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Abstract. We present a new generic problem solving approach for over-
constrained problems based on Max-SAT. We first define a clausal form
formalism that deals with blocks of clauses and distinguish between hard
and soft blocks. We then present two Max-SAT-based solvers for our
formalism and an experimental investigation.

1 Introduction

The SAT-based problem solving approach presents some limitations due to the
fact that it only provides a solution when the input formula is satisfiable. Nev-
ertheless, in many combinatorial problems, some potential solutions could be
acceptable even when they violate some constraints. This is our motivation to
extend the SAT formalism to solve over-constrained problems. In such problems,
the goal is to find the solution that best respects the constraints of the problem.

In this paper we present a new generic problem solving approach for over-
constrained problems based on Max-SAT, where we consider that all the con-
straints are crisp (i.e., they are either completely satisfied or completely vio-
lated), but constraints can be either hard (i.e., must be satisfied by any solution)
or soft (i.e., can be violated by some solution). A solution best respects the con-
straints of the problem if it satisfies all the hard constraints and the maximum
number of soft constraints. First, we define a clausal form formalism that deals
with blocks of clauses instead of individual clauses, and that allows one to declare
each block either as hard (i.e., must be satisfied by any solution) or soft (i.e., can
be violated by some solution). We call soft CNF formulas to this new kind of
formulas. Then, we present two Max-SAT solvers that find a truth assignment
that satisfies all the hard blocks of clauses and the maximum number of soft
blocks of clauses. Our solvers are branch and bound algorithms equipped with
original lazy data structures; the first one, Soft-SAT-S, incorporates static vari-
able selection heuristic while the second one, Soft-SAT-D, incorporates dynamic
variable selection heuristic. Finally, we present an experimental investigation to
assess the performance of our approach on graph coloring instances.
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2 Soft CNF Formulas

Definition 1. A soft CNF formula is formed by a set of pairs (clause, label),
where clause is a Boolean clause and label is either hi or si for some i ∈ N. A

hard block of a soft CNF formula is formed by all the pairs (clause, label) with

the same label hi, and a soft block is formed by all the pairs (clause, label) with

the same label si.

Definition 2. A truth assignment satisfies a hard block of a soft CNF formula

if it satisfies all the clauses of the block. A truth assignment satisfies a soft

CNF formula φ if it satisfies all the hard blocks of φ. We say then that φ is

satisfiable. A soft CNF formula φ is unsatisfiable if there is no truth assignment

that satisfies all the the hard blocks of φ. A truth assignment satisfies a soft block

if it satisfies all the clauses of the block. A truth assignment is a solution to a soft

CNF formula φ if it satisfies all the hard blocks of φ and the maximum number

of soft blocks. The Soft-SAT problem is the problem of finding a solution to a

Soft CNF formula.

The use of blocks is relevant for two reasons: (i) it provides to the user
information about constraint violations in a more natural way; (ii) it allows
us to get more propagation at certain nodes; for example, unit clauses in hard
blocks can be propagated.

Example 1. We want to color a graph with two colors in such a way that the mini-
mum number of adjacent vertices are colored with the same color. If we consider
the graph with vertices {v1, v2, v3} and with edges {(v1, v2), (v1, v3), (v2, v3)},
that problem is encoded as a Soft-SAT instance as follows: (i) the set of propo-
sitional variables is {v1
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3 Description of solver Soft-SAT-S

The space of all possible assignments for a soft CNF formula φ can be rep-
resented as a search tree, where internal nodes represent partial assignments
and leaf nodes represent complete assignments. Our algorithm for the Max-SAT
problem of soft CNF formulas, called Soft-SAT-S, explores that search tree in a
depth-first manner. At each node, the algorithm backtracks if the current partial
assignment violates some clause of the hard blocks, and applies the one-literal
rule1 to the literals that occur in unit clauses of hard blocks. If the current par-
tial assignment does not violate any clause of the hard blocks, the algorithm

1 Given a literal ¬p (p), the one-literal rule deletes all the clauses containing the literal
¬p (p) and removes all the occurrences of the literal p (¬p)



compares the number of soft blocks unsatisfied by the best complete assignment
found so far, called upper bound (ub), with the number of soft blocks unsatisfied
by the current partial assignment, called lower bound (lb). Obviously, if ub ≤ lb,
a better assignment cannot be found from this point in search. In that case, the
algorithm prunes the subtree below the current node and backtracks to a higher
level in the search tree. If ub > lb, it extends the current partial assignment by
instantiating one more variable, say p, which leads to create two branches from
the current branch: the left branch corresponds to instantiate p to false, and the
right branch corresponds to instantiate p to true. In that case, the formula as-
sociated with the left (right) branch is obtained from the formula of the current
node by applying the one-literal rule using the literal ¬p (p). The value that ub

takes after exploring the entire search tree is the minimum number of soft blocks
that cannot be satisfied by a complete assignment.

