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Abstract. One of the critical problems in the call center industries is
the staffing problem since they must face variable demands and because
staff costs represent a major part of the costs of this industry. The prob-
lem of dimensioning a call center is modeled as a particular scheduling
problem, where the objective is to minimize the weighted number of
resources needed to perform the jobs. We present in this paper a first
constraint programming approach and some improvements, to solve this
problem. We show that the results are very sensitive to the constraints
definition and to the instanciation methods. Models are tested and re-
sults are discussed.

1 Introduction

Call Centers are used by organizations as an important channel of communica-
tion and transaction with their customers. The most prevalent form of commu-
nication is the telephone. When only the telephone is used, we call the company
a call center. For this type of industry, personnel costs and specially the cost
of staffing, account for around 70% of the cost of running a typical call center.
It is essential to efficiently manage telephone call centers, so that the customer
requests are met without excess staffing. One of the questions to answer is How
many agents are to be staffed in order to provide the required service quality?
and the related problem is called the staffing problem in the following. In this
paper, we give an answer to this question.

From a modeling point of view, a call center can be viewed as a large system,
operating in a stochastic environment and is generally modeled as a M/M/N
system, also called the Erlang-C model, “the most prevalent model that supports
call center staffing”. In [Koole and Mandelbaum, 2001],[Rottembourg, 2003], the
authors present a survey of the state-of-the-art about possible models of a call
center. They present the well known Erlang-C formulas and model a call center
as a Markov Chain.

In this paper, we propose a deterministic model of the problem and we pro-
pose heuristic algorithms to solve it. To the best of our knowledge, no determin-
istic approach has been designed to deal with the staffing problem before.
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The paper is organized as follows. In Section 2 the staffing problem is modeled
as a scheduling problem and notations are introduced. In Section 3 we present
an upper bound and a lower bound to our problem. In Section 4 we present a
classical constraint programming formulation of the problem. In section 5 we
propose some improvements of the classical model. In section 6 we detail the
computational experiments and we discuss the results.

2 Problem modeling and notations

We consider an inbound call center, it means a call center that only receives
calls. The outgoing calls are not considered, the staff requirement is supposed to
be imposed by the client.

The staff dimensioning problem can be set as follows: the whole horizon is
split into T periods of size τ . Generally, each period corresponds to a quarter of
hour. For each period t, we know the number of expected incoming calls. These
calls are of several types, depending on the client and on the activity.

The staffing levels are generally determined from a service level perspective.
Indeed, when a client entrusts an activity to a call center, he provides the foreseen
calls for each period and the call center has to reach an objective in terms of
quality of service. In this paper, the quality of service is equal to the ratio of
the average number of incoming calls taken in less than a given time over the
horizon. It depends on the activity. For instance, one client imposes a mean
quality of service greater than or equal to 85% of incoming calls taken in less
than 20 seconds. This quality of service is a constraint for the staff dimensioning
problem.

The problem consists in determining the minimum number of required agents
at each period, respecting the quality of service of each activity.

We consider one given period t. In our model we assume that the calls of each
type are regularly distributed over the period. This assumption is generally ver-
ified in practice if the arrival rate of calls (number of calls divided by the period
length) is important. So, we assume that each call arrives at a determinated time
and has to be answered according to the quality of service definition. It means
that whatever the percentage of average number of calls to take is, we search for
a solution such that all the calls are taken in the given time. The solution that
we will obtain is a priori an over estimation of the minimum staff level.

Each agent j is considered as a resource denoted by Mj , 1 ≤ j ≤ m. All the
agents constitute a “parallel machine” environment, where all the resources are
assumed to be identical. We associate to each resource a set of tools, where each
tool corresponds to the skill which possesses the agent, i.e. to the type of calls
the agent can take. A cost-in-use is associated to each resource Mj , depending
on the number of associated tools. Each call is considered as an independent job
i with a release date ri, a processing time pi and a deadline d̃i, 1 ≤ i ≤ n. Nk

denotes the number of jobs corresponding to calls of type k. Finally, a tool is
associated to each job, representing the skill required to perform the job. We
denote by EMSR the set of mono-skill resources.
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The aim is to assign to the resources all the jobs and to schedule them in
order to minimize the total cost.

