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Preface

Constraint Programming (CP) is a powerful technology to solve combinato-
rial problems which are ubiquitous in academia and industry. The last ten
years have witnessed significant research devoted to modelling and solving
problems with constraints. CP is now a mature field and has been success-
fully used for tackling a wide range of real-life complex applications.

As constraint solving is intractable in general, problems can become diffi-
cult to solve as their size increase. Therefore, there is always a need for more
efficient solvers to cope with ever difficult problems. Techniques such as the
design of specialised filtering algorithms for recurring constraints, sophisti-
cated search techniques, heuristics to guide the search, symmetry breaking
have significant impact on the time spent to solve problems. Efficiency can
be improved also by bridging the gap between CP and the other communi-
ties such as Operations Research, Local Search, SAT, Planning, and Machine
Learning.

Formulating an effective model for a given problem often requires trying
alternate models and using “modelling tricks” such as redundant modelling
and channelling. This could be a challenge even for modelling experts. The
increasing use of CP necessitates higher level modelling languages to facilitate
the exploitation of the available technology and to make CP reachable to a
wider user base. The hope is that the next generation modelling languages
will assist modellers by for instance helping acquire and validate constraints,
automatically generating alternate models and selecting the most appropriate
one for the application in hand, and synthesising propagators for complex
constraints.

It is desirable to extend the classical framework for modelling and solv-
ing with constraints to adapt to some real-life scenarios. For instance, many
problems contain uncertainty and thus the user may require robust solutions.
In some cases, problems are over-constrained and the user has preferences for
which constraints to relax. Explanations can be necessary to understand the
solution process. Real-life problems are often optimisation problems and the
users might want to improve the quality of their solutions as quickly as pos-
sible.

This workshop provides a forum for researchers who share these goals.
It is the 5th in the series, following the successful earlier workshops held
alongside ECAI 2000, IJCAI 2001, ECAI 2002, and ECAI 2004. The papers
in these proceedings present research into many aspects of modelling and
solving problems with constraints such as modelling, symmetry breaking,
propagation algorithms, applications, hybrid systems, and extensions to the
classical framework. In order to help push the field further, the workshop
hosts a modelling challenge. Finally, the workshop includes an invited talk
which gives insight into modelling and solving problems with constraints
using an open-source constraint programming system called Choco.
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The Choco Constraint Programming System

Narendra Jussien

École des Mines de Nantes, LINA FRE CNRS 2729, France

Abstract. The CHOCO (CHic, un Outil Contraintes avec des Objets –
great, a constraint programming tool with objects) constraint program-
ming system is an emanation of the French OCRE (Outil Contraintes
pour la Recherche et l’Enseignement – a constraint tool for research and
teaching) group. Choco is a java library for constraint satisfaction prob-
lems, constraint programming, and explanation-based constraint solving.
It is built on an event-based propagation mechanism with backtrackable
structures.

This talk is composed of two parts. In the first part, we will describe and
illustrate the inner mechanisms and features of Choco. Then, we will
focus on the modelling and solving tools of the system illustrating the
different domains and constraints provided with Choco. This first part
will be concluded with one of the key features of Choco: its extensibility.

But Choco is much more than a classical constraint programming sys-
tem. In the second part of the talk, we will focus on the new features
of our solver. Explanations as both an analysing and solving tool for
constraint programming will be introduced and we will show how they
are smoothly integrated within Choco, thanks to the Java programming
language. Moreover, search mechanisms which were not previously in-
tegrated in a modular and generic way will be presented including the
decision-repair and the logical Benders decomposition schemes.

Finally, we will conclude with the status of Choco regarding its use for
teaching, research or economical purposes and call for participation in
its development.
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A SAT Encoding for the Social Golfer Problem

Ian P. Gent
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University of St Andrews
Fife, Scotland
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Abstract

When given a combinatorial problem, one has two
major tasks: to model the problem and to solve the
selected model. Whilst much work in SAT algo-
rithms is for building efficient solvers, we argue
that many modeling decisions have a direct im-
pact on the solvers performance. We focus on a
particular combinatorial problem: the social golfer
problem, and we show how to encode this problem
into SAT. An important feature of the social golfer
problem is the presence of symmetries, which can
be tackled by adding more clauses to the encod-
ing. Our empirical evaluation shows that different
encodings can improve or degrade search dramati-
cally depending on the solver. We also show empir-
ically that by choosing the right encoding one may
exploit the heavy-tail behavior.

1 Introduction
Recent years have seen remarkable progress in propositional
satisfiability (SAT), with significant theoretical and practical
contributions. Indeed, SAT solvers can currently be used to
solve hard benchmark problems. State-of-the-art SAT solvers
(e.g. [Moskewicz et al., 2001; Goldberg and Novikov, 2002;
Een and Sorensson, 2003; Kautz et al., 2004; Ryan, 2004]),
are with no doubt very competitive. And every year a new
SAT competition is run with new solvers and new bench-
marks. All solvers and benchmarks are classified according
to three categories: industrial, handmade and random. Every
year, almost all the previous year winners for each category
are beaten by a new, more efficient solver. Also, the new
solvers are able to solve part of the benchmark problems that
were not solved in the previous year in a reasonable amount
of time.

The progress in SAT solving has attracted the attention
of researchers that usually use other technologies to solve
their problems. Encoding problems in CNF format and solv-
ing them with SAT solvers is indeed a competitive approach.
SAT has the advantage of being very easy in its formulation.
Nonetheless, the simplicity of the CNF format makes its use
very restrictive. For example, a constraint problem with a few
dozen of variables may result in a SAT problem with thou-
sands of variables and millions of clauses. Also, one may ar-

gue that a cause of inefficiency is the loss of structure during
problem reductions.

Even though the SAT community is extremely motivated
for continuously improving SAT solvers performance, there
is much to be done with respect to SAT encodings. We believe
that many applications do not benefit from the efficiency in
SAT solving due to inefficiencies introduced while producing
SAT encodings. Moreover, there is a tight relation between
encodings and solvers: different encodings are more or less
effective depending on the solvers.

Encodings into SAT are constructed every time a new prob-
lem is converted into CNF. In this paper we focus on encod-
ing a particular problem, the social golfer problem, studying
the effect that encoding decisions have on performance. This
work contributes to better understanding the interplay of sat-
isfiability modeling and solving on combinatorial problems.

The rest of the paper is organized as follows. The next
section gives some insights on how to encode a problem into
SAT. Section 3 describes a particular combinatorial problem:
the social golfer problem. Section 4 explains how to en-
code the social golfer problem into SAT, including how to
break symmetries in this highly symmetric problem. After-
wards, experimental results are given for running both a lo-
cal search and a backtrack search solver (walksat and siege,
respectively) for the two encodings of the social golfer prob-
lem: one with no symmetry breaking and other with sym-
metry breaking. Finally, we conclude the paper and suggest
future work.

2 Encoding a Problem into SAT

Encoding combinatorial problems as SAT problems has been
mostly motivated by the recent advances in SAT solvers. The
new solvers are capable of solving very large, very hard real-
world problem instances, which more traditional SAT solvers
are totally incapable of.

Nonetheless, only a few problems are naturally encoded
as SAT problems. Combinational electronic circuits are the
most paradigmatic example. Indeed, more sophisticated log-
ics are frequently more adequate to represent most of the
problems. Consequently, encoding such problems as CNF
formulas may require a significant effort. Hopefully this
effort will be counterbalanced by the performance of SAT
solvers.
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To encode a combinatorial problem into SAT one must de-
fine a set of variables and a set of constraints on the variables.
Usually we represent SAT problems as CNF formulas, and
therefore a formula is a conjunction of clauses, a clause is a
disjunction of literals and a literal is a variable or its negation.

The set of variables may be defined based on different cri-
teria: the most intuitive variables set, the set with minimum
cardinality, the set that will require the smallest number of
clauses, etc. Choosing the most adequate variables is more
an art than a science. Moreover, the definition of the set of
constraints may require the definition of additional auxiliary
variables. In some cases, these variables are really essential;
in other cases, we prefer to have more variables rather than
more clauses.

Recent advances in encodings include identifying and
breaking symmetries [Crawford et al., 1996; Brown et al.,
1988; Smith, 2001]. There has been a significant effort for
studying the effect of symmetry breaking in constraint satis-
faction, which has further motivated the study of symmetry
breaking in SAT encodings.

Symmetries cause the existence of redundant search paths,
which is a clear drawback for backtrack search. Breaking
symmetries reduces the search space: this is a clearly advan-
tage for problems having no solution, which implies travers-
ing the whole search space to prove unsatisfiability. For the
same reason, breaking symmetries is also an advantage when
all the solutions must be found. (Even though symmetri-
cal solutions have to be computed from the solutions found.)
Moreover, experimental evaluation has shown that (partially)
breaking symmetries can also be useful for finding one solu-
tion [Ramani and Markov, 2005]. Observe that with symme-
try breaking the freedom of the search is restricted.

On the other hand, there is often a trade-off between the
cost of eliminating symmetries and the savings derived from
having done so. Complete symmetry breaking make solvers
to return a unique solution from each set of symmetrically
equivalent ones, which is the one found first by the variable
and value ordering heuristics. But usually one is interested in
finding any solution as quickly as possible, rather than guar-
anteeing only distinct solutions are returned.

One may envision three main different ways of eliminating
symmetry:

1. Remodel the problem [Smith, 2001]. A different encod-
ing, e.g. obtained by defining a different set of variables,
may create a problem with less symmetries.

2. Add constraints to the model [Crawford et al., 1996;
Aloul et al., 2003]. Such constraints merge symme-
tries in equivalent classes. In practice, only one as-
signment satisfies these constraints, instead of n assign-
ments, where n is the number of elements in a given
equivalent class.

3. Change the search process to avoid symmetrically equiv-
alent states [Brown et al., 1988; Gent and Smith, 2000;
Fahle et al., 2001]. This can be done by adding con-
straints to ensure that any assignment symmetric to one
assignment already considered will not be explored in
the future, or by performing checks that symmetric
equivalents have not been visited. This is done for both

satisfying and unsatisfying assignments. However, this
approach has not found success in SAT. This is unsur-
prising, because of the reliance of SAT solvers on very
small time between branching decisions, limiting the
overheads that can be accepted and ruling out these sym-
metry breaking techniques.

Another approach that aims reducing symmetry was pro-
posed by Pedro Meseguer and Carme Torras [Meseguer and
Torras, 2001]. The idea is to use symmetry to guide the
search. The authors suggest the use of variable and value se-
lection heuristics to direct the search towards subspaces with
high density of non-symmetric states.

3 The Social Golfer Problem
The social golfer problem is derived from a question posted
to sci.op-research in May 1998:

The coordinator of a local golf club has come to
you with the following problem. In her club, there
are 32 social golfers, each of whom play golf once
a week, and always in groups of 4. She would like
you to come up with a schedule of play for these
golfers, to last as many weeks as possible, such
that no golfer plays in the same group as any other
golfer on more than one occasion.

In other words, this problem can be described more explic-
itly by enumerating four constraints which must be satisfied:

1. The golf club has 32 members.

2. Each member plays golf once a week.

3. Golfers always play in groups of 4.

4. No golfer plays in the same group as any other golfer
twice.

Since 1998, this problem has become a famous com-
binatorial problem. It is problem number 10 in CSPLib
(http://www.csplib.org/). A solution is said to be
optimal when maximum socialisation is achieved, i.e. when
one golfer plays with as many other golfers as possible.
Clearly, since a golfer plays with three new golfers each
week, the schedule cannot exceed 10 weeks. This follows
from the fact that each golfer plays with three other golfers
each week. Since there is a total of 31 other golfers, this
means that a golfer runs out of opponents after 31/3 weeks.

For some years, it was not known if a 10 week (and there-
fore optimal) solution for 32 golfers exists. In 2004, Aguado
found a solution using design-theoretic techniques [Aguado,
2004]. No constraint programming technique has yet solved
this instance, so it remains a valuable benchmark for the
constraint programming community. The best known solu-
tion from constraint programming is from Stefano Novello,
who posted a 9-week solution, along with the source of the
ECLiPSe program used to find it.

Even though the social golfer problem was described for
32 golfers playing in groups of 4, it can be easily general-
ized. An instance to the problem is characterized by a triple
w − p − g, where w is the number of weeks, p is the num-
ber of players per group and g is the number of groups. The
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week group 1 group 2
1 1 2 3 4
2 1 3 2 4
3 1 4 2 3

Figure 1: A solution for the social golfer problem 3-2-2.

original question therefore is to find a solution to the w-4-8
problem, with w being the maximum, i.e. to find a solution
to 10-4-8 (or prove that none exists). For example, Figure 1
gives a solution for the social golfer problem 3-2-2, i.e. for
scheduling 4 golfers playing in 2 groups of 2 golfers each for
3 weeks.

The social golfer problem is related with other well-known
combinatorial problems. Indeed, this problem is a general-
isation of the problem of constructing a round-robin tour-
nament schedule, the main difference being that in the so-
cial golfer problem the number of players in a group may be
greater than two. Also, the social golfer problem of finding
a 7 week schedule for 5 groups of 3 players (7-3-5) is the
same as Kirkman’s Schoolgirl Problem, where the main goal
is to arrange fifteen schoolgirls in rows of three so that each
schoolgirl walks in the same row with every other schoolgirl
exactly once a week.

The social golfer problem is also well-known for being
a case study of symmetry for constraint programming (e.g.
see [Smith, 2001]). This problem is highly symmetric, ex-
hibiting the following symmetries:

• Golfers within a group are interchangeable. Order has
no significance for groups of golfers.

• Groups within a week are interchangeable. Again, order
has no significance when considering groups within a
week.

• Weeks are interchangeable. There are no order con-
straints with respect to weeks.

The exact group of symmetries that arises from this will de-
pend on the encoding chosen. For example, in the model con-
sidered by Harvey, Kelsey and Petrie [Harvey et al., 2003],
this gives the wreath product of S8 with S10. This means that
the 8 groupings in each week can be permuted in any way,
giving S8, and that the 10 weeks can also be permuted in any
way, giving S10.

Eliminating the above symmetries is not expensive and can
bring significant enhancements. For example, considering
again the solution given in Figure 1, one may assume that
symmetries have been eliminated: this explains why golfers
are ordered within groups, groups are ordered within weeks
with respect to the first player and weeks are ordered with
respect to the second player of the first group.

There is also one final symmetry that is not considered
above.

• Golfers are interchangeable. That is, the names of the 32
golfers are insignificant.

In the model just mentioned, the additional symmetry
would give a semi-direct product of the previous group with
S32. This combination of symmetries makes symmetry

breaking much more difficult, and to date no efficient method
to break all symmetries has been presented. From the very
beginning, the social golfer problem has been extensively
studied as a paradigmatic problem with a significant num-
ber of symmetries [Smith, 2001; Puget, 2002]. In this paper,
we concentrate only on the initial group of symmetries of the
problem, disregarding the more complicated combination for
simplicity. It would certainly be interesting to consider ap-
proaches to breaking the full group of the problem, following
for example [Aloul et al., 2003], but that is outside the scope
of this paper.

4 A SAT Encoding for the Social Golfer
Problem

To encode the social golfer problem as a SAT problem we
must define:

• A set of variables.

• A set of constraints (represented by clauses) on the vari-
ables.

The set of constraints must guarantee that each golfer plays
golf once a week, golfers always play in groups of a given
size and no golfer plays in the same group as any other golfer
twice.

4.1 The Model
We have defined SAT variables based on the golfers. Appar-
ently, for a social golfer problem w−p−g it should be enough
to have w × (p × g) × g variables. The value of each vari-
able would allow us to conclude whether, in a given week, a
certain golfer is scheduled to play in a particular group.

However, we have chosen a more expressive model. Even
though this model has more variables, these variables are
quite useful for defining the problem constraints. Instead of
w×(p×g)×g variables, this new model has w×(p×g)×(p×
g) variables. When compared with the other model, the dif-
ference is that we introduced an additional order relation for
golfers within groups. This means that the value of each vari-
able indicates whether golfer i is scheduled to play in group k
of week l as the jth player, with 1 ≤ i ≤ (p× g), 1 ≤ j ≤ p,
1 ≤ k ≤ g and 1 ≤ l ≤ w. (In what follows we will refer
to x = p × g as the number of golfers.) Although the or-
der of players is irrelevant within groups (as well as the order
of groups within weeks and the order of weeks), this model
requires most constraints to be at-least-one and at-most-one
clauses.

The next step consists in adding clauses to specify that:

• Each golfer plays exactly once per week, i.e.:

– Each golfer plays at least once per week.
– Each golfer plays at most once per week.

• Each group in each week has exactly p players, i.e.:

– At least one golfer must play as the jth golfer, with
1 ≤ j ≤ p.

– At most one golfer can play as the jth golfer, with
1 ≤ j ≤ p.
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Let us now consider the social golfer problem w − p −
g, with the number of golfers being given by x = p × g.
Consider GOLFERijkl to be a variable equivalent to having
golfer i playing as the jth player of group k during week l,
with 1 ≤ i ≤ x, 1 ≤ j ≤ p, 1 ≤ k ≤ g and 1 ≤ l ≤ w.

Each of at-least-one clauses referring to golfers has size
x = p× g and is obtained as simply as follows.

x
∧

i=1

w
∧

l=1

p
∨

j=1

g
∨

k=1

GOLFERijkl

The at-most-one clauses referring to golfers are encoded
with two sets of binary clauses. The first set of clauses guar-
antees that each golfer plays at most once in the same group.

x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

p
∧

m=j+1

¬GOLFERijkl ∨ ¬GOLFERimkl

The second set of clauses guarantees that each golfer plays
at most once per week.
x
∧

i=1

w
∧

l=1

p
∧

j=1

g
∧

k=1

g
∧

m=k+1

p
∧

n=j+1

¬GOLFERijkl ∨ ¬GOLFERinml

Let us now consider the clauses referring to groups of
golfers. Each at-least-one clause has size x and is obtained
as follows.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∨

i=1

GOLFERijkl

Finally, the at-most-clauses for groups of golfers are en-
coded by a set of binary clauses.

w
∧

l=1

g
∧

k=1

p
∧

j=1

x
∧

i=1

x
∧

m=i+1

¬GOLFERijkl ∨ ¬GOLFERimkl

With the set of variables and clauses described above we
have encoded all the constraints of the problem, except the
one that mentions that “no golfer plays in the same group
as any other golfer twice”. To guarantee this condition, we
introduce a set of auxiliary variables and a ladder matrix.

The set of auxiliary variables allows us to know exactly
which golfers are scheduled to play in each match. Hence, we
must have x× g × w additional variables. Clearly, the value
of these new variables depends on the value of the variables
GOLFER described above. Consider these new variables to
be a set of variables denoted as GOLFER’ikl, meaning that
golfer i is scheduled to play in group k during week l, with
1 ≤ i ≤ x, 1 ≤ k ≤ g and 1 ≤ l ≤ w. It is easy to establish
an equivalence relation between each variable GOLFER’ikl

and the corresponding GOLFER variables. (Each equivalence
may be readily converted into a set of clauses.)

GOLFER’ikl ↔

p
∨

j=1

GOLFERijkl

These new variables will now be used by the variables in
the ladder matrix in such a way that no golfer plays in the
same group as any other golfer more than once.

1.1 1.2 2.1 2.2 3.1 3.2
3.4 T T F F F F
2.3 T T T T T T
2.4 T T T T F F
1.2 T F F F F F
1.3 T T T F F F
1.4 T T T T T F

Figure 2: The ladder matrix for the solution given in Figure 1.

The ladder matrix [Gent and Prosser, 2002; Ansótegui and
Manyá, 2004; Gent and Nightingale, 2004] is characterized
by a set of

(

x

2

)

× (g × w) Boolean ladder variables and a set
of ladder clauses. Intuitively, one would say that the value
of each variable denotes whether two golfers are scheduled to
play together in a given group of a given week. But we can do
better. We can guarantee that every two golfers play together
at most once.

Consider the ladder variables to be denoted as LADDERyz ,
with 1 ≤ y ≤

(

x

2

)

and 1 ≤ z ≤ g×w. A complete assignment
of the ladder variables is said to be valid if and only if every
row is a sequence of zero or more true assignments followed
by false assignments. In other words, after a ladder variable
being set to FALSE, no subsequent variables in the same row
can be assigned TRUE, i.e.:

∀y¬∃z • LADDERyz = FALSE ∧ LADDERyz+1 = TRUE

The behavior of the ladder matrix can be used to guar-
antee that no two golfers play more than once in the same
group. Actually, having an adjacent pair of variables with
values TRUE and FALSE identifies precisely in which group
of which week two golfers played together.

Whenever a ladder variable is satisfied, there is a set of
adjacent variables that must be satisfied. This can be achieved
by unit propagation adding the following set of clauses.

(x

2)−1
∧

y=1

g×w
∧

z=1

¬Ladderyz+1 ∨ Ladderyz

For example, consider the solution for the social golfer
problem 3-2-2 given in Figure 1. This solution corresponds
to the ladder matrix given in Figure 2. Each line in the ma-
trix corresponds to a pair of golfers. For example, the first
line named 3.4 indicates when golfers 3 and 4 play together.
Each column in the matrix corresponds to a group of golfers.
For example, the second column named 1.2 specifies the sec-
ond group of golfers playing in the first week. Each pair of
adjacent entries within a line with values T/F indicate when
two golfers play together. For example, the values of the two
entries in bold indicate that golfers 3 and 4 play together in
the second group of the first week. Observe that due to the
ladder matrix constraints no golfer can play with any other
golfer more than once.

Finally, the variables in the ladder matrix must be re-
lated with the auxiliary variables described above (denoted
as GOLFER’). Having GOLFER’ikl and GOLFER’mkl sat-
isfied means that both golfers i and m play in the same
group k in the same week l. This is equivalent to
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having Ladder[(x−i

2 )+m−i](l×k) assigned value TRUE and

Ladder[(x−i

2 )+m−i](l×k+1) assigned value FALSE. Formally:

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬GOLFER’ikl ∨ ¬GOLFER’mkl

∨Ladder[(x−i

2 )+m−i](l×k)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

¬GOLFER’ikl ∨ ¬GOLFER’mkl

∨¬Ladder[(x−i

2 )+m−i](l×k+1)

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder[(x−i

2 )+m−i](l×k+1) ∨

¬Ladder[(x−i

2 )+m−i](l×k) ∨

¬GOLFER’ikl

w
∧

l=1

g
∧

k=1

x−1
∧

i=1

x
∧

m=i+1

Ladder[(x−i

2 )+m−i](l×k+1) ∨

¬Ladder[(x−i

2 )+m−i](l×k) ∨

¬GOLFER’mkl

4.2 Symmetry Breaking
After establishing the model described above, we consid-
ered predicates for breaking symmetries in our SAT encod-
ing for the social golfer problem. Clearly, this problem (and
therefore our model) is highly symmetric: golfers within a
group are interchangeable, groups within a week are also in-
terchangeable and finally weeks are interchangeable. We sug-
gest to tackle these symmetries by adding more clauses to the
encoding.

