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Abstract. The stable marriage problem (SM) and the Hospital / Resi-
dents problem (HR) are both stable matching problems. They consist of
two sets of objects that need to be matched to each other; in SM men to
women, and in HR residents to hospitals. Each set of objects expresses a
ranked preference for the objects in the other set, in the form of a prefer-
ence list. The problem is then to find a matching of one set to the other
such that the matching is stable. We discuss issues concerning the cre-
ation of specialised constraints to solve these problems. We then present
results that suggest that constraint programming is indeed a practical
technology for solving these problems.

1 Introduction

In the Stable Marriage problem (SM) [7] we have n men and n women. Each
man ranks the n women into a preference list, as do the women. The problem
is then to produce a matching of men to women such that it is stable. By a
matching we mean that there is a bijection from men to women, and by stable
we mean that there is no incentive for partners to divorce and elope. A matching
is unstable if there are two couples (m;,w;) and (my,w;) such that m; prefers
w; to his current partner w;, and w; prefers m; to her current partner my. In
this case m; and w; would form a blocking pair.

This problem has also attracted the interest of the constraint programming
community [2,4,6,5,9]. In [4] two models are introduced. The first encoding uses
2n constrained integer variables, one for each man and woman, with an initial
domain of {1 to n} and uses n? table constraints, one for each potential couple.
The constraints explicitly list the disallowed tuples that correspond to unstable
or inconsistent assignments. This model has a space complexity of O(n*) and
runs in O(n*) time. The second uses 2n? constrained integer variables one for
each potential partner of each man and woman, with an initial domain of {0, 1}
and uses O(n?) implication constraints. This model has a space complexity of
O(n?) and runs in O(n?) time which is optimal in the size of the preference lists.
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In the Hospital / Residents problem (HR) [3] we have n residents and m
hospitals. Again each resident ranks the m hospitals into a preference list, while
each hospital ranks the n residents. Each hospital has a capacity ¢, meaning a
hospital can accommodate at most ¢ residents. The problem is to find a matching
of residents to hospitals that respects the capacities of the hospitals and ensures
the matching is stable. In this case a matching I is unstable if it contains a
resident 7; and a hospital h; such that r; would prefer to be matched to h; than
to the hospital it is assigned to in I and h; has either been assigned a resident it
prefers less than r; or has spare capacity. To date there have been no published
constraint-based solutions to this problem.

Algorithms have been published for both of these problems and optimal con-
straint models have been published for the stable marriage problem. So the main
question would be why design a specialised constraint for these problems?

The SM algorithm and the optimal constraint encodings all have a time
complexity of O(n?), but in practice it can take over a minute for the constraint
models to find a solution to a problem of size 45 while the SM algorithm can
find a solution in less than two hundredths of a second. There have not been any
optimal HR constraint models published, but I assume the same performance
gap would exist. The advantage of the constraint solutions are their versatility.
Many harder variants of the stable matching problems can be solved by adding
simple side constraints to the existing constraint models, this is not possible
with the matching algorithms. So the motivation behind a specialised constraint
is to try and combine the efficiency of the algorithm with the versatility of the
constraint models.

2 Specialised constraint solutions

By specialised constraint we mean a constraint that has been designed to solve
a specific problem or sub problem. The first design decision when writing a spe-
cialised constraint is its arity. One option would be to write a binary constraint
that acts between each pair that could potentially be unstable or inconsistent.
The advantage of this approach is that it can lead to very clear simple code,
because only the two constrained variables need be considered. The main disad-
vantage is the large number of constraints that are needed to create the model
can lead to redundant propagation calls. For example if we used a binary con-
straint for SM, for a man m; we would need n constraints, one for each potential
partner. If during propagation a value was removed from the domain of m; then
each of the n constraints connected to m; would need to be revised. In most
cases only one of these n constraint revisions will have an effect. Thus we would
make n — 1 redundant calls. Another option would be to make the constraint
n-ary. For example an n-ary constraint for SM would constrain all n men and all
n women. This would mean that if a value was removed from the domain of m;
only one constraint would need to be revised, thus reducing the time complexity
by n. The downside to this approach is the code can become complicated and
hard to follow.

The next aspect of constraint design to consider is what type of domain
reduction event should trigger propagation. The three main types of domain



reduction event are when a variable is instantiated, when the bounds of a vari-
ables domain changes and when any domain value is removed. To solve a pure
SM problem propagation need only occur when the bounds of a variable changes.
However if we add side constraints it may become necessary to propagate when-
ever any domain value is removed. To solve a HR problem the constraints need
to be propagated whenever a domain variable is removed.

