Solution Equivalent Subquadrangle
Reformulations of Constraint Satisfaction
Problems

Student: Chris Houghton
Supervisor: Prof. David Cohen

Department of Computer Science,
Royal Holloway, University of London, UK

Abstract. Subquadrangles are a natural way in which to represent con-
straints as they do not restrict any subset of their scope. There are al-
ready known methods for converting any given constraint into a set of
subquadrangles, but we require a method by which an entire constraint
satisfaction problem instance can be converted as a whole.

In this paper we present two methods by which we might decompose a
given instance into a solution equivalent instance whose constraints are
all subquadrangles.

1 Introduction

Constraint Satisfaction Problem [2] instances (CSPs) are a natural way to model
real life problems such as image processing [2], scheduling [4] and natural lan-
guage understanding [1]. In this paper we are concerned with the modeling of
problems as CSPs and how this can affect the performance of different solu-
tion algorithms. In particular we are interested in modeling in the language of
subquadrangles.

A Quadrangle is essentially an ‘anything-goes’ constraint for some Cartesian
product of domains. A Subquadrangle [3] is a constraint all of whose projections
to proper subsets of the scope are quadrangles; it does not restrict any proper
subset of the variables it is constraining.

Subquadrangles are a very ‘natural’ way in which to represent constraints.
This is because they do not place any restrictions on proper subsets of their
scope, thus reducing the number of required constraint checks. This leads us to
believe that a subquadrangle aware solver could be particularly efficient.

However, in this paper we shall consider another intriguing use of subquad-
rangle modeling. Subquadrangles delay the failure of constraint checks until you
try and assign a value to the last variable in their scope. This makes them ideal
for testing constraint solvers as they are ‘backtrack nasty’.

We start by giving background definitions in Section 2. We then consider two
complete subquadrangle reformulations in Section 3. We draw conclusions and
consider future work in Section 4.

2 Definitions

Throughout this paper, we will require the following definitions;

Definition 1. A constraint satisfaction problem [2] instance (CSP) is a
triple (V, D, C) where:

— V' is a finite set of variables.
— D is a finite domain of values.
— C is a set of constraints.

Each ¢ € C is a pair, {0 (c),p(c)), where o(c), the constraint scope, is any
subset of V and p(c) is a set of labellings each of which is a mapping from o(c)
to D.

A solution to a CSP, P = (V,D,C) is a labelling s of V such that for any
(o,p) € C,s), €p.

For simplicity, the domain of any instance we define will be {0,...,n — 1}.

Definition 2. Let ¢; = (04,pi),i = 1,2 be two constraints. For any m C o1
the projection of p1 onto m, denoted m,p1, is simply {f,.|f € p1}. The
projection of ¢; onto m is (m,Tmp1). The join, ¢y X ca, is the constraint

<01 Uoa, {f | fl,, € piri= 1,2}>. The union, ¢y U cg, of two constraints with
the same scope (01 = 02), is the constraint (o1,{f | f € p1 or f € p2}).

Definition 3. Let P = (V, D,C) be a constraint satisfaction problem. Let ¢ =
(o, p) be any constraint of P and v a variable in o. The effective domain of v
with respect to ¢, E. (v) is the projection of ¢ onto {v}.

If the constraint relation p = {f | Vv € o, f(v) € E. (v)} we say that c is a
quadrangle. If for all s C o, the projection of ¢ onto s is a quadrangle we say
that c is a subquadrangle.

A quadrangle is a constraint which has the property that if you assign to
the variables any arbitrary values from their respective effective domains then
the resulting labelling is in the relation. It is essentially ‘anything goes’ on the
effective domains.

A subquadrangle [3] does not constrain the variables in any proper subset
of its scope, in that the projection onto any proper subset of its variables is
a quadrangle. This means that you can assign any values from the effective
domains of any |o| — 1 variables of the constraint before being constrained as to
what value you may choose for the last one. There is, however, always a value
which can be assigned to this last variable.

Ezxample 1. Any unary constraint is a quadrangle, as is any constraint which al-
lows only one labelling. As all of the projections onto proper subsets are unary, a
binary constraint is always a subquadrangle, but is not necessarily a quadrangle.