In branch and bound Max-SAT algorithms, the lower bound is the sum of
the number of unsatisfied clauses by the current partial assignment plus an un-
derestimation of the number of clauses that will become unsatisfied if we extend
the current partial assignment into a complete assignment, which is calculated
taking into account the inconsistency counts of the variables not yet instantiated.
The concept of inconsistency counts cannot be easily extended to soft blocks2

and our lower bound is not so powerful as the lower bounds of current Max-SAT
solvers. In Soft-SAT-S, the initial lower bound is obtained with a GSAT-like lo-
cal search algorithm. For instances with CSP variables with domain size greater
than 2, we defined a lower bound that incorporates an underestimation of the
number of soft blocks that will become unsatisfied if we extend the current par-
tial assignment into a complete assignment. Each CSP variable with a domain of
size k is represented by a set of k Boolean variables x1, . . . , xk in a SAT encoding.
The inconsistency count associated with a Boolean variable xi (1 ≤ i ≤ k) is the
number of soft blocks violated when xi is set to true. The inconsistency count
associated with a CSP variable X , which is encoded by the Boolean variables
x1, . . . , xk , is the minimum of the inconsistency counts of xi (1 ≤ i ≤ k). As
underestimation for the lower bound, we consider exactly one CSP variable for
each soft block and take the sum of the inconsistency counts of such variables.

When branching is done, algorithms for Max-SAT apply the one-literal rule
(simplifying with the branching literal) instead of applying unit propagation (i.e.,
the repeated application of the one-literal rule until a saturation state is reached)
as in the Davis-Putnam-style solvers for SAT. If unit propagation is applied at
each node, the algorithm can return a non-optimal solution. For example, if we
apply unit propagation to {p,¬q,¬p∨ q,¬p} using the unit clause ¬p, we derive
one empty clause while if we use the unit clause p, we derive two empty clauses.
However, when the difference between the lower bound and the upper bound is
one, unit propagation can be safely applied, because otherwise by fixing to false
any literal of any unit clause we reach the upper bound. Soft-SAT-S performs
unit propagation in that case too. Moreover, as pointed out before, Soft-SAT-S

2 This is due to the fact that inconsistency counts deal with clauses but not with
blocks of clauses.



applies the one-literal rule when a clause of a hard block becomes unit. This
propagation, which leads to substantial performance improvements, cannot be
safely applied in Max-SAT solvers, and is a key feature of our approach.

Our current version of Soft-SAT-S incorporates the following static variable
selection heuristic: In SAT encodings that model CSP variables, each CSP vari-
able with a domain of size k is represented by a set of k Boolean variables
x1, . . . , xk . We associate a weight to each one of these sets: the sum of the total
number of occurrences of each variable of the set. We order the sets according to
such weight. It instantiates, first and in lexicographical order, the Boolean vari-
ables of the set with the highest weight. Then, it instantiates, in lexicographical
order, the Boolean variables of the set with the second highest weight, and so
on. The idea behind this heuristic is to instantiate first the CSP variables that
occur most often. This way, we emulate an n-ary CSP branching by means of
a binary branching (i.e., we consider all the possible values of the CSP variable
under consideration before instantiating another CSP variable).

The fact of using static variable selection heuristics allows us to implement
extremely efficient data structures for representing and manipulating soft CNF
formulas. Our data structures take into account the following fact: we are only
interested in knowing when a clause has become unit or empty. Thus, if we have a
clause with four variables, we do not perform any operation in that clause until
three of the variables appearing in the clause have been instantiated; i.e., we
delay the evaluation of a clause with k variables until k − 1 variables have been
instantiated. In our case, as we instantiate the variables using a static order, we
do not have to evaluate a clause until the penultimate variable of the clause in
the static order has been instantiated.

The data structures are defined as follows: For each clause we have a pointer
to the penultimate variable of the clause in the static order, and the clauses of
a soft CNF formula are ordered by that pointer. We also have a pointer to the
last variable of the clause. When a variable p is fixed to true (false), only the
clauses whose penultimate variable in the static order is ¬p (p) are evaluated.
This approach has two advantages: the cost of backtracking is constant (we do
not have to undo pointers like in adjacency lists) and, at each step, we evaluate
a minimum number of clauses.

4 Description of solver Soft-SAT-D

The second solver we have designed and implemented is Soft-SAT-D, which is
like Soft-SAT-S except for the fact that its variable selection heuristic is dynamic.
This fact, in turn, did not allow us to implement the data structures we have
described in the previous section. The data structures implemented in Soft-
SAT-D are the two-watched literal data structures of Chaff [4]. Our current
version of Soft-SAT-D incorporates a dynamic variable selection heuristic: Is
the dynamic version of the heuristic of Soft-SAT-S. We associate a weight to
each set of free Boolean variables that encode a same CSP variable: the sum of
the total number of occurrences of each variable of the set that has not been



yet instantiated. We select the set with the highest weight and instantiate its
variables in lexicographical order.

