
mentioned in Table 1 are performed.

. X - X . values for a given variable, in the first four lines of the func
Strictly speakmg, this model is an extension of the stamhdar 1ion 1f the domain of is exhausted (empty), a new value is
model of Dynamic CSP, where all domains are known fromyequested through the callore(v). If the returned value is
nomore, it means that no more values are available for vari-
ablev. In that case, the function returfeslse Otherwise,
the new value enters in the variable domain and the process
continues. Functiohc- val ue(V4, Vs, v, val) returnstrue
if there is an assignment for variables ¥ such that this
assignment plus the assignmentiaf plus (v, val) form a
consistent assignment. To do this, this function expldnes t
possible assignments fé%, keepingVy and (v, val) fixed,
through the call c- vari abl es(Vy; Uwv, V2 — V3, V3).
. Theorem. Supposed that an Interactive CSP is solvable
R (resp. insolvable). Then, calling the LC algorithm with the
statemenLC (), 0, X) (whereX is the set of variables of the
Figure 4: Relation between Interactive CSP and Dynamicproblem) returns a solution (resp. failure) of the Interaet
CSP CSP. Thus, the algorithm is complete.

,."'I’E‘xtendedDynamic CSP

79

function| ¢ (X, D, C): bool ean;
returnl c-vari abl es(9, 0, X);

function| c-vari abl es(V4, V5, V3): bool ean;
if V3 = 0 then return true;
else
v« select —var(V3);
d — domain(v);
if | c-vari abl e(Vq, Vo, v,d)

thenreturnl c- vari abl es(V4, Vo U {v}, V5 — {v});

elsereturn false;

function| c-vari abl e(V4, Vo, v,d,): bool ean;
if exhausted(d) then
nv < more(v);
if nv = nomore then return false;
esed — {nv};
v« select — val(d);
save — assig(Va);
if | c-val ue(V4, Vo, v, val) then return true;
else
restore — assig(Va);
returnl c-vari abl e(V4, Vo, v,d — {val});

function| c- val ue(V1, V5, v, val): bool ean;
Ay « assignment(V1);
A1 — assignment(Vy U Va);
if Ay U{(v,val} is inconsistenthen return false;
elseif A1 U {(v,val} is consistenthen return true;
else
V3 < nonempty subset df; such that
Ajos — assignment(Vy3 U Va — V3) and
Az23 U {(v,val} is consistent
unassign — vars(Vs);
return| c-vari abl es(Vy U {v}, Vo — V3, V3);

Figure 5: The LC algorithm.

<y 2
b # 3 a # ;

C
V1=b, V2=c, V3=a, V4 =a V1=b, V2=a, V3=b

@) (b)
Figure 6: Examples of the LC algorithm.

mentAc U {V4 = b}1. Figure 6(b) shows another exam-
ple. The CSP instance of the Interactive CSP has no solution
with the inconsistent assignmevitt = b, V2 = a,V3 = b.

If we decide to add a new value for variablés, lets say

V3 = ¢, this value is consistent with the previous assignment
A={V1="5b,V2 = a}, thus we have a solution.

7 Experimental Results

We compared the performance of the LC algorithm against
the FOCSP algorithm described [fraltings and Macho-
Gonzalez, 2005; 2092 The FOCSP is based on the idea of
using a failed CSP search to determine for which variable ad-
ditional values should be collected. The idea is that when a
CSP has no solution, there exists an unsolvable subproblem
that causes the inconsistency. If we want to make solvable th
CSP we need to add a value to one of the variables of this un-
solvable subproblem. We can identify a variable that betong
to this subproblem using a failed backtracking. This vdeab
is calledfailed variable

To compare the algorithms, we are interested in the number
of checks needed to solve the Interactive CSP and the number
of accesses to information sources until a solution is found
We generated 100000 random Interactive CSPs, with between
5 to 18 variables and 2 to 7 values per variable, with random

constraints, forcing the graph to be at least connected tand a
most complete.

Figure 7 shows the number of checks against the number of
ariables, studying the performance of the algorithms when
e increase the number of variables. It is shown that the
C algorithm has a much better performance that the FOCSP
algorithm. The FOCSP algorithm redoes again the same
solving process every time a new value is added, while the
LC algorithm uses the information from the previous assign-
ments (compatible assignments, incompatible assigninents
for solving without solving again the CSP from scratch.

Figure 8 shows the number of queries against the num-
er of variables. We can see that LC and FOCSP algorithms
ave a much better performance than the classical approach

Proof: The LC algorithm is described ifVerfaillie and
Schiex, 1994 where the authors give a proof of its correct-
ness, completeness and termination for known variable do-
mains. Because the LC algorithm works with a subset ot
the complete variable domain (or the complete domain in th
worst case), then the proof is still valid.

Figure 6 shows two examples of how the LC algorithm
works. In figure 6(a), we have a CSP instance in an Inter
active CSP without solution with the inconsistent assignmime
V1="5bV2=1¢V3=aV4=a. If wedecidetoadda
new value to variabl® 4 then we remove all the assignments
of the variables which are inconsistent with the new valee i.
V4 = b. Next step is reassign these variables one after ar!_?l
other without modifying the assignment. In figure 6(a) hgvin
the new assignmenit4 = b, the set of compatible assign- 1|, the example of figure 6(a) this step is not enough for sglvin
ments isAc = {V2 = b, V3 = a} and the set of incompati- the problem, because there is not any assignme¥itiafompatible
ble assignments idyc = {V1 = b}. Next step is to assign with A1U{V4 = b}. The algorithm will decide to repeat the process
a new value fol/1 which will be compatible with the assign- adding a new value to variablé1

