
Local Consistency in Weighted CSPs and Inference in
Max-SAT

Student name: Federico Heras
Supervisor name: Javier Larrosa

Universitat Politecnica de Catalunya,
Barcelona, Spain

fheras@lsi.upc.edu,larrosa@lsi.upc.edu

Abstract. In this paper we overview our recent work and outline our current
line of research: First, we describe the WCSP framework and its related local
consistencies. Second, the Max-SAT problem and some related inference rules
including a new rule that is an extension of the classical Modus Ponens. Finally,
we will show the relation between both ideas and how this link can help us to
improve existent methods to solve both WCSP and Max-SAT problem.

1 Introduction

Weighted constraint satisfaction problems (WCSP) is an optimization version of the
CSP framework with many practical applications. Max-SAT is the opmitization version
of the classical SAT problem. Most current state-of-the-art complete solvers for WCSP
and Max-SAT problems can be described as a basic depth-first branch and bound search
that computes a lower bound during the search that can be used together with the cost of
the best solution found in order to prune entire search subtrees. WCSP local consistency
properties can be applyied in order to simplify the problem. Recently, a collection of
local consistency properties such as AC*, DAC*, FDAC* and EDAC* [2] have been
proposed for WCSP. While, in Max-SAT the recently proposed inference rules in [3]
are a new way to detect unfeasible assignments. In this paper we find a relation between
the generic WCSP framework and its local consistencies and the Max-SAT problem and
its inference rules. First the resolution rule (RES) is adapted for Max-SAT problem.
Then, it is specialized to a simple rule called Neighborhood Resolution (NRES). In
this paper we also introduce a novel inference rule called Modus Ponens for Max-SAT
(MP). Finally, we will show the relation between NRES and AC* local consistency, and
the relation between MP and FDAC* and EDAC* local consistencies.

The structure of this paper is as follows: In Section 2, we describe the WCSP frame-
work and its local consistencies. In Section 3 we introduce the Max-SAT problem and
some inference rules. In Section 4 we show the relation between local consistencies and
inference rules. Finally, Section 5 gives conclusions and points out some future work.

2 Weighted CSP and local consistency

Valuation structures are algebraic objects to specify costs in valued constraint satisfac-
tion problems [5]. They are defined by a triple S = (E,⊕,�), where E is the set of

2

costs totally ordered by �. The maximum and a minimum costs are noted > and ⊥,
respectively.⊕ is an operation on E used to combine costs.

Following [4], the valuation structure of Weighted CSP (WCSP) is, S(k) = ([0..k],⊕,≥
) where k > 0 is a natural number; ⊕ is defined as a ⊕ b = min{k, a + b}; ≥ is the
standard order among naturals. Observe that in S(k), we have 0 = ⊥ and k = >. Let
a, b ∈ [0..k] be two costs such that a ≥ b, the substraction a	 b is defined as:

a	 b =

{

a− b : a 6= k

k : a = k

A binary weighted constraint satisfaction problem (WCSP) is a tuple P = (S(k),X ,D, C).
S(k) is the valuation structure.X = {x1, . . . , xn} is a set of variables that we will often
call by just their index. Each variable xi ∈ X has a finite domain Di ∈ D of values that
can be assigned to it. (i, a) denotes the assignment of value a ∈ Di to variable xi. C is a
set of unary and binary weighted constraints (namely, cost functions) over the valuation
structure S(k). A unary weighted constraint Ci is a cost function Ci(xi)→ [0..k]. A bi-
nary constraint Cij is a cost function Cij(xi, xj)→ [0..k] We assume the existence of a
unary constraint Ci for every variable, and a zero-arity constraint (i.e. a constant), noted
C∅ (if no such constraint is defined, we can always define dummy ones: Ci(xi) = ⊥,
C∅ = ⊥).

When a constraint C assigns cost >, it means that C forbids the corresponding
assignment, otherwise it is permitted by C with the corresponding cost. The cost of
an assignment X = (x1, . . . , xn), noted V(X), is the sum over all the problem cost
functions,

V(X) =
∑

Cij∈C

Cij(xi, xj)⊕
∑

Ci∈C

Ci(xi)⊕ C∅

An assignment X is consistent if V(X) < >. The usual task of interest is to find a
consistent assignment with minimum cost, which is NP-hard.

Local consistency properties are used to transform problems into equivalent simpler
ones. From a practical point of view, the effect of applying local consistencies at each
node of the search tree of a branch and bound algorithm is to prune values and to
compute good lower bounds.

Some local consistencies for WCSP are NC* (node consistency), AC* (arc consis-
tency), FAC*(full arc consistency), DAC* (directional arc consistency), EAC* (existen-
tial arc consistency), FDAC* (full directional arc consistency) and EDAC* (existential
directional arc consistency) [2]. Except NC*, the other local consistencies are an ex-
tension of the arc consistency property for the classical CSPs. It is important to realize
that the actual local consistencies for WCSP are limited to be applyied to one variable
(NC*) or to pairs of variables. Figure 1 shows the relation between the different local
consistencies. NC* is the weakest local consistency while EDAC* is the strongest. The
FAC* local consistency doesn’t appear in this figure because it cannot be enforced. It
can reach deadlock situations, and so its associated algorithm won’t ever stop. In WCSP
framework local consistencies involving three or more variables are not studied yet be-
cause of the expected overhead and the memory structures needed to perform them.