The symmetries between players within the same group are
eliminated by forcing players in the same group to be in lex-
icographic order, i.e. in increasing numerical order. In prac-
tice, this is done by adding a set of binary clauses as follows.

x
∧

i=1

p
∧

j=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERijkl ∨ ¬GOLFERm(j+1)kl

These clauses guarantee that if a golfer is scheduled to play
as the jth golfer, then the (j+1)th golfer has to be in a higher
numerical order.

Similarly, we impose the first players of the groups within
the same week to be in lexicographic order. Obviously, golfer
#1 must be scheduled as the first golfer in the first group
within each week. In addition, we use binary clauses to en-
code symmetry breaking within each week.

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERi1kl ∨ ¬GOLFERm1(k+1)l

These binary clauses impose first golfers of subsequent
groups to be in lexicographic order.

Finally, additional clauses are used to break symmetries
between weeks. This is simply achieved by imposing lexico-
graphic order between the second golfer of the first group of
each week. This is encoded as follows.

x
∧

i=1

g
∧

k=1

w
∧

l=1

i−1
∧

m=1

¬GOLFERi2kl ∨ ¬GOLFERm2k(l+1)

These three sets of binary clauses suffice to break the sym-
metries that were initially mentioned. Observe that the so-
lution given in Figure 1 satisfies all the constraints we have
specified for symmetry breaking. As we mentioned earlier,
we leave for future work the interesting question of how best
to tackle the combination of these symmetries with the free
interchanging of players.

5 Experimental Results
In this section we evaluate empirically our encodings for the
social golfer problem1. We compare our encoding with and
without symmetries. We use two state-of-the-art SAT solvers:
walksat and siege.

Experimental results are given for a set of 29 benchmark
problems. All these problems are satisfiable. Otherwise, they
would not be solved by local search. Moreover, many of the
unsatisfiable problem instances of the social golfer problem
are trivially found to be unsatisfiable. On the other hand, it
is widely accepted that symmetry breaking helps proving un-
satisfiability (e.g. see [Ramani and Markov, 2005]), but not
much has been said about finding exactly one solution.

Table 1 characterizes each problem instance (named as
w − p − g) by giving the number of variables and clauses.
The larger instances have thousands of variables and around a
million of clauses. We have observed that most of the clauses
are either binary or ternary, which makes the average clause
size (AvgCS) to be between 2 and 3. We have also observed
that the additional clauses for breaking symmetries (SBCls),
which are all binary clauses, may augment the number of
clauses in the initial model for about 30% for the larger in-
stances (for smaller instances this value is smaller).

5.1 Local Search: Walksat
Walksat [Kautz et al., 2004] is a local search solver. The
algorithm is quite simple:

• Start with a random truth assignment.

• With probability p:

– Pick a variable occurring in some unsatisfied clause
and flip its truth assignment.

• With probability 1− p:

– Make the best possible local move.

• Repeat the last two steps until the assignment satisfies
all clauses.

We have tried to run walksat on our benchmark problems
of the social golfer problem. Even though we tried many dif-
ferent configurations, walksat was far from being competitive
on solving these problems, specially those including clauses
for symmetry breaking. (We also tried other local search

1For all experimental results a P-IV@1.7 GHz Linux machine
with 1 GByte of physical memory was used.
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Problem # Vars # Cls AvgCS % SBCls
3-2-2 108 446 2.43 9%
5-3-2 495 2547 2.46 10%
4-3-3 864 5598 2.41 17%
7-4-2 1456 8556 2.46 12%
9-5-2 3375 21665 2.45 13%
5-4-4 4000 35032 2.35 24%
11-6-2 6732 46026 2.45 14%
7-6-3 9450 79965 2.38 21%
13-7-2 12103 86751 2.44 15%
6-5-5 13500 147950 2.30 28%
7-7-3 14406 127302 2.38 21%
5-8-3 14880 135780 2.37 22%
3-6-6 15876 207054 2.26 31%
15-8-2 20160 149912 2.44 15%
6-7-4 21756 227402 2.33 26%
3-8-5 24480 303260 2.28 29%
5-7-5 28175 339185 2.29 29%
17-9-2 31671 242541 2.44 16%
4-7-6 32340 440013 2.26 31%
3-9-5 34020 432360 2.28 29%
10-9-3 41310 388341 2.37 22%
6-9-4 43740 484614 2.32 26%
8-10-3 44400 426435 2.37 22%
19-10-2 47500 372630 2.43 16%
3-9-6 48843 701811 2.25 32%
5-10-4 49000 554140 2.32 27%
4-8-7 63616 995876 2.23 34%
5-10-5 76250 991925 2.28 30%
4-9-7 88452 1419075 2.23 34%

Table 1: Social golfer problems: number of variables and
clauses.

solvers without success.) This is as suggested by Prestwich,
that symmetry breaking constraints reduce the number of so-
lutions and therefore make it harder for local search to find
solutions [Prestwich, 2001].

Nonetheless, we have run a problem for a significant num-
ber of seeds. Figure 3 compares the average number of flips
per second and the total CPU time for including or not includ-
ing symmetry breaking clauses on the encodings (SymBreak
and NoSymBreak, respectively). Results were obtaining run-
ning walksat with 1500 seeds for problem 7-4-2. From these
results, which we believe to be representative of our SAT
benchmark problems of the social golfer problem, we may
conclude that:

• Walksat performs more flips per second (in average)
without clauses for symmetry breaking. This may be
explained by the overhead produced by the additional
symmetry breaking clauses.

• Walksat requires more CPU time to solve instances with
symmetry breaking clauses.

• Adding clauses to break symmetries affects negatively
both the number of flips and the CPU time, although the
consequences are more negative for the CPU time. In-

deed, for the encoding with symmetry breaking clauses
we may observe an extremely fluctuation on the ex-
pected time to find a solution, which is probably associ-
ated with a heavy-tail distribution [Gomes et al., 2000].

5.2 Backtrack Search: Siege
Siege [Ryan, 2004] is a randomized backtrack search SAT
solver enhanced with clause recording. The data structures
are carefully implemented and the decision heuristic is very
efficient, specially for structured problems.

Siege has been shown to be quite competitive on solving
our benchmark problems. We have run siege on each prob-
lem for 1500 seeds. Figure 4 compares the number of nodes
(median and mean, using a logarithmic scale) for including
or not including symmetry breaking clauses. Figure 5 makes
the same comparison for the CPU time. Apparently, includ-
ing symmetry breaking clauses often does not compensate.
Furthermore, results for including symmetry breaking clauses
are more negative for the number of nodes rather than for the
CPU time. The same holds for the median values when com-
pared with the mean values.

With the aim of clarifying the differences between me-
dian and mean values, we have run one of the problems
where those differences could be observed (problem 6-7-4)
for 10000 seeds. Figure 6 gives the number of nodes and the
CPU time. From these plots we may conclude that adding
symmetry breaking clauses seems to avoid a heavy-tail be-
havior exhibited by the encoding with no symmetry break-
ing. Hence, we claim that adding symmetry breaking clauses
may avoid the heavy-tail behavior, in particular for the most
difficult instances.

6 Conclusions and Future Work
Recent advances in SAT solving motivate an increasing num-
ber of combinatorial problems to be encoded into SAT. We
argue that modeling decisions have an impact on the solver’s
performance. We have encoded the social golfer problem
into SAT. Two different encodings - with and without sym-
metry breaking - have been empirically evaluated with local
search and backtrack search solvers. A somewhat surprising
observation is that some of the encodings, depending on the
solvers, may exhibit a heavy-tail distribution. In such circum-
stances, choosing the right encoding can make the difference
between heavy-tail behavior or not. In a near future, we plan
to do a more comprehensive evaluation, which includes eval-
uating more instances, trying different encodings and also en-
coding new problems.
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Figure 4: Siege: comparison of the number of nodes (median and mean) for a set of problems.
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Abstract

We study the Stable Marriage problem (SM), which
is a combinatorial problem that arises in many prac-
tical applications. We present two new models of
an instanceI of SM with n men andn women as
an instanceJ of a Constraint Satisfaction Problem.
We prove that establishing arc consistency inJ
yields the same structure as given by the established
Extended Gale/Shapley algorithm for SM as ap-
plied toI. Consequently, a solution (stable match-
ing) of I can be derived without search. Further-
more we show that, in both encodings,all stable
matchings inI may be enumerated in a failure-free
manner. Our first encoding is ofO(n3) complex-
ity and is very natural, whilst our second model,
of O(n2) complexity (which is optimal), is a de-
velopment of the Boolean encoding in[Gentet al.,
2001], establishing a greater level of structure.

1 Introduction
The classical Stable Marriage problem (SM) has been the
focus of much attention in the literature over the last few
decades[Gale and Shapley, 1962; Knuth, 1976; Gusfield and
Irving, 1989; Roth and Sotomayor, 1990]. An instance of SM
comprisesn men,m1, . . . ,mn, andn women,w1, . . . , wn,
and each person has a preference list in which they rank all
members of the opposite sex in strict order. A matchingM
is a bijection between the men and women. We denote the
partner inM of a personq by M(q). A (man,woman) pair
(mi, wj) blocksa matchingM , or forms ablocking pairof
M , if mi preferswj to M(mi) andwj prefersmi to M(wj).
A matching that admits no blocking pair is said to bestable,
otherwise the matching isunstable. SM and its variants arise
in important practical applications, such as the annual match
of graduating medical students to their first hospital appoint-
ments in a number of countries (see e.g.[Roth, 1984]).

Gale and Shapley[Gale and Shapley, 1962] showed that
every instanceI of SM admits a stable matching, and gave an
O(n2) algorithm, linear in the instance size, for finding such

a matching inI. A modified version of this algorithm – the
Extended Gale/Shapley (EGS) algorithm[Gusfield and Irv-
ing, 1989, Section 1.2.4] – avoids some unnecessary steps by
deleting from the preference lists certain (man,woman) pairs
that cannot belong to a stable matching. Moreover the EGS
algorithm aids the development of some useful structural
properties of SM[Gusfield and Irving, 1989, Section 1.2.4].
Theman-orientedversion of the EGS algorithm (henceforth
referred to as the MEGS algorithm) involves a sequence of
proposals from the men to the women, provisional engage-
ments between men and women, and deletions from the pref-
erence lists. A pseudocode description of MEGS algorithm is
given in Figure 1 (the termdelete the pair(p, w) means that
p should be deleted fromw’s list and vice versa.) The stable
matching returned by the MEGS algorithm is called theman-
optimal (or equivalently,woman-pessimal) stable matching,
denoted byM0, since each man has the best partner (accord-
ing to his ranking) that he could obtain, whilst each woman
has the worst partner that she could obtain, in any stable
matching. A similar proposal sequence from the women to
the men yields thewoman-orientedEGS (WEGS) algorithm.
This gives rise to thewoman-optimal(or man-pessimal) sta-
ble matching, denoted byMz, with analogous properties.

Upon termination of the MEGS algorithm, the reduced
preference lists that arise following the deletions are referred
to as theMGS-lists. Similarly, theWGS-listsarise upon ter-
mination of the WEGS algorithm. The intersection of the
MGS-lists with the WGS-lists yields theGS-lists[Gusfield
and Irving, 1989, p.16]. Some important structural properties
of the GS-lists are given by the following theorem.

Theorem 1 ([Gusfield and Irving, 1989, Theorem 1.2.5]).
For a given instance of SM:

(i) all stable matchings are contained in the GS-lists;

(ii) no matchingM contained in the GS-lists can be blocked
by a pair that is not in the GS-lists;

(iii) in the man-optimal (respectively woman-optimal) stable
matching, each man is partnered by the first (respec-
tively last) woman on his GS-list, and each woman by
the last (respectively first) man on hers.

∗Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01.
†Supported by Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship.
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assign each person to be free;
while some manm is freeand m has a nonempty listloop

w := first woman onm’s list; {m ‘proposes’ tow}
if some manp is engaged tow then

assignp to be free;
end if;
assignm andw to be engaged to each other;
for each successorp of m onw’s list loop

delete the pair(p, w);
end loop;

end loop;

Figure 1: The man-oriented Extended Gale/Shapley algo-
rithm for SM and SMI.

An example SM instanceI is given in Figure 2. (We as-
sume that a person’s preference list is ordered with his/her
most-preferred partner leftmost.) This figure also indicates
those preference list entries that belong to the GS-lists. InI,
the man-optimal stable matchingM0 and the woman-optimal
stable matchingMz are as follows:

M0 = {(m1, w1), (m2, w3), (m3, w2), (m4, w4)}
Mz = {(m1, w3), (m2, w1), (m3, w4), (m4, w2)}.

The extension SMI of SM arises when preference lists may
be incomplete. This occurs when a person may find a mem-
ber of the opposite sexunacceptable. If a personp finds a
personq unacceptable,q does not appear on the preference
list of p. In the SMI case, a matchingM in an instanceI
of SMI is a one-one correspondence between a subset of the
men and a subset of the women, such that(m,w) ∈ M im-
plies that each ofm andw finds the other acceptable. Given
a matchingM in an SMI instance, a pair(m,w) blocks a
matchingM if each ofm andw finds the other acceptable,
and each is either unmatched inM or prefers the other to
their partner inM . If a personp finds a personq unaccept-
able, thenp andq cannot be paired in any stable matching,
nor can they form a blocking pair. Hence, from the point of
view of finding stable matchings, we lose no generality by
assuming thatq findsp unacceptable also, so that preference
lists areconsistent. It is straightforward to adapt the EGS
algorithm to the SMI case[Gusfield and Irving, 1989, Sec-
tion 1.4.2] – see Figure 1 for a pseudocode description. The
woman-oriented algorithm is analogous. In the SMI context a
stable matching need not be complete; however the same set
of men and women are matched in all stable matchings[Gale
and Sotomayor, 1985]. Furthermore, the concept of GS-lists
can be extended to SMI, with analogous properties (for Prop-
erty (ii) in Theorem 1, each person with a non-empty GS-list
should be matched inM ; for Property (iii), each person with
an empty GS-list is unmatched in both stable matchings).

Men’s lists Women’s lists
m1: w2 w4 w1 w3 w1: m2 m4 m3 m1

m2: w3 w4 w1 w2 w2: m4 m3 m1 m2

m3: w2 w4 w1 w3 w3: m3 m4 m1 m2

m4: w4 w1 w2 w3 w4: m3 m4 m2 m1

Figure 2: An SM instance with 4 men and 4 women; prefer-
ence list entries that belong to the GS-lists are underlined.

1.1 Related work

The Stable Marriage problem has its roots as a combina-
torial problem, but has also been the subject of much in-
terest from the Game Theory and Economics community
[Roth and Sotomayor, 1990] and the Operations Research
community [Vate, 1989]. In recent years SM and SMI
have also been the focus of interest from the Constraint
Programming community[Aldershof and Carducci, 1999;
Dye, 2001; Gentet al., 2001; Lustig and Puget, 2001;
Gent and Prosser, 2002a; 2002b; Green and Cohen, 2003;
Thorn, 2003]. These papers have presented a range of encod-
ings of SM and its variants as an instance of a Constraint Sat-
isfaction Problem (CSP). In all references apart from[Gentet
al., 2001], structural relationships between the effect of Arc
Consistency (AC) propagation[Bessìere and Ŕegin, 1997]
and the GS-lists were not explored in detail, nor did the au-
thors consider the aspect of failure-free enumeration.

However such issues were considered by Gent et al.[Gent
et al., 2001], who proposed two CSP encodings of SMI. For
each model, it was shown that AC propagation can be used
to achieve similar results to the EGS algorithm in a certain
sense. The first encoding creates a CSP instanceJ1 using
a set of ‘conflict matrices’ to encode an SMI instanceI. In
J1, AC may be established inO(n4) time, following which
the variables’ domains correspond to the GS-lists ofI. The
second encoding creates a Boolean CSP instanceJ2. In J2,
AC may be established inO(n2) time, however the variables’
domains after AC propagation only correspond to a weaker
structure called theXGS-listsin I, which in general are su-
persets of the GS-lists inI. (The XGS-list for a personp
consists of all entries inp’s preference list between the first
and last entries of his/her GS-list inclusive.) In both encod-
ings the set of all stable matchings inI can be enumerated in
a failure-free manner (using a value-ordering heuristic in the
case of the first encoding).

1.2 Our contribution

The work of[Gentet al., 2001] left open the question as to
whether there exists anO(n2) CSP encoding of SM that cap-
tures exactly the structure of the GS-lists. In this paper we
present two encodings of an instanceI of SMI (and so of
SM) as a CSP instanceJ . Again, for each encoding, we
show that AC propagation achieves the same results as the
EGS algorithm in a precise sense. The first model is a natural
(n + 1)-valued encoding of SMI; it bears some resemblance
to the encoding of SM given in[Lustig and Puget, 2001] and
develops the ‘conflict matrices’ model of[Gentet al., 2001].
In this model we show that AC propagation may be carried
out in O(n3) time. Our model is more intuitive, and is more
time and space-efficient, than the ‘conflict matrices’ model.
Our second model is a more compact 4-valued encoding that
develops the Boolean encoding from[Gentet al., 2001] – in
this case we show that AC propagation may be carried out in
O(n2) time. For both models we prove that the GS-lists in
I correspond to the domains remaining after establishing AC
in J . Furthermore, we show that, for both encodings, we are
guaranteed a failure-free enumeration of all stable matchings
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in I using AC propagation combined with a value-ordering
heuristic inJ . Our second encoding therefore answers the
question left open by[Gentet al., 2001].

Our results show that, provided the model is chosen care-
fully, AC propagation within a CSP formulation of SMI cap-
tures the structure produced by the EGS algorithm. More-
over our second encoding indicates that AC propagation can
be achieved within the same time complexity as the (optimal)
MEGS algorithm for SMI, producing equivalent structural re-
sults. This strengthens the assertion in[Gent et al., 2001]
regarding the applicability of constraint programming to the
general domain of stable matching problems. Furthermore, in
many practical situations there may be additional constraints
that cannot be accommodated by a straightforward modifica-
tion of the EGS algorithm. Such constraints could however be
built on top of either of the two models that we present here.
Possible extensions could arise from variants of SMI that are
NP-hard[Ronn, 1990; Ng and Hirschberg, 1991; Kato, 1993;
Manloveet al., 2002].

We remark that, independently, Unsworth and Prosser have
formulated a specialisedn-ary constraint for SMI, such that
AC propagation gives rise to the GS-lists, where the com-
plexity of establishing AC isO(n2) [Unsworth and Prosser,
2005a]. They have also constructed a specialised binary con-
straint for SMI that yields the same structure, where AC may
be established inO(n3) time[Unsworth and Prosser, 2005b].
In both cases, all stable matchings may be generated using a
failure-free enumeration.

The remainder of this paper is organised as follows. Sec-
tion 2 contains the(n+1)-valued encoding. We show that AC
may be established inO(n3) time, proving the structural re-
lationship between AC propagation and the GS-lists. This is
followed by the failure-free enumeration result for this model.
In Section 3 we present the 4-valued encoding, following a
similar approach, however in this case we show that AC may
be established inO(n2) time. Finally, Section 4 contains
some concluding remarks.

2 (n + 1)-valued encoding
2.1 Overview of the encoding
In this section we present an(n + 1)-valued binary CSP
encoding for an instanceI of SMI. We assume that
M = {m1,m2, . . . ,mn} is the set of men andW =
{w1, w2, . . . , wn} is the set of women inI (it is not difficult
to extend our encoding to the case that the numbers of men
and women are not equal, but for simplicity we assume that
they are equal). For each manmi ∈M and womanwj ∈ W,
the length ofmi’s andwj ’s preference list is denoted bylmi
and lwj respectively. We letL denote the total length of the
preference lists inI. Also, for any personz ∈ M ∪ W,
we letPL(z) denote the set of persons onz’s original pref-
erence list inI, and we letGS(z) denote the set of persons
on z’s GS-list in I. For each manmi ∈ M and woman
wj ∈ PL(mi), we denote the position ofwj onmi’s original
preference list (regardless of any deletions that may be carried
out by the MEGS/WEGS algorithms) byrank(mi, wj), with
rank(wj ,mi) being similarly defined. Ifwj ∈ W\PL(mi),
thenrank(mi, wj) andrank(wj ,mi) are undefined.

We define a CSP encodingJ for an instanceI of SMI by
introducing2n variables to represent the men and women in
the original instanceI. For each manmi ∈ M, we intro-
duce a variablexi in J whose domain, denoted bydom(xi),
is initially defined asdom(xi) = {1, 2, . . . , lmi } ∪ {n + 1}.
Similarly, for each womanwj ∈ W, we introduce a variable
yj in J whose domain, denoted bydom(yj), is initially de-
fined asdom(yj) = {1, 2, . . . , lwj } ∪ {n + 1}.

An intuitive meaning of the variables is now given. In-
formally, if xi = p (1 ≤ p ≤ lmi ), thenmi marries the
womanwj such thatrank(mi, wj) = p, and similarly for
the case thatyj = q (1 ≤ q ≤ lwj ). More formally, if
min dom(xi) ≥ p (1 ≤ p ≤ lmi ), then the pair(mi, wl)
has been deleted as part of the MEGS algorithm applied to
I, for all wl such thatrank(mi, wl) < p. Hence ifwj is
the woman such thatrank(mi, wj) = p, then eithermi pro-
poses towj during the execution of the MEGS algorithm or
the pair(mi, wj) will be deleted before the proposal occurs.
Similarly if min dom(yj) ≥ q (1 ≤ q ≤ lwj ), then the pair
(mk, wj) has been deleted as part of the WEGS algorithm
applied toI, for all mk such thatrank(mk, wj) < q. Hence
if mi is the man such thatrank(wj ,mi) = q, then either
wj proposes tomi during the execution of the WEGS algo-
rithm or the pair(mi, wj) will be deleted before the proposal
occurs. Ifxi = n + 1 (respectivelyyj = n + 1) thenmi

(respectivelywj) is unmatched upon termination of each of
the MEGS or WEGS algorithms applied toI.

The constraints used for the(n + 1)-valued encoding are
shown in Figure 3. In the context of Constraints 1 and 4,
j is the integer such thatrank(mi, wj) = p; also q =
rank(wj ,mi). In the context of Constraints 2 and 3,i is the
integer such thatrank(wj ,mi) = q; alsop = rank(mi, wj).

An interpretation of Constraints 1 and 3 is now given (a
similar interpretation can be attached to Constraints 2 and 4
with the roles of the men and women reversed). First con-
sider Constraint 1, a stability constraint. This ensures that
if a manmi obtains a partner no better than hispth-choice
womanwj , thenwj obtains a partner no worse than herqth-
choice manmi. Now consider Constraint 3, a consistency
constraint. This ensures that if manmi is removed fromwj ’s
list, thenwj is removed frommi’s list.

2.2 Arc consistency in the(n + 1)-valued encoding
We now show that, given the above CSP encodingJ of an
SMI instanceI, the domains of the variables inJ following
AC propagation correspond to the GS-lists ofI. That is, we
prove that, after AC is established, for anyi, j (1 ≤ i, j ≤ n),
wj ∈ GS(mi) if and only if p ∈ dom(xi), and simi-
larly mi ∈ GS(wj) if and only if q ∈ dom(yj), where
rank(mi, wj) = p andrank(wj ,mi) = q.

