Distributed Constraints for Large-Scale
Scheduling Problems*

Student name: Montserrat Abril
Supervisor name: Miguel A. Salido, Federico Barber

Dpto. Sistemas Informéticos y Computacién, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022, Valencia, Spain
Student :mabril@dsic.upv.es, Supervisors:{msalido, fbarber}@dsic.upv.es

Abstract. Many problems of theoretical and practical interest can be
formulated as Constraint Satisfaction Problems (CSPs). The general
CSP is known to be NP-complete; however, distributed models may re-
duce the exponential complexity by partitioning the problem into a set
of subproblems. In this work, we present a distributed model for solving
large-scale CSPs in which agents are committed to sets of constraints.
Our technique carries out a partition over the constraint network by
a graph partitioning software, such as each subproblem is as indepen-
dent as possible and, it can be solved in a reasonable time. We have
focused our research to railway scheduling problem where the resultant
CSP maintains thousand of variables and constraints.

keywords: Constraint Satisfaction Problems, graph partitioning, railway
scheduling problem.

1 Introduction

Many real problems in Artificial Intelligence (AI) as well as in other areas of
computer science and engineering can be efficiently modeled as Constraint Sat-
isfaction Problems (CSPs) and solved using constraint programming techniques.
Some examples of such problems include: spatial and temporal planning, quali-
tative and symbolic reasoning, diagnosis, decision support, scheduling, hardware
design and verification, real-time systems and robot planning.

Furthermore, many researchers are working on graph partitioning [5], [2]. The
main objective of graph partitioning is to divide the graph into a set of regions
such that each region has roughly the same number of nodes and the sum of
all edges connecting different regions is minimized. Fortunately, many heuristics
may solve this problem efficiently. For instance, graphs with over 14000 nodes
and 410000 edges can be partitioned in under 2 seconds [1]. Graph partitioning
can also be applied to constraint satisfaction problem. Thus, we can use graph

* This work has been partially supported by the grant TIN2004-06354-C02- 01 (MEC,
Spain - FEDER) and GV04B/516 (Generalidad Valenciana, Spain).

partitioning, when dealing with large-scale CSPs, to distribute the problem into
a set of sub-CSPs.

Our research is also focused on the railway scheduling problem. Railway
traffic has increased considerably, which has created the need to optimize the
use of railway infrastructures. This is, however, a hard and difficult task. The
scheduling problem can be modeled by a CSP which is composed by thousand of
variables and constraints. The overall goal of a long-term collaboration between
our group at the Polytechnic University of Valencia (UPV) and the National
Network of Spanish Railways (RENFE) is to offer assistance to help in the
planning of train scheduling, to obtain conclusions about the maximum capacity
of the network, to identify bottlenecks, etc. Due to topological properties of
the railway scheduling problem, the resultant CSP can be distributed in semi-
independent subproblems such as the solution can be solved easier.

In this work, we propose a distributed model in which the railway scheduling
problem is partitioned into a set of subproblems and solved by different search al-
gorithms. The partition is carried out by means of a graph partitioning software
called METIS [3]. METIS provides two programs pmetis and kmetis for parti-
tioning an unstructured graph into k equal size parts. In this way, the constraint
partition is carried out in a preprocessing step in which an agent called parti-
tion agent carries out a partition of the original problem in semi-independent
subproblems. Thus, the problem is partitioned in k£ blocks in order to be studied
by agents called block agents. Furthermore, the partition agent is committed to
classify the subproblems such as the most interrelated problem is studied first.

In the following section, we summarize some definitions. In section 3, we
present distributed model. In section 4, we apply this model to railway schedul-
ing problem. A preliminary evaluation is carried out in section 5. Finally we
summarizes the conclusions and future work in section 6.

2 Definitions

In this section, we review some basic definitions as well as basic heuristics for
CSPs.

State: one possible assignment of all variables; the number of states is equal
to the product of the domain size.

