
Automated Search for Heuristic Functions?

Student: Pavel Cejnar
Supervisor: Roman Barták

Charles University
Faculty of Mathematics and Physics

Malostranské náměst́ı 2/25, Praha 1, Czech Republic
pavel.cejnar@st.cuni.cz

Abstract. We present a metaheuristic algorithm for creating heuristic
functions for CSP, especially SAT, with as low human interaction as pos-
sible. We use the concept of genetic programming to evolve local search
heuristic functions encoded as a list of RAM model-like computer in-
structions. However, we’ve extended the RAM model language to reflect
the features of genetic programming and the random mixing of code
instructions. We present possible implementation of genetic operations
upon these population members.

1 Introduction

If we want to solve a constraint satisfaction problem, we have two possibilities.
Either we can search systematically the space of possible solutions (use system-
atic search algorithms), or we can start with a random point in the space and
search randomly using a heuristic with a given ”time” limit (use local search
algorithms). To solve a very large problem, local search algorithms are usually
preferred.

Due to extensive research in local search algorithms, there are many good
heuristics solving related problems very efficiently. The more information about
the solved problem we have, the more effective heuristic function we can con-
struct. In real life, if we want to construct an effective heuristic function for
a CSP problem, we need a help of an expert, who analyses the problem and
states essential or at least important facts to find a solution quickly. Recently,
there were published papers where such a heuristic function was automatically
constructed by a computer (see [FU1], [CB1]). In these papers, a strong human
influence on an architecture of such a function is still present.

A heuristic for SAT problem mentioned in [FU1] runs and solves it faster
than human designed heuristics. The author started with some predefined prim-
itives chosen in accordance with a human observation identifying expected good
(precomputed) features for solving SAT. We can find examples in areas related
to CSP, like game theory, where a computer startegy based on an artificial de-
cision making function strongly beats the computer player strategy playing in

? Supported by the Czech Science Foundation under the contract 201/04/1102.



a way, like human player does (in bridge compare [GI1] and [SM1] or in chess).
This leads to a question whether it is possible to construct an effective heuris-
tic function only by a computer, a function constructed from very elementary
program building blocks not only from predefined higher-level primitives.

To better demonstrate the ideas, we focus on SAT, because many other con-
straint satisfaction problems can be formulated as SAT instances, this problem
is widely and intensively studied and there are many well-known heuristics we
can compare with.

In this paper, we present a procedural programming language for the descrip-
tion of heuristic functions for local search algorithms and we show the application
of genetic programming concept to these functions to get a metaheuristic algo-
rithm with a capability to create a local search heuristic without a help of an
expert.

The structure of the paper is as follows: The second section recapitulates
common terms used in the paper, the third section presents the global concept
of this metaheuristic algorithm, the fourth section describes the programming
language for heuristic functions, the fifth section shows main data structures
for problem instances and the sixth section presents genetic operations on the
individuals (the code of heuristic functions).

2 Prerequisities

SAT, testing of satisfiability, is an NP-complete decision problem. We have given
a set of boolean variables V , and a well-formed formula (CNF ) F , consisting
of literals (positive or negative variables from V ) and connectives ∧ and ∨. The
question is whether there exists a truth assignment T of variables from V , such
that the formula F is logically true. If such an assignment doesn’t exist, the
formula F is unsatisfiable.

Given a truth assignment T for a CNF formula F , let T ′ be the truth
assignment of F , where the value of variable v ∈ V is flipped. The negative

gain of v is the number of clauses that are satisfied in T and that become
unsatisfied in T ′.

The Walksat heuristic picks a random unsatisfied clause C from F and if
any variable in this clause has the negative gain equal to zero, then it selects
randomly one of these variables and flips it. Otherwise, with probability p it
selects a random variable from C and flips it and with probability (1 − p) it
randomly selects one of the variables in C with the lowest negative gain and
flips it. This repeats until it finds the satisfying truth assignment or until it
reaches a given number of steps (cutoff limit).