1. xi ≥ p ⇒ yj ≤ q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )
2. yj ≥ q ⇒ xi ≤ p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )
3. yj 6= q ⇒ xi 6= p (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )
4. xi 6= p ⇒ yj 6= q (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

Figure 3: The constraints for the(n + 1)-valued encoding of
an instance SMI.
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The proof is presented using two lemmas. The first lemma
shows that the arc consistent domains are equivalent to sub-
sets of the GS-lists. This is done by proving that the deletions
made by the MEGS and WEGS algorithms applied toI are
correspondingly made during AC propagation. The second
lemma shows that the GS-lists correspond to a subset of the
domains remaining after AC propagation. This is done by
proving that the GS-lists forI give rise to arc consistent do-
mains for the variables inJ .
Lemma 2. For a giveni (1 ≤ i ≤ n), let p be an integer
(1 ≤ p ≤ lmi ) such thatp ∈ dom(xi) after AC propagation.
Then the womanwj such thatrank(mi, wj) = p belongs
to the GS-list ofmi. A similar correspondence holds for the
women.

Proof. The GS-lists are constructed as a result of the dele-
tions made by the MEGS and WEGS algorithms applied to
I. We show that the corresponding deletions are made to the
relevant variables’ domains during AC propagation. In the
following proof, only deletions made by the MEGS algorithm
are considered; a similar argument can be used to prove the
result for an execution of the WEGS algorithm.

We prove the following fact by induction on the number of
proposalsz during an executionE of the MEGS algorithm. If
proposalz consists of manmi proposing to womanwj , with
rank(mi, wj) = p and rank(wj ,mi) = q, thenxi ≥ p,
yj ≤ q and for each manmk such thatrank(wj ,mk) = s
(q < s ≤ lwj ), xk 6= r, whererank(mk, wj) = r.

First consider the base case wherez = 1. Thenp = 1.
Since xi ≥ 1, propagation of Constraint 1 yieldsyj ≤
q. Then for eachs (q < s ≤ lwj ), propagation of Con-
straint 3 givesxk 6= r where rank(wj ,mk) = s and
rank(mk, wj) = r.

Now suppose thatz = c > 1 and that the result holds for
z < c. We consider the cases wherep = 1 andp > 1.
Case (i). For p = 1 the proof is similar to that of the base
case.
Case (ii). Now suppose thatp > 1. Let wl be any woman
such thatrank(mi, wl) = r < p. Thenwl has been deleted
from mi’s list during the MEGS algorithm. Now suppose
rank(wl,mi) = s1. Thenmi was deleted fromwl’s pref-
erence list because she received a proposal from a manmk

whom she prefers tomi, whererank(wl,mk) = s2 < s1.
Sincemk proposed towl before thecth proposal, we have
by the induction hypothesis thatyl ≤ s2, so thatyl 6= s1

and xi 6= r. But wl was arbitrary and hencexi 6= r for
1 ≤ r ≤ p−1, so thatxi ≥ p. The rest of the proof is similar
to that of the base case.

Lemma 3. For eachi (1 ≤ i ≤ n), define a domain of values
dom(xi) for the variablexi as follows: ifGS(mi) = ∅, then
dom(xi) = {n+1}; otherwisedom(xi) = {rank(mi, wj) :
wj ∈ GS(mi)}. The domain of eachyj (1 ≤ j ≤ n) is
defined analogously. Then the domains so defined are arc
consistent inJ .

Proof. To show that the variables’ domains are arc consistent
we consider each constraint in turn.

First consider Constraint 1 and suppose thatxi ≥ p. Then
during the execution of the MEGS algorithm applied toI,

either (i) mi proposed towj , or (ii) the pair (mi, wj) was
deleted, whererank(mi, wj) = p andrank(wj ,mi) = q.
We consider the two cases below:
Case (i) If mi proposed towj during the execution of the
MEGS algorithm, then all men ranked belowmi on wj ’s list
are deleted, i.e.yj ≤ q as required.
Case (ii)If (mi, wj) was deleted during the execution of the
MEGS algorithm thenwj must have received a proposal from
a manmk whom she prefers tomi, whererank(wj ,mk) = s
(s < q). Therefore the MEGS algorithm deletes all those
men mz from wj ’s list such thatrank(wj ,mz) > s, i.e.
yj ≤ s < q as required.

Next consider Constraint 3. Suppose thatyj 6= q, so
that during an execution of either the MEGS or WEGS algo-
rithms,mi is deleted fromwj ’s list, whererank(wj ,mi) =
q. To ensure that the preference lists are consistent, the same
algorithm deleteswj from mi’s list, i.e. xi 6= p, where
rank(mi, wj) = p, as required.

Verifying Constraints 2 and 4 is similar to the above with
the roles of the men and women reversed and the MEGS al-
gorithm exchanged for the WEGS algorithm.

The two lemmas above, together with the fact that AC algo-
rithms find the unique maximal set of arc consistent domains,
lead to the following theorem.

Theorem 4. Let I be an instance of SMI, and letJ be a
CSP instance obtained by the (n+1)-valued encoding. Then
the domains remaining after AC propagation inJ corre-
spond to the GS-lists ofI in the following sense: for anyi, j
(1 ≤ i, j ≤ n), wj ∈ GS(mi) if and only ifp ∈ dom(xi),
and similarly mi ∈ GS(wj) if and only if q ∈ dom(yj),
whererank(mi, wj) = p andrank(wj ,mi) = q.

The constraints shown in Figure 3 may be revised inO(1)
time during propagation, assuming that upper and lower
bounds for the variables’ domains are maintained. Hence the
time complexity for establishing AC isO(ed), wheree is the
number of constraints andd is the domain size[van Henten-
ryck et al., 1992]. For this encoding we havee = O(n2)
andd = O(n), therefore AC may be established inO(n3)
time; also the space complexity isO(L). These complexities
represent an improvement on the ‘conflict matrices’ encod-
ing in [Gentet al., 2001], whose time and space complexities
areO(n4) andO(L2) respectively. Moreover we claim that
the model that we present in this section is a very natural and
intuitive encoding for SMI.

Theorems 4 and 1(iii) show that we can find a solution to
the CSP giving the man-optimal stable matchingM0 without
search: for each manmi ∈ M, we letp = min dom(xi). If
p = n+1 thenmi is unmatched inM0, otherwise the partner
of mi is the womanwj ∈ W such thatrank(mi, wj) = p.
Considering theyj variables in a similar fashion gives the
woman-optimal stable matchingMz.

In fact we may go further and show that the CSP encoding
yields all stable matchings inI without having to backtrack
due to failure. That is, we may enumerate all solutions of
I in a failure-free manner using AC propagation inJ com-
bined with a value-ordering heuristic. The following theo-
rem, proved in[Manlove and O’Malley, 2005], describes the
enumeration procedure.
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Theorem 5. Let I be an instance of SMI and letJ be a CSP
instance obtained using the(n + 1)-valued encoding. Then
the following search process enumerates all solutions inI
without repetition and without ever failing due to an incon-
sistency:

– AC is established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

– if all domains are arc consistent and some variablexi

has two or more values in its domain, then the search
proceeds by settingxi to the minimum valuep in its do-
main. On backtracking, the valuep is removed from the
domain ofxi;

– when a solution is found, it is reported and backtracking
is forced.

3 4-valued encoding

3.1 Overview of the encoding

In this section we present a CSP encoding of SMI that is more
complex but more efficient than the(n + 1)-valued encoding
given in Section 2.1. We assume the notation as defined for
an instance of SMI in the first paragraph of Section 2.1.

We construct a CSP encodingJ for an SMI instanceI by
introducingL variables, each of which represents a prefer-
ence list entry. For each manmi (1 ≤ i ≤ n) we introduce
lmi variablesxi,p (1 ≤ p ≤ lmi ), corresponding to the mem-
bers ofPL(mi). Similarly for each womanwj (1 ≤ j ≤ n)
we introducelwj variablesyj,q (1 ≤ q ≤ lwj ). As before the
domain of a variablez is denoted bydom(z); initially each
variable is given the domain{0, 1, 2, 3}.

An intuitive meaning of the variables’ values is given in
Figure 4. The table indicates that deletions carried out by
the MEGS and WEGS algorithms applied toI are reflected
by the removal of elements from the relevant variables’ do-
mains. In particular, removal of the value 2 (respectively
3) from a variable’s domain corresponds to a preference list
entry being deleted by the MEGS (respectively WEGS) al-
gorithm applied toI. Note that potentially a given prefer-
ence list entry could be deleted by both algorithms. Also,
if the value 0 is removed fromdom(xi,p) (1 ≤ i ≤ n,
1 ≤ p ≤ lmi ), then eithermi proposes towj during the MEGS
algorithm (whererank(mi, wj) = p) or the entry is deleted
prior to the proposal occurring. Similarly if the value 0 is
removed fromdom(yj,q) (1 ≤ j ≤ n, 1 ≤ q ≤ lwj ), then
eitherwj proposes tomi during the WEGS algorithm (where
rank(wj ,mi) = q) or the entry is deleted prior to the pro-
posal occurring.

The constraints for this encoding are listed in Figure 5. In
the context of Constraints 4 and 10,j is the integer such
that rank(mi, wj) = p; also q = rank(wj ,mi). In the
context of Constraints 5 and 9,i is the integer such that
rank(wj ,mi) = q; also p = rank(mi, wj). Further, we
remark that Constraints 4 and 9 are present only ifq+1 ≤ lwj
andp + 1 ≤ lmi respectively.

An interpretation of each constraint is now given. Firstly
consider Constraint 1. This constraint is used to start the

proposal sequence and can be interpreted as each man ini-
tially proposing to the first woman on his list during the
MEGS algorithm. Constraint 2 states that if(mi, wl) has
been deleted by the MEGS algorithm for allwl such that
rank(mi, wl) < p, and (mi, wj) has also been deleted,
whererank(mi, wj) = p, then(mi, wl) has been deleted by
the by MEGS algorithm for allwl such thatrank(mi, wl) ≤
p. Hence, ifp + 1 ≤ lmi , mi will subsequently propose to
the womanwl such thatrank(mi, wl) = p + 1 during the
MEGS algorithm, or the pair(mi, wl) will be deleted before
the proposal occurs. Constraint 3 states that if a woman’s
qth-choice partner is deleted during an iteration of the MEGS
algorithm, then her(q + 1)th-choice partner should also be
deleted. Constraint 4 shows a stability constraint: this en-
sures that if manmi obtains a partner no better thanwj , then
wj obtains a partner no worse thanmi. Lastly Constraint 5
is a consistency constraint: this ensures that ifmi is removed
from wj ’s list during the MEGS algorithm thenwj is also re-
moved frommi’s list. Constraints 6-10 have a similar mean-
ing with the roles of the men and women reversed, and with
MEGS replaced by WEGS.

3.2 Arc consistency in the 4-valued encoding
We now prove that, given the above CSP encodingJ of an
SMI instanceI, the domains of the variables inJ following
AC propagation correspond to the GS-lists ofI. That is, we
show that, after AC is established, for anyi, j (1 ≤ i, j ≤ n),
wj ∈ GS(mi) if and only if {2, 3} ⊆ dom(xi,p), and simi-
larly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q), where
rank(mi, wj) = p andrank(wj ,mi) = q.

In order to establish this correspondence, we define theGS-
domainsfor the variables inJ as follows. Initially let each
variable inJ have domain{0, 1, 2, 3}. Run the MEGS algo-
rithm on instanceI. Then use rules (i), (ii) and (v) in Figure 4
to remove 0’s and 2’s from the appropriate domains, obtain-
ing CSP instanceJ ′ from J . Next run the WEGS algorithm
on the original instanceI. Now use rules (iii), (iv) and (vi)
in Figure 4 to remove 0’s and 3’s from the appropriate do-
mains inJ ′, obtaining CSP instanceJ ′′. The domains of the
variables inJ ′′ are referred to as theGS-domains.

As in Section 2.2, two lemmas are used to prove that en-
forcing AC gives the GS-lists. The first lemma shows that
the domains remaining following AC propagation are equiv-
alent to subsets of the GS-lists. This is done by proving that
if a deletion is made as part of either the MEGS or WEGS
algorithms, then a corresponding deletion is made during AC
propagation. The second lemma shows that the GS-lists cor-
respond to a subset of the domains remaining after AC is en-
forced. This is done by proving that the GS-domains forJ
are arc consistent.

Lemma 6. For a giveni (1 ≤ i ≤ n), let p be an integer
such that{2, 3} ⊆ dom(xi,p) after AC propagation. Then
the womanwj such thatrank(mi, wj) = p belongs to the
GS-list ofmi. A similar correspondence holds for the women.

Proof. The GS-lists are obtained through deletions made by
the MEGS and WEGS algorithms. We prove that the cor-
responding deletions are made to the relevant variables’ do-
mains during AC propagation. In particular, suppose that
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(i) 0 /∈ dom(xi,p) ⇔ p = 1 or 2 /∈ dom(xi,r) for all r (1 ≤ r < p) (i.e. man
mi’s rth-choice woman is removed from his list as part of the
MEGS algorithm applied toI, for all r (1 ≤ r < p));

(ii) 2 /∈ dom(xi,p) ⇔ manmi’s pth-choice woman is removed from his list
as part of the MEGS algorithm applied toI;

(iii) 3 /∈ dom(xi,p) ⇔ manmi’s pth-choice woman is removed from his list
as part of the WEGS algorithm applied toI;

(iv) 0 /∈ dom(yj,q) ⇔ q = 1 or 3 /∈ dom(yi,s) for all s (1 ≤ s < q) (i.e. woman
wj ’s sth-choice man is removed from her list as part of
the WEGS algorithm applied toI, for all s (1 ≤ s < q));

(v) 2 /∈ dom(yj,q) ⇔ womanwj ’s qth-choice man is removed from her list
as part of the MEGS algorithm applied toI;

(vi) 3 /∈ dom(yj,q) ⇔ womanwj ’s qth-choice man is removed from her list
as part of the WEGS algorithm applied toI.

Figure 4: Intuitive variable meanings for the 4-valued SMI encoding.

mi ∈ M andwj ∈ PL(mi). Let p = rank(mi, wj) and
q = rank(wj ,mi). Then we prove:

– (mi, wj) deleted during MEGS algorithm⇔ xi,p 6= 2
andyj,q 6= 2.

– (mi, wj) deleted during WEGS algorithm⇔ xi,p 6= 3
andyj,q 6= 3.

In this proof, only deletions made by the MEGS algorithm
are considered; a similar argument can be used for deletions
made by the WEGS algorithm.

It suffices to prove the following by induction on the num-
ber of proposalsz during an executionE of the MEGS algo-
rithm. If proposalz consists of manmi proposing to woman
wj , with rank(mi, wj) = p and rank(wj ,mi) = q, then
xi,p > 0, yj,s 6= 2 (q < s ≤ lwj ), and for each manmk

such thatrank(wj ,mk) = s (q < s ≤ lwj ), xk,r 6= 2, where
rank(mk, wj) = r.

First consider the base case wherez = 1. Thenp = 1.
By Constraint 1,xi,1 > 0, and by Constraint 4 we have
yj,q+1 6= 2. Hence by Constraint 3, it follows thatyj,s 6= 2
for eachs (q < s ≤ lwj ). Also for each suchs, propagation of
Constraint 5 ensures thatxk,r 6= 2, whererank(wj ,mk) = s
andrank(mk, wj) = r.

Now suppose thatz = c > 1 and that the result holds for
z < c. We consider the cases wherep = 1 andp > 1.

Case (i)For p = 1 the proof is similar to that of the base
case.
Case (ii) Now assume thatp > 1. Let wl be any woman
such thatrank(mi, wl) = r < p. Thenwl has been deleted
from mi’s list during the MEGS algorithm. Now suppose
that rank(wl,mi) = s1. Thenmi was deleted fromwl’s
list because she received a proposal from a manmk whom
she prefers tomi, whererank(wl,mk) = s2 < s1. Since
mk proposed towl before thecth proposal, by the induction
hypothesis it follows thatxi,r 6= 2. However sincewl was
arbitrary, it follows thatxi,r 6= 2 for 1 ≤ r ≤ p − 1. From
Constraint 1 we havexi,1 > 0, and hence the propagation of
Constraint 2 (p − 1 times) yieldsxi,p > 0. The rest of the
proof is similar to that of the base case.

Lemma 7. The GS-domains (corresponding to the GS-lists
in I) are arc consistent inJ .

Proof. We consider each constraint in turn to show that the
GS-domains are arc consistent.

Clearly Constraint 1 is satisfied, asp = 1 in rule (i) of
Figure 4, i.e.xi,1 > 0. Now consider Constraint 4 and
suppose thatxi,p > 0. Then during the execution of the
MEGS algorithm, either (i)mi proposed towj , or (ii) the
pair (mi, wj) was deleted, whererank(mi, wj) = p and

1. xi,1 > 0 (1 ≤ i ≤ n)
2. (xi,p 6= 2 ∧ xi,p > 0) ⇒ xi,p+1 > 0 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)
3. yj,q 6= 2 ⇒ yj,q+1 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)
4. xi,p > 0 ⇒ yj,q+1 6= 2 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )
5. yj,q 6= 2 ⇒ xi,p 6= 2 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

6. yj,1 > 0 (1 ≤ j ≤ n)
7. (yj,q 6= 3 ∧ yj,q > 0) ⇒ yj,q+1 > 0 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj − 1)
8. xi,p 6= 3 ⇒ xi,p+1 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi − 1)
9. yj,q > 0 ⇒ xi,p+1 6= 3 (1 ≤ j ≤ n, 1 ≤ q ≤ lwj )

10. xi,p 6= 3 ⇒ yj,q 6= 3 (1 ≤ i ≤ n, 1 ≤ p ≤ lmi )

Figure 5: The constraints for the 4-valued encoding of an instance SMI.
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rank(wj ,mi) = q. Assumingq + 1 ≤ lwj , we consider
the two cases separately.
Case (i) If mi proposed towj during the execution of the
MEGS algorithm, thenwj deletes all those men ranked below
mi on her preference list, so that in particular,yj,q+1 6= 2.
Case (ii) If the pair (mi, wj) was deleted during the execu-
tion of the MEGS algorithm, thenwj must have received a
proposal from a manmk whom she prefers tomi. Conse-
quently, all men ranked belowmk onwj ’s list are deleted by
the MEGS algorithm, so that in particular,yj,q+1 6= 2.

Now suppose thatyj,q 6= 2. Then by construction of the
GS-domains, the MEGS algorithm deleted the manmi such
thatrank(wj ,mi) = q. So in addition, 2 is removed from the
domain ofxi,p, whererank(mi, wj) = p, satisfying Con-
straint 5. Also, as in Case (ii) above,yj,q+1 6= 2, satisfying
Constraint 3.

Now consider Constraint 2 and suppose thatxi,p 6= 2 and
xi,p > 0. Thenwj has been removed from the list ofmi,
whererank(mi, wj) = p. Also xi,p > 0 implies that either
(i) p = 1, or (ii) xi,r 6= 2 (1 ≤ r < p). We consider the two
cases separately.
Case (i)If p = 1, we havexi,1 6= 2, and hencexi,2 > 0 by
construction of the GS-domains.
Case (ii)As xi,p > 0, it follows thatxi,r 6= 2 (1 ≤ r < p).
Also xi,p 6= 2. Hencexi,r 6= 2 (1 ≤ r ≤ p), so that
xi,p+1 > 0 by construction of the GS-domains.

A similar argument can be used to verify that Constraints
6-10 are satisfied. Here the roles of the men and women are
reversed and MEGS is replaced by WEGS.

The two lemmas above, together with the fact that AC algo-
rithms find the unique maximal set of arc consistent domains,
lead to the following theorem.

Theorem 8. LetI be an instance of SMI, and letJ be a CSP
instance obtained by the 4-valued encoding. Then the do-
mains remaining after AC propagation inJ correspond to the
GS-lists ofI in the following sense: for anyi, j (1 ≤ i, j ≤
n), wj ∈ GS(mi) if and only if {2, 3} ⊆ dom(xi,p), and
similarly mi ∈ GS(wj) if and only if {2, 3} ⊆ dom(yj,q),
whererank(mi, wj) = p andrank(wj ,mi) = q.

In general AC may be established inO(edr) time, where
e is the number of constraints,d the domain size, andr the
arity of each constraint[Bessìere and Ŕegin, 1997]. In the
context of the 4-valued encoding, it follows thate = O(L),
d = 4 andr = 2, and hence AC may be enforced in time
O(L) = O(n2). The time complexity ofO(L) is linear in
the size ofI and gives an improvement over the encoding
presented in Section 2.1. MoreoverO(L) is also the time
complexity of the EGS algorithm, which is known to be opti-
mal [Ng and Hirschberg, 1990]. The space complexity of the
4-valued encoding is alsoO(L).

Theorems 8 and 1(iii) show that we can find a solution to
the CSP giving the man-optimal stable matchingM0 without
search: for each manmi ∈ M, if {2, 3} 6⊆ dom(xi,r) for
eachr (1 ≤ r ≤ lmi ) thenmi is unmatched inM0, otherwise
we letp be the unique integer such thatdom(xi,p) = {1, 2, 3}
and define the partner ofmi to be the womanwj ∈ W such
that rank(mi, wj) = p. Considering theyj variables in a
similar way gives the woman-optimal stable matchingMz.

As in Section 2, we may go further and show that the CSP
encoding yields all stable matchings inI without having to
backtrack due to failure. As before we enumerate all solu-
tions of I in a failure-free manner using AC propagation in
J combined with a value-ordering heuristic, however in this
case, maintenance of AC is much less expensive. The fol-
lowing theorem, proved in[Manlove and O’Malley, 2005],
describes the enumeration strategy in this context.

Theorem 9. Let I be an instance of SMI and letJ be a CSP
instance obtained fromI using the 4-valued encoding. Then
the following search process enumerates all solutions inI
without repetition and without ever failing due to an incon-
sistency:

– AC is established as a preprocessing step, and after each
branching decision, including the decision to remove a
value from a domain;

– if all domains are arc consistent and some variable
xi,r has{0, 1, 2, 3} in its domain, then we letp be the
unique integer such thatdom(xi,p) = {1, 2, 3} and we
choosep′ to be the minimum integer(p < p′) such that
dom(xi,p′) = {0, 1, 2, 3};

– the search proceeds by removing the value 3 from the do-
main ofxi,p′ . On backtracking, the value 2 is removed
from the domain ofyj,q, whererank(mi, wj) = p and
rank(wj ,mi) = q;

– when a solution is found, it is reported and backtracking
is forced.

4 Concluding remarks
In this paper we have described two models for the Stable
Marriage problem and its variant SMI as a CSP. Our first en-
coding is very natural and may be used to derive the GS-lists
following AC propagation, although the time complexity for
establishing AC is worse than that of the EGS algorithm. Our
second encoding, whilst more complex, again yields the GS-
lists, but this time the time complexity for AC propagation
is optimal. Using both encodings we are able to find all sta-
ble matchings for a given instance of SMI using a failure-free
enumeration without search.

