
Weak Symmetries in Problem Formulations

Student name: Roland Martin
Supervisor name: Karsten Weihe

Darmstadt University of Technology
Algorithmics Group

64283 Darmstadt, Germany,
martin@algo.informatik.tu-darmstadt.de

Abstract. In this article we will present some problems that have weak symme-
tries. In contrast to a proper symmetry, a weak symmetry acts only on a subset
of the variables and preserves the feasibility state only with respect to a subset of
the constraints. Therefore, breaking weak symmetries with standard techniques
would lead to a loss of solutions.
This article presents also a modelling technique which is based on additional vari-
ables called SymVar – Symmetry Variable. These variables enable us to achieve
symmetry breaking on the symmetric variables of the problem without losing so-
lutions. By using this technique we are able to break the weak symmetry without
losing solutions.
We will show for three problems how SymVars are applied such that the weak
symmetries can be broken.

1 Introduction

Symmetries transform (partial) solutions into symmetric (partial) solutions whereby
the property of feasibility is not changed: no-goods are tranformed into symmetric
no-goods while feasible solutions are transformed into symmetric feasible solutions.
Therefore, symmetries decompose the search space into classes of symmetric solutions,
whereby each class either contains feasible solutions only or infeasible solutions only.

When searching for all solutions to a problem it is sufficient to find only one solu-
tion in each class of solutions. The symmetric equivalents can be derived by applying a
symmetry function exhaustively to each class after the search process. Therefore, sym-
metries should be excluded from the search space to speed up the search.

Weak symmetries act only on a subset of the variables and/or satisfy only a subset
of the constraints of the problem. Therefore, weak symmetries preserve the state of
feasibility only with respect to the subset of variables they act on and only for the
constraints they satisfy. This means if two solutions are symmetric under the weak
symmetry they yield different full solutions with potentially different feasibility states.

But weak symmetries cannot be simply broken, since this would result in a loss of
solutions that cannot be derived afterwards.

Nonetheless this article presents a modelling technique that enables us to deal with
weak symmetries such that they can be broken without losing solutions.



Weak symmetries occur in many fields of applications and have already been dis-
covered and identified in planning, scheduling and model checking ([1] - [4]). Also
extensions to classical problems like the rack configuration problem ([5])

Section 2 gives the definitions of weak symmetries and SymVars and present how
they are basically used in modelling.

Section 3 introduces three problems that have weak symmetries and show how the
SymVars can be applied. In Section 4 we conclude and give an outlook to future work.

1.1 Prerequisites

We characterize a satisfaction problem by P = (X,C), whereby X = {x1, . . . , xn} is
the set of variables and C = {c1, . . . , cm} is the set of constraints.

For an optimisation problem we just extend this formulation to P = (X,C, f),
where X and C are defined as above and f is the objective function.

A solution to P is denoted by
sP = (x1 = v1, . . . , xn = vn) = (X). This means that each variable in X is assigned
a value of its corresponding domain.

2 Weak Symmetries

2.1 Weak Symmetry Definition

Weak symmetries act on problems with special properties. To characterize weak sym-
metries we first define weakly decomposable problems. The goal is to find a decomposi-
tion such that one of the sub-problems contains all symmetric variables and constraints
and the other not.

Definition 1 (Weakly Decomposable Problem)
A problemP = (X,C) is weakly decomposable if it decomposes into two subproblems
P1 = (X1, C1) and
P2 = (X2, C2) with the following properties:

X1 ∩X2 6= ∅ (1)
X1 ∪X2 = X (2)
C1 ∪ C2 = C (3)
C1 ∩ C2 = ∅ (4)
C2 6= ∅ (5)

The first property states that P1 and P2 contain a subset of shared variables (namely
X1 ∩X2). These variables have to assume the same values in both subproblems to de-
liver a feasible solution to P . Therefore they link both problems. Without that restriction
the problem would be properly decomposable. The second and third property states that
none of the variables and constraints of the original problemP are lost. Furthermore the
third and fourth property state that C1 and C2 is a partition of C. Basically this is not
necessary for feasibility. A constraint could be in both subsets (if defined on X1 ∩ X2



only) but would be redundant for one of the problems because the solution to the other
subproblem would already satisfy this constraint. Therefore, this is just a question of
efficiency. The last property states that P2 is not allowed to be unconstrained. But note
that this restriction does not hold for P1 since we want P1 to be the symmetric problem
and an unconstrained problem is perfectly symmetric.

