
From Linear Relaxations to Global Constraint
Propagation

Student: Claude-Guy Quimper
Supervisor: Alejandro López-Ortiz

School of Computer Science, University of Waterloo, Canada
{cquimper, alopez-o}@uwaterloo.ca

Abstract. We present a method for propagating linear constraints. Our technique
exploits the fact that the interior point method converges on a central point of the
polytope. A variable assigned to an extreme point is therefore assigned to this
extreme point in all solutions. We show how linear relaxations and the interior
point method can be combined to prune variable domains. We also describe a
class of constraints where our propagator enforces global arc consistency.

1 Introduction

Recently, many algorithms have been designed to propagate global constraints [1, 4, 9,
16, 17]. Unfortunately, some global constraints, such the AT-MOST-1 [6] constraint and
the EXTENDED-GCC [9] are NP-Hard to propagate. Often, these constraints can easily
be written as integer linear programs. Using linear relaxation and other techniques de-
veloped by the operation research community, we show that it is possible to efficiently
propagate such constraints.

We model constraints as integer programs that we relax into linear programs. We
find a solution to the relaxation using the interior point method. We finally use a con-
vergence property of the interior point method to prune the variable domains.

This paper summarizes some results jointly obtained with Emmanuel Hebrard and
Toby Walsh. Due to space restrictions, some results and all proofs are omitted.

2 Related Work

Different approaches have been used to integrate linear programming to constraint pro-
gramming systems. Linear relaxations are commonly used to determine bounds in op-
timization problems (see for instance [18]). They are also used to detect the unsatis-
fiability of a problem earlier in the backtracking search or to improve the branching
heuristics [8]. The “Branch & Infer” framework [7] and the “Branch & Check” [19]
framework combine constraint and linear programming both for modeling and solving.

Closer to our approach, Puget [15] uses linear relaxations to propagate the MULTI-
CLIQUE constraint. The MULTI-CLIQUE constraint is an integer program where where
B is a binary matrix, e is the vector with all components set to 1, and Z is a constrained
integer variable on which we want to enforce bounds consistency.



n
∑

i=1

cixi = Z, Bx = e, x ∈ {0, 1}n

Puget computes the dual variables of the linear relaxation and maintains bounds
consistency on linear equations based on these dual variables.

3 Theoretical Background

A Constraint Satisfaction Problem (CSP) is defined by a set of variables X = {x1, . . . , xn}
and a set of constraints C = {C1, . . . , Cm}. The domain dom(xi) of a variable xi de-
fines which values can be assigned to the variable xi. A constraint Ci on variables
V ar(Ci) ⊆ X restricts the number of valid assignments. A solution to the problem
is an assignment that satisfies all constraints. A value v has a support in dom(xi) with
respect to a constraint Ci if there exists an assignment t with xi = v that satisfies
Ci. Enforcing consistency on a constraint C consists in removing unsupported values
from the domains with respect to constraint C. There exist different levels of consis-
tency. By definition, Global Arc Consistency (GAC) holds if there are no unsupported
values in the domains. Similarly, bound consistency (BC) holds if min(dom(xi)) and
max(dom(xi)) have a support. A consistency A is as strong as a consistency B (writ-
ten A � B) if B holds whenever A holds. A consistency A is incomparable with a
consistency B if there are cases when A holds but not B and vice-versa.

4 Linear programming

A binary integer program (IP) is a set of n binary variables subject to m linear equalities
and inequalities. Every binary integer program can be written in the following standard
form where A is a m × n coefficient matrix and b a vector of m dimensions.

Ax ≤ b

x ∈ {0, 1}n

}

IP

Finding a solution to a binary integer program is NP-Hard, this is why we study the
following linear program (LP) which is a relaxation of IP.

Ax ≤ b

0 ≤ xi ≤ 1

}

P

These equations describe a polytope of n dimensions, i.e. a convex shape delimited
by hyper-plans. Each face of a polytope is itself a polytope of lower dimension.

Many algorithms have been developed to solve such equations. All of them use a
common strategy which finds a solution by creating a polytope P′ of higher dimension
in which P is a face of P′. By using some properties based on the construction of P′,



the algorithm trivially finds a point inside the polytope. Then, by an iterative process,
the point moves until it reaches the face P and becomes a solution.

The simplex algorithm [11] iterates through the vertices of the polytope. Karmarkar’s
algorithm [20], also known as the interior point method, starts from a central point in
P′ and moves the point through the polytope until it reaches the face P.

5 Interior Point Method and Constraint Propagation

We now show how some properties of the interior point method can be used to create
constraint propagators.