A natural extension of this work is to the case where there
is indifference in the preference lists. It has already been
demonstrated[Gent and Prosser, 2002a; 2002b] that the ear-
lier encodings of[Gentet al., 2001] can be extended to the
case where preference lists in a given SMI instance may in-
clude ties, suggesting that the same should be possible with
the models that we present here. Another direction is to con-
sider the Hospitals / Residents problem (HR) (a many-one
generalisation of SMI). The(n + 1)-valued encoding from
this paper, and the specialised constraints from[Unsworth
and Prosser, 2005a; 2005b], have already been generalised to
the HR case (see[Manloveet al., 2005] for further details).

Finally, it remains to conduct an empirical investigation of
the encodings presented in this paper, based on randomly-
generated and real-world data. Such investigations have al-
ready been carried out for other encodings for SM and its
variants [Gent and Prosser, 2002a; 2002b; Unsworth and
Prosser, 2005a; 2005b].
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Abstract
We present an n-ary constraint for the stable mar-
riage problem. This constraint acts between two
sets of integer variables where the domains of those
variables represent preferences. Our constraint en-
forces stability and disallows bigamy. For a sta-
ble marriage instance withn men andn women
we require only one of these constraints, and the
complexity of enforcing arc-consistency isO(n2)
which is optimal in the size of input. Our computa-
tional studies show that our n-ary constraint is sig-
nificantly faster and more space efficient than the
encodings presented in[3]. We also introduce a
new problem to the constraint community, the sex-
equal stable marriage problem.

1 Introduction
In the Stable Marriage problem (SM)[2; 5] we haven men
andn women. Each man ranks then women into a prefer-
ence list, as do the women. The problem is then to produce a
matching of men to women such that it is stable. By a match-
ing we mean that there is a bijection from men to women,
and by stable we mean that there is no incentive for partners
to divorce and elope. A matching is unstable if there are two
couples(mi, wj) and(mk, wl) such thatmi preferswl to his
current partnerwj , andwl prefersmi to her current partner
mk.

Figure 1 is an instance of the stable marriage problem, and
has 6 men and 6 women. Figure 1 shows the problem ini-
tially, with each man and woman’s preference list. Figure 2
shows the intersection of the male and female-oriented Gale-
Shapley lists (GS-lists)[5], where the GS-lists are reduced
preference lists. A man-optimal (woman-pessimal) stable
matching can now be found by marrying men (women) to
their most (least) preferred choices in there GS-lists. Con-
versely, we can produce a woman-optimal (man-pessimal)
matching by marrying women (men) to their most (least) pre-
ferred choice in their GS-lists. An instance of SM admits at
least one stable matching and this can be found via the Ex-
tended Gale-Shapley algorithm in timeO(n2), where there
aren men andn women.

∗The first author is supported by EPSRC. Software support was
given by an ILOG SA’s academic grant.

Men’s lists Women’s lists
1: 1 3 6 2 4 5 1: 1 5 6 3 2 4
2: 4 6 1 2 5 3 2: 2 4 6 1 3 5
3: 1 4 5 3 6 2 3: 4 3 6 2 5 1
4: 6 5 3 4 2 1 4: 1 3 5 4 2 6
5: 2 3 1 4 5 6 5: 3 2 6 1 4 5
6: 3 1 2 6 5 4 6: 5 1 3 6 4 2

Figure 1: An SM instance with 6 men and 6 women

Men’s lists Women’s lists
1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 6 5 6: 5 6 4

Figure 2: the corresponding GS-lists

We present a simple constraint encoding for the stable mar-
riage problem. We introduce a specialised n-ary constraint
with only three methods, where each method is no more than
six lines of code. We show how enforcing arc-consistency in
this encoding results in the male-oriented Gale-Shapley lists.
This minimal encoding cannot be used in search and only
achieves directed arc-consistency, from men to women. We
then go on to show how we can extend this encoding by in-
troducing a modest amount of additional code, such that the
encoding can be used in search, can be embedded in richer
impure problems where the stability of marriages is only part
of a larger problem, and the male and female oriented GS-lists
are produced. Our empirical results suggest, that although
our encodings hasO(n2) time complexity, the same as the
optimal encoding proposed in[3], our constraint significantly
outperforms this encoding in both space and time.

2 The Extended Gale-Shapley Algorithm
(EGS)

We now describe the male-oriented Extended Gale-Shapley
(EGS) algorithm (shown in Figure 3). In particular, we ex-
plain what is meant by aproposal, anengagement, and for a
man to becomefree. We will use this later to show that this

32



algorithm and our constraint encoding are equivalent.
The EGS algorithm[5] produces a stable matching be-

tween menm1 to mn and womenw1 to wn, where each man
(woman) ranks each of the women (men) into preference or-
der. Via a process of proposals from men to women the algo-
rithm delivers reduced preference lists, called GS-lists (Gale-
Shapley lists), such that if each man (woman) is paired with
his (her) best (worst) partner in their GS-list the marriages
will be stable.1

1 assign each person to be free
2 WHILE (some man m is free)
3 DO BEGIN
4 w := first woman on m’s list
5 IF (some man p is engaged to w)
6 THEN assign p to be free
7 assign m and w to be engaged
8 FOR (each successor p of m on w’s list)
9 DO BEGIN

10 delete p from w’s list
11 delete w from p’s list
12 END
13 END

Figure 3: The male-oriented Extended Gale/Shapley algo-
rithm.

We will assume that we have an instanceI of the stable
marriage problem, and that for any personq in I, PL(q) is
the ordered list of persons in the original preference list of q
andGS(q) is the ordered list of people in the GS-list forq,
and initially GS(q) equalsPL(q). In a proposalfrom man
m to womanw, w will be at the head of the man’s GS-list
GS(m). This leads to anengagementwherem is no longer
free and all men thatw prefers less thanm are removed from
her GS-list, i.e. the last entry inGS(w) becomesm. Further,
when a manp is removed fromGS(w) that woman is also
removed from his GS-list, i.e.w is removed fromGS(p),
consequently bigamy is disallowed. Thereforem andw are
engaged whenm is no longer free,w is head ofGS(m), and
m is at the tail ofGS(w). A manp becomesfreewhenp was
engaged tow (i.e. the head ofGS(p) is w) andw receives
a proposal from manm that she prefers top. On becoming
free,p is added to the list of free men andw is removed from
GS(p).

The algorithm starts with all men free and placed on a list
(line 1). The algorithm then performs a sequence of proposals
(lines 2 to 13). A manm is selected from the free list (line 2),
and his most preferred womanw is selected (line 4). Ifw is
engaged, then her partnerp becomes free. The pairm andw
then become engaged (lines 7 to 12).

3 Preliminaries
We assume that the men and women’s preference lists have
been read into two 2-dimensional integer arraysmpl andwpl
respectively. mpl[i] is the preference list for theith man

1Strictly speaking, the given algorithm produces MGS-lists, the
male GS-lists. But for the sake of brevity we will refer to them as
GS-lists.

wherempl[i][j] is the ith man’s jth preference, and similarly
wpl[j] is the preference list for thejth woman. Using our
problem in Figure 1, if we consider our3d man he will have
a preference listmpl[3] = (1, 4, 5, 3, 6, 2).

We also assume we have the inverse of the preference
lists, i.e. mPw and wPm, where mPw[i][j] is the ith

man’s preference for thejth woman andwPm[k][l] is the
kth woman’s preference for the lth man. Again, consider-
ing the 3d man in Figure 1, his inverse preference list will
bemPw[3] = (1, 6, 4, 2, 3, 5), mPw[3][2] is his preference
for the2nd woman, and that is 6, i.e. woman 2 is in the6th

position of man 3’s preference list.2

We associate a constrained integer variable with each man
and each woman, such thatx[i] is a constrained integer vari-
able representing theith manmi in stable marriage instance
I and has a domaindom(x[i]) initially of 1 to n. Similarly,
we have an array of constrained integer variables for women,
such thaty[j] represents thejth womanwj in I. The values
in the domain of a variable correspond to preferences, such
that if variablex[i] is assigned the valuea this corresponds to
mi being married to hisath choice of woman, and this will
be womanmpl[i][a]. For example, ifx[2] (in Figure 1) is
set to 3 then this corresponds tom2 marrying his3d choice,
w1 (and converselyy[1] would then have to be assigned the
value 5). Again referring to Figure 1 our6th man’s domain
is dom(x[6]) = (1, 2, 3, 4, 5, 6), as is everyone else’s, and in
Figure 2dom(x[6]) = (1, 4, 5). We also assume that we have
the following functions, each being ofO(1) complexity, that
operate over constrained integer variables:

• getMin(v) delivers the smallest value indom(v).

• getMax(v) delivers the largest value indom(v).

• getV al(v) delivers the instantiated value ofv.

• setMax(v, a) sets the maximum value indom(v) to be
min(getMax(v), a).

• setV al(v, a) instantiates the variablev to the valuea.

• remV al(v, a) removes the valuea from dom(v).

We assume that constraints are processed by an arc-
consistency algorithm such as AC5[9] or AC3 [7]. That is,
the algorithm has a stack of constraints that are awaiting revi-
sion and if a variable loses values then all the constraints that
the variable is involved in are added to the stack along with
the method that must be applied to those constraints, i.e. the
stack contains methods and their arguments. Furthermore, we
also assume that a call to a method, with its arguments, is only
added to the stack if it is not already on the stack. We’ll refer
to this stack as thecall stack.

4 An n-ary Stable Marriage Constraint
(SM2N)

We now give a description of our n-ary stable marriage con-
straint, where arc-consistency on such an encoding is equiv-
alent to an application of the male-oriented EGS algorithm.

2The inverse of the preference lists can be created when reading
in the preference lists such thatmPw[i][mpl[i][j]] = j, and this
does not affect the overall complexity of constructing our model.
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Note that the constraint as described minimally cannot be
used within a search process, however we will later show
how this can be done. Our constraint is n-ary in that it
constrainsn men andn women such that stability is main-
tained and bigamy is disallowed, although it achieves only
2-consistency.3 In a stable marriage problem withn men and
n women we will then require only one of these constraints.
We now start by describing the attributes of the constraint
and the three methods that act upon it. We will use a java-
like pseudo-code such that the. (dot) operator is an attribute
selector, such thata.b delivers theb attribute ofa.

4.1 The attributes
A n-ary stable marriage constraint (SM2N) is an object that
acts betweenn men andn women, and has the following at-
tributes:

• x andy are constrained integer variable arrays represent-
ing the men and women that are constrained, such that
x[i] is the constrained integer variable corresponding to
mi andy[j] corresponds towj .

• xpl andypl are 2-dimensional integer arrays which con-
tain the male and female preference lists respectively,
such thatxpl[i] equalsPL(mi) andxpl[i][j] contains
mi’s jth choice woman.

• xPy andyPx are 2-dimensional integer arrays which
contain the male and female inverse preference lists re-
spectively, such thatxPy[i][j] contains mani’s prefer-
ence forwj .

• yub is an array of integer variables which contain the
previous upper bounds of ally variables. All are set ton
at the start of search and are updated by the deltaMax(i)
method detailed below.

4.2 The propagation methods
We now describe three methods that achieve male-oriented
arc-consistency.

deltaMin(i)
This method is called when the lower bound ofdom(x[i])
increases. The lower bound ofdom(x[i]) increasing signifies
that mi has been rejected by his favourite choice of partner
and thus must propose to his new favourite available partner.
To do this we first findmi’s favourite available partnerwj

(line 2), then remove all men from the list ofwj she likes less
thanmi (line 3).

1. deltaMin(i)
2. j = xPy[i][getMin(x[i])]
3. setMax(y[j],yPx[j][i])

deltaMax(j)
This method is called when the upper bound ofdom(y[j])
is reduced. To maintain consistencywj needs to be removed
from the domains of all men that have been removed from her
domain. This is done by looping once for each value that has
been removed from the tail ofdom(y[j]) since the last call

3A detailed explanation of just what we mean by 2-consistency
in this model is given in section 6.

to deltaMax(j) (line 2). Within the loop ami that has been
removed fromdom(y[j]) is selected (line 3) and thenwj is
removed fromdom(x[i]). When all relevant men have had
their domains’ altered (line 5)yub is updated (line 6).

1. deltaMax(j)
2. FOR (k = getMax(y[j])+1 to yub[j])
3. i = yPx[j][k]
4. remVal(x[i],xPy[i][j])
5. END FOR LOOP
6. yub[j] = getMax(y[j])

init()
Theinit method is called when the constraint is created, and
is simply a call todeltaMin for each of then men variables.

1. init()
2. FOR (i = 1 to n)
3. deltaMin(i)
4. END FOR LOOP

5 Comparison to EGS
We now compare the behaviour of our n-ary constraint model
(SM2N) to the male-oriented EGS algorithm. In our compar-
ison we will describe steps in the EGS algorithm initalics and
the SM2N constraint encoding in normal font. Sometimes we
will use m andw as a particular person (rather thanmi and
wj), andx andy as particular variables (rather thanx[i] and
y[j]) for sake of brevity. Additionally, we assume we have the
functionfiance(y[i]) and that it delivers the integerk where
k = wpl[i][max(dom(y[i])], i.e. x[k] is the least preferred
partner ofy[i].

• Initially the EGS algorithm sets all men to be free by
adding them to the free list (line 1).Equivalently, when
propagation starts the call toinit() will cause the set
of calls {deltaMin(i)|1 ≤ i ≤ n} to be added to the
empty call stack.

• EGS picks a manm from the free list and he then pro-
poses to his first choice womanw (lines 4 to 7). Ini-
tially the call stack will containn calls to thedeltaMin
method, called directly viainit. When executing the
call deltaMin(i), manx[i] will make the equivalent of
a proposal to his first choice woman (as described next).

• Whenm makes a proposal tow all values that appear
in GS(w) after the proposing man are removed (lines
8 to 10), i.e. they become engaged.When the call
deltaMin(i) is made, wherey[j] is x[i]′s favourite, the
maximum ofdom(y[j]) is set toy[j]′s preference for
x[i], therefore removing all less preferred men. Effec-
tively, x[i] andy[j] become engaged.

• To maintain monogamy EGS removes the newly engaged
woman from the GS-lists of all men that have just been
removed from her preference list (line 11).From the ac-
tion above, the maximum ofdom(y[j]) has been low-
ered, consequently a call todeltaMax(j) will be added
to the call stack. In that call todeltaMax(j), y[j] is
removed fromdom(x[k]) for all k wherek has been re-
moved from the tail ofdom(y[j]). Therefore,x[k] and
y[j] can never be married.

34



• In EGS, ifm makes a proposal tow, who is already
engaged top, then w′s previous fiancep is assigned
to be free and added to the free list (lines 5 and 6.)
On initiating the calldeltaMin(i) wherey[j] is x[i]′s
favourite available woman,y[j]′s fiance corresponds to
the maximum value indom(y[j]), because all less pre-
ferred men will have been removed (as above). There-
fore if y[j] receives a proposal fromx[i] via the call
deltaMin(i), and y[j] prefersx[i] to her current fi-
ancex[k] (where k = fiance(y)) the maximum of
dom(y[j]) will be set lower than her preference forx[k]
and therefore her preference forx[k] will be removed
from dom(y[j]). Consequently, the calldeltaMax(j)
will then be put on the call stack, which will remove
x[k]′s preference fory[j] from dom(x[k]). Becausey[j]
wasx[k]′s previous favourite,x[k]′s preference fory[j]
would have beenmin(dom(x[k])). Therefore removing
that value will increasex[k]′s domain minimum, and the
call deltaMin(k) will then be added to the stack. And
this effectively assigns manx[k] to be free.

6 Arc-consistency in the Model
On the completion of arc-consistency processing, the variable
domains can be considered asGS − domains. That is,a ∈
dom(x[i]) ↔ wj ∈ GS(mi) ∧ j = mpl[i][a]. Furthermore,
b ∈ dom(y[j]) ↔ mi ∈ GS(wj) ∧ i = wpl[j][b].

The GS-domains are 2-consistent such that if manmi is
married to a womanwj (i.e. x[i] = a ∧ a ∈ dom(x[i]) ∧ j =
mpl[i][a]) then any womanwl can then marry some man
mk without forming a blocking pair or a bigamous relation-
ship. That is, for an arbitrary womanwl there exists a value
b ∈ dom(y[l]) such thatk = wpl[l][b] ∧ (mPw[i][j] <
mPw[i][l] ∨ wPm[l][k] < wPm[l][i]) ∧ i 6= k ∧ j 6= l.
Furthermore if a manmi is married to a womanwj then any
other manmk can then marry some womanwl, wherel 6= j.

It is important to note, that although our constraint is n-ary
it only achieves 2-consistency. It is our opinion that the cost
of achieving a higher level of consistency would be of little
advantage. This is so because by maintaining 2-consistency,
and using a suitable value ordering heuristic in the model dur-
ing search we are guaranteed failure-free enumeration of all
solutions[3].

In [5] Theorem 1.2.2 it is proved that all possible execu-
tions of the Gale-Shapley algorithm (with men as proposers)
yield the same stable matchings. Our encoding mimics the
EGS algorithm (as shown in section 5) and we claim (with-
out proof) that the encoding reaches the same fixed point for
all ordering of the revision methods on the call stack.

7 Complexity of the model
In [5] section 1.2.3 it is shown in the worst case there is at
mostn(n − 1) + 1 proposals that can be made by the EGS
algorithm, and that the complexity is thenO(n2). We argue
that the complexity of our SM2N encoding is alsoO(n2).
First we claim that the call to our methoddeltaMin() is of
complexityO(1). ThedeltaMax() method is of complexity
O(r), wherer is the number of values removed from the tail
of variable since the last call todeltaMax() for this variable.

Because there aren values in the domain of variabley the
worse case complexity for all possible calls todeltaMax(j)
is O(n). Equally there aren values in the domain of variable
x and thus the worse case complexity for all possible calls to
deltaMin(i) is O(n). Therefore because there aren y vari-
ables andn x variables, the total worst case complexity for all
possible calls todeltaMin(i) anddeltaMax(j) is O(n2).

8 Enhancing the model
The full GS-Lists are the union of the male and female Gale-
Shapley lists remaining after executing male and female ori-
ented versions of EGS. It has been proven that the same lists
can be produced by running the female orientated version of
EGS on the male-oriented GS-lists[5]. Because SM2N pro-
duces the same results as EGS the full GS-Lists can be pro-
duced in the same way. But because of the structure of this
specialised constraint it is also possible to combine the male
and female orientated versions of SM2N into one constraint.
This combined gender free version of SM2N will then pro-
duce the full GS-List with only one run of the arc-consistency
algorithm. To create the gender free version all of the meth-
ods presented in this paper must then be symmetrically im-
plemented from the male and female orientations.

The SM2N constraint as presented so far has only consid-
ered domain values being removed by the constraint’s own
methods. If we were to use the constraint to find all possible
stable matchings, unless arc consistency reduces all variable
domains to a singleton, it will be necessary to assign and re-
move values from variable domains as part of a search pro-
cess. Therefore, we need to add code to SM2N to maintain
consistency and stability in the event that domain values are
removed by methods other than those within SM2N. It is im-
portant to note that these external domain reductions could
also be caused by side constraints as well as a search process.

There are four types of domain reduction that external
events could cause: a variable is instantiated; a variable’s
minimum domain value is increased; a variable’s maximum
domain value is reduced; one or more values are removed
from the interior of a variable’s domain. We now describe
two additional methods,inst andremoveV alue, and the en-
hancements required fordeltaMin. We note thatdeltaMax
does not need to change, and describe the required enhance-
ments for incomplete preference lists.

inst(i)
The methodinst(i) is called when a variablex[i] is instanti-
ated.

1. inst(i)
2. For (k = 0 to getVal(x[i])-1)
3. j = xPy[i][k]
4. setMax(y[j],yPx[j][i]-1)
5. END FOR LOOP
6. j = xPy[i][getVal(x[i])]
7. setVal(y[j],yPx[j][i])
8. For (k = getVal(x[i])+1 to n)
9. j = xPy[i][k]

10. remVal(y[j],yPx[j][i])
11. END FOR LOOP

This method removes all values from the set ofy variables
to prevent variablex[i] being involved in a blocking pair or
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inconsistency. To preventx[i] from creating a blocking pair,
all the values that corresponds to men less preferred thanx[i],
are removed from the domains of all women thatx[i] prefers
to his assigned partner (lines 2-5). Sincex[i] is matched to
y[j], y[j] must now be matched tox[i] (lines 6,7). To main-
tain consistencyx[i] is removed from the domains of all other
women (lines 8-11)). The complexity of this method isO(n)
and because there aren x variables and each can only be in-
stantiated once during propagation, the total time complexity
of all possible calls toinst(i) is O(n2).

removeValue(i,a)
This method is called when the integer valuea is removed
from dom(x[i]), and this value is neither the largest nor
smallest indom(x[i]).

1. removeValue(i,a)
2. j = xPy[i][a]
3. remVal(y[j],yPx[j][i])

The woman the valuea corresponds to is found (line 2) then
x[i] is removed from her domain (line 3), and this must be
done to prevent bigamy.

Enhancements to deltaMin(i)
Up till now we have assumed that all values removed from
the head ofdom(x[i]) are as a result ofmi being rejected by
somewj . We now drop this assumption in the following en-
hanced version. In this method we add a new variable array
namedxlb, and this is similar to theyub array except it holds
the previous lower bound ofx. All elements inxlb are ini-
tialised to1 and are updated and used only by thedeltaMin
method.

1. deltaMin(i)
2. j = xPy[i][getMin(x[i])]
3. setMax(y[j],yPx[j][i])
4. FOR (k = xlb[i] to getMin(x[i])-1)
5. j = xPy[i][k]
6. setMax(y[j],yPx[j][i]-1)
7. END FOR LOOP
8. xlb[i] = getMin(x[i])

Lines 1 to 3 are as the original. The next four lines (lines 4-
7) cycle through each of the values that have been removed
from the head ofdom(x[i]) since the last call todeltaMin(i)
(line 4).y[j], which the removed value corresponds to, is then
found (line 5), and then all values that are not strictly greater
than her preference forx[i] are removed fromdom(y[j]) (line
6). The lower bound of the man variablex[i] is then updated
(line 8).

No enhancements to deltaMax(j)
We now consider the situation where some process, other
than a proposal, removes values from the tail ofdom(y[j]),
i.e. when the maximum value ofdom(y[j]) changes. The
deltaMax method will be called, and the instance contin-
ues to be stable as all values remaining indom(y[j]) corre-
sponding to menwj prefers to the removed values. How-
ever, we need to prevent bigamy, by removingwj from the
correspondingdom(x) variables removed from the tail of
dom(y[j]), and this is just whatdeltaMax does. Therefore,
no enhancement is required.

Incomplete Lists (SMI)
The encoding can also deal with incomplete preference lists,
i.e. instances of the stable marriage problems with incom-
plete lists (SMI). For a SM instance of sizen we introduce
the valuen+1. The valuen+1 must appear in the preference
lists mpl[i] andwpl[j] as apunctuationmark, such that any
people aftern+1 are considered unacceptable. For example,
if we had an instance of size 3 and a preference listPL(mi) =
(3,2) we would constructmpl[i] = (3, 2, 4, 1) and this would
result in the inversemPw[i] = (4, 2, 1, 3). Consequentlyx[i]
would always prefer to be unmatched (assigned the value 4)
than to be married toy[1]. We now need to modify theinit
method such that it sets the maximum value indom(x[i]) to
bemPw[i][n+1]. These modifications will only work in the
full implementation (i.e. it requires the above enhancements).