An example (besides the weighted n-queens problem) for a weakly decomposable
problem is also the magic knight tour. (See [6] and [7]). In this problem a knight tour on
a chessboard is sought for where the numbers of the moves constitutes a magic square.
The weakly decomposition is that P1 consists of the magic square problem and P2

constitutes that when following the numbers 1 to n2 this is a knight tour.
A symmetry that acts on the subproblem P1 (but not on P2) is considered a weak

symmetry.

Definition 2 (Weak Symmetry)
Given a weakly decomposable problem P with a decomposition (P1, P2).
A symmetry S onP1 is called a weak symmetry on P with respect to the decomposition
P1, P2) iff S acts on P1 but not on P2.

The intention of the decomposition of the problem is thatX1 contains all symmetric
variables (and only these) and X2 contains also the rest of the variables.
The gain is that we get a subproblem that is not affected by the weak symmetry (P2) and
a subproblem where the weak symmetry affects all variables and all constraints (P1).

2.2 Weak Symmetry Breaking

Since the weak symmetry does not act on the whole problem, it cannot be broken on the
whole problem. But it can be broken in P1 (where it acts as a proper symmetry). This
means that in the search tree equivalent solutions of P1 are identified with each other.
On the other hand we would lose the symmetric solutions if we broke the symmetry.
Therefore we need a way to represent these solutions explicitly because they are needed
in order to solve P2 which delivers a full solution for P .

In order to represent these symmetric solutions we introduce additional variables
called SymVars. These variables encode the symmetric equivalents of a solution. Also
additional constraints are needed that constrain the SymVars to take only values that
state a feasible symmetric equivalent of P1. Therefore a new sub-problem Psym =
(Xsym, Csym) is introduced. Xsym are the SymVars and Csym are the constraints that
constitutes a feasible symmetric equivalent.

The solving order now is: P1 — Psym — P2.

Notation 1 Let P be a weakly decomposable problem with a decomposition (P1, P2),
P1 = (X1, C1), P2 = (X2, C2).
Let Xsym = {y1, . . . , y`} be a set of SymVars that constitutes the variables of the
subproblem Psym.
A solution to P1 is denoted by sP1 = (X1).
A solution to Psym is denoted by sPsym = (X1, Xsym) = (sP1 , Xsym)
A solution to P2 is denoted by sP2 = (X1, Xsym, X2) = (sPsym , X2).



A solution to P2 is automatically a solution to P .
Let sP1 = (v1, . . . , vn) be a solution to P1, where vi is a value of the domain of xi,
i ∈ {1, . . . , n}.
A solution sPsym = (sP1 , v

′
1, . . . , v

′
`) is a symmetric solution to sP1 , where v′j is a value

of the domain of yj , j ∈ {1, . . . , `}
The solving order in more detail is to search a solution sP1 to P1, determine a

symmetric equivalent sPsym in Psym and use this solution to determine a solution to P2

which already states a solution to P . Note that when considering Psym the variablesX1

are already assigned. The same holds for P2 with X1 and Xsym.
Consequences:

– Every feasible value assignment to the SymVars constitutes a symmetric solution
to sP1

– None of the values inX1 have to be reconsidered to receive a symmetric equivalent
– The symmetry can be broken in P1 because all symmetric solutions to SP1 are

expressed by sPsym

Note that there is not necessarily one SymVar for each variable inX1. Often it holds
that |Xsym| < |X1|.

To solve P we consider the partial solution sPsym . When a solution is found the
search backtracks and reconsiders values for the SymVars to determine a new solution.
All these solutions are symmetric equivalents to the solution sP1 . Only when the search
backtracks and reconsiders variables in X1 a solution for a different equivalence class
can be found.

By using SymVars we can break the symmetry in P1 but do not lose any symmetric
solution in an equivalence class.

3 Problems Containing Weak Symmetries

There are a lot of problems that have weak symmetries. Weak symmetries can be de-
fined on weakly decomposable problems like done here. Therefore standard problems
containing symmetries can be extended to have weak symmetries. One possibility to do
this is to introduce profits or weights in a satisfaction problem and define an objective
function such that the problem becomes an optimisation problem. The original satisfac-
tion problem forms P1 and the optimisation forms P2. But although these problems are
somewhat artificial there are real-world problems that naturally have weak symmetries.
One example is from automated manufacturing that will be explained later.
Depending on the decomposition even standard problems have weak symmetries.

At the moment it is not investigated any further whether weak symmetries can be
detected automatically with methods of automatic symmetry detection like graph iso-
morphism. Basically the problem is that the problem is not symmetric. A possible way
would be to relax constraints and/or variables and check whether the resulting problem
is symmetric. Most likely this does not have to be done for all subsets of constraints or
variables. Considering the hyper-graph of the variables as nodes and the constraints as
edges this may yield promising elements to relax. But this is just an assumption at this
stage of research.