Let ΩP be the set of solutions of the linear program P. Variables can be partitioned
into two sets: the variables B that can be assigned to positive values and variables N

whose value must always be assigned to 0.

B = {xi | ∃x ∈ ΩP , xi > 0} (1)

N = {xi | ∀x ∈ ΩP , xi = 0} (2)

The bipartition {B, N} is called the optimal partition [12]. Guler and Ye [13] proved
a convergence property of the interior point method that allows to easily compute the
optimal partition (B, N). The solution returned by the interior point method is central
to the polytope. Therefore, if a component of x is assigned to the boundary of the
polytope, it is simply because it has no choice to be on this boundary. In other words,
if the interior point method returns a solution where xi = 0, variable xi is assigned to
zero in all solutions.

This property can be used to design a constraint propagator. For instance, the PER-
MUTATION constraint can be encoded as follows on the following domains.

dom(a) = {1, 2, 3}, dom(b) = {1, 2}, dom(c) = {1, 2}

We create a binary variable for each value in the domains. For instance, we create
the binary variable a1 for value 1 ∈ dom(a) where a1 = 1 iff a is assigned to 1.

a1 +a2 +a3 = 1
b1 +b2 = 1

c1 +c2 = 1
a1 b1 +c1 = 1

a2 +b2 +c2 = 1
a3 = 1

0 ≤ a1, a2, a3, b1, b2, c1, c2 ≤ 1

The first three equations ensure that each variable is assigned to a single value while
the three last rows ensure that each value is assigned to only one variable. Using the
interior point method to solve this problem, we retrieve the following solution:

[a1, a2, a3, b1, b2, c1, c2] = [0, 0, 1, 0.5, 0.5, 0.5, 0.5]



Using the convergence property of the interior point method, we conclude that a1

and a2 belong to set N and therefore values 1 and 2 should be removed from the domain
of a.

There is a class of constraints where the interior point method can be used to enforce
GAC. Those constraints are encoded with a linear program Ax ≤ b with a binary
variable xv

i for each value v in dom(Xi), a totally unimodular coefficient matrix A and
an integer right-hand side vector b.

Unimodular matrix ([14] p. 316) “An integer matrix B is called unimodular if its de-
terminant det(B) = ±1.”

Totally unimodular matrix ([14] p. 316) “An integer matrix A is called totally uni-
modular if every square, nonsingular sub-matrix of A is unimodular.”

The polytope defined by a totally unimodular matrix and an integer vector b has all
its vertices at integer coordinates. This occurs, for instance, when A is the incidence
matrix of a network flow.

Lemma 1. Consider the linear program Ax ≤ b, 0 ≤ xi ≤ 1 where A is totally
unimodular and b has integer components. If there are no integer solutions with xi = 1
then the interior point method returns a solution with xi = 0.

Lemma 1 can be applied in other contexts. Consider the linear program P2 where A

is totally unimodular and b1 has integer components. No assumptions are made about
B, C, and b2.

[

A 0
B C

] [

x

y

]

≤

[

b1

b2

]

0 ≤ xi, yj ≤ 1







P2

Corollary 1. Consider the linear program P2. If there are no integer solutions with
xi = 1 in the linear program Ax ≤ b1, 0 ≤ xi ≤ 1, then the interior point method
returns a solution to P2 with xi = 0.

6 Example: The Cardinality Matrix Constraint

To illustrate our method of building constraint propagators, we use the cardinality ma-
trix constraint introduced in Régin [17]. This constraint applies to a m × n table of
integer variables Xij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. There is a global cardinality
constraint [16] (GCC) on each row and each column. The GCC restricts the number
of occurrences of a value in a set of variables. For instance, GCC(X1, . . . , Xn, D, l, u)
insures that value v ∈ D is assigned to a least l[v] and at most u[v] variables among Xi

for 1 ≤ i ≤ n. The cardinality matrix constraint is NP-Hard to propagate since it is a
generalization of the quasigroup completion problem.

To propagate this constraint using our interior point method, we create the following
linear relaxation. Let xv

ij = 1 if Xij = v and xv
ij = 0 otherwise. Let lbR[i, v] and

ubR[i, v] be a lower and upper bound on the occurrence of value v on row i and let



lbC[j, v] and ubC[j, v] be a lower and upper bound on the occurrence of value v on
column j. We have:

∀ i, j
∑

v∈dom(Xij )

xv
ij = 1 (3)

∀ i, v lbR[i, v] ≤

n
∑

j=1

xv
ij ≤ ubR[i, v] (4)

∀ j, v lbC[j, v] ≤

m
∑

i=1

xv
ij ≤ ubC[j, v] (5)

∀ i, j, v 0 ≤ xv
ij ≤ 1 (6)

As explained in Section 5, we can use the interior point method to find a solution x

and remove value v from dom(Xij) for all xv
ij = 0.