Reversible integers
In this encoding we have used two variable arrays which con-
tain dynamic data.yub and xlb are initialised ton and 1
respectively, but these values will be updated as the problem
is being made arc-consistent. If we are only looking for the
first solution then we need only use normal integers to hold
these values. However, when the constraint solver backtracks
and values that had been removed from the domain of a vari-
able are reintroduced then the values held inyub andxlb will
no longer be correct. To fix this problem we have to tell the
solver that when it backtracks it needs to reverse the changes
to yub andxlb as well as the variables domains. This is done
by using a reversible integer variable. This class should be
supplied in the constraint solver toolkit. The solver will then
store the values of each of the reversible variables at each
choice point and restore them on backtracking.

9 Computational Experience

We implemented our encodings using the JSolver toolkit[1],
i.e. the Java version of ILOG Solver. In a previous paper[8]
we presented a specialised binary constraint (SM2) for the
stable marriage problem, and presented some results compar-
ing the SM2 constraint with the two constraint encoding in
[3]. Here we show a chopped down version of those results,
with the results obtained by running SM2N on the same set
of test data included. The other model shown in the results
table is the optimal boolean encoding (Bool) as presented in
[3]. Our experiments were run on a Pentium 4 2.8Ghz pro-
cessor with 512 Mbytes of random access memory, running
Microsoft Windows XP Professional and Java2 SDK 1.4.2.6
with an increased heap size of 512 Mbytes.

sizen
model 100 200 400 600 800 1000
Bool 1.2 4.4 ME ME ME ME
SM2 0.23 0.5 1.82 4.21 8.02 12.47

SM2N 0.02 0.06 0.21 0.51 0.95 2.11

Table 1: Average computation times in seconds to produce
the GS-lists, from 10 randomly generated stable marriage
problems each of sizen
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Our first experiment measures the time taken to generate
a model of a given SM instance and make that model arc-
consistent, i.e. to produce the GS-lists. Table 1 shows the
average time taken to produce the GS-lists for ten randomly
generated instances of size 100 up to 1000. Time is measured
in seconds, and an entryME means that an out of memory
error occurred. We can see that the SM2N constraint domi-
nates the other models.

sizen

model 100 200 400 600 800 1000
Bool 2.02 6.73 ME ME ME ME
SM2 0.47 1.97 10.13 27.27 54.98 124.68

SM2N 0.03 0.07 0.24 0.73 1.56 3.35

Table 2: Average computation times in seconds to find all
solutions to 10 randomly generated stable marriage problems
each of sizen

This second experiment measures the time taken to gen-
erate a model and find all possible stable matchings. Table
2 shows the average time taken to find all solutions on the
same randomly generated instances used in the first experi-
ment. Again it can be seen that the SM2N model dominates
the other models. In summary, when the boolean encoding
solves a problem the n-ary constraint does so nearly 100 times
faster, and the n-ary constraint can model significantly larger
problems than the boolean encoding.

Tables 1 and 2 raise the following question, if the Bool en-
coding is optimal then why is it dominated by the SM2 encod-
ing, when SM2 isO(n3) time and the Bool encoding isO(n2)
time? The main reason for this is that there is no significant
difference in the space required to represent variables with
significant differences in domain size, because domains are
represented as intervals when values are consecutive. Consid-
ering only the variables, the Bool encoding usesO(n2) space
whereas the SM2 model usesO(n) space. For example, with
n = 1300 the Bool encoding runs out of memory just by
creating the2.13002 variables whereas the SM2 model takes
less than 0.25 seconds to generate the required 2600 variables
each with a domain of 1 to 1300. Theoretically the space
complexity of the constraints used by SM2 and Bool are the
same. In practise this is not the case as SM2 requires exactly
n2 constraints to solve a problem of sizen whereas Bool re-
quires2n + 6n2 constraints. Therefore the Bool encoding
requires more variables and more constraints, resulting ina
prohibitively large model. The same argument also applies
to the performance of the SM2N constraint, i.e. the n-ary
constraint is more space efficient that the Bool encoding, is
of the same time complexity, and this results in superior per-
formance. The space and time complexities of these models
are tabulated below. Note that theO(n2) constraint-space for
SM2N is a consequence of the storage of the preference lists
and their inverses.

This Third experiment shows how SM2N can handle larger
problems. Table 4 shows the average time taken to both pro-
duce the GS-Lists and find all solutions for one hundred ran-
domly generated instances of size 1000 up to 2000, again the
times are in seconds.

Bool SM2 SM2N
time O(n2) O(n3) O(n2)

constraints space O(n2) O(n2) O(n2)
variables space O(n2) O(n) O(n)

Table 3: Summary of the complexities of the three SM con-
straint models

sizen
problem 1000 1200 1400 1600 1800 2000

AC 2.11 3.12 5.93 8.71 11.59 20.19
All 3.35 5.09 8.8 12.92 18.96 26.81

Table 4: Average computation times in seconds from 100 ran-
domly generated stable marriage problems each of sizen

10 Sex equal optimisation
The sex equal stable marriage problem (SESMP) as posed in
[5] as an open problem, is essentially an optimisation prob-
lem. A male optimal solution to an SMP is where all men get
there best possible choices from all possible stable matchings
(and all women get there worst), and in a woman optimal so-
lution all women are matched to there best possible choices
(and all men to there worst). A sex equal matching is where
both the men and the women are equally well matched. This
problem has been proven to be NP-Hard[6].

In a SESMP all men will have a score for each woman
and all women will have a score for each man, manmi’s score
for womanwj ismScore[i][j] and womanwj ’s score for man
mi is wScore[j][i]. In an unweightedSESMP all scores
will be the same as the preferences, somScore[i][j] would
equalmPw[i][j] andwScore[j][i] would equalwPm[j][i].
In a weightedSESMP this is not so, but the same ordering
must be maintained meaningmScore[i][j] < mScore[i][k]
iff mPw[i][j] < mPw[i][k]. For any matchingM all men
and women will score the matching determined by which
partner they are match to inM . If man mi is matched to
womanwj in matchingM thenmi will give that matching
a score ofmScore[i][j] and womanwj will give it a score
of wScore[j][i]. The sum of all scores given by men for a
matchingM equalssumM(M) and the sum of the women’s
scores issumW (M). A matchingM for an instanceI of
the stable marriage problem is sex equal iff there exists no
matchingM such that the absolute difference between the
sumM(M) andsumW (M) is less than the absolute differ-
ence betweensumM(M) andsumW (M).

Because the values in the domains of thex andy variables
are preferences, it makes finding an unweighted sex equal
matching withSM2N simple. All that is required is to add a
search goal to minimise the absolute difference between the
sum of all x variables and the sum of ally variables. We
tested this using the same test data as in Table 4 and the re-
sults are tabulated below. These results can be compared to
those in Figure 6 of[8], where the Bool encoding failed to
model problems with 300 or more men and women, and at
n = 1000 the SM2 model was more than 15 times slower
than the SM2N model. We believe that this demonstrates the
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versatility of our constraint, in that we can easily use the con-
straint as part of a richer problem.

sizen

problem 1000 1200 1400 1600 1800 2000
SE 3.65 5.02 8.73 14.44 17.59 22.44

Table 5: Average computation times in seconds to find all
solutions to 100 randomly generated sex-equal stable mar-
riage problems, each of sizen, modelled using the SM2N
constraint.

11 Implementation
The SM2N constraint was originally developed using the
choco constraints tool kit, and the way the constraint has
been introduced reflects that. In choco to implement a
user defined constraint, theabstractLargeIntConstraint
class is extended. This class contains the methods
awake, awakeOnInf , awakeOnSup, awakeOnRem and
awakeOnInst. These methods are the equivalent of the ones
used to introduce the constraint.awake is the same asinit,
awakeOnInf andawakeOnSup are the same asdeltaMin
anddeltaMax andawakeOnInst is the same asinst. To
implement a constraint in Ilog JSolver we first state when the
constraint needs to be propagated, i.e. when a domain value
is removed, when the range changes (meaning the upper or
lower bound changes) or just when a variable is instantiated.
We then need to define a method that will handle propaga-
tion when such an event occurs. For the SM2N constraint
we stated it was to be propagated every time the range of a
variable changed. We then used conditional statements to as-
certain which bound had changed, and used the methods as
presented above to handle the propagation.

12 Conclusion
We have presented a specialised n-ary constraint for the sta-
ble marriage problem, possibly with incomplete lists. The
constraint can be used when stable marriage is just a part
of a larger, richer problem. Our experience has shown that
this constraint can be implemented in a variety of constraint
programming toolkits, such as JSolver, JChoco, and Koalog.
The complexity of the constraint isO(n2). Although this is
theoretically equal to the optimalO(n2) complexity of the
Boolean encoding in[3], our constraint is more practical, typ-
ically being able to solve larger problems faster. For example,
we have been able to enumerate all solutions to instances of
size 2000 in seconds, whereas in[4] the largest problems in-
vestigated were of size 60. We have also presented the first
study of SESMP using a constraint solution, i.e. where the
stable matching constraints are part of a richer problem.
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Abstract

With increasing deployment of multi-agent and dis-
tributed systems, there is an increasing need for
failure diagnosis systems. While successfully tack-
ling key challenges in multi-agent settings, model-
based diagnosis has left open the diagnosis of co-
ordination failures, where failures often lie in the
boundaries between agents, and thus the inputs
to the model—with which the diagnoser simulates
the system to detect discrepancies—are not known.
However, it is possible to diagnose such failures
by modelling the coordination between the agents
as constraints. This paper formalizes model-based
coordination diagnosis as a constraints satisfaction
problem, using two coordination constraints (con-
currence and mutual exclusion). The diagnosis pro-
cess is needed, once some of the constrains are not
satisfied. The goal of the diagnosis is to find a min-
imal set of assignments (by the agents) which vi-
olate the satisfiability of the constraints. We de-
fine the consistency-based and abductive diagnosis
problems within this formalization, and show that
both are NP-Hard by mapping them to other known
problems. This modelling offers opportunities for
cross-cutting research.

1 Introduction
Model-based diagnosis (MBD) [Reiter, 1987; de Kleer and
Williams, 1987] relies on a model of the diagnosed system,
which is utilized to simulate the behavior of the system given
the operational context (typically, the system inputs). The re-
sulting simulated behavior (typically, outputs) are compared
to the actual behavior to detect discrepancies indicating fail-
ures. The model can then be used to pinpoint possible failing
components within the system.

MBD is increasingly being applied in distributed and
multi-agent systems (e.g.,[Fröhlich et al., 1997; Rooset
al., 2003; Lamperti and Zanella, 2003]). While success-
fully addressing key challenges, MBD has been difficult to
apply to diagnosing coordination failures[Micalizio et al.,
2004]. This is because many such failures take place at the
boundaries between the agent and their environment, includ-
ing other agents. For instance, in a team, an agent may send

a message that another agent, due to a broken radio, did not
receive. As a result, the two agents come to disagree on an ac-
tion to be taken. Lacking an omniscient diagnoser that knows
of the sending of the message, the receiver has no way to
detect and diagnose its fault, since the context—the message
that can be fed into a model of the radio of both agents—is
unobservable to the diagnoser.

Surprisingly, it is still often possible to detect and diagnose
coordination failures, given the actions of agents, and mod-
elling the coordination between the agents as constraints that
should ideally be satisfied. In the example above, knowing
that the two agents should be under the constraint of agree-
ment as to their actions, and seeing that their actions do not
satisfy the constraint (are not in agreement), is sufficient to
(1) show that a coordination failure has occurred; and (2) to
propose several possible diagnoses for it (e.g., the first agent
did not send a message, the second agent did not receive it,
etc.).

Some previous works frame the model-based diagno-
sis problem of a single system as a constraint satisfaction
problem[Stumptner and Wotawa, 2003; Sachenbacher and
Williams, 2004]. However, they did not address of typ-
ical multi-agent systems’ failures which take place at the
boundaries between the agents and their environment. There
are approaches within diagnosis for diagnosing such fail-
ures, however, they suffer from key limitations. Fault-
based techniques[Horling et al., 2001; Pencoléet al., 2002;
Lamperti and Zanella, 2003] utilize pre-enumerated interac-
tion fault models. When the faults are observed, they trig-
ger possible predicted diagnoses. However, the interactions
among system entities, in multi-agent system, are not known
in advance since they depend on the specific conditions of the
environment in runtime and the appropriate actions assigned
by the agents[Micalizio et al., 2004]. [Kalech and Kaminka,
2003] propose a technique in which the reasoning of the two
agents, leading to their mis-coordinated actions, is re-traced,
to determine the roots for their selection. However, this tech-
nique is specific to disagreements.

This work takes a first step towards addressing the open
challenge of formalizing diagnosis of coordination (inter-
agent) failures using constraints satisfaction in terms of
model-based techniques. We model the coordination between
agents as a graph of concurrence and mutual exclusion con-
straints on agents’ actions. The diagnosis process begins with
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an observation of the agents’ actions and inferring, by com-
paring to the coordination model of the constraints, the mini-
mal number of agents that deviate from the expected coordi-
nation (i.e., a minimal set ofabnormal agents).

The formalization allows definition of both consistency-
based and abductive diagnosis problems, and points at several
approaches to their solution. While the formalization does not
commit to centralized or distributed diagnosis settings, the
initial methods we provide are centralized. For consistency-
based diagnosis, we show that computing the coordination
diagnosis can be mapped to the minimal vertex cover prob-
lem. For abductive diagnosis, we take an approach based on
constraint satisfaction problem. Both of these problems are
thus NP-Hard.

2 Related Work
[Stumptner and Wotawa, 2003; Sachenbacher and Williams,
2004] models the diagnosis problem as a constraints satisfac-
tion problem, and try to use CSP algorithms to compute the
diagnosis rapidly. However, they modelled centralized sys-
tems where all the components belongs to the same system
like boolean circuit. On the other hand, in multi-agent sys-
tems beyond the diagnosis to each single agent, the coordi-
nation between the agents should be modelled and diagnosed
too, in this paper we propose to model the coordination by
constraints.

[Pencoléet al., 2002; Lamperti and Zanella, 2003] use a
fault-model approach, where the distributed system is mod-
eled as a discrete event system, and the faults are modeled
in advance. The diagnoser infers unobservable fault events
by computing possible paths in the discrete event system that
match observable events.[Horling et al., 2001] and[Mical-
izio et al., 2004] use causal models of failures and diagnoses
to detect and respond to multi-agent and single-agent fail-
ures. A common theme in all of these is that they require
pre-enumeration of faulty interactions among system entities.
However, in multi-agent systems, these are not necessarily
known in advance since they depend on the specific run-time
conditions of the environment, and the actions taken by the
agents.

[Fröhlich et al., 1997], and later[Rooset al., 2003] use
a consistency-based approach to diagnose a spatially dis-
tributed systems. A set ofn agents are responsible for diag-
nosingn sub-systems, correspondingly. Every agent makes
a local diagnosis to its own sub-system and then all agents
compute a global diagnosis. In order to build a global diag-
nosis set, each agent should consider the correctness of those
inputs of its subsystem that are determined by other agents.
But, Roos et al. and Fröhlich at al. assume that each di-
agnoser agent knows the context of its sub-system and so it
may make the diagnosis. However in our multi-agent system
the diagnoser does not have the context so it is impossible to
make a diagnosis to every agent separately, unless we supply
a model of the coordination between the agents.

[Kalech and Kaminka, 2004] presented a consistency-
based diagnosis procedure for behavior-based agents, which
utilized a model of behaviors that the agents should be in
agreement on (i.e., concurrence coordination). However,

their approach was specific only to agreements.

3 Coordinated Multi-Agent Systems
We adopt a model-based approach to diagnosis of coordina-
tion failures. To do this, we formalize an agent, a multi-agent
system, and the coordination between the agents.

3.1 The Agent Model
An agent is an entity that perceives its environment through
sensors and takes actions upon its environment using actua-
tors. Obviously, there are many different possible models that
can be used to describe agents. Our focus is on the coordina-
tion of multiple agents through their actuators and their sen-
sors, and thus we will use a simplified model, of completely
reactive agents, composed only of sensor and actuator com-
ponents. The connections between the sensors and actuators
are described logically.
Definition 1. An agent is a pair 〈CMP,CON〉 of com-
ponentsCMP , and connectionsCON . CMP is a pair
〈SEN, ACT 〉 whereSEN is a set of boolean variables rep-
resenting the sensors and theACT is a set of boolean vari-
ables representing the actions.CON is a set of logical conse-
quence statements, where the literals ofSEN are on the left
side of consequences, and the literals ofACT are on the right
side.

At any time, the agent may sense through a number of sen-
sors, but may only select one action. Thus multiple literals
in SEN may be true, but at any time exactly one literal of
ACT must be true. To enforce this, we apply acompleteness
formula (i.e.ACT1 ∨ . . . ∨ ACT|ACT |) and a set ofmutual-
exclusionformulas∀i, j¬(ACTi ∧ACTj).
Example 1. Suppose we model a scout robot who looks for
wounded. The robot has two sensor components, one is a ra-
dio sensor with two message values{seek, found} and the
other is a camera sensor which indicates if the wounded is
found. The actions of the robot{SEEK, WAIT} are se-
lected based on the sensor readings: Once the robot receives
aseek message it selects the actionSEEK. It will switch to
the actionWAIT upon finding the wounded (via its camera),
or upon receiving a message that it was found (by someone
else).

We represent this agent as follows:

SEN = {SENradio_seek, SENradio_found, SENcamera_found}
ACT = {SEEK, WAIT}
CON = {SENradio_seek ∧ ¬SENcamera_found ⇒ SEEK,

SENradio_found ∨ SENcamera_found ⇒ WAIT}

In addition, we should verify that only one action is selected
by the agent, using the followingcompletenessandmutual-
exclusionaxioms:

WAIT ∨ SEEK

¬(WAIT ∧ SEEK)

3.2 A Model of Coordination
The multi-agent systems of interest to us are composed of
several agents, which (by design) are to satisfy certain coor-
dination constraints. We call this type of system ateam, to
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distinguish it from general multi-agent systems in which it is
possible that no coordination constraints exist.
Definition 2. A teamT is a set of agents.T = {A1...An}
whereAi is an agent. Given a teamT , AS represents the
set of the action literals of the agents. Formally, letACTi be
the set of actions of agentAi thenAS =

⋃n
i=1 ACTi, where

ASij represents thej’th boolean action variable of agentAi.
As a shorthand, we useASi to denote the boolean action lit-
eral of agentAi whose value is true. We callASi theactive
selectionof agentAi.

The actions of agents in a team are coordinated. We utilize
two coordination primitives—concurrenceandmutual exclu-
sion—to define the coordination constraints. Concurrence
states that two specific actions must be taken jointly, at the
same time. Mutual exclusion states the opposite, i.e., that
two specific actions may not be taken at the same time.
Definition 3. A concurrence coordination (CCRN)constraint
between two actions of different agents mandates that the two
actions must be true concurrently. Logically, we represent
this constraint in a DNF (disjunctive normal form). For two
actionsASix andASjy (actionx of agentAi and actiony of
agentAj) as follows:

CCRN(ASix, ASjy) ⇒ (ASix ∧ ASjy) ∨ (¬ASix ∧ ¬ASjy)

Definition 4. A mutual exclusion coordination MUEXcon-
straint between two actions of different agents mandates that
they cannot be true concurrently. Logically, for two actions
ASix andASjy,

MUEX(ASix, ASjy) ⇒ (ASix ∧ ¬ASjy) ∨
(¬ASix ∧ ASjy) ∨
(¬ASix ∧ ¬ASjy)

Once we defined the coordination types, we can model the
coordination between the agents formally with a set of coor-
dination constraints, defining a graph:
Definition 5. A coordination graphfor a teamT is an undi-
rected graphCG = {V, E}, where the vertices setV repre-
sents the boolean variables of the actions of the agents, and
the set of edgesE is the set of coordination constraints be-
tween the actions. We useCGm to refer to them’th con-
straint withinE. CG(ASix, ASjy) denotes the constraint re-
lating ASix andASjy. CGm is considered true if the con-
straint holds and false otherwise.
Example 2. Figure 1 presents a coordination graph. The
concurrence constraints are represented by solid lines, and
the mutual exclusion constraints are represented by dashed
lines. Assume a team of three agents{A1, A2, A3}. A1 and
A2 are scout robots as described in Example 1, andA3 is a
paramedic robot who has one radio sensor with one message
value {found_message}, and three actions{JOIN, TREAT,
CHARGE}. AgentsA1 and A2 have the same role in the
team so they haveconcurrence coordinationconstraints be-
tween their actions. At the beginningA1 and A2 receive
a seek message so they select the actionSEEK while A3

may select any action exceptTREAT , meaning it can not
treat a wounded, while the other robots seek. We can see
themutual exclusion coordinationconstraints between these

behaviors. OnceA1 or A2 find the wounded, they send a
found_message to the other agents in the team, thenA1

andA2 transport to theWAIT action, whileA3 transports
to JOIN action. Again we can see theconcurrence coordi-
nationconstrains between these behaviors. In addition, when
agentA3 is being charged (CHARGE behavior), there are
no constraints between the agents. The correspondingCG is
formally defined as follows:

V = {AS1W AIT
, AS2W AIT

, AS1SEEK
, AS2SEEK

,

AS3T REAT
, AS3JOIN

, AS3CHARGE
}

E = {CCRN(AS1W AIT
, AS2W AIT

),

CCRN(AS1SEEK
, AS2SEEK

),

MUEX(AS2SEEK
, AS3T REAT

),

CCRN(AS2W AIT
, AS3JOIN

),

MUEX(AS1SEEK
, AS3T REAT

),

CCRN(AS1W AIT
, AS3JOIN

)}

 

SEEK 

WAIT 

JOIN CHARGE 

SEEK 

WAIT 

TREAT 

A1 A2 

A3 

Figure 1:The coordination graph for team {A1, A2, A3}.

Given a coordination graphCG and a teamT , we can de-
fine a multi-agent system description as a set of implications
from the normality of the agents to the satisfaction of the co-
ordination constraints. This is the final piece in formalizing a
normally-functioning multi-agent system.
Definition 6. A multi agent system description (MASD)is
a set of implications from the normality of agents in a team
T to CG. The meaning of the predicateAB(.) is that the
corresponding agent is considered abnormal (failing).

MASD = {¬AB(Ai) ∧ ¬AB(Aj) ⇒ CG(ASix, ASjy)

|CG(ASix, ASjy) ∈ CG ∧ Ai, Aj ∈ T}

4 Diagnosis of Coordination Faults
A violation of the coordination constraints may be the result
of a fault in one of the sensors or other agent components
1 Given anMASD and a set of normality assumptions, it is
possible to infer that a fault exists (and to generate hypotheses
as to its identity), by checking whether the observed actions
of the agents satisfy theMASD.