3 Architecture of the metaheuristic algorithm

The structure of local search algorithm in Figure 1 is common to many SAT local
search procedures. The new truth assignment selection heuristic is executed in



T=random truth assignment;

for(j=0;j<cutoff;j++) {

if (T satisfies formula F) return T;

T=make_step(T);

}

return NOT_FOUND;

Fig. 1. The local search algorithm template.

each step until the satisfying truth assignment is found or until the step counter
reaches the cutoff limit. Many SAT new truth assignment heuristics select one
variable according to some rule from current truth assignment and flip only this
variable’s value. However, we don’t want to restrict to this technique only.

To create successful heuristic functions from an initial random set, we need
some concept that maintains good features of heuristics in a set and removes
the heuristics with poor behavior. For this task we use the concept of genetic
programming applied like in Figure 2. The Initialize function creates a set

Initialize(Population);

for(j=0;j<maxIterations;j++) {

Pick Parent1 and Parent2 from Population;

Children=Composition(Parent1,Parent2);

Mutation(Children);

Evaluation(Children);

Insert(Children,Population);

}

Fig. 2. Genetic programming algorithm.

(population) of random heuristic functions that are guaranted to return a valid
truth assignment after each step of local search algorithm. The Pick function
selects two heuristic functions from the population. The probability of being
selected depends on the previous successibility of the heuristic function (score).
The Composition function generates n children, some of them being slightly
changed by the Mutation function. All the children are evaluated (scored) and
two best children are inserted to the population, where they replace randomly
selected members. The probability of being replaced depends on the successibility
(score) of the member again.

We want to have individuals built from very elementary blocks, however the
heuristic functions might be built from a large number of such elements. This
forces us to keep the representation of population members as simple as possi-
ble, e.g. to code a heuristic function as an ordered list of instructions. This could
keep the composition and mutation operations very simple and thus allows us to
speed up the process of evolution of the population. In order to keep the repre-



sentation simple, we left the idea of using a higher level programming language
for description of heuristics. Otherwise, we must encode the representation in
a more complex structure, like the program code syntax tree. The execution of
such an individual requires complex operations either for the run emulation or
for the compilation. However, to be able to simply describe many different in-
stances of SAT problem, that can vary in the number of clauses or the number
of variables, we keep the idea of programming language (with direct access to
memory), like a RAM model. Coding the individual as a neural network or a
set of instructions for Turing machine would make reading variable size input or
storing results of temporary operations difficult.

4 Programming language for heuristic functions

The Appendix 1 shows the code for the Walksat heuristic. The first part com-
putes the negative gain for all variables and the second part encodes the selection
logic. If we don’t require handling ties randomly, we can save instructions.

The RAM model language is promising, however, we’ve made some changes
to increase the probability of creating meaningful heuristic function.

The biggest change is the existence of variable types and type checking. We
assume that during the evolution of the population there will appear many ran-
domly created instructions and operands. We’ve defined three types of variables,
integer, domain, and boolean to eliminate the cases of assignment (semantically
domain) values out of domain range to (domain) variables and the cases of com-
parison of boolean variables with constants other than 0 (false) or 1 (true). This
also leads to the existence of global memory for values of each type.

In randomly created arithmetic instructions there could often occur constant
operands. To reduce this and to promote operations on variable operands, we
don’t use constant operands and handle them by a new instruction for assigning
constant values from a small set of constants to variables (loadc). To simplify the
code, we’ve got rid of the accumulator variable and use two-operand arithmetic
instructions. We’ve also removed indirect access operands and replaced them by
adding two new instructions for these operations (load, store). We’ve added
instructions inc and dec to increase or decrease the current value by one and
instruction rnd, that loads a random value from 1 to given maximum value to
the given variable.

We’ve also added conditional relative jumps for each of arithmetic comparison
(=, 6=, <, >,≤,≥) to simplify writing compound boolean expressions.

To have the language more robust we’ve agreed on some standard handling of
error states. We read minValue each time we read from a cell out of the range of
limited real memory. We’ve also agreed to get maxValue as a result of division
by zero or an overflow. We also suppose that a jump out of the code means
halting the program.