We assume that the maximum slack time is smaller than the smaller average
processing time. This hypotheses is realistic in call center contexts, it means
that the waiting times allowed by the quality of service definition (around 20
seconds) is always smaller than the duration of the calls (at least one minute).

Proposition: Considering the previous hypotheses between duration of calls
and waiting time, for all i and i′ two jobs assigned to the same resource, if ri < ri′

then i′ cannot precede i in a feasible solution.
Proof: can be easily demonstrated.
So, once the assignment of jobs to resources is known, the jobs are ordered by

the SRT rule (Shortest Ready Time first). The problem is then reduced to an as-
signment problem. According to the three-field notation [Graham et al., 1979] of
scheduling problems, our problem is denoted by PMPM |ri, d̃i, smax < pmin|mw

where mw is the cost function due to machine use, smax is the greatest slack
time and pmin the smallest processing time.

3 Upper and lower bounds

We describe here an upper bound and a lower bound for our problem.
The upper bound is the result of a simple list algorithm: sort the jobs using

SRT rule and assign the jobs to the first available machine (FAM), that is
able to process it before its deadline. This algorithm as an O(n log(n)) time
complexity. We denote by UB the value of the solution returned by this heuristic
algorithm and we denote by LA this algorithm in the following.

In [Simons, 1983], the author propose a simple algorithm to solve in polyno-
mial time the problem P |ri, d̃i, pi = p|−. The algorithm consists in sorting the
jobs according to the SRT rule. Then it assigns resources to the jobs according
to the FAM rule. If a job cannot be placed because of its deadline and if no job
before has a greater deadline, then the problem is unfeasible.

Proposition: Considering that there is only mono-skill resources, LA algo-
rithm is optimal.

Proof: The problem we solve here is the P |ri, d̃i, pi = p, ri ≥ ri′ ⇒ d̃i ≥
d̃i′ |m. For this problem, the algorithm of Simons is equivalent to apply FAM
assignment rule to a SRT list. Let m∗ be the solution returned by LA. We prove
that m∗ is also a lower bound. Assume that m = m∗ − 1 resources are sufficient
to process all the jobs. If we apply the algorithm of [Simons, 1983] with exactly
m resources, at least one job i cannot be assigned to a resource. But because all
the jobs placed before i have a deadline lower than d̃i, the problem is unfeasible.
So m∗ is a also lower bound and thus is the optimal value.
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The lower bound is based on the notion of “mandatory part” [Lopez, 1992],
[Le Pape et al., 2001]. Let consider one job i. This job has to be processed be-
tween ri and di, and more precisely, whatever is its starting time, the job will
be performed in the interval [di − pi, ri + pi], if di − pi < ri + pi. We denote by
T the set of dates di − pi for all jobs i. We denote by St the set of jobs that
are processed simultaneously at time t, ∀t ∈ T . The number maxt∈T |St| gives
the minimum number of jobs that will be performed simultaneously. We assume
that these jobs are assigned to the first cheaper resources, which gives a lower
bound denoted by LB.

4 Classical constraint programming formulation

We denote by EJMi the set of resources which can handle job i according to
the tools associated to the resources.

The variables of the model are: for each job i, its starting time Ti and its
assignment Ri. For each resource, Zj is equal to 1 if machine Mj is used and 0
otherwise. The variable to minimize is denoted by C.

The constraints are: definition domains of variables Ti and Ri, the disjunctive
constraints that indicate that if i and i′ are assigned to the same resource and
i < i′ then i precedes i′ and constraints that give their values to variables Zj .