1It may also be the result of a fault in the environment, e.g., when
a message is lost in transit. This is treated as a fault in the receiver.
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Let us formalize the coordination diagnosis in terms of
model based diagnosis:
Definition 7 Coordination Diagnosis Problem. Given
{T, MASD, AS} whereT is a team of agents{A1...An},
MASD is a multi agent system description defined overT
(Def. 6), andAS is the set of the actions of the agents (Def.
2), then thecoordination diagnosis problem (CDP)arises
when

MASD ∪ {¬AB(Ai)|Ai ∈ T} ∪ AS ` ⊥

We use the following example to illustrate.
Example 3.Suppose we are given the followingMASD, T ,
andAS (only the true literals inAS are shown):

T = {A1, A2, A3, A4, A5, A6}
MASD = {¬AB(A1) ∧ ¬AB(A4) ⇒ MUEX(AS11, AS41),

¬AB(A1) ∧ ¬AB(A2) ⇒ CCRN(AS12, AS21),

¬AB(A1) ∧ ¬AB(A6) ⇒ CCRN(AS12, AS61),

¬AB(A2) ∧ ¬AB(A3) ⇒ CCRN(AS22, AS31),

¬AB(A2) ∧ ¬AB(A5) ⇒ CCRN(AS22, AS51),

¬AB(A2) ∧ ¬AB(A6) ⇒ CCRN(AS21, AS61),

¬AB(A3) ∧ ¬AB(A4) ⇒ MUEX(AS32, AS42),

¬AB(A3) ∧ ¬AB(A5) ⇒ CCRN(AS31, AS51)}
AS = {AS11, AS21, AS31, AS41, AS51, AS61}

Figure 2 shows the coordination graph for thisCDP .
Assuming all the agents are not abnormal, the ac-
tions of certain agents violate the constraints satisfac-
tion and so they are not consistent with the coordina-
tion graph. For instance, the actionsAS11 = true and
AS41 = true causes an inconsistency inCG1, as it
produces a false value ofMUEX(AS11, AS41), though,
MUEX(AS11, AS41) should be true, given the normality
assumptions¬AB(A1),¬AB(A4). On the other hand, if
the actionsAS12, AS21, AS32, AS41, AS52, AS61 were true
(implying that the other actions were false), they would have
been consistent with the coordination graph.
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Figure 2: The coordination graph and active selection
(gray circles) of the teamT = {A1, A2, A3, A4, A5, A6}

Given a CDP , the goal of the coordination diagnosis
process is to determine a minimal set of abnormal agents

whose selection and subsequent setting of theAB(.) clause
would eliminate the inconsistency (consistency-based diag-
nosis, Section 4.1), or explain it (abductive diagnosis, Sec-
tion 4.2). In terms of CSP, the set of abnormal agents would
explain the constraints satisfaction violation. A coordination
diagnosis (a set of abnormal agents) is minimal, iff no proper
subset of it is a coordination diagnosis.

Once the set of such abnormal agents is found, the diag-
noser infers the abnormal components (in our case, sensors)
within the abnormal agents. This is done using straightfor-
ward back-chaining through the setCON (Def. 1) of logical
consequence statements connecting sensors to actions (e.g.,
as in[Kalech and Kaminka, 2003]).

4.1 Consistency-Based Coordination Diagnosis
We begin by defining consistency-based coordination diagno-
sis.
Definition 8. A consistency-based global coordination diag-
nosis (CGCD)is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

The first step in this process to determine which agents are in
conflict (violate the constraints between them):
Definition 9. Two agentsa and b are calledconflict pair
〈a, b〉, if there exist a constraintCGi that relatesa andb and
whose value is false.

∀a, b ∈ T, ∃i, j, k s.t.¬CGi(ASaj , ASbk) ⇒ 〈a, b〉
Definition 10. A local conflict setis a set of the all conflict
pairs in the system, and is denoted byLC.
Example 4. LC in the graph of example 3 is:LC =
{〈A1, A4〉 〈A1, A2〉, 〈A1, A6〉, 〈A2, A3〉, 〈A2, A5〉}
The local conflict set forms the basis for theCGCD, be-
cause for each conflict pair, at least one of the agents is ab-
normal. However, theCGCD is not a simple combination
of all agents in theLC pairs, as arbitrary selection of agents
may lead to diagnosis sets that are themselves inconsistent.
For instance, treating each pair in the computedLC in Ex-
ample 4 by itself, produces the following subset of possible
diagnoses:

〈A1, A2〉 ⇒ {AB(A1),¬AB(A2)}
〈A1, A2〉 ⇒ {¬AB(A1), AB(A2)}
〈A1, A4〉 ⇒ {AB(A1),¬AB(A4)}
〈A1, A4〉 ⇒ {¬AB(A1), AB(A4)}

It is easy to see that combining these diagnoses
may produce inconsistency (for instance, combining
the first and last implications would produce the set
{AB(A1),¬AB(A2),¬AB(A1), AB(A4)}).

Therefore, we cannot diagnose every conflict pair by itself
and then combine the results. Rather, we should compute the
diagnoses sets∆ considering the dependencies between the
conflict pairs. To do this, we should look for the abnormal
agent(s) in every conflict pair.

We achieve this goal by generating a hitting-set of agents,
selecting at least one agent as abnormal from every conflict
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pair, such that the resulting agents cover between them all
conflict pairs. We want to maintain a minimal number of such
agents. This is somewhat similar to Reiter’s HS-Tree[1987],
or de Kleer and Williams’ technique[1987]. It is also related
to minimal model techniques used in non-monotonic reason-
ing [Olivetti, 1992; Niemelä, 1996]. We plan to explore these
connections in the future.

We achieve this goal by transforming the conflict set into
a graph, and finding the vertex cover for this graph. Let us
define a conflict graphG = {V ′, E′} whereE′ is a set of
the conflict pairs andV ′ is a set of the agents involved in
the conflict set. In order to compute the diagnosis we run an
algorithm to find a minimal vertex cover—a set of vertices
that involve all edges. A vertex cover set is guaranteed to
be a diagnosis since all the edges, namely the conflict pairs,
are covered by this set, namely by a set of abnormal agents.
We are looking for all the possible minimal vertex cover sets,
since the diagnosis contains all the possibilities of abnormal
agents. Minimal vertex covers guarantee minimal diagnosis,
since a vertex cover is minimal only if no proper subset of it
is a vertex cover.

Determining a minimal vertex cover is known to be NP-
Complete, however the problem of determining the set of
minimal vertex covers is NP-Hard[Skiena, 1990]. A sim-
ple O(2|V |) exact algorithm for its solution is to find all the
possible vertex covers in size one, then continue to find the
possible vertex covers in size two, under the condition that it
is not a superset of a previous vertex cover, and so on up to
the max size of the graph. The complexity of computing the
CGCD is thus the same as in single-agent diagnosis meth-
ods, e.g.,[de Kleer and Williams, 1987].
Example 5. Figure 3 presents the graph of the conflict pairs
that were computed in example 4. The vertex cover set of
size one is empty, for size two it isV C1 = {A1, A2}, and
there are two sets of size three:V C2 = {A1, A3, A5} and
V C3 = {A2, A4, A6} (there are more vertex cover sets which
are superset ofV C1), it is unnecessary to continue to check
the vertex cover in size four and more since every such vertex
cover will be a superset of the formers. By building the vertex
cover sets we obtain the global coordination diagnosis,∆1 =
{A1, A2}, ∆2 = {A1, A3, A5}, ∆3 = {A2, A4, A6}}.
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Figure 3:A graph of the conflict pairs in example 4

A disadvantage of the consistency-based approach is that
it may produce diagnoses that are unsound, in the sense that
while they eliminate the inconsistency, they do not explain

it. Intuitively, such diagnoses correspond to eliminating the
abnormal agents from consideration, rather than suggesting
that they change their actions. For such diagnoses, there may
be no actions that the abnormal agents could take in such a
way that the constraints inMASD will be satisfied.

For instance, in Example 5 the diagnosis set{A1, A2}
represents a minimal set of abnormal agents, but chang-
ing their actions(A11 = false,A12 = true, A21 =
false, A22 = true) will leave the constraints system un-
satisfied withCCRN(AS12, AS21) = false. On the other
hand, changing the actions of the agents in the other diag-
noses ({A1, A3, A5}, {A2, A4, A6}) will eliminate the incon-
sistency.

4.2 Abductive Coordination Diagnosis
The implication is that stronger conditions on the solution sets
may be needed. Such conditions correspond to abductive di-
agnosis, in which changing the actions of the abnormal agents
entails the coordination graph:
Definition 11. An abductive global coordination diagnosis
(AGCD) is a minimal set∆ ⊆ T such that:

MASD
⋃
{AB(Ai)|Ai ∈ ∆}

⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS 0 ⊥

and,

{AB(Ai)|Ai ∈ ∆}
⋃
{¬AB(Ai)|Ai ∈ T −∆}

⋃
AS ⇒ CG

where, we make the active selection of agentAi (Def. 2),
ASi, false, and forceAi to choose a different action,

AB(Ai) ⇒ ¬ASi ∧ (ASi1 ∨ . . . ∨ ASi|ACT |)

The first condition in Def. 11 is exactly as in Definition 8 (i.e.,
CGCD) to satisfy the consistency requirement. The second
condition requires that for any abnormal agents found, it will
be possible to change their active selection, in order to entail
the coordination graph and thus satisfy the coordination con-
straints. Note that the entailment here is of the coordination
graph, not the fullMASD.

The unsound diagnosis set{A1, A2}, given by the
consistency-based approach (in Example 5), will not pass this
second condition, since the alternative actions of agentA1

and of agentA2 do not entail the coordination graph.
In order to satisfy Definition 11, the diagnosis process

needs to go beyond pinpointing suspect agents, to verifying
that by changing their actions, coordination will be restored.
Thus in contrast with consistency-based approach, we do not
utilize conflict pairs to compute the diagnoses, but instead ex-
amine all action literals assignments that entail the coordina-
tion graph, i.e., all actions which will satisfy the coordination
constraints. Then the process compares the existing truth val-
ues to those that will satisfy the coordination, and computes
aminimalset of changes.
Example 6. Let us compute theAGCD of the Example 3.
Table 1 presents the satisfying truth assignments for the ac-
tions of agentsA1 . . . A6. There are only two such assign-
ments. In order to find the minimalAGCD, we should com-
pare the actions of the agents with these assignments and
point out the agents that deviate. Consider the actions in
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Example 3 (whereAS11, AS21, AS31, AS41, AS51, AS61 are
true, and the other action literals are false). Then, in the first
row AS11 = false, but we haveAS11 = true. We thus
mark actionAS11 as faulty. The second value in the table is
AS12 = true, but we haveAS12 = false, so we again mark
this as faulty, and so on for each one of the actions. For the
first entry in the truth table we got the following faulty ac-
tions: AS11, AS12, AS31, AS32, AS51, AS52. From this list,
we can determine the abnormal agents by finding the agents
whose actions are faulty. We thus conclude that a minimal
AGCD is ∆1 = {A1, A3, A5} for this row. From the sec-
ond row, we similarly find∆2 = {A2, A4, A6}. Setting these
agents to abnormal, and thus forcing them to select different
actions, would satisfy the coordination constraints.

# A1 A2 A3 A4 A5 A6

1 2 1 2 1 2 1 2 1 2 1 2
1 0 1 1 0 0 1 1 0 0 1 1 0
2 1 0 0 1 1 0 0 1 1 0 0 1

Table 1:Coordination-satisfying actions in Example 6.

Obviously, we should consider only the minimalAGCD.
We fulfill this requirement by comparing every new hypoth-
esized coordination diagnosis to the former coordination di-
agnoses, and checking whether it is a subset, a superset, or
different than the former diagnoses.

Thus theAGCD problem is essentially that of finding all
sets of truth assignments that will satisfy a target proposition,
an NP-Hard problem. A detailed discussion of satisfiability,
and the rich literature offering efficient exact and approxi-
mate solution methods is well beyond the scope of this paper.
However, we point at two diagnosis-specific mechanisms that
can potentially be used to alleviate computational load in our
case:

1. Ordered binary decision diagram (OBDD)[Bryant,
1992] can be used to efficiently reason about diagnosis-
satisfying assignments[Torasso and Torta, 2003]. By
restricting the representation, boolean manipulation be-
comes much simpler computationally. We can com-
pactly represent the coordination graph using OBDDs
(an off-line construction process), and then truth assign-
ments can be computed in linear time in many cases.

2. Assumption-based truth maintenance systems (ATMS)
[de Kleer, 1986] can be used to build the satisfying as-
signments incrementally. We exploit the fact that it is
unnecessary to check all the assignments since the legal
assignments depend each on the other. For instance, as-
sume a concurrence coordination betweena andb and
betweenb andc:

((a ∧ b) ∨ (¬a ∧ ¬b))∧
((b ∧ c) ∨ (¬b ∧ ¬c))

Instead of computing the full truth table ofa, b andc,
(23), we can use an ATMS, which given these justifica-
tions will provide only two assignments:(a = true, b =
true, c = true) or (a = false, b = false, c = false).

5 Summary and Future Work
We presented a novel formalization for diagnosing coordina-
tion failures in multi agent systems by representing the co-
ordination as constraints between agents which must be sat-
isfied. We model such coordination using two coordination
constraints (concurrence and mutual exclusion). In the diag-
nosis process the diagnoser observes the actions of the agents,
then it finds the candidate abnormal agents who violated the
constraints by the coordination model, and finally continues
to compute the abnormal sensors by back-chaining (previ-
ously shown in[Kalech and Kaminka, 2003]).

We defined both a consistency-based and abductive diag-
nosis versions of coordination diagnosis, and proposed initial
algorithms for both. The consistency-based approach finds
the local conflicts between pairs of agents, then continues
to compute the diagnosis by combining the conflicts using
a minimal vertex cover algorithm. We showed that this ap-
proach is unsound, in that it may produce diagnoses that are
impossible since any transformation of their value will not
satisfy the constraints between the agents. The second ap-
proach maps the abductive coordination diagnosis problem
to that of satisfiability, finding a minimal set of truth-value
changes that satisfy a given proposition. Here, our initial ap-
proach pre-computes all the possible coordination-satisfying
action assignments, and then uses these during on-line diag-
nosis by comparing the actions of the agents to each one of
the instances of the satisfying action assignments.

Our goal in this paper was to take a first step towards the
use of model-based diagnosis techniques in multi-agent sys-
tems, by representing it as CSP. Naturally, much is left for fu-
ture research. First, the algorithms we proposed are related to
key techniques in diagnosis, constraint-satisfaction, and non-
monotonic reasoning. We plan to explore these connections,
to bring to bear on this diagnosis problem. Second, we inten-
tionally avoided the use of complex multi-component agent
models, and focused on simple coordination primitives. We
hope to explore richer models of both in the future. In addi-
tion, while this paper has adopted the perspective of a cen-
tralized single diagnoser, we plan to tackle distributed algo-
rithms next. Representing the model-based diagnosis of co-
ordination as CSP opens new opportunity to inspire both of
the areas: distributed CSP as well as diagnosis of multi-agent
systems.
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Abstract 
D3G2A is a newer distributed genetic Algorithm for 
CSOPs. Our approach benefits not only from autono-
mous dynamic multi-agent systems reducing GAs tem-
poral complexity but also from GAs efficiency. D3G2A 
is enhanced by many newer parameters such as the Local 
optima detector LOD and the species types coefficientε. 
These latter allow not only diversification but also escap-
ing from local optima. 
The newer approach is experimented on the Radio Link 
Frequency Assignment Problem. The results show 
clearly that the new approach gives many improvements. 
In this paper, newer algorithms and their global dynam-
ics are furnished, and experimental results are provided.   

1 Introduction  
CSP formalism consists of variables associated with do-
mains and constraints involving subsets of these variables. 
A CSP solution is an instantiation of all variables with val-
ues from their respective domains. The instantiation must 
satisfy all constraints.  
In the realms of CSP, the instantiation of a variable with a 
value from its domain is called a label. A simultaneous in-
stantiation of a set of variables is called a compound label, 
which is a set of labels. A complete compound label is one 
that assigns values, from the respective domains, to all the 
variables in the CSP. 

A CSOP is a CSP with an objective function f that maps 
every complete compound label to a numerical value. The 
goal is to find a complete compound label S such that f(S) 
gives an optimal value, and that no constraint is violated. 
CSOPs make up the framework to this paper. 

CSOPs are generally NP-hard. They have been dealt with 
by complete or incomplete methods. The first ones, such as 
Branch and Bound [Tsang, 1993] are able to provide an 
optimal solution. Unfortunately, the combinatorial explo-
sion thwarts this advantage. The second ones, such as 
Guided Genetic Algorithms (GGA) [Lau and Tsang, 1998] 
have the property to avoid the trap of local optima. They 
also sacrifice completeness for efficiency.  

There is other distributed GAs known as Distributed Guided 
Genetic Algorithms. These approaches have been success-
fully applied to Max-CSP [Bouamama and Ghedira, 2003a, 
2003b, 2004]. Basically these distributed approaches outper-
form the Centralized Genetic Algorithms (GGAs) [Lau and 
Tsang, 1998], which are especially known to be expensive 
in time. As these approaches give good results with the 
Max-CSPs, in terms of both optimality and quality, why not 
to adopt the same idea for CSOPs. This is the aim of this 
paper. Our interest in GAs is also motivated by their proven 
usefulness in many fields [Michael et al., 1999]. 

2 CSOP Formalism 
A constraint satisfaction and optimization problem [Tsang, 
1993] , or CSOP, is a quadruple (X, D, C, f); whose compo-
nents are defined as follows: 
– X is a finite set of variables {x1, x2, ... xn}.  
– D is a function which maps each variable in X to its do-

main of possible values, of any type, and Dxi is used to 
denote the set of objects mapped from xi by D.  D can be 
considered as D = {Dx1, Dx2, …,Dxn}; 

– C is a finite, possibly empty, set of constraints on an 
arbitrary subset of variables in X. these constraints are 
represented in Extension or in Intention.    

– f an objective function which maps every instantiation to 
a numerical value.  

3 Dynamic Distributed Double Guided Ge-
netic Algorithm FOR CSOP 

3.1 Basic principles 
Our approach draws basically on the concept of both species 
and ecological niches. The species consists of several 
organisms having common characteristics whereas the 
ecological niche represents the task performed by a given 
species. Goldberg sets that the sexual differentiation based  
on specialization via both the building of species and the 
exploitation of ecological niches provides good results 
[Goldberg, 1989]. A certain number of methods have been 
settled in order to favorite the building of ecological niches 
[Ghedira, 2002] in GAs. 

D3G2A: the new Distributed Guided Genetic Algorithm for CSOPs  

Bouamama Sadok and Ghedira Khaled 
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So, the idea here is to partition the initial population into 
sub-populations and to assign each one of them to an agent 
called Species agent. A given sub-population consists of 
chromosomes having their fitness values in the same range. 
This range, said FVR, is called the specificity of the Species 
agent SpeciesFVR. Species agents are in interaction, in order 
to reach an optimal solution for the problem. For this 
reason, each Species agent performs its own GA. The latter 
is guided by both template[Lau and Tsang, 1998] concept 
and min-conflict heuristic[Minton, 1992]. An intermediary 
agent is necessary between the society of Species agents and 
the user, essentially to detect the best partial solution 
reached during the dialogue between the Species. This 
agent, called Interface, may also possibly create new 
Species agents. 

3.2  Min-Conflict-Heuristic and the Template  
Concept  
each chromosome is attached to a template [Tsang, 1999] 
that is made up of weights referred to as templatei,j. Each 
one of them corresponds to genei,j where i refers to the 
chromosome and j to the position. δi,j  represents the sum of 
costs of violated constraints by genei,j. These weights are 
updated by means of the penalty operator (see sub-section 
3.7). 

Templates will be used by GA in replacement. As we use 
the min-conflict-heuristic, replacement have to be elitist, i.e 
a chromosome is replaced by a better chromosome. For this, 
heavier templates genes have more probability to be 
replaced. 

3.3  Preparing CSOP  
Relationship between both genetic and CSOP formalisms is 
outlined as below; each chromosome (respectively gene) is 
equivalent to a CSOP potential solution (respectively vari-
able). Moreover, each allele corresponds to a value. 

Given an objective function f, we define an fitness 
function (FF) g which will be used by the optimization 
process [Lau and Tsang, 1998]. 

 
g(ps) = f(ps) + λ * Σ(CPi * Ii (ps))               (1) 
 
Where ps is a potential solution, λ is a parameter to the 

algorithm called Regularization parameter. It is a parameter 
that determines the proportion of contribution that penalties 
have in the fitness function. 

CPi is the penalty for genei (all CPi are initialized to 0) 
and Ii is an indication of whether ps satisfies all constraints 
or not: 

 
Ii (ps) =  1 if ps satisfies all constraints;  
               0 otherwise.                                    (2) 
 
Let us mention here that Ii is specific for every genei. for 

this, we sum over the index i the Ii values in order to express 

the contribution of every gene in the solution. So if a 
solution dos not satisfy all the problem constraints, the 
contribution of Ii will minimize the fitness function. 

3.4 Agent Structure 
Each agent has a simple structure: its acquaintances (the 
agents it knows and with which it can communicate), a local 
knowledge composed of its static and dynamic knowledge, 
and a mailbox where it stores the received messages to be 
later processed one by one. 
Species Agent 
A Specie agent has got as acquaintances the other Specie 
agents and the Interface agent. Its static knowledge consists 
of the CSOP data (i.e. the variables, their domains of values, 
the constraints and the objective function), the specificity 
(i.e. the fitness function range) and its local GA parameters 
(mutation probability, cross-over probability, number of 
generations, etc.). Its dynamic knowledge takes components 
as the population pool, which varies from one generation to 
another (chromosomes, population size). 
Interface Agent 
An Interface agent has as acquaintances all the Specie 
agents. Its static knowledge consists of the ∑CSP data. Its 
dynamic knowledge includes the best chromosome (i.e.  the 
chromosome having the best fitness function value). 

3.5 Global Dynamic 
The Interface agent randomly generates the initial 
population and then partitions it into sub-populations 
accordingly to their specificities i.e. the fitness value range 
FVR. After that the former creates Species agents to which 
it assigns the corresponding sub-populations. Then the 
Interface agent asks these Species to perform their 
optimization processes. So, before starting its own 
optimization process, i.e. its own behaviour, each Specie 
agent, SpeciesFVR, initializes all templates and penalties 
counters corresponding to its chromosomes. After that it 
carries out its genetic process on its initial sub-population, 
i.e. the sub-population that the Interface agent has 
associated to it at the beginning. This process, which will be 
detailed in the algorithms, returns a sub-population “pop” 
that has been submitted to the crossing and mutating steps 
only once, i.e. corresponding to one generation. For each 
chromosome of pop, SpecieFVR computes their fitness 
function values FV according to formula (1). Consequently, 
two cases may occur. The first one corresponds to a 
chromosome having an FV in the same range as its parents. 
In this case, the chromosome replaces one of the latter 
randomly chosen. In the second case, this value (FV) is not 
in the same range (FVR), i.e, the specificity of the 
corresponding SpeciesFVR. Then the chromosome is sent to 
another SpeciesFV if such agent already exists, otherwise it 
is sent to the Interface agent. The latter creates a new agent 
having FV as specificity and transmits the quoted 
chromosome to it. Whenever a new Species agent is created, 
the Interface agent informs all the other agents about this 

62



creation and then asks the new Species to perform its 
optimization process. Note that message processing is given 
a priority. So, whenever an agent receives a message, it 
stops its behaviour, saves the context, updates its local 
knowledge, and restores the context before resuming its 
behaviour. 