Definition 4. Let (V,D,C) be a CSP and o C V. We define the following

constraint for m <n and i < m;

A(o,m,i) = <U,{f| Zf(v) modmzi}>

veEoT
In later sections, we will make strong use of the following proposition;

Proposition 1. Definition 4 may be used to generate subquadrangles on a given
scope in such a way that their join is empty. This will be used in our two sub-
quadrangle decomposition methods as a base with which to reformulate a given
constraint on a given scope.

In order for proposition 1 to hold, we need the following two lemmas.
Lemma 1. The constraints defined in definition 4 are subquadrangles.

Proof. Given any partial tuple in the relation, ¢, over a |o| — 1 subset of o, there
must be an extension to the tuple in f as we mod by no more than the size of
the domain, n, and i < n.

Lemma 2. For a given scope, o, and set of unique values W where Vw € W, w <
m and |W| > 1, the join of the constraints, Xy,ecw A (o, m,w) is empty.

Proof. Given any two constraints A (o, m,p) and A (o, m, q) where p,q € W and
p # q. If a tuple, ¢, is in the relation of A (o, m,p), then by definition 4 it can not
also be in the relation of A (o, m,q). As none of the relations of the constraints
share any common tuples, yet are over the same scope, ¢, there can be no tuples
in the relation of the join.

3 Making Backtrack Nasty

3.1 Decomposing into three Subquadrangles

We can now use the subquadrangles defined in definition 4 to generate a set of
subquadrangles which is equivalent to a given single constraint.

Definition 5. Let ¢ = (o, p) be a constraint. Let x,y & o,z # y be additional
variables, both with domain {0,1}. We can define the following three subquad-
rangles:

q = Ao (c)U{z},2,0)Ulera {z},{(0),(1)}) N A(o(c) U{z},2,1)]
a1 =A(o(c)U{y},2,1)
q2 = <{x7y}) {<050>) <17 1>}>

Before we go on to propose a theorem based on this definition, we need a
small lemma;

Lemma 3. A subquadrangle, ¢, combined with any other labellings over the same
scope and over subsets of the effective domains is still a subquadrangle.

Proof. A quadrangle is a Cartesian product of effective domains. From the def-
inition of a subquadrangle, adding a labelling from this Cartesian product still
leaves all of the |o| — 1 ary projections as quadrangles as you do not increase
their number of labellings. The result follows from repeated application of adding
single labellings.

Theorem 1. Given a constraint ¢, Definition 5 generates 3 subquadrangles, qo,
q1, q2, such thal my() N?:o qi = c.

Proof. 1t is clear that if given a constraint ¢, definition 5 generates 3 subquad-
rangles, qo, q1, g2, such that 74 >?_o ¢; = ¢, then Method 1 holds by repeated
application.

So, we are required to prove that:

1. qo,¢q1 and ¢» are subquadrangles.
2. All solutions in ¢ are in m,(.) (qo >3 q1 > g2)
3. There are no solutions in 7, () (o > g1 > g2) which are not in c.

CASE 1:
If we split qg into:

(A) = A(U (C) U {‘T}7270)
e (o}, {(0), (1)) NA(o (c)U{x},2,1)

then

(A) is a subquadrangle from lemma 1.

(A) U (B) is a subquadrangle from lemma 3.

It follows that qg is a subquadrangle.

q1 is a subquadrangle from method 1.

@2 is a subquadrangle as it is binary and by definition all binary constraints
are subquadrangles.

CASE 2:

Consider any t € p(c). In qo, t extended to some value at z, ¢, must be in
p(A(o(c)u{z},2,1))asitisasubquadrangle. t;” isin p (c < ({x}, {{0), (1) })).
Since, by definition, z € o (¢) and so every ¢ € p(c) extends to both 0 and 1 at
variable in the constraint ¢ < ({z},{(0), (1)}). The value of x must be either
0 or 1 depending on which gives t € p(A (o (c) U{z},2,1)) odd parity. In ¢,
t extended to some value at y, ., must be in p (A (o (c) U{y},2,1)) as it is a
subquadrangle. The value of y must be either 0 or 1 depending on which gives

t, € p(A(o(c)U{r},2,1)) odd parity.

As both t” € p(A(o (c)U{z},2,1)) and t,” € p(A(o (c) U{z},2,1)) must
have odd parity, it can be seen that x = y.

So, t,7, € p(qo > q1 < g2), and hence t € p (ﬂ'g(c)qo D g1 B qg).