3

AC*

DAC*

EAC*

NC*EDAC* FDAC*

Fig. 1. Relation between local consistencies for WCSP. An arrow LC1 ← LC2 means LC1 is
strictly stronger than LC2. A missing arrow between LC1 and LC2 means both consistencies are
incomparable w.r.t the stronger relation.

3 (Weighted) Max-SAT and Inference Rules

3.1 The Max-SAT problem

In the Max-SAT context X = {x1, . . . , xn}will denote a set of boolean variables. They
take values over the set {t, f}, which stands for true and false, respectively. A literal
l is either a variable x or its negation x̄. l̄ stands for the negations of l. If variable x is
instantiated to t, noted x ← t literal x is satisfied and literal x̄ is falsified. Similarly, if
x is instantiated to f , x̄ is satisfied and x is falsified. An assignment is an instantiation
of a subset of the variables. The assignment is complete if it instantiates all the vari-
ables in X (otherwise it is partial). An assignment satisfies a clause (i.e., a disjunction
of literals) C iff it satisfies one or more of its literals. It satisfies a set of clauses F iff
it satisfies all its clauses. A satisfying complete assignment is called a model. Given a
boolean formula encoded by a set of clauses F , the SAT problem consists in determin-
ing whether there is any model for it or not. We will use the symbol 2 to denote the
empty clause which, obviously, cannot be satisfied. When 2 ∈ F we say that there is
an explicit contradiction. When there is no model for the formula F , one may be inter-
ested in finding a maximally satisfying assigment. In Weighted Max-SAT, (weighted)
clauses are pairs (C, w) such that C is a classical clause and w is a natural number of
the cost of its falsification. We define Max-SAT using a valuation structure. We assume
the existence of a known upper bound> of the optimal solution. Consider the set F of
weithed clauses. We say that a model is a complete assignment with cost less than >.
Max-SAT is the problem of finding a model of minimal cost, if there is any. Observe
that weights w ≥ k indicate that the associated clause must be necessarily satisfied.
Thus, we can replace every weight w ≥ > by > without changing the problem. Thus,
without loss of generality we assume all costs in the interval [0..>] and, accordingly,
redefine the sum of costs a⊕ b and the substraction of costs a	 b like in section 2 but
replacing k by>. We say that a weighted clause is hard (or mandatory) iff its weight is
>. In [3] we defined an extension of the Davis-Putnam Loveland (DPLL) algorithm for
Max-SAT. This algorithm becomes much more efficient if we augmented it with some
inference rules at each node of the search tree.

4

3.2 Resolution for Max-SAT

In this section we use the notation [P, . . . , Q]⇒ [R, . . . , S], where P, Q, . . . are weighted
clauses. It means that if there are in F weighted clauses matching with [P, . . . , Q], they
can be replaced by [R, . . . , S]. Note that while in the SAT context the initial clauses
remain after applying the inference rules, in the Max-SAT context the initial clauses are
removed after applying the inference rules and replaced by the final clauses in order to
obtain an equivalent problem.

Resolution in Max-SAT is an extension of classical resolution for the SAT problem
[3]:

(x ∨ A, u), (x̄ ∨ B, w)⇒

(A ∨B, m)
(x ∨ A, u	m)
(x̄ ∨ B, w 	m)
(x ∨ A ∨ B̄, m)
(x̄ ∨ Ā ∨ B, m)

where A and B are arbitrary disjunctions of literals and m = min{u, w}. Variable x is
called the clashing variable.

Example 1. Consider the formula {(x∨y, 2), (x̄∨z, 5)}. The application of RES returns
the formula {(y ∨ z, 2), (x̄ ∨ z, 3), (x ∨ y ∨ z̄, 2), (x̄ ∨ ȳ ∨ z, 2)}.

It is not clear that the result formula in example 1 is simpler than the initial formula
after applying the RES rule. In the following, we present two particulars cases of the
resolution rule more useful in order to simplify the initial set of clauses.

Neighborhod Resolution for Max-SAT Neighborhod Resolution [1] is the classical
resolution rule restricted to pairs of clauses that differ only in the clashing variable.
Similarly, in the Max-SAT context we define the neighborhod resolution rule (NRES)
as RES restricted to the A = B case, which simplifies to,

(x ∨ A, u), (x̄ ∨ A, w)⇒

(A, m)
(x ∨ A, u	m)
(x̄ ∨ A, w 	m)

whith m = min{u, w}. This rule is specially usefull because it projects to A costs
that were implicit. Let NRESk denote NRES restricted to |A| = k with k >= 0. An
important case is NRES0:

(x, u), (x̄, w)⇒

(2, m)
(x, u	m)
(x̄, w 	m)

This rule is extremely useful because it produces a direct increment of the lower
bound, which may raise a contradiction, or produce new unit clause reductions.