5 Description of an encoded problem instance

We have some special problem related constants, Variables of integer type,
that contains the number of variables in given SAT instance, Clauses of integer
type, that contains the number of clauses for given SAT instance (more general,
the number of constraints for given problem instance) and the arrays R[] of
domain type containing the current value of variables, Limits[] of integer type
containing the number of different variables in a clause, and a two-dimensional
array C[][] containing structured data. C[i,j].Variable of integer type con-
tains the index of variable present in clause i. C[i,j].isPositive of boolean
type contains whether this variable is positive in clause i. C[i,j].isNegative
of boolean type contains whether this variable is negative in clause i. In C[i][]

array there are only variables that are present in clause i, either as a positive or
negative literal or both (in this case the variable is there only once). An example
of an encoded CNF formula is in Appendix 2.

To access these arrays, we’ve added other variable assignment instructions
(readR, readLimits, readCvar, readCpos, readCneg).

To avoid infinite running heuristics, we’ve limited the maximum number of
instruction steps. After the heuristic function ends the execution or reaches the
limit, we will read the array R[] to get the (new) truth assignment.

We’ve tried to make the language as simple as possible and we hope to be
able to get appropriate results when evolving a population of heuristic functions
on a distributed computer system. However, if we get very poor results, we can
add other problem specific read-only arrays with precomputed values mentioned
in [FU1] (for example negative gain, history,...) and decrease the maximum num-
ber of instruction steps to reflect this fact. We could test whether the previous
population size and the number of iterations was inefficient to get as good results
as the results with added more problem specific arrays and whether we are able
to get the results comparable to [FU1].

6 Genetic operations

The composition operator on a linear sequence of instructions can be very simple.
To save as many code from the parents, we will not choose the simplest solution,
to cut the code in a random point (on an instruction border) and exchange the
parts of the code. We will cut the code in two random points and exchange only
the central part of the code. We will repair then the targets of jump instruc-
tions in the remaining part of the code by adding a difference in the length of
exchanged code to jump targets. For example, if we have two individuals, each
like the one in Appendix 1, the composition could exchange instructions 38-40
of the first one with instructions 41-43 of the second one. The exchanged parts
have the same length and thus the jump targets in the remaining parts don’t
need any repair.

The mutation operator will choose from following actions:



1. With the probability P1 it will change a randomly selected read or written
variable or a constant in the operands of instructions. For example instruc-
tion store [i14],i7 would become store [i3],i7 or store [i5],i9.

2. With the probability P2 it will change a randomly selected jump instruc-
tion with the one with different comparison function. Instruction jumpNE

+2,i7,i13 would become jumpL +2,i7,i13.
3. With the probability P3 it will change the target of a randomly selected

jump instruction. Instruction jumpNE +7,i12,i11 would become jumpNE

+1,i12,i11.
4. With the probability P4 it will change a randomly selected instruction. In-

struction loadc i3,0 would become mov b2,b1.

The exact values of probabilities P are a matter of discussion and we expect to
tune them during the runs of the population evolution.

The scoring function of an individual in genetic programming should rep-
resent the features we exactly want from an evolved individual. We took an
inspiration from the scoring function mentioned in [FU1]. To train the heuristic
function to solve 100-var SAT instances, we need a filter for poor heuristics and
then for mediocre heuristics. Let’s run the heuristic first on a small set of 15-
variable satisfiable instances to filter the poor ones. If more than 75% of them
are successfully solved, we will run it on a larger set of 50-variable satisfiable
instances to filter the mediocre ones. If more than 60% of them are successfully
solved, we will run it on a large set of 100-variable satisfiable instances. We con-
struct the scoring function in a way like: c1× (# of 15-var successes)+c2× (# of
successes of 50-var successes)+ c3× (# of 100-var successes)+ (# of successfully
solved instances of problem per unit of time).

7 Conclusions

We’ve presented the idea of automated creation of SAT heuristic functions with
minimum interaction with a human observer. We hope to be able to find heuris-
tic functions with comparable results to currently used heuristics. We expect
strong demands on computer performance and on the time for the evolution of
the population. We are prepared to tune the parameters of the metaheuristic
algorithm, but we want to avoid the changes that would considerably decrease
the expressive power of the programming language and the algorithm.