Partition : A partition of a set C is a set of disjoint subsets of C' whose
union is C. The subsets are called the blocks of the partition.

Distributed CSP: A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents [7].

Each agent has some variables and attempts to determine their values. How-
ever, there are interagent constraints and the value assignment must satisfy
these interagent constraints. In our model, there are k agents 1,2,...,k. Each
agent knows a set of constraints and the domains of variables involved in these
constraints.

Definition 1: A block agent a; is a virtual entity that essentially has the
following properties: autonomy, social ability, reactivity and pro-activity [6].

Block agents are autonomous agents. They operate their subproblems with-
out the direct intervention of any other agent or human. Block agents interact
with each other by sending messages to communicate consistent partial states.
They perceive their environment and changes in it, such as new partial consistent
states, and react, if possible, with more complete consistent partial states.

Definition 2: A multi-agent system is a system that contains the following
elements:

1. An environment in which the agents live (variables, domains, constraints and
consistent partial states).

2. A set of reactive rules, governing the interaction between the agents and
their environment (agent exchange rules, communication rules, etc).

3. A set of agents, A = {ay,as,...,ax}.

3 The Distributed Model

In the specialized literature, there are many works about distributed CSPs. In [7],
Yokoo et al. present a formalization and algorithms for solving distributed CSPs.
These algorithms can be classified as either centralized methods, synchronous
backtracking or asynchronous backtracking [7].

Our model can be considered as a synchronous model. It is meant to be a
framework for interacting agents to achieve a consistent state. The main idea of
our multi-agent model is based on [4] but partitioning the problem in & subprob-
lems as independent as possible, classifying the subproblem in the appropriate
order and solving them concurrently.

Once the constraints are divided into k blocks by a preprocessing agent, a
group of block agents concurrently manages each block of constraints. Each block
agent is in charge of solving its own subproblem by means of a search algorithm.
Each block agent is free to select any algorithm to find a consistent partial
state. It can select a local search algorithm, a backtracking-based algorithm, or
any other, depending on the problem topology. In any case, each block agent is
committed to finding a solution to its particular subproblem. This subproblem
is composed by its CSP subject to the variable assignment generated by the
previous block agents. Thus, block agent 1 works on its group of constraints. If
block agent 1 finds a solution to its subproblem, then it sends the consistent
partial state to block agent 2, and both they work concurrently to solve their
specific subproblems; block agent 1 tries to find other solution and block agent
2 tries to solve its subproblem knowing that its common variables have been
assigned by block agent 1. Thus, block agent j, with the variable assignments
generated by the previous block agents, works concurrently with the previous
block agents, and tries to find a more complete consistent state using a search

Preprocessing

Agent c(1): blockl .
, ¢(2):block2 Constraint
| : Partition
c(k):blockk

@ 4 v ¥ ¥
S11+821 S12+822 | | e oo

(@) + v
m S14+S2¢+...+SKq e oo
: =

‘ Problem Solutions

Fig. 1. Multi-agent model.

algorithm. Finally, the last block agent k, working concurrently with block agents
1,2,...(k — 1), tries to find a consistent state in order to find a problem solution.

Figure 1 shows the multi-agent model, in which the preprocessing agent car-
ries out the network partition and the block agents (a;) are committed to concur-
rently finding partial problem solutions (s;;). Each block agent sends the partial
problem solutions to the following block agent until a problem solution is found
(by the last block agent). For example, state: s11 + s21 + ... + Sg1 is a problem so-
lution. The concurrence can be seen in Figure 1 in Time step 6 in which all block
agents are concurrently working. Each block agent maintains the corresponding
domains for its nmew wvariables. The block agent must assign values to its new
variables so that the block of constraints is satisfied. When a block agent finds
a value for each new wvariable, it then sends the consistent partial state to the
next block agent. When the last block agent assigns values to its new variables
satisfying its block of constraints, then a solution is found.