Instanciation

To avoid the test of all equivalent configurations, weigths of resources have been
modified. Resources having the same set of tools belong to one class. Then for
all the resources of a class, a hierarchy is introduced in order to give a priority
for their use. A small value is added to their cost according to the priority that
is introduced. For example, if three resources M1, M2 and M3 are of the same
type, with a cost equal to 1500, then the first resource cost is set to 1501, the
second to 1502 and the third to 1503.

Resource variables Ri are first instanciated. When the performing resource
is known for job i, the starting time Ti is fixed to the earliest starting time,
it means the first possible value in the definition domain of Ti. Finally, the Zk

variables are fixed to 0 if they are not fixed to 1 (due to constraints).

5 Improvements of the formulation

5.1 Model improvement

The first improvement consists in adding constraints on the objective function
value, by using a lower bound and an upper bound, adding a global constraint
alldifferent on the assignments of jobs and by modifying the disjunctive con-
straints. A constraint of type alldifferent is added. These constraints insure that
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the assignment of all the jobs that belong to a same set St will not have the
same assignment.

alldifferent(Ri,∀i ∈ St),∀t ∈ T

Constraints that imposes that if a resource Mj is not used (Zj = 0), then so do
the resources of the same class that have a higher cost (Mj′ with j′ > j) are
added.

At last, a new variable is introduced: Xi which is equal to 1 if job i is assigned
to a mono-skill resource and 0 otherwise.

5.2 Instanciation improvement

The variables are instanciated according to two different ways.

1. all the variables Zj are sorted according to their increasing cost of use, and
set to 1 first (”cheaper machines first”); then all the couples of variables
(Ri, Ti).

2. all the variables Zj are sorted according to their decreasing cost of use, and
set to 0 first (”expensive machines last”); then all the couples of variables
(Ri, Ti).

In the case of model that contain Xi variables, all the variables Xi are instan-
ciated, first to one and then to zero. If Xi = 1, only the first possible resource is
choosen (according to algorithm LA).

6 results

The classical model never finds an optimal solution, but always finds a feasible
one, even for an important number of jobs (N = 30 means instances with a
number of jobs comprised between 120 and 240).

With the model that improves th instanciation but doesn’t use the Xi varaibles,
whatever the instanciation method, the problem is always solved optimaly within
2 minutes for N = 5, i.e. with a number of jobs comprised between 20 and 40.
The results of the two first instanciations are similar: the result of the heuristic
algorithm is improved for six instances with N = 10, and the results are not
improved after. Note that the improvement is not significant for N = 10 in the
second instanciation method. The third instanciation seems to be the best of the
three: it allows to solve optimaly 50% of the instances for N = 10, i.e. a number
of jobs comprised between 40 and 80. For N = 15, eigth instances are improved
within two minutes with this instanciation method. But for N ≥ 20, the model
is not very efficient because it doesn’t improve the upper bound in less than two
minutes.

for the model that use Xi variables, we can notice that the first instanciation
method does not give better results with this model than with previous ones.
With the second instanciation method, the model returns more feasible solutions
than all the other models. However, in all the cases, the average deviation from
the upper bound is very small.
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7 Conclusion

We consider the problem of dimensionning an inbound call center and we model
this problem as a scheduling problem. We present different constraint programs
to solve this multi-purpose machine scheduling problem, with the objective to
minimize the weighted number of resources needed. A basic model is first pre-
sented. Then some improvements are proposed and tested on randomly gener-
ated instances. An upper bound based on a simple list algorithm and an lower
bound based on the notion of mandatory parts are also presented and are used
to improve the CP resolution. Finally, some instances of the problem are solved
optimaly within two minutes for less than 80 jobs. For more than 100 jobs, the
upper bound is never improved within two minutes by the best model.

In the near future, we will develop more sophisticated heuristic algorithms
to solve this problem. The first will be based on Ant Colony Optimization, the
second one will be a local search with the use of CP: a resource is replaced by
another one (with a lower price) and the feasibility problem is solved using CP.
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