References

[FU1] Fukunaga, A. S.: Evolving local search heuristics for SAT using genetic pro-
gramming. GECCO-2004, Part II, volume 3103 of LNCS, 483-494, (2004)

[CB1] Carchrae, T., Beck, J.: Low-knowledge algorithm control. AAAI-04, (2004)
[GI1] Ginsberg, M. L.: GIB: Imperfect information in a computationally challenging

game. Journal of Artificial Intelligence Research 14, (2001)
[SM1] Smith S. J. J., Nau D., Throop T.: Computer Bridge: A big win for AI planning.

AI Magazine 19, (1998)



Appendix 1

The code of individual computing the negative gain for all variables of a randomly
selected clause for the Walksat heuristic:

1: loadc i5,1 ;if(R[C[i8,i9].Variable]==

2: add i5,i5 ;==DOMAIN_0)

3: mul i5,i5 35: jumpNE +2,d2,d4

4: mul i5,i5 36: loadc b1,false

5: add i5,i5 ;if(C[i8,i9].Variable==

6: rnd i1,Clauses ;==C[i1,i6].Variable)

7: loadc i2,maxValue 37: jumpNE +7,i12,i11

8: loadc i3,0 ;if(C[i8,i9].isPositive)

9: loadc i4,0 38: jumpNE +3,b4,b5

10: readLimits i9,i1 ;if(d1==DOMAIN_1)

11: loadc i6,1 39: jumpNE +2,d1,d3

;for(i6=1;i6<=Limits[i1];i6++) 40: loadc b2,false

12: jumpG +55,i6,i9 ;if(C[i8,i9].isNegative)

13: readCvar i11,i1,i6 41: jumpNE +3,b6,b5

14: readR d1,i11 ;if(d1==DOMAIN_0)

15: inc d1 42: jumpNE +2,d1,d4

16: loadc i7,0 43: loadc b2,false

17: loadc i8,1 44: inc i9

;for(i8=1;i8<=Clauses;i8++) 45: jump -22 ;endfor

18: jumpG +35,i8,Clauses 46: mov b3,b1

19: loadc b1,true 47: inc b3

20: loadc b2,true 48: jumpNE +3,b3,b5 ;if(!b1)

21: readLimits i10,i8 49: jumpNE +2,b2,b5 ;if(b2)

22: loadc i9,1 50: inc i7

;for(i9=1;i9<=Limits[i8];i9++) 51: inci8

23: jumpG +23,i9,i10 52: jump -34 ;endfor

24: readCpos b4,i8,i9 53: loadc i13,0

25: loadc b5,true 54: jumpNE +2,i7,i13 ;if(i7==0)

;if (C[i8,i9].isPositive) 55: inc i4

26: jumpNE +6,b4,b5 56: jumpL +6,i2,i7 ;if(i2>=i7)

27: readCvar i12,i8,i9 57: jumpLE +3,i2,i7 ;if(i2>i7)

28: readR d2,i12 58: mov i2,i7

29: loadc d3,maxValue 59: loadc i3,0

;if(R[C[i8,i9].Variable]== 60: jumpNE +2,i2,i7 ;if(i2==i7)

;==DOMAIN_1) 61: inc i3

30: jumpNE +2,d2,d3 62: mov i14,i5

31: loadc b1,false 63: add i14,i6

32: readCneg b6,i8,i9 64: store [i14],i7

;if(C[i8,i9].isNegative) 65: inc i6

33: jumpNE +4,b6,b5 66: jump -54 ;endfor

34: loadc d4,minValue



i1 selected broken clause

i2 current best negative gain

i3 number of variables with the negative gain equal

to the current value of i2

i4 number of variables with the negative gain equal to 0

i5 index of the first variable of the negative gain array

(decreased by 1)

i7 negative gain for the current variable

i13 zero constant

b1 is the current clause false?

b2 will the current clause become false when the current

variable is flipped?

b5 true constant

d1 flipped value of the current variable

d3 domain maxValue constant, i.e. true

d4 domain minValue constant, i.e. false

Appendix 2

Having formula (a ∨ b ∨ c) ∧ (c ∨ ¬b ∨ b) ∧ (¬a ∨ ¬b) we code it as

Variables==3, Clauses==3, Limits[]=={3,2,2},

C[][]=={

{{1,true,false},{2,true,false},{3,true,false}},

{{2,true,true},{3,true,false}},

{{1,false,true},{2,false,true}}}}

}