80

250 8 Conclusions

In this paper we have analyzed the relation among Open, In-
teractive and Dynamic CSP. These models, different from the
classical CSP, have appeared in different moments modivate
by different applications. We have shown that Interacti&C
can be seen as a particular class of Open CSP (restricted to
finite domains). In addition, we have also shown that In-
teractive CSP can be seen as a particular class of Dynamic
CSP (strictly speaking, a class of extended Dynamic CSP).
As consequence, algorithms used to solve Open CSP and Dy-
namic CSP can be used to solve Open CSP. Based on this
relationship, we have applied the FOCSP algorithm, (iljtia
developed for Open CSP) and the LC algorithm algorithm
. (initially developed for Dynamic CSP), to solve Interaetiv
6 8 10 12 14 16 18 CSP instances. We have found that the LC algorithm reduces
Num Variables dramatically the number of checks with respect to FOCSP,
just slightly increasing the number of queries needed to find
Figure 7: Comparison of the number of checks against thea solution.
number of variables We think that this relationship between Open, Interactive
and Dynamic CSP is a promising avenue for research, that
we will further investigate in the near future.

200

150 f

Checks

100

50

80

Lc —
ol Focsp -—- References

Worst Case - - - - .
Best Case -+----- Pt [Bellicha, 1993 Amit Bellicha. Maintenance of a solution
60 b - L X k
.- in a dynamic constraint satisfaction problefApplications
50 b ; of Artificial Intelligence in Engineeringpages 261-274,

1993.

[Bessiere, 1991 Christian Bessiére. Arc-consistency in dy-
namic constraint satisfaction problems. Rroceeding of
the Ninth National Conference on Atrtificial Intelligence
pages 221-226, 1991.

[Bessiere, 1992 Christian Bessiére. Arc-consistency for
non-binary dynamic constraint satisfaction problems. In
0 a a B. Neumann, editorProceedings of the 10th European
6 8 10 12 14 16 18 Conference on Atrtificial Intelligencdohn Wiley & Sons,
Num Variables Ltd, 1992.

Figure 8: Comparison of the number of queries against the[Cucchiarat al, 1997 Rita Cucchiara, Evelina Lamma,
number of variables Paola Mello, and Michela Milano. An interactive

constraint-based system for selective attention in visual
search. Innternational Symposium on Methodologies for
of collecting all values and solve the problem. Both, LC and Intelligent Systemgpages 431-440, 1997.

FOCSP query nearly the same number of values to find a Sqpechter and Dechter, 19B&Rina Dechter and Avi Dechter.
lution. Belief maintenance in dynamic constraint networks. In

Figures 7 and 8 show the improvements of the LC algo- Proceedings of the Seventh Annual Conference of the
rithm described in the previous section. Empirically it is American Association of Artificial Intelligencpages 37—
shown in figure 7 that reuse previous work on failed branches 42, 1988.

is more perfomant on average than detect the failed Variablﬁ:altings and Macho-Gonzalez, 200Boi Faltings and San-

and _redo th? problem as the FOCSP algorithm does. tiago Macho-Gonzalez. Open constraint satisfactioR-
It is also interesting to analyze the fact that the number 2002, pages 356—370, 2002.

of queries of LC algorithm is always slightly higher than the . . .
number of queries of FOCSP. This may be related with thdFaltings and Macho-Gonzalez, 20038oi Faltings ~ and
way values are queried by both algorithms. While consecu- Santiago Macho-Gonzalez. Incentive compatible open
tive queries of FOCSP ask for values of different variables, COnstraint optimization. IProceedings of AAMAS 2003
consecutive queries of LC may ask the complete domain of July 2003.

a variable. Therefore, in some cases LC may ask more thdiraltings and Macho-Gonzalez, 20d3Boi Faltings and
needed to find a solution. This point is subject to current re- Santiago Macho-Gonzalez. Open constraint optimization.
search. In Proceedings of the 9th International Conference on

a0}

Queries

81

Principles and Practice of Constraint Programming
(CP-2003) Lecture Notes in Computer Science. Springer,
September 2003.

[Faltings and Macho-Gonzalez, 240Boi Faltings and San-
tiago Macho-Gonzalez. Open constraint programming.
Artificial Intelligence 161:181-208, 2005.

[Jianget al, 1994 Yuejun Jiang, Thomas Richards, and
Barry Richards. No-good backmarking with min-conflicts
repair in constraint satisfaction and optimization. Piro-
ceedings of Principles and Practice of Constraint Pro-
gramming 94; reprinted in Principles and Practice of Con-
straint Programming 94pages 21-39, 1994.

[Lammaet al,, 1999 Evelina Lamma, Paola Mello, Michela
Milano, Rita Cucchiara, Marco Gavanelli, and Massimo
Piccardi. Constraint propagation and value acquisition:
Why we should do it interactively. IRICAI, pages 468—
477,1999.

[Schiex and Verfaillie, 1994 Thomas Schiex and Gérard
Verfaillie. Nogood recording for static and dynamic con-
straint satisfaction probleminternational Journal on Ar-
tificial Intelligence Tools3(2):187-207, 1994.

[Verfaillie and Schiex, 1994 Gérard Verfaillie and Thomas
Schiex. Solution reuse in dynamic constraint satisfaction
problems. InProceedings of the Twelfth Conference of
the American Association of Artificial Intelligengeages
307-312,1994.

[Wiederhold and Genesereth, 199@io Wiederhold and
Michael R. Genesereth. The conceptual basis for
mediation servicedEEE Expert 12(5):38-47, 1997.

82