In the following we will state some problems containing weak symmetries.

3.1 The Magic Square Problem

With the proper decomposition even standard problems like the magic square problem
contain weak symmetries.

In the magic square problem the task is to assign the numbers 1, . . . , n2 to a n× n
square M , whereby n is called the order of the magic square such that the sum of each
row, column and the two diagonals equal the same number. This number is called the
magic number m of the square and is computed by m = n3+n

2 for each magic square
of order n. The range of the columns and rows is denoted by N = {1, . . . , n}.

The problem decomposes as following: In P1 the task is to find an assignment of
the square such that the sum of each row and column equals m. In Psym SymVars are
introduced for the columns (SymCol) and the rows (SymRow) and they are permuted
to constitute a different square. In P2 it is checked whether the (permuted) assignment
also respects the diagonal constraints.

The idea is to find an assignment of the square relaxing the diagonal constraints first
(P1). Then consider a row and/or column permutation of the problem (Psym) and check
whether this permutation also satisfies the diagonal constraints to state a valid magic
square (P2).

In this decomposition the row and column permutations are weak symmetries which
can be broken on P1 since we use SymVars.

Although this decomposition seems very unintuitive first results look promising. In
this decomposition it is easier to find an initial assignment for the square which could
help in finding a solution early.

3.2 Weighted Magic Square Problem

The problem is basically the same as stated above.
In the weighted magic square problem a weight for each field of the square is intro-

duced. When a number is assigned to a field Mij its value is multiplied by this weight.
The total value of the square is the sum of all values of the square. The task is to find a
magic square with the highest total value.

The problem decomposes as following: In P1 the task is to find an assignment of
the square such that the sum of each row and column equals m. In Psym SymVars are
introduced for the columns (SymCol) and the rows (SymRow) and they are permuted
to constitute a different square. In P2 it is checked whether the assignment does also
respect the diagonal constraints (states a magic square) and the overall value of the
square is determined.

In this problem all symmetries (row and column permutations and reflections and
rotations of the square) are weak symmetries which can be broken on P1.

3.3 Example from Automated Manufacturing

In this problem a mounting complex consists of several mounting machines and have to
mount electrical components – so called mounting tasks – on PC Boards. The task is to



optimize the throughput rate of the mounting complex which means to find an evenly
distribution of the mounting tasks to the mounting machines.

To mount a mounting task on a machine it must be placeable. A mounting task is
placeable if two things holds:

1. The according mounting task must be visible on the machine
2. The corresponding component type of the mounting task must be assigned to the

mounting machine

The first feature changes from machine to machine such that not every mounting
machine can mount the same mounting task. This information is given as input. The
second features is part of the problem. A setup consisting of several component types
has to be assigned to each mounting machine.

A feasible setup to one machine is also feasible for each other machine. Therefore
permuting the setups on the machines is a symmetry. But since a permutation of the
setups results in a different place-ability of the machines the permutation is a weak
symmetry.

The problem decomposes as follows: P1 consists of determining a setup for each
machine. In Psym a permutation of the setups on the mounting complex is determined.
P2 consists of a distribution of the mounting tasks to the machines.

For each setup a SymVar is introduced. After all setups are determined in P1 by
assigning the SymVars it is clear on which mounting machine a setup is assigned. De-
pending on this assignment the mounting task distribution can be determined.

4 Outlook

We introduced the definitions for weakly decomposable problems and weak symmetries
and presented some problems that have weak symmetries. Standard problems with the
proper decomposition may have weak symmetries as well as extensions of standard
problems and many real-world problems.

First results indicate that the use of SymVars is fruitful in most applications. Nonethe-
less more research has to be done in this fields to indicate and characterise problems
and applications where the SymVar approach can be used most efficiently.

References
1. Peter Gregory Almost–Symmetry in Planning SymNet Workshop on Almost-Symmetry in

Search, New Lanark, 2005
2. Alastair Donaldson Partial Symmetry in Model Checking SymNet Workshop on Almost-

Symmetry in Search, New Lanark, 2005
3. Roland Martin Approaches to Symmetry Breaking for Weak Symmetries SymNet Workshop

on Almost-Symmetry in Search, New Lanark, 2005
4. Warwick Harvey Symmetric Relaxation Techniques for Constraint Programming SymNet

Workshop on Almost-Symmetry in Search, New Lanark, 2005
5. Z. Kiziltan, B. Hnich Prob031: Rack Configuration Problem

http://4c.ucc.ie/ tw/csplib/prob031
6. Hosted by Guenter Stertenbrink Computing Magic Knight Tours http://magictour.free.fr
7. Compiled by George Jelliss Knight’s Tour Notes http://www.ktn.freeuk.com