4 Application to Railway Scheduling Problem

Our distributed model is being evaluated to the railway scheduling problem. This
scheduling problem can be modeled by a CSP which is composed by thousand of
variables and thousand of constraints. It is very hard to solve as an entire CSP.
However, if the scheduling problem is distributed, it can be solved easier. To this
end, and depending on the desired solution, the preprocessing agent carries out

the partition by means of the software called METIS, or it divides the running
map in clusters composed by contiguous stations.

]| & 1 D 2 | = [, Il

o] | @ 0 B 2 | oo e . | Evorsopoone | AT

[$OEEAs e

Fig. 2. Distributed Railway Scheduling Problem.

Thus, the running map to be scheduled between two cities is decomposed
in several and shorter running maps. Figure 2 (left) shows a running map to
be scheduled. The set of stations will be partitioned in block of contiguous sta-
tions and a set of agents will coordinate to achieve a global solution (Figure 2
(right)). Thus, we can obtain important results such as railway capacity, consis-
tent timetable, etc.

5 Preliminary Results

In this section, we carry out an evaluation between our distributed model and
a centralized model. To this end, we have used a well-known CSP solver called
Forward Checking (FC)*.

In our evaluation, each set of random CSPs was defined by the 3-tuple
< m,a,p >, where n was the number of variables, a the arity of binary con-
straints and p the number of partitions. The problems were randomly generated
by modifying these parameters.

In Table 1 we compare the running time of the distributed model with the
centralized problem. We fixed the arity of binary constraints and the size of the
partition, and the number of variables was increased from 50 to 500. We can
observe that the running time for small problems was worse by the distributed
model than the centralized problem. However, when the number of variables
increased, the behavior of the distributed problem was better. It also depends
on the size of the partition. For small problems, the number of partition must
be low. However, for large CSPs (railway Scheduling Problems) the size of the
partition must be higher.

! Forward Checking were obtained from CON’FLEX. It can be found in: http://www-
bia.inra.fr/T/conflex/ Logiciels/adressesConflex.html.

Table 1. Random instances < n,a,p >, n:variables, a:arity and p:partition size.

Variables | Arity |Partition| Distributed | Centralized
Size Model Model

50 25 10 12 3

100 25 10 12 14

150 25 10 15 37
200 25 10 16 75

250 25 10 17 98
300 25 10 19 140
350 25 10 23 217
400 25 10 30 327
450 25 10 32 440
500 25 10 42 532

6 Conclusion and Future work

In this paper, we present a distributed model for solving large-scale CSPs, in
which a preprocessing agent is committed to partitioning the constraint network
in semi-independent sub-CSPs. Then, a set of block agents are incrementally and
concurrently committed to building partial solutions until a global solution is
found. Thus, hard problems can be solved more efficiently. We are working on
applying this model to railway scheduling problem, where there exist thousand
of variables and constraints.

References

1. G. Karypis and V. Kumar, ‘Using METIS and parMETIS’, Technical report, (1995).

2. G. Karypis and V. Kumar, ‘A parallel algorithm for multilevel graph partitioning
and sparse matrix ordering’, Journal of Parallel and Distributed Computing, 48(1),
71-95, (1998).

3. METIS, hitp://www-users.cs.umn.edu/ karypis/metis/index.htmi.

4. M.A. Salido, A. Giret, and F. Barber, ‘Distributing Constraints by Sampling in
Non-Binary CSPs’, In IJCAI Workshop on Distributing Constraint Reasoning, 79—
87, (2003).

5. K. Schloegel, G. Karypis, and V. Kumar, ‘Graph partitioning for high-performance
scientific simulations’, Sourcebook of parallel computing, 491-541, (2003).

6. M. Wooldridge and R. Jennings, ‘Agent theories, arquitectures, and lenguajes: a
survey’, Intelligent Agents, 1-22, (1995).

7. M. Yokoo and K. Hirayama, ‘Algorithms for distributed constraint satisfaction: A
review’, Autonomous Agents and Multi-Agent Systems, 3, 185-207, (2000).