Here we describe the syntax used in the Figures: 
• sendMsg (sender, receiver,‘message’): ‘message’ is 

sent by “sender” to  “receiver”.  
• getMsg (mailBox): retrieves the first message in 

mailBox. 
Assessing-Message 
1. m ← getMsg (mailBox) 
2. Case (m) in  
3.  optimization-process (sub-population): 

 apply-behavior (sub-population) 
4. take-into-account (chromosome):  

population-pool ← population-pool ∪ {chromosome} 
5.  inform-new-agent (SpecieFV): list-acquaintances ← list-acquaintances ∪ 
{SpecieFV} 
6.  stop-process: stop-behaviour 

Figure 1: Message processing relative to SpecieFVR 

Apply-behavior (initial-population) 
1. init-local-knowledge 
2. for k := 1 to number-of-generations do 
3.          template-updating (initial-population) 
4.          pop ← genetic-process (initial-population) 
5.          best-FV ← 0 
6.          for each chromosomej in pop do 
7.                  FVj ← compute-augmented-fitness-value (chromosome) 
8.                  if best-FV ≤ FVj 
9.                     then best-FV ← FVj 
10.                             clear (LO-chromosomes-list) 
11.                                           LO-chromosomes-list ← LO-chromosomes-list ∪ 

{chromosomej} 
12.                 if (FVj ∈ rangei) 
13.                     then  replace-by (chromosomej) 
14.                     else   if exist-agent (SpecieFVR) 
15.                                  then    sendMsg (Speciesi, SpecieFVR,’take-into-

account (chromosomej)’)           
16.                                  else     sendMsg (SpecieFVR, Interface, ‘create-

agent (chromosomej)’ ) 
17.          end for 
18.          if best-FV= last-FV 
19.                then stat-counter  ← stat counter + 1 
20.                else  last-FV ← best-FV 
21.          if  stat-counter= LODi 
22.                then  last-stat-FV ← last-FV 
23.                         penalize(LO-chromosomes-list)    
24. end for 
25. sendMsg (SpecieFV, Interface,‘ result (one-chromosome, specificity)’ ) 

Figure 2: Behaviour relative to SpeciesFVR 

Genetic process 
1.  mating-pool ← matching (population-pool) 
2. template-updating (mating-pool) 
3. offspring-pool-crossed ← crossing (mating-pool) 
4. offspring-pool-mutated ← mutating (offspring-pool- crossed) 
5. return offspring-pool-mutated 

Figure 3: The Genetic process 

3.6  Guided Cross-over and Guided Mutation 
Out of each pair of chromosomes, the cross-over operator 
produces a new child as described in Figures 4 and 5. The 
child inherits the best genes, i.e. the “lighter” ones, from its 
parents. The probability, for a parent chromosomei (i=i1 or 
i2), where sum = templatei1,j + templatei2,j to propagate its 
genei,j to its child chromosome is equal to 1-templatei,j / sum. 
This confirms the fact that the “lighter” genes, i.e. having 
the best FV, are more likely  than the other to be passed to 
the child.  

For each one of its chromosomes selected according to 
the mutation probability Pmut, SpeciesFVR uses the min-
conflict-heuristic first to determine the gene (variable) 
involved in the worst FV, secondly to select from this gene 
domain the value that violates the minimal number of 
constraints and finally to instantiate this gene with this value 
(see Figure 6). 
Cross-over (chromosomei1, chromosomei2) 
1.for j :=1 to size (chromosomei1) do  
2..    sum ← templatei1,j + templatei2,j 
3.   if (random-integer [0, sum – 1]< templatei1,j ) 
4.    then genei3,j ← genei2,j 
5.    else genei3,j ← genei1,j 

6. Return chromosomei3 

Figure 4: Cross-over operator 

Crossing (mating-pool) 
1. if (mating-pool size < 2) 
2. then return mating-pool 
3. for each pair in mating-pool do 
4.   if (random [0,1] < Pcross) 
5.   then offspring ← cross-over (first-pair, second-pair) 
6.           FV ← compute-fitness-value (offspring) 
7.  offspring-pool ← offspring-pool ∪ {offspring} 
8. return offspring-pool    

Figure 5: Crossing process relative to SpeciesFVR 

Min-conflict-heuristic (chromosomei) 
1. δi,j ← max (templatei) /*δi,j is associated to genei,j which is in turn associ-

ated to the variable vj*/ 
2.     FV* ← 0  
3.  for each value in domain of vj do 
4.      FV← compute-fitness-value (value) 
5.      if (FV > FV*) 
6.         then   FV* ← FV 
7.         value* ← value 
8.    value (genei,j) ← value* 
9.    update (templatei) 
10. return FV* 

Figure 6: Min-conflict-heuristic relative to chromosomei 

If all the Species agents did not meet any better 
chromosome at the end of their behaviour or they attain the 
stopping criterion, they successively transmit one of their 
randomly chosen chromosomes, linked to its specificity to 
the Interface agent. The latter determines and displays the 
best chromosome namely the one which have the best FV. 
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3.7  Penalty Operator and Local Optima Detector 
To enhance the approach, the agents are given more 
autonomy and more dynamicity. In fact, we add an other 
GA’s parameter that we call LOD for local optima detector. 
The latter represents the number of generation in which the 
neighboring does not give improvement, i.e. if the FV of the 
best chromosome remains unchanged for a specific number 
of generations; and so we can conclude that the agent 
optimization sub-process is trapped in a local optimum. In 
fact if the unchanged FV is lesser than the last stationary FV 
then automatically LOD have to be equal to one. Otherwise 
the LOD will remain unchanged i.e. LOD is a parameter to 
the whole optimization process and it will be dynamically 
updated by every agent. 

Let us mention that every SpecieFVR have to save its best 
FV for the next generations. This will be very useful not 
only in the case of stationary fitness values, but also to 
select the best chromosome in the species.  In fact, if the 
best FV remain unchanged for LODi generation, the process 
will be considered as trapped in a local optimum. Thus for 
all the chromosomes having this FV, the related penalty 
counter PCi of all its genes is incremented by one. 
As we are in an optimization case, every SpecieAFR have to 
send its best chromosome to the Interface Agent. The latter 
updates its local knowledge by this information. This must 
be done once after every generation. The Interface Agent 
will, at every attempt, compare the best chromosome he has 
with the best one sent by the species agents. Only those hav-
ing the best FV will be maintained. 

When the optimization process settles on a local opti-
mum, the penalty of potential solution associated to this 
local optimum is increased. This helps the search process to 
escape from local optima, and drives it towards other candi-
date solutions. It is worth pointing out that a slight variation 
in the way that penalties are managed could make all the 
difference to the effectiveness of our approach. This is done 
by incrementing its penalty value by 1: 

 
           CPi = CPi + 1                                   (3) 

3.8 Mutation and Guidance Probability 
The approach, as decribed until now, can not be considered 
as a classic GA. In fact, in classic GAs the mutation aims to 
diversify a considered population and then to avoid the 
population degeneration [Goldberg, 1989]. In this approach, 
mutation operator is used improperly since it is considered 
as a betterment operator of the considered chromosome. 
However, if a gene value was inexistent in the population 
there is no way to obtain it by cross-over process. Thus, it is 
sometimes necessary to have, a random mutation in order to 
generate the possibly missing gene values. Our approach is 
a local search method. The first known improvement 
mechanism of local search is the diversification of the 
search process in order to escape from local optima [Schiex, 
1995]. No doubt, the simplest mechanism to diversify the 

search is to consider a noise part during the process. 
Otherwise the search process executes a random movement 
with probability p and follows the normal process with a 
probability 1-p [Schiex, 1995]. 
 

 
Figure 7:  An example of attraction basin of local optima 

 
In Figure 7, an example of local optima attraction basin 

is introduced; in a maximization case, S2, which is a local 
maximum, is better than S1. The passing through S1 from 
S2, is considered as a solution destruction but give more 
chance to the search process to reach S3, the global 
optimum.  

For all these reasons, the new proposed approach is 
enhanced by a random providing operator which we call 
guidance probability Pguid. Thus the approach will possess 
(in addition to the cross-over and mutation operators, to the 
generation number and to the initial-population size) a 
guidance operator.   

The mutating sub-process will change; for each selected 
chromosome following mutation probability Pmut, the 
mutation will be random with a probability 1-Pguid and 
guided with a probability Pguid (Figure 8 line 3). So that in 
the proposed mutating sub-process it’s possible to destroy a 
given solution in order to enhance exploration. This  process 
is illustrated in Figures 8,9 and10. 
Mutating (offspring-pool) 
1. for each chromosome in offspring-pool do 
2.     if (random [0,1]< Pmuti) then if  (random [0,1]< Pguid) 
3.      then Guided_Mutation   (chromosome i) 
4.                         else  Random_Mutation(chromosomei) 
5. FV* ← compute-augmented-fitness-value(chromosome i) 
6. offspring-pool-mutated ← offspring-pool-mutated ∪{chromosomei}                                  
7. return offspring-pool-mutated 

Figure 8: Mutating process relative to SpeciesFVR 

Random_Mutation   (chromosome i) 
1. Choose randomly a genei,j 
2. Choose randomly a value vi in domain of genei,j 

3. value(genei,j) ← vi 
4. Return chromosomei 

Figure 9: Random Mutation relative to chromosomei 

Guided_Mutation   (chromosome i) 
1. min-conflict-heuristic (chromosome i) 
2. Return chromosomei 

Figure 10: Guided Mutation relative to chromosomei 

        Global optimum 
Local optimum 
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3.9 Dynamic Approach 
The main interest of the second improvement is based on 
the NEO-DARWINISM theory [Darwin, 1859] and on the 
laws of nature « The Preservation of favoured races in the 
struggle for life ». This phenomenon can be described, in 
nature, by an animal society in which the strongest members 
are luckier to be multiplied (so their crossing–over 
probability is high). The power of these elements allows 
them not to be infected by illnesses (mutation is then at a 
lower rate). On the contrary case the weakest limbs of these 
animals are frequently ill or unable to combat illnesses 
(mutation is frequent), usually this kind of animals can’t 
attract females (reproduction is limited). In fact to cross-
over a strong species and to give more mutation possibility 
for a weak species can be very worthy.  

So, from now on Pcross and Pmut will be function of fitness 
and of a newer operator called ε. This operator is a weight 
having values from 0 to 1. 

Figure 11: The new Genetic process 
In the newer optimization process, described in Figures 

11 and 12, each species agent proceeds with its own genetic 
process. Indeed before starting the optimization process 
agents have to count their parameters Pcross and Pmut on the 
basis of their fitness values. For a given Species agent three 
cases are possible as described  by the new genetic process 
detailed in figures 11 and 12. 

  
Count_operator (Pcross, Pmut, LOD) 
1. if FV < (max-attained-FV / 2) then 
2.                Pcrossi ← Pcross / ε 
3.                Pmuti  ← Pmut * ε 
4.                LOD i  ←  LOD / ε  
5. if FV > (max-attained-FV / 2) then 
6.                Pcrossi ← Pcross * ε 
7.                Pmuti ← Pmut / ε 
8.                 LOD i  ←  LOD * ε 
9. if FV = (max-attained-FV / 2) then 
10.               Pcrossi ← Pcross  
11.               Pmuti ← Pmut 
12.               LOD i  ←  LOD   
13.  if FV ≤ last-stat-FV 
14.               then LODi ← 1 
15.  return (Pcrossi,  Pmuti, LODi ) 

Figure 12: The operator count process 

4 The Radio Link Frequency Assignment 
Problems (RLFAP) 

The French "Centre d'Électronique de l'Armement" 
(CELAR) has made available, in the framework of the 
European project EUCLID CALMA (Combinatorial Algo-
rithms for Military Applications) set of Radio Link Fre-

quency Assignment benchmark problems (RLFAP)1 build 
from a real network, with simplified data. These bench-
marks had been previously designed by the CELAR to as-
sess several different Constraint Programming languages.  
 These benchmarks are extremely valuable as benchmarks 
for the CSP community and more largely for constraint pro-
gramming:  

• The constraints are all binary (involving no more 
than two variables), non linear and the variables 
have finite domains.  

• These are real-world size problems, the larger in-
stances having round one thousand variables and 
more than five thousand constraints. All these in-
stances have been built from a unique real instance 
with 916 links and 5744 constraints in 11 con-
nected components [Bertrand et al. 1999].  

The Radio Link frequency Assignment Problem consists 
in assigning frequencies to a set of radio links defined be-
tween pairs of sites in order to avoid interferences. Each 
radio link is represented by a variable whose domain is the 
set of all frequencies that are available for this link. The 
essential constraints involve two variables F1 and F2:  

|F1-F2|> k12 

The two variables represent two radio links which are 
"close" one to the other. The constant k12 depends on the 
position of the two links and also on the physical environ-
ment. It is obtained using a mathematical model of electro-
magnetic waves propagation which is still very "rough". 
Therefore, the constants k12 are not necessarily correct (it is 
possible that the minimum difference in frequency between 
F1 and F2 that does not yield interferences is actually differ-
ent from k12). In practice, k12 is often overestimated in order 
to effectively guarantee the absence of interference. For 
each pair of sites, two frequencies must be assigned: one for 
the communications from A to B, the other one for the 
communications from B to A. In the case of the CELAR 
instances, a technological constraint appears: the distance in 
frequency between the A->B link and the B->A link must be 
exactly equal to 238. In all CELAR instances, these pairs of 
links are represented as pairs of variables numbered 2k and 
2k+1. The possibility of expressing constraints such as |F1-
F2|> k12 suffices to express the graph coloring problem and 
it is therefore clear that the RLFAP is NP-hard [Lau and 
Tsang, 1998].  

Let us mention here that we will take the same formula-
tion as that found in [Lau and Tsang, 1998].  In this case we 
will consider only the solvable instances. i.e the instances 
1,2,3,4,5 and 11. In fact only the these instances could be 
considered as CSOP, as they have no constraint violation. 

                                                 
1 RLFAPis available in Centre d’Electronique et de 

l’Armement (France), via 
http://www.inra.fr/bia/T/schiex/Doc/CELAR.shtml 

Genetic process 
1. mating-pool  matching (population-pool) 
2. (Pcrossi, Pmuti, LODi)  count_operator (Pcross, Pmut, LOD)
3. template-updating (mating-pool) 
4. offspring-pool-crossed  crossing (mating-pool) 
5. offspring-pool-mutated  mutating (offspring-pool- crossed) 
6. return offspring-pool-mutated 
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5 Experimentation 

5.1 Experimental design 
The goal of our experimentation is to compare a distributed 
implementation with a centralized one of genetic algorithm 
enriched by both template concept and min-conflict-
heuristic. The first implementation is referred to as Distrib-
uted Guided Genetic Algorithm (D3G2A) whereas the sec-
ond one as Guided Genetic Algorithm (GGA). The imple-
mentation has been done with ACTALK [BRI 89], a concur-
rent object language implemented above the Object Ori-
ented language SMALLTALK-80. This choice of Actalk is 
justified by its convivial aspect, its reflexive character, the 
possibility of carrying out functional programming as well 
as object oriented programming , and the simulation of 
parallelism.   
In our experiments we carry out 30 times the algorithms and 
we take the average without considering outliers.  Concern-
ing the GA parameters, all the experimentations employ a 
number of generations (NG) equal to 10, a size of initial 
population equal to 1000, a  cross-over probability equal to 
0,5, a mutation probability equal to 0,2, a probability of 
guidance equal to 0.5, LOD is equal to 3, λ equal to 10 and 
ε  is equal to 0.6. 

The performance is assessed by the two following 
measures: 
• Run time:  the CPU time requested for solving a 

problem instance,  
•  Fitnes function value:  the solution guiven by the 

algorithm. 
The first one shows the complexity whereas the second 

recalls the quality. In order to have a quick and clear 
comparison of the relative performance of the two 
approaches. 

Experimental results 

In order to have a quick and clear comparison of the 
relative performance of the two approaches, we compute 
ratios of GGA and D3G2A performance using the Run time 
and the fitness value as follows: 
•   CPU time Ratio=GGA CPU time / D3G2A CPU time. 
•   Fitness ratio= FV of  D3G2A / FV of GGA 

Thus, GGA performance is the numerator when 
measuring the CPU time ratios, and the denominator when 
measuring fitness value ratio. Then, any number greater 
than 1 indicates superior performance by D3G2A. 

Let us remember that we report only the solvable 
instances of the RFLAP. For evry one of the latters 
exepriments are repeatedly performed. The average is then 
presented. 

 

 

 

 
 
 

Figure 13: Fitness ratios 
 
From the solution quality point of view shown in figure 

13, the D3G2A always finds better solution than GGA or 
same one. This ratio is more significant for instances 4,5 
and 11(see peaks in figure 13). The fitness ratios average is 
1.31646. This is the result of the diversification and the 
intensification used in our approach. 

 
 
 
 
 
 

 

 

 
Figure 14: CPU time ratios 

 
Form the CPU time point of view (figure. 14), D3G2A re-
quires less time for all the instances of the problem. It re-
quires until 5.122 less time for the same example. In aver-
age the CPU time ratio is equal to 3.035. 

 We have come to these results thanks to agent 
interaction reducing GA temporal complexity. In fact, the 
comunication between agents helps them to in the solution 
investigation. The CPU time is in the other hand reduced 
thanks to the new proposed genetic process. In the latter, 
both diversification (by random mutations and by LOD) and 
guidance are used. The first one helps the optimization 
process to escape from local optima. The second one, 
intensifies the search helping it to attain, rapidly, better 
fitness function values. 

6 Conclusion And Perspectives 
We have developed a newer approach called D3G2A. This 
approach is a dynamic distributed double guided genetic 
algorithm enhanced by three new parameters called 
guidance probability Pguid, the local optima detector LOD 
and the weight ε,. The latter is a weight used by Species 
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agents to determine their own genetic process parameters on 
the basis of their chromosomes Fitness values. Compared to 
the centralized guided genetic algorithm and applied to 
RLFAP, our new approaches have been experimentally 
shown to be better in terms of fitness value and CPU time.  

The improvement is due to both diversification and 
guidance. The first increases the algorithm convergence by 
escaping from local optima attraction basin. The latter helps 
the algorithm to attain optima. Consequently D3G2A gives 
more chance to the optimization process to visit all the 
search space. We have come to this conclusion thanks to the 
proposed mutation sub-process. The latter is sometimes 
random, aiming to diversify the search process, and 
sometimes guided in order to increase the best of the fitness 
fonction value.  

The genetic sub-process of D3G2A Species agents will no 
longer be the same depending on their fitness values. This 
operation is based on the species typology. The sub-
population of a species agent can be considered as strong or 
weak with reference to its fitness value. For a strong 
species, it’s better to increase cross-over probability and to 
decrease mutation probability. However, when dealing with 
a weak species, cross-over probability is decreased and 
mutation probability is increased. The occurrence of these 
measures not only diversifies the search but also explore 
wholly its space. 

No doubt further refinement of this approach would 
allow its performance to be improved. Further works could 
be focused on applying these approaches to solve other real 
hard CSOPs and valued CSPs [Schiex et al., 1995]. 
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Abstract
In previous work, the notions of Open, Interac-
tive and Dynamic CSP have been independently
defined. Open constraint satisfaction is a new
model where values are incrementally gathered
during problem solving. Domains are assumed un-
bounded. Interactive constraint satisfaction also
deals with partially known domains, assuming im-
plicitly that domains are finite.Dynamicconstraint
satisfaction deals with problems of dynamic na-
ture (as configuration design or model composi-
tion) where variables, domains and constraints are
subject to frequent changes. In this paper, we study
the relationship between these three models, show-
ing that Interactive CSP can be seen as a particular
case of Open and Dynamic. We have applied two
algorithms, FOCSP (developed for Open) and LC
(developed for Dynamic) to solve Interactive CSP.
We provide experimental results of this evaluation.

1 Introduction
With the increasing use of Internet, many problem-solving
tasks such as resource allocation, scheduling, planning, and
configuration pose themselves in anopensetting involving
multiple participants. Existing search-based problem-solving
techniques are based on the closed-world assumption and re-
quire that all options be collected before problem-solving
starts. The approach of turning the web into a virtual database
often leads to gathering more information than needed to
solve the problem.

In previous work[Faltings and Macho-Gonzalez, 2005;
2002], a new model called Open CSP was defined, as a way
to integrate information gathering and problem solving. This
model starts solving a CSP from a state where all domains
are possibly empty, and it dynamically asks for values while
the CSP has not been solved. This process stops as soon as a
solution is found, optimising the number of values queried to
find the solution.

With a similar motivation, the Interactive CSP model was
proposed[?], to deal with problems with partially defined do-
mains. It is implicitly assumed that the domains are finite,
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while in Open CSP domains remain unbounded. As conse-
quence, Interactive CSP appears to be included in the Open
CSP framework.

In a dynamic environment, tasks usually change. As a con-
sequence, CSPs that represent these tasks evolve, and vari-
ables, domains and constraints may change over time. The
Dynamic CSP model[Dechter and Dechter, 1988] was de-
fined to solve CSP in such dynamic environments.

This paper brings a review of the Open, Interactive and
Dynamic CSP approaches and their relationship. In the next
sections, we will see that an Interactive CSP can be seen as
a particular case of Open CSP. In addition, Interactive CSP
can be seen as a particular case of Dynamic CSP. Therefore,
algorithms developed for Open or Dynamic models could be
used for solving Interactive CSP.

The remain of this paper is structured as follows. In Sec-
tion 2 we give a brief description of the Open CSP model,
including the FOCSP solving algorithm. In Section 3 we give
a brief description of the Interactive CSP model, showing that
it can be seen as a particular case of Open CSP. Section 4 con-
tains an overview of the Dynamic CSP approach. In Section
5 we indicate the similarities and differences between them,
showing that an Interactive CSP can be seen as a Dynamic
CSP. In Section 6, we present the LC algorithm, initially de-
veloped for Dynamic CSP, that now can be applied to Inter-
active CSP. Experimental results on the use of FOCSP and
LC algorithms on Interactive CSP instances appear in Sec-
tion 7. Finally, Section 8 contains some conclusions and lines
for further research.

2 Open CSP

There are real problems which are difficult to solve with the
classical CSP approach of collecting all values before solving
the problem. For example in configuration, such as configur-
ing a PC or configuring a trip. On the web there are may data
sources that each apply values for each component. Query all
them is not feasible, we are interested just in querying until
a solution is found. Other examples are when the number of
options can become infinitely large if they are generated on
demand, for example if you configure an investment portfo-
lio you can get certain investment products in an unbounded
number of varieties. Composing web services, configuring a
supply chain (asking for offers from suppliers until you have a
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Figure 1:Elements of an open constraint satisfaction problem

consistent plan),..... are more examples of problems for which
the classical CSP approach is unfeasible.

