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The thesis defended in this dissertation is that: Row
and column symmetry is a common type of symmetry
in constraint programming. Ordering constraints can
effectively break this symmetry. Efficient global con-
straints can be designed for propagating such ordering
constraints.

A wide range of problems originating from com-
binatorics, design, configuration, scheduling, timetabl-
ing, bioinformatics, and code generation can be mod-
elled as constraint satisfaction problems. Often such
models have a matrix of decision variables. We ob-
serve that such matrix modelling provides an effective
way of representing these diverse problems and there
are two patterns that commonly arise in matrix models:
row and column symmetry, and value symmetry.

A 2-d matrix has row (resp. column) symmetry iff its
rows (resp. columns) represent indistinguishable ob-
jects. An n × m matrix with row and column sym-
metry has n!m! symmetries which increase super-
exponentially. Thus, it can be very costly to visit all the
symmetric branches in a tree search. Symmetry break-
ing methods such as SES [1], SBDS [7], and SBDD
[2,4] cut off all the symmetric parts of the search tree
and are applicable to any class of symmetries. How-
ever, SES and SBDS treat each symmetry individually,
which is impractical when the number of symmetries is
large. The dominance checks of SBDD can be very ex-
pensive in the presence of many symmetries. We there-
fore need special techniques to deal with row and col-
umn symmetry effectively.

A matrix has value symmetry iff the values in the
domain of the variables are indistinguishable. Even
though value symmetry is not confined to matrix mod-
els, value symmetry in a matrix can be transformed to,
for instance, row symmetry. This is another advantage
of developing effective techniques for dealing with row
and column symmetries.

Fig. 1. A set of symmetric assignments.

Given an assignment to an n × m matrix with row
and column symmetry, we can permute its rows and
columns in n!m! different ways, and obtain a set of
symmetric assignments. We show an example of this
in Fig. 1 on an assignment:

( 0 1 0
0 2 3
1 0 1

)

to a 3×3 matrix of variables. By permuting its rows and
columns, we obtain 3!3! − 1 = 35 more assignments
which are symmetric to the original assignment. These
36 assignments form an equivalence class.

The assignments in an equivalence class are indis-
tinguishable from each other in terms of satisfiabil-
ity. One of them is a solution iff the remaining as-
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signments are all solutions. In search for solutions, we
want to discard the symmetric assignments. So, how
can we distinguish between these indistinguishable as-
signments? As the rows and columns of a matrix are
vectors, we can characterise the assignments according
to how their row and column vectors are ordered. One
ordering of vectors is lexicographic ordering, which is
also used to order the words in a dictionary. A vec-
tor �x = 〈x0, . . . , xn−1〉 is lexicographically less than
a vector �y = 〈y0, . . . , yn−1〉 iff there is an index k
above which the subvectors are equal, and xk < yk.
For instance, 〈0, 2, 3〉 is less than 〈0, 3, 1〉 in the lexico-
graphic order. We say that the rows (resp. columns) of
a matrix of values are lexicographically ordered if each
row (resp. column) is no greater than the rows (resp.
columns) below (resp. to the right of) it.

Lexicographic ordering is very focused on positions
and it ignores values beneath the position where the
vectors differ. Multiset ordering, on the other hand,
ignores positions but focuses on values. A multiset is
a set in which repetition is allowed. A multiset {{x}} is
less than a multiset {{y}} iff the largest value in {{x}} is
less than the largest value in {{y}}, or the largest values
are the same and, if we eliminate one occurrence of
the largest value from both {{x}} and {{y}}, the result-
ing two multisets are ordered. For instance, {{1, 1, 1}}
is less than {{0, 0, 2}} in the multiset order. Even though
the rows and columns of a matrix are vectors, it may be
useful to ignore the positions but rather concentrate on
the values by treating the vectors as multisets. We say
that the rows (resp. columns) of a matrix of values are
multiset ordered if each row (resp. column), as a mul-
tiset, is no greater than the rows (resp. columns) below
(resp. to the right of) it.

Let us now analyse the assignments of the equiva-
lence class shown in Figure 1. There are exactly two
assignments in this class, marked as �, where the rows
and columns are lexicographically ordered. On the
other hand, there is exactly one assignment, marked as
†, where the rows and columns are multiset ordered.
Similarly, there is exactly one assignment, marked as
∗, where the rows are lexicographically ordered and the
columns are multiset ordered; and exactly one assign-
ment, marked as •, where the rows are multiset ordered
and the columns are lexicographically ordered. Hence,
we are able to distinguish the assignments marked as
�, †, ∗, and • from the rest of the assignments.

An important result in this dissertation is that in any
equivalence class of assignments, there is at least one
assignment satisfying the properties of those marked as
�, †, ∗, or • in Figure 1 [3,6]. Consequently, we can add

extra constraints to the model of our problem [9] which
enforce such orderings of the rows and the columns.
In this way, among the set of symmetric assignments,
only those satisfying the ordering constraints are cho-
sen for consideration during search. These constraints
can also be used to deal with matrices of arbitrary di-
mension, partial symmetries, and value symmetry.

To propagate the ordering constraints effectively and
efficiently, we design global constraints. Propagating a
constraint involves removing inconsistent values from
the domains of its variables (i.e. pruning). Due to tran-
sitivity property of ordering relations, we focus on
propagating the ordering constraint posted on a pair
of vectors. We devise efficient linear time propagation
algorithms for the lexicographic ordering [5] and the
multiset ordering constraints [6]. We provide theoreti-
cal and experimental evidence of the value of the algo-
rithms.

By adding ordering constraints to the matrix models,
we identify a new pattern in constraint programs: the
lexicographic ordering constraint on a pair of vectors
of 0/1 variables together with a sum constraint on each
vector. We frequently encounter this pattern in prob-
lems involving demand, capacity or partitioning that
are modelled using matrices with row and/or column
symmetry. This motivates us to introduce a new global
constraint which combines the lexicographic ordering
constraint with two sum constraints. We devise an effi-
cient linear time algorithm to propagate this combina-
tion of constraints [8]. Our experimental results show
that this new constraint is very useful when the lex-
icographic ordering constraints conflict with the way
we explore the search space. Combining constraints is
a step towards tackling one of the drawbacks of using
additional constraints to break symmetry.

As theory can only go part of the way in judging
the effectiveness of these ordering constraints in break-
ing row and column symmetries, we finish our research
with an empirical study. We perform a wide range of
experiments using some of the matrix models we have
studied. In each experiment, we have a matrix of de-
cision variables where the rows and/or columns are
(partially) symmetric. To break the symmetry, we post
ordering constraints on the rows and/or columns, and
search for one solution or the best solution according
to some criterion. Our results show that these ordering
constraints are effective in breaking row and column
symmetries as they significantly reduce the size of the
search space and the time to solve the problems.

This dissertation is publicly available at the address
publications.uu.se/theses/abstract.xsql?dbid=3991.
I am very grateful to my advisors Toby Walsh and An-
dreas Hamfelt for their supervision and support.
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