CASE 3:

Assume for contradiction that there is a tuple, ¢, s.t. t € p (wa(c)qo D g1 DI q2)
but t € p(c). If t € p(c), then ¢ can not be in p (¢ ({z},{(0),(1)})). Hence,
if t € p (mo(e)qo > g1 > g2) then ¢ must be in p (A (o (c) U {z},2,0)), and so t;~
must have even parity.

However, if t.” € p(A (o (c) U{y},2,1)) then ¢~ must have odd parity. This
means that x # y. By definition, g3 states that x = ysot & p (ﬂ'g(c)qo DI qp X} qg).

Method 1 INPUT: A CSP, P ={(V,D,C)
OUTPUT: A CSP, P =(V',D,C").

Foreach ¢ € C' we replace ¢ with the three subquadrangles described in defini-
tion 5 and add the extra two variables into V.

Theorem 2. Given a CSP, P = (V,D,C), Method 1 generates a new CSP,
P =(V',D,C"), such that my Meecr= Ty Meec-

Proof. This method is shown to be true by repeated application of theorem 1.

This reformulation has the useful property that it is always strongly r» — 1
consistent where r is the arity of the smallest constraint (subquadrangle) in C”
which contains at least 1 variable from V. (i.e. not counting the g2 constraints).
This is in indication that this formulation is backtrack nasty as this consistency
is enough to guarantee that you will always have to go to at least a depth of
r — 1 in any search branch to see if it leads to a solution, but is not enough to
guarantee solutions.

3.2 Obscuring Intersecting Constraints

Method 2 INPUT: A CSP, P = (V,D,C).
OUTPUT: A CSP, P' = (V',D,C").

Foreach c € C
Select ¢;; € C s.t. i # j and o (¢;) No(c;) #0
¢ = ci X ¢y
While |o (é)| — |o (¢i) | < 1
Select v € 0 (¢j),v & o (cs)
& — e 5 {(v), D ()
While |o (é) | — |o (¢;) | < 1
Select v € o (¢;),v & o (c;)
& — ¢354 {(0), D (v)
Generate the following affine constraints;
si = A (o (ci) U{yio},4,0)
si=A(o () U{yin},4,1)

55 = Ao (cj) U{yiont,4,2)
85 =A(0(c;) U{yin},4,3)
Extend each tuple of p(me,¢) to yio s.t.

the equation y;0 = 3 — E‘ja:(ocj)‘ﬂ f(vj) mod 4 holds
and add these extended tuples to p (s;

FExtend each tuple of p (7ch é) to yi1 s.t.
the equation y;1 =1 — Z‘.‘;(Oci)‘fl f (vi) mod 4 holds
and add these extended tuples to p(s;)

The method has three stages. This approach would not work if the pairs
of intersecting constraints chosen have more than one non-intersecting variable
each. The first stage of the method is to extend the intersection to originally non-
intersecting variables by extending them to any combination of domain values
so that each constraint is left with at most one non-intersecting variable.

The second stage creates the four affine subquadrangles whose join is empty.
These are used as the base for the third stage which adds in the necessary
extended tuples to allow the original solutions to be expressed. This is done
by finding the relevant values for the additional y variables. These values are
determined by the generated value in the oppositely paired constraint (i.e. s;
and s%).

4 Conclusions and Further Work

In this paper we have presented two possible solution equivalent subquadran-
gle reformulations for constraint satisfaction problems. The motivation behind
such decompositions is to provide backtrack nasty reformulations to access the
effectiveness of current solution techniques.

We hope to investigate the possibility of a subquadrangle aware solver that
understands delayed failure and prevents unnecessary constraint checks.

Our intention is to consider the difference in problem size for different repre-
sentations of the generated subquadrangles, compared to the size of the original
constraints, and see what effects this may have on the complexity of solution.

While Method 1 has been demonstrated to be correct, we are currently relying
on empirical evidence to suggest that Method 2 is also correct. We intend to find
a proof of this in due course.

References

1. James Allen Natural Language Understanding — 2nd Edition. The Ben-
jamin/Cummings Publishing Company, 1995.

2. U. Montanari. Networks of Constraints: Fundamental properties and applications
to picture processing. Information Sciences, 7:95-132, 1974. 1997.

3. R. Rodosek. Generation and Comparison of Constraint-Based Heuristics Using the
Structure of Constraints. PhD thesis, Imperial College, University of London, July
1997.

4. P. van Beek. Reasoning about Qualitative Temporal Information. Artificial Intelli-
gence, 58:297-326, 1992