Soft-SAT-S Soft-SAT-D Toolbar PFC-MPRDAC

〈n, k, c〉 mean median mean median mean median mean median

〈15, 15, 8〉 56.35 5.54 325.00 27.19 98.14 19.46 102.81 15.87

〈15, 15, 10〉 56.23 0.03 266.83 0.03 146.65 0.05 105.81 0.13

〈16, 14, 6〉 153.64 36.53 1068.80 243.54 110.22 29.92 186.40 64.43

〈16, 14, 8〉 88.92 10.27 464.33 33.93 144.15 23.02 157.84 20.75

〈16, 16, 6〉 162.34 101.10 1142.79 682.78 110.50 63.65 199.33 146.87

〈16, 16, 8〉 48.63 12.68 229.35 37.77 105.31 28.12 114.27 29.99

Table 1. Comparison between Soft-SAT-S, Soft-SAT-D, PFC-MPRDAC and Toolbar
on randomly generated graph coloring instances. Experiments performed on a 1.6 Ghz
AMD64-Opteron with 1 Gbyte RAM. Time in seconds.

5 Experimental investigation

We next report the experimental investigation we conducted to evaluate the per-
formance of our problem solving approach. The solvers used were the following
ones: Soft-SAT-S, Soft-SAT-D, PFC-MPRDAC3 and Toolbar [3]4.

We used unsatisfiable graph coloring instances and the problem we solved
was to find a coloring that minimizes the number of adjacent vertices with the
same color. We used individual instances from the graph coloring symposium
celebrated in CP-2002, and randomly generated instances using the generator
of Culberson [1]. We use the generator with option IID (independent random
edge assignment). The parameters of the generator are: number of vertices (n),
optimum number of colors to get a valid coloring (k), and number of colors we
use to color the graph (c).

In the first experiment we considered 6 sets of randomly generated instances,
where each set had 100 instances. We solved the instances with Soft-SAT-S, Soft-
SAT-D, PFC-MPRDAC and Toolbar. The results obtained are shown in Table 1:
the first column displays the parameters given to the generator, and the rest of
columns display the mean and median time needed to solve an instance of the
set with each one of the solvers used. We repeated the previous experiments but
using a representative sample of individual instances from the graph coloring
symposium celebrated in CP-2002. The results obtained are shown in Table 2:
the first column displays the name of the instance, the optimum number of colors
to get a valid coloring (k), and the number of colors we used to color the graph

3 This is a highly optimized solver from the Constraint Programming community for
solving binary Max-CSP problems [2].

4 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro (version July, 2005)



〈Instance, k, c〉 vc Soft-SAT-S Soft-SAT-D Toolbar PFC-MPRDAC

〈myciel5.col, 6, 3〉 16 11.04 46.39 0.66 12.11

〈myciel5.col, 6, 4〉 4 78.50 226.59 6.28 96.41

〈myciel5.col, 6, 5〉 1 3177.85 31.87 26.02 44.34

〈GEOM30a.col, 6, 3〉 11 9.31 27.22 0.87 14.33

〈GEOM30a.col, 6, 4〉 4 4.48 2.35 2.42 22.89

〈GEOM30a.col, 6, 5〉 1 0.49 0.15 0.17 0.18

〈GEOM40.col, 6, 2〉 22 3.89 20.58 0.08 4.42

〈GEOM40.col, 6, 3〉 7 10.83 30.63 25.20 770.46

〈GEOM40.col, 6, 4〉 3 95.18 14.67 1981.17 >7200.00

〈GEOM40.col, 6, 5〉 1 1.58 0.51 1186.22 1186.22

〈queen5 5.col, 5, 3〉 29 57.60 167.60 9.22 27.27

〈queen5 5.col, 5, 4〉 12 37.50 124.24 13.18 73.67

Table 2. Comparison between Soft-SAT-S, Soft-SAT-D, PFC-MPRDAC and Toolbar
on individual graph coloring instances. Experiments performed on a 2GHz Pentium IV
with 512 Mb of RAM. Time in seconds.

(c); the second column displays the number of violated constraints; and the rest
of columns display the time needed to solve the instance with each one of the
solvers used.

We observe that, in both cases, our approach is very competitive. For all the
sets of randomly generated instances, Soft-SAT-S outperforms PFC-MPRDAC
and outperforms Toolbar on 4 sets. For individual instances some times is better
Soft-SAT and sometimes Toolbar. These results indicate that soft CNF formulas
are a suitable formalism for representing and solving over-constrained problems
with SAT technology.
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