Example 2. Consider the formula {(x∨y, 1), (x∨ȳ, 1), (x̄, 2)}. First, the application of
NRES1 results {(x, 1), (x̄, 2)}. Then we can apply NRES0 and we obtain {(x̄, 1), (2, 1)}

5

Modus Ponens for Max-SAT In the following, we present a novel Max-SAT inference
rule that is an extension of the classical modus ponens rule for the SAT problem.The
weighted modus ponens rule (MP) is defined as,

(x ∨ y, u), (x̄, w)⇒

(y, m)
(x ∨ y, u	m)
(x̄, w 	m)
(x̄ ∨ ȳ, m)

where m = min{u, w}. It is important to realize that this rule can be obtained by
replacing B = false and y = A in the generic resolution rule (RES). However, MP
has a drawback: Its application may lead to a deadlock situation:

Example 3. Consider the formula {(x̄, 1), (x ∨ y, 1)}. If we apply the MP we obtain
{(y, 1), (x̄ ∨ ȳ, 1)}. Now we can apply again MP and its results in the initial formula
{(x̄, 1), (x ∨ y, 1)}. We can apply MP indefinitely.

In order to avoid this deadlock situation we propose two possible solutions:

– Only apply the MP rule when x is lexicographically smaller than y.
– Request the additional condition of (ȳ, v) being in F which produces the new rule:

(x ∨ y, u), (x̄, w), (ȳ, v)⇒

(x ∨ y, u	m)
(x̄, w 	m)
(x̄ ∨ ȳ, m)
(ȳ, v 	m)
(2, m)

where m = min{u, w, v}. We name this new inference rule Modus Ponens Empty
(MPE) because it can make explicit associated information to the empty clause 2.
It can be shown that the right side is obtained by applying MP and NRES0.

Example 4. Consider the formula in Example 3. If we apply the MP rule with the x < y

ordering, we index x as 1 and y as 2. We obtain {(y, 1), (x̄ ∨ ȳ, 1)} and it stops.

Example 5. Consider the formula in Example 3. We cannot apply MPE rule because
the (ȳ, v) clause is missing in F . Now, we supose that (ȳ, 1) is in F . Then the MPE
rule can be applyied and it returns {(2, 1), (x̄ ∨ ȳ, 1)}

4 Relation between Local Consistencies and Inference Rules

In this section it is presented the relation between the inference rules and the local
consistency properties discussed along the paper. In [3] we demonstrated that the DPLL
for Max-SAT enforces the NC property. If DPLL apply the NRES0 rule at each node
of the search tree, it enforces NC* property. If DPLL apply both NRES0 and NRES1

at each node, it enforces AC*. Furthermore, if we combine DPLL with NRES at each
node, it becomes an extension of AC* to non-binary clauses.

6

For the novel MP rule we can show its equivalence with the more sophisticated local
consistencies. When DPLL apply NRES0 + NRES1 + MP at each node it is executing
the (full arc consistency) FAC* property. However, this local consistency is not useful
because it falls in deadlocks situations. If we add the variable ordering x < y condition
when applying this last sequence of inference rules, the resulting algorithm enforces
FDAC*. Finally, if the MPE rule is also applyied jointly with all the previous rules, it
enforces the EDAC* property.

5 Conclusions and future work

We have studied the interpretation of WCSP local consistency properties within the
Max-SAT context. The result of our work is a logical framework for Max-SAT in which
the solving process can be seen as a set of transformation rules. Also we introduce an
extension of the resolution rule (RES). The application of a limited form of RES, called
neighborhod resolution (NRES), provides an interesting and effective algorithm. We
have shown the relation between the application of NRES and some local consitency
properties in weighted CSP. Finally, we have also shown that NRES can be applyied to
clauses of any arity and so it is not limited to binary clauses such as local consistencies.
This work leaves several lines of future work. We are still working in the MP rule
to obtain possible extensions that provide general rules aplicable to clauses with arity
greater than 2 such as the NRES rule. By the other hand, it could be interesting to
generalize this new inference rules to the context of WCSP. It could result in local
consistencies not limited to pairs of variables and that don’t need big data structures to
apply them in a reasonable time.

References

1. Byungki Cha and Kazuo Iwama. Adding new clauses for faster local search. In Proc. of the
13thAAAI, pages 332–337, Portland, OR, 1996.

2. F. Heras J. Larrosa, S. de Givry and M. Zytnicki. Existential arc consistency: getting closer to
full arc consistency in weighted csps. In Proc. of the 19th IJCAI, Edinburgh, Scotland, July
2005.

3. J. Larrosa and F. Heras. Resolution in max-sat and its relation to local consistency in weighted
csps. In Proc. of the 19th IJCAI, Edinburgh, Scotland, July 2005.

4. J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc-consistency. Artificial
Intelligence, 159(1-2):1–26, 2004.

5. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: hard and easy
problems. In IJCAI-95, pages 631–637, Montréal, Canada, August 1995.