To propagate this constraint, Régin uses three constraints: a GCC on each row, a
GCC on each column and finally a 0/1-CARDINALITY-MATRIX for each value. This
last constraint restricts the sum of each row and column of a 0/1 matrix to lie between
two constant bounds. As shown by Régin, even though this constraint is redundant,
enforcing GAC on 0/1-CARDINALITY-MATRIX significantly improves the pruning. We
show that the interior point method can be used to enforce a stronger consistency than
GAC on GCCs and GAG on the 0/1-CARDINALITY-MATRIX constraints.

Lemma 2. Our interior point method enforces a strictly stronger (�) consistency than
GAC on the GCCs on rows and columns and GAC on the 0/1-CARDINALITY-MATRIX

on each value.

7 Conclusion and Future Works

We have shown how the interior point method can be used as a core algorithm to design
constraint propagators. We would like to explore in the future how other tools associated
to operation research can be used to design constraint propagators. Sensitivity analysis
and the analysis of dual variables may help in pruning more the variable domains.

References

1. N. Beldiceanu. Pruning for the minimum constraint family and for the Number of Distinct
Values constraint family. In Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, Paphos, Cyprus, 2001.

2. N. Beldiceanu, M. Carlsson, and S. Thiel. Cost-filtering algorithms for the two sides of the
sum of weights of distinct values constraint. Research Report T2002-14, Swedish Institute
of Computer Science, 2002.

3. C. Bessière, A. Chmeiss, and L. Saı̈s. Neighborhood-basedvariable ordering heuristics for
the constraint satisfaction problem. In Proceedings of the 7th International Conference on
Principles and Practice of Constraint Programming, pages 565–569, Paphos, Cyprus, 2001.
Short paper.



4. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering algorithms for the
nvalue constraint. In Proceedings of the 7th International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
Prague, Czech Republic, 2005.

5. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global constraints. In
Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming, Toronto, Canada, 2004.

6. C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global constraints. In
Proceedings of the 21th National Conference on Artificial Intelligence, San jose, 2004.

7. A. Bockmayr and T. Kasper. A unifying framework for integer and finite domain constraint
programming. Technical Report MPI-I-97-2-008, Saarbruecken, 1997.

8. C. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured graph
coloring problem. In Proceedings of the Computational Symposium on Graph Coloring and
Extensions, 2002.

9. C-G. Quimper, A. L ópez-Ortiz, P. van Beek, and A. Golynski. Improved algorithms for
the global cardinality constraint. In Proceedings of the 10th International Conference on
Principles and Practice of Constraint Programming, Toronto, Canada, 2004.

10. C. Bessiere R. Debruyne. Some practicable filtering techniques for the constraint satisfaction
problem. In Proceedings of the 15th International Joint Conference on Artificial Intelligence,
Nagoya, Japan, 1997.

11. G. B. Dantzig Linear Programming and Extensions Princeton University Press, 1963
12. A. J. Goldman and A. W. Tucker Theory of linear programming, in Linear Equalities and

Related Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press, 1956.
13. O. Guler and Y. Ye Convergence behavior of interior-point algorithms Mathematical Pro-

gramming 60, pages 215–228, 1993.
14. C. H. Papadimitriou and K. Steiglitz Combinatorial optimization: algorithms and complexity

Prentice-Hall 1982,
15. J.-F. Puget Improved Bound Computation in Presence of Several Clique Constraints In

Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming, Toronto, 2004.

16. J.-C. R égin. Generalized arc consistency for global cardinality constraint. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence, Portland, Oregon, 1996.

17. J.-C. R égin and C. P. Gomes The Cardinality Matrix Constraint In Proceedings of the 10th
International Conference on Principles and Practice of Constraint Programming, 2004.

18. R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to integrating mixed integer
programming and constraint logic programming. Annals of Operations Research, to appear,
86:63–87, 1999.

19. Erlendur S. Thorsteinsson. Branch-and-Check: A hybrid framework integrating mixed in-
teger programming and constraint logic programming. In Toby Walsh, editor, Proceedings
of the Seventh International Conference on Principles and Practice of Constraint Program-
ming (CP-01), volume 2239 of Lecture Notes in Computer Science (LNCS), pages 16–30.
Springer-Verlag, November 2001.

20. N. Karmarkar A New Polynomial-Time Algorithm for Linear Programming Combinatorica
4 373–395, 1984