To address these problems, the Open CSP approach[Falt-
ings and Macho-Gonzalez, 2005; 2002] was proposed. In
Figure 1 we show the important elements that occur in an
open setting. The problem-solving process is modelled ab-
stractly as the solution of a constraint satisfaction problem.
The choices that make up domains and permitted tuples of
the CSP are distributed throughout an unbounded network of
information serversIS1, IS2, ..., and accessed through a me-
diator ([Wiederhold and Genesereth, 1997]).

More precisely, anOpen constraint satisfaction problem
(Open CSP)[Faltings and Macho-Gonzalez, 2005; 2002] is
a possibly infinite sequence〈CSP(0), CSP(1),. . .〉 of CSP
instances. An instance CSP(i) is the tuple〈V, D(i), C(i)〉
where,

• V = {v1, v2, ..., vn} is a set ofn variables.

• D(i) = {D1(i), D2(i), ..., Dn(i)} is the set of domains
for CSP(i) where variablevk takes values inDk(i). Do-
mains grow monotonically withi, Dk(i) ⊆ Dk(i + 1)
for all k.

• C(i) = {c1(i), c2(i), . . . , cr(i)} is a set ofr con-
straints. A constraintc(i) involves a sequence of vari-
ablesvar(c(i)) = 〈vp, . . . , vq〉 denominated its scope.
The extension ofc(i) is the relationrel(c(i)) defined
on var(c(i)), formed by the permitted value tuples on
the constraint scope. Relations grow monotonically,
rel(ck(i)) ⊆ rel(ck(i + 1)) for all k.

A solutionis a set of value assignments involving all vari-
ables such that for somei, each value belongs to the corre-
sponding domain inD(i) and all value combinations are al-
lowed by the constraintsC(i) of CSP (i). Solving an Open
CSP requires an integration of search and information gather-
ing. It starts from a state where all domains are empty, and the
first action is to find values that fill the domains and allow the
search to start. As long as the available information does not
include enough values to make the CSP solvable, the problem
solver initiates further information gathering requests to ob-
tain additional values. The process stops as soon as a solution
is found.

In [Faltings and Macho-Gonzalez, 2002] it was developed
the FOCSP algorithm for solving Open CSP. It appears in Fig-
ure 2. It is based on the idea that we gather new values only

function FOCSP(X, D, C)
i← 1, k ← 1
repeat {backtrack search}

if exhausted(di) {backtrack} then
reset− values(di), i← i− 1

else
k ← max(k, i), xi ← nextvalue(di)
if consistent({x1..xi}) then i← i + 1
if i > n then return {x1, ..., xn} as a solution;

until i = 0
if exhausted(dk)

if (∀i ∈ 1..k − 1)exhausted(di) then return failure
else

nv ← more(xk)
if nv 6= nomore then dk ← nv ∪ dk

reorder variables so thatxk becomesx1 (relative order of
others remains the same)

return FOCSP(X,D,C)

Figure 2: The FOCSP algorithm.

when the current instanceCSP (i) has no solution. In that
case, it usually contains a smaller subproblem that already
has no solution, andCSP (i) can be made solvable only by
creating a solution to that subproblem. Information gather-
ing thus should focus on the variables in the subproblem, as
follows. Letxi be the deepest variable that backtracking has
reached when trying to solveCSP (i), following a static vari-
able ordering.xi is called thefailed variable, and it is proved
that it belongs to the smallest subproblem without solution
insideCSP (i) [Faltings and Macho-Gonzalez, 2002]. After
a failed search, an additional value is requested for that vari-
able, that now is considered first in the static variable ordering
and the search restarts.

In [Faltings and Macho-Gonzalez, 2002], it is shown that
if the current instanceCSP (i) contains a minimal unsolvable
subproblem, the FOCSP algorithm will either solve it or fall
into a mode where it cycles through the variables in this min-
imal subproblem and gathers values for each of them. This
allows showing that the algorithm is complete even in the
presence of unbounded domains.

3 Interactive CSP
Very related with Open CSP is the Interactive CSP model
introduced by[?]. An Interactive CSP (ICSP) has partially
known domains for its variables. When solving an Interac-
tive CSP, new values are requested, until finding a solution or
proving that no solution exists. It is implicitly assumed that
variable domains are finite.

More precisely, an Interactive CSP is defined as a triple
(V, D, C), whereV is a set ofn variables,D is a collection
of domains andC is a set of constraints. The new elements
to consider in the Interactive CSP model are interactive do-
mains and constraints. Aninteractive domainDi (the domain
of variablevi) has two parts,Di = Knowni ∪ Unknowni;
Knowni is the set of available values forvi, whileUnknown
as the set of not yet available values forvi. An interactive
constraintis a constraint including in its scope one or more
variables with interactive domains, so not all value combina-
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tions are known. As soon as new values are known for these
variables, new constraint tuples are added to the constraint.

Formally, an Interactive CSP can be seen as a particu-
lar case of Open CSP, where values for interactive domains
are obtained during the solving process. In this sense, we
could define Interactive CSP as a finite sequence〈CSP(0),
CSP(1),. . .〉 of CSP instances. An instance CSP(i) is the
tuple 〈V, D(i), C(i)〉 defined as in the Open CSP case. We
stress two properties here:Dk(i) ⊆ Dk(i + 1) for all k and
rel(ck(i)) ⊆ rel(ck(i + 1)) for all k.

The main difference between Interactive and Open CSP
models consists on the assumed domain size. In Open CSP
domains are unbounded, so the sequence of CSP instances
may be infinite. This is not the case for Interactive CSP, where
domains are assumed finite so the sequence of CSP instances
is necessarily finite.

In the Interactive CSP model, it is possible to use heuristi-
cally some of the known constraints to guide the acquisition
of new values. This feature depends on the concrete appli-
cation to solve, but no specific condition is requested on the
basic model. In addition, some examples suggest the use of a
high-level mediator, able to acquire all values consistentwith
a specific assignment. This feature could be seen as a way to
implement the value acquisition process.

Some specific solving algorithms have been proposed for
this model. The forward checking algorithm is modified so
that when domains become empty, it launches a specific re-
quest for additional values that would satisfy the constraint
on that variable. In earlier work([Cucchiaraet al., 1997]),
the same authors also show how arc consistency algorithms
can be adapted with the right dependency structures so that
consistency can be adapted to values that might be added
later. Interactive CSP uses constraint propagation to reduce
the search space by pruning the assignments which cannot ap-
pear in any consistent solution and to guide the search by gen-
erating new constraints at each step[Cucchiaraet al., 1997].
An interesting application for ICSP is defined in[Cucchiara
et al., 1997] where ICSP is used for object recognition and
identification in a visual system.

4 Dynamic CSP
As mentioned before, many interesting problems in Artificial
Intelligence such as scheduling, planning and configuration
can be modelled as CSP. But in many situations there is not
complete knowledge of the environment at early stage of the
problem; variables and constraints could evolve over the time.

A Dynamic constraint satisfaction problem(Dynamic
CSP) [Bellicha, 1993; Bessière, 1991; 1992; Dechter and
Dechter, 1988] is a finite sequence〈CSP(0), CSP(1),. . .〉 of
CSP instances, where each CSP(i) differs from the previous
one by the addition or removal of some constraints. It is easy
to see that all possible changes of a CSP can be expressed in
terms of constraint additions or removals. Implicitly, it is usu-
ally assumed that (i) changes between consecutive instances
are local, that is, they do not affect the whole CSP, and (ii)
solutions of consecutive instances are not very different,they
differ in a few number of values.

Solving a Dynamic CSP implies solving each instance of

the sequence. The first instance is solved from scratch, and
it is always possible to apply this method to any subsequent
one. However, this approach presents two drawbacks,

• Inefficiency. Solving an instance from scratch could re-
peat much of the work done to solve previous instances,
which may be unacceptable for some applications.

• Instability. Solving instances from scratch may result
in the fact that successive solutions are far or unrelated.
This may be unpleasant or undesired if some kind of
continuity among solutions is required.

To avoid these drawbacks, when solving an instance we
aim at reusing as much as possible the solving episodes
of previous instances. Obviously, the difficult case appears
when constraints are added between consecutive instances,
since adding a new constraint could invalidate the previ-
ous solution. Removing constraints between consecutive in-
stances does not cause any problem, because the previous so-
lution is still valid.

Several algorithms were developed for solving Dynamic
CSPs. They can be divided into two groups:

• Remember what has been discovered (Recording no-
goods). This method is based on recording any no-good
and its justification, in order to reuse it in the framework
of any new CSP (with a new constraint or without a con-
straint) to prevent failures. The method is explained in
[Schiex and Verfaillie, 1994; Jianget al., 1994].

• Local repair methods. This method starts from any pre-
vious consistent assignment (that could be a solution of
the former CSP) and repairing it, using a sequence of
local modifications. The method is based on the charac-
teristics of a dynamic environment, exposed before. An
algorithm based on this method can be found on[Ver-
faillie and Schiex, 1994].

5 Interactive CSP as Dynamic CSP
An Interactive CSP can be seen as a particular case of Dy-
namic CSP, as follows. In Interactive CSP, the operation that
passes from a problem instance to the next one isacquire
value, getting a new value for a particular variable. Then,
the variable domain is extended with that value, and the rela-
tional part of constraints involving such variable are enlarged
with the allowed tuples that contain the new value. This pro-
cess can be modelled in Dynamic CSP as follows. Adding a
new value is equivalent to removing a unary constraint which
disallowed this value in the domain of the corresponding vari-
able, so that value is now available. Enlarging the constraints
in which the variable is involved is equivalent to replacing(re-
moving plus adding) the previous constraints by the enlarged
ones. This simple idea is depicted in Table 1.

Interactive CSP Dynamic CSP
Acquirevalue Remove unary constraint that forbidsvalue

Replace (remove and add) some constraints

Table 1: Interactive CSP vs Dynamic CSP.
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Figure 3:From an Interactive CSP to a Dynamic CSP

An example of this reformulation appears in Figure 3.
Let us suppose that an Interactive CSP has two variables
{V 1, V 2} such thatD1 = {a, b, c} andD2 = {a}. There is
an inequality constraint between them. If valuea is known for
V 1 andV 2, the problem can be transformed into a Dynamic
CSP with the same variables, two new unary constraints (one
for each remaining value ofV 1, V 1 6= b, V 1 6= c), and the
inequality constraint. In this example, acquiring a new value
b for the variableV 1 of the Interactive CSP is equivalent to
relax the unary constraintV 1 = b in the Dynamic CSP, and
adding the pair(b, a) as permitted in the binary constraint.

At first glance one may think that this approach requires
to know all the values of the domains from the beginning, to
form the variable domains of the Dynamic CSP. However, this
is not the case. It is enough to know the maximum number of
values for each variable, saydi for vi. Initially, the problem
state is as follows. The domain ofvi is a set ofdi dummy
values{dummy1, . . . , dummydi

}. When valuea is found,
it replaces a dummy value, saydummy1, in the variable do-
main (that now becomes{a, dummy2, . . . , dummydi

}), and
in the constraints. At this point, the changes in the constraints
mentioned in Table 1 are performed.

Strictly speaking, this model is an extension of the standard
model of Dynamic CSP, where all domains are known from

Figure 4: Relation between Interactive CSP and Dynamic
CSP

the beginning. The existence of dummy values which are re-
placed by real values as search progresses is not a big issue
for the standard Dynamic CSP model, because the domain
size does not change, and dummy values are replaced by real
ones only once. This is the only extension that the standard
Dynamic CSP model requires to include Interactive CSP. We
call this new model theExtended Dynamic CSP. The relation
between these models appears in Figure 4.

Now, we can apply Dynamic CSP algorithms to solve In-
teractive CSP problems. In the next Section, we take the local
changes algorithm[Verfaillie and Schiex, 1994], a specific al-
gorithm for Dynamic CSP, and we apply it for Interactive CSP
solving, obtaining interesting results.

6 The LC algorithm
We have applied the local changes (LC) algorithm[Verfaillie
and Schiex, 1994], originally developed for solving Dynamic
CSP, to solve Interactive CSP instances. The LC algorithm
appears in Figure 5.

This algorithm is based on the following idea: instead of
solving from scratch the Interactive CSP every time a new
value is added (i.e. tov = nv) during the solving process (as
described in the FOCSP algorithm), it is possible to solve the
Interactive CSP removing all variables whose assignment is
incompatible withv = nv and entering again these variables
one after another without modifying the assignmentv = nv.
The basic idea is to extend the compatible assignmentv =
nv and the compatible variables, into an assignment which
involves all variables.

The LC algorithm of Figure 5 works as follows.V1 is the
set of variables with an assignment which we will not modify,
V2 is the set of variables with an assignment we could modify
andV3 is the set of unassigned variables. The initial call to the
algorithm isLC(∅, ∅, X) whereX is the set of variables of
the Interactive CSP. Functionlc-variables(V1, V2, V3)
returns true if there exists a consistent assignment for all
the variables, without modifying the assignment ofV1, and
false otherwise. Functionlc-variable(V1, V2, v, d) re-
turns true if there is a consistent assignment for variables
V1 ∪ V2 ∪ {v} without modifying the assignment ofV1, and
falseotherwise. This function includes the query to get new
values for a given variable, in the first four lines of the func-
tion. If the domain ofv is exhausted (empty), a new value is
requested through the callmore(v). If the returned value is
nomore, it means that no more values are available for vari-
ablev. In that case, the function returnsfalse. Otherwise,
the new value enters in the variable domain and the process
continues. Functionlc-value(V1, V2, v, val) returnstrue
if there is an assignment for variables inV2 such that this
assignment plus the assignment ofV1 plus (v, val) form a
consistent assignment. To do this, this function explores the
possible assignments forV2, keepingV1 and(v, val) fixed,
through the calllc-variables(V1 ∪ v, V 2− V3, V3).

Theorem. Supposed that an Interactive CSP is solvable
(resp. insolvable). Then, calling the LC algorithm with the
statementLC(∅, ∅, X) (whereX is the set of variables of the
problem) returns a solution (resp. failure) of the Interactive
CSP. Thus, the algorithm is complete.
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function lc(X, D, C): boolean;
return lc-variables(∅, ∅, X);

function lc-variables(V1, V2, V3): boolean;
if V3 = ∅ then return true;
else

v ← select− var(V3);
d← domain(v);
if lc-variable(V1, V2, v, d)

then return lc-variables(V1, V2 ∪ {v}, V3 − {v});
else return false;

function lc-variable(V1, V2, v, dv): boolean;
if exhausted(d) then

nv ← more(v);
if nv = nomore then return false;
else d← {nv};

v ← select− val(d);
save− assig(V2);
if lc-value(V1, V2, v, val) then return true;
else

restore − assig(V2);
return lc-variable(V1, V2, v, d− {val});

function lc-value(V1, V2, v, val): boolean;
A1 ← assignment(V1);
A12 ← assignment(V1 ∪ V2);
if A1 ∪ {(v, val} is inconsistentthen return false;
else if A12 ∪ {(v, val} is consistentthen return true;
else

V3 ← nonempty subset ofV2 such that
A123 ← assignment(V1 ∪ V2 − V3) and
A123 ∪ {(v, val} is consistent

unassign− vars(V3);
return lc-variables(V1 ∪ {v}, V2 − V3, V3);

Figure 5: The LC algorithm.

Proof: The LC algorithm is described in[Verfaillie and
Schiex, 1994], where the authors give a proof of its correct-
ness, completeness and termination for known variable do-
mains. Because the LC algorithm works with a subset of
the complete variable domain (or the complete domain in the
worst case), then the proof is still valid.

Figure 6 shows two examples of how the LC algorithm
works. In figure 6(a), we have a CSP instance in an Inter-
active CSP without solution with the inconsistent assignment
V 1 = b, V 2 = c, V 3 = a, V 4 = a. If we decide to add a
new value to variableV 4 then we remove all the assignments
of the variables which are inconsistent with the new value i.e
V 4 = b. Next step is reassign these variables one after an-
other without modifying the assignment. In figure 6(a) having
the new assignmentV 4 = b, the set of compatible assign-
ments isAC = {V 2 = b, V 3 = a} and the set of incompati-
ble assignments isANC = {V 1 = b}. Next step is to assign
a new value forV 1 which will be compatible with the assign-

(a) (b)

Figure 6: Examples of the LC algorithm.

mentAC ∪ {V 4 = b}1. Figure 6(b) shows another exam-
ple. The CSP instance of the Interactive CSP has no solution
with the inconsistent assignmentV 1 = b, V 2 = a, V 3 = b.
If we decide to add a new value for variableV 3, lets say
V 3 = c, this value is consistent with the previous assignment
A = {V 1 = b, V 2 = a}, thus we have a solution.

7 Experimental Results
We compared the performance of the LC algorithm against
the FOCSP algorithm described in[Faltings and Macho-
Gonzalez, 2005; 2002]. The FOCSP is based on the idea of
using a failed CSP search to determine for which variable ad-
ditional values should be collected. The idea is that when a
CSP has no solution, there exists an unsolvable subproblem
that causes the inconsistency. If we want to make solvable the
CSP we need to add a value to one of the variables of this un-
solvable subproblem. We can identify a variable that belongs
to this subproblem using a failed backtracking. This variable
is calledfailed variable.

To compare the algorithms, we are interested in the number
of checks needed to solve the Interactive CSP and the number
of accesses to information sources until a solution is found.
We generated 100000 random Interactive CSPs, with between
5 to 18 variables and 2 to 7 values per variable, with random
constraints, forcing the graph to be at least connected and at
most complete.

Figure 7 shows the number of checks against the number of
variables, studying the performance of the algorithms when
we increase the number of variables. It is shown that the
LC algorithm has a much better performance that the FOCSP
algorithm. The FOCSP algorithm redoes again the same
solving process every time a new value is added, while the
LC algorithm uses the information from the previous assign-
ments (compatible assignments, incompatible assignments)
for solving without solving again the CSP from scratch.

Figure 8 shows the number of queries against the num-
ber of variables. We can see that LC and FOCSP algorithms
have a much better performance than the classical approach

1In the example of figure 6(a) this step is not enough for solving
the problem, because there is not any assignment ofV 1 compatible
with A1∪{V 4 = b}. The algorithm will decide to repeat the process
adding a new value to variableV 1
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number of variables

of collecting all values and solve the problem. Both, LC and
FOCSP query nearly the same number of values to find a so-
lution.

Figures 7 and 8 show the improvements of the LC algo-
rithm described in the previous section. Empirically it is
shown in figure 7 that reuse previous work on failed branches
is more perfomant on average than detect the failed variable
and redo the problem as the FOCSP algorithm does.

It is also interesting to analyze the fact that the number
of queries of LC algorithm is always slightly higher than the
number of queries of FOCSP. This may be related with the
way values are queried by both algorithms. While consecu-
tive queries of FOCSP ask for values of different variables,
consecutive queries of LC may ask the complete domain of
a variable. Therefore, in some cases LC may ask more than
needed to find a solution. This point is subject to current re-
search.

8 Conclusions
In this paper we have analyzed the relation among Open, In-
teractive and Dynamic CSP. These models, different from the
classical CSP, have appeared in different moments motivated
by different applications. We have shown that Interactive CSP
can be seen as a particular class of Open CSP (restricted to
finite domains). In addition, we have also shown that In-
teractive CSP can be seen as a particular class of Dynamic
CSP (strictly speaking, a class of extended Dynamic CSP).
As consequence, algorithms used to solve Open CSP and Dy-
namic CSP can be used to solve Open CSP. Based on this
relationship, we have applied the FOCSP algorithm, (initially
developed for Open CSP) and the LC algorithm algorithm
(initially developed for Dynamic CSP), to solve Interactive
CSP instances. We have found that the LC algorithm reduces
dramatically the number of checks with respect to FOCSP,
just slightly increasing the number of queries needed to find
a solution.

We think that this relationship between Open, Interactive
and Dynamic CSP is a promising avenue for research, that
we will further investigate in the near future.

References
[Bellicha, 1993] Amit Bellicha. Maintenance of a solution

in a dynamic constraint satisfaction problem.Applications
of Artificial Intelligence in Engineering, pages 261–274,
1993.

[Bessière, 1991] Christian Bessière. Arc-consistency in dy-
namic constraint satisfaction problems. InProceeding of
the Ninth National Conference on Artificial Intelligence,
pages 221–226, 1991.

[Bessière, 1992] Christian Bessière. Arc-consistency for
non-binary dynamic constraint satisfaction problems. In
B. Neumann, editor,Proceedings of the 10th European
Conference on Artificial Intelligence. John Wiley & Sons,
Ltd, 1992.

[Cucchiaraet al., 1997] Rita Cucchiara, Evelina Lamma,
Paola Mello, and Michela Milano. An interactive
constraint-based system for selective attention in visual
search. InInternational Symposium on Methodologies for
Intelligent Systems, pages 431–440, 1997.

[Dechter and Dechter, 1988] Rina Dechter and Avi Dechter.
Belief maintenance in dynamic constraint networks. In
Proceedings of the Seventh Annual Conference of the
American Association of Artificial Intelligence, pages 37–
42, 1988.

[Faltings and Macho-Gonzalez, 2002] Boi Faltings and San-
tiago Macho-Gonzalez. Open constraint satisfaction.CP-
2002, pages 356–370, 2002.

[Faltings and Macho-Gonzalez, 2003a] Boi Faltings and
Santiago Macho-Gonzalez. Incentive compatible open
constraint optimization. InProceedings of AAMAS 2003,
July 2003.

[Faltings and Macho-Gonzalez, 2003b] Boi Faltings and
Santiago Macho-Gonzalez. Open constraint optimization.
In Proceedings of the 9th International Conference on

81



Principles and Practice of Constraint Programming
(CP-2003), Lecture Notes in Computer Science. Springer,
September 2003.

[Faltings and Macho-Gonzalez, 2005] Boi Faltings and San-
tiago Macho-Gonzalez. Open constraint programming.
Artificial Intelligence, 161:181–208, 2005.

[Jianget al., 1994] Yuejun Jiang, Thomas Richards, and
Barry Richards. No-good backmarking with min-conflicts
repair in constraint satisfaction and optimization. InPro-
ceedings of Principles and Practice of Constraint Pro-
gramming 94; reprinted in Principles and Practice of Con-
straint Programming 94, pages 21–39, 1994.

[Lammaet al., 1999] Evelina Lamma, Paola Mello, Michela
Milano, Rita Cucchiara, Marco Gavanelli, and Massimo
Piccardi. Constraint propagation and value acquisition:
Why we should do it interactively. InIJCAI, pages 468–
477, 1999.

[Schiex and Verfaillie, 1994] Thomas Schiex and Gérard
Verfaillie. Nogood recording for static and dynamic con-
straint satisfaction problems.International Journal on Ar-
tificial Intelligence Tools, 3(2):187–207, 1994.

[Verfaillie and Schiex, 1994] Gérard Verfaillie and Thomas
Schiex. Solution reuse in dynamic constraint satisfaction
problems. InProceedings of the Twelfth Conference of
the American Association of Artificial Intelligence, pages
307–312, 1994.

[Wiederhold and Genesereth, 1997] Gio Wiederhold and
Michael R. Genesereth. The conceptual basis for
mediation services.IEEE Expert, 12(5):38–47, 1997.

82