The final element of a specialised constraint is the propagation methods.
Propagation methods are called when the constraint is initialised and when a
domain reduction event occurs. The method that is to be called on initialisation
has to handle any possible initial state of the variables. This method would
where necessary remove one or more values from one or more of the constrained
variables, which would in turn cause a domain reduction event, effectively kick-
starting propagation. The methods that will be called when a domain reduction
event occurs will have to handle all types of domain reduction. It is important
to note that if the constraint is to be used in search and/or in conjunction with
other constraints, the domain reduction events will not necessarily be triggered
by the constraint it self. Therefore no assumptions can be made as to the current
search state. Because of this, these methods either need to be generic or to check
the state before acting.

It may be the case that information needs to be stored within a constraint
object, such as a preference list. If this data is static and used for reference only
then a standard integer variable will suffice. However if the data is dynamic
meaning that its value will be updated during search, then a reversible variable
will need to be used. Reversible variables should be supplied by the constraint
toolkit. The solver will store the values of each of the reversible variables at each
choice point and restore them on backtracking.

3 Computational Experience

We now present empirical results from our studies of stable marriage problems
and hospital resident problems.

3.1 Stable Marriage Problems
We implemented the specialised constraint encodings using the JSolver toolkit
[1], i.e. the Java version of ILOG Solver. We implemented three constraint en-
codings for SM. The first is an encoding presented in [4], namely the optimal
O(n?) boolean encoding (Bool). The other two are encodings which use spe-
cialised constraints, a binary constraint referred to as SM2 [12] and an n-ary
constraint referred to as SMN [11]. Our experiments were run on a Pentium 4
2.8Ghz processor with 512 Mbytes of RAM, running Microsoft Windows XP
Professional and Java2 SDK 1.4.2.6 with an increased heap size of 512 Mbytes.
Table 1 shows the average time taken to create the model and find all so-
lutions for ten randomly generated instances of size 100 up to 1000. Time is
measured in seconds, and an entry — means that an out of memory error oc-
curred. As can be seen the SM2 encoding significantly out performed the optimal
Bool encoding in both space and time, and the SMN encoding out performs both
other models by orders of magnitude.



model [size n

100 {200| 400 | 600 | 800 | 1000
Bool |2.02|6.73] — — — —
SM2 10.47|1.97|10.13(27.27|54.98|124.68
SM2N|0.03(0.07| 0.24 | 0.73 | 1.56 | 3.35 |

Table 1. Average computation times in seconds to find all solutions to 10 randomly
generated stable marriage problems each of size n

Bool | SM2 | SMN
time O(n?)|0(n*)|0(n?)
constraints space|O(n?)|0O(n?)|0(n?)
variables space [O(n?)| O(n) | O(n)

Table 2. a summary of the complexities of the three SM constraint models

Tables 1 and 2 raise the following question, if the Bool encoding is optimal
then why is it dominated by both the SM2 and SMN encodings? The main
reason for this is that there is no significant difference in the space required to
represent variables with significant differences in domain size, because domains
are represented as intervals when values are consecutive. Considering only the
variables, the Bool encoding uses O(n?) space whereas the SM2 model uses O(n)
space. For example, with n = 1300 the Bool encoding runs out of memory just
by creating the 2.13002 variables whereas the SM2 and SMN models take less
than 0.25 seconds to generate the required 2600 variables each with a domain
of 1 to 1300. As can be seen in table 2 theoretically the space complexity of
the constraints used by SM2, SMN and Bool are the same. In practise this is
not the case as SM2 requires exactly n? constraints each of size O(1) to solve a
problem of size n, and SMN requires one constraint of size O(n?). To solve the
same problem Bool would require 2n + 6n? constraints of size O(1). Therefore
the Bool encoding requires more variables and more constraints, resulting in a
prohibitively large model.

We now demonstrate the versatility of the specialised constraints by intro-
ducing a richer problem where stable matching is but one feature of the problem.
A derivative of SM is the sex equal stable marriage problem (SESMP). This is
an optimisation problem, where the search goal is to find a matching that is
equally good for both the men and the women. This problem has been proven
to be NP-Hard [8]. We can model this problem easily, using our SM2 and/or
SMN constraint, by introducing summation constraints within each sex. Table
3 show the average times to find a sex equal solution to one hundred randomly
generated stable marriage problems, using the n-ary stable marriage constraint
presented in [11].



size n
problem|1000|1200|1400{ 1600 | 1800 | 2000
SESMP [3.65(5.02(8.73(14.44(17.59|22.44

Table 3. Average computation times to find a sex equal matching in seconds from 100
randomly generated stable marriage problems each of size n

3.2 Hospital Resident Problems
We implemented three constraint encodings for HR. The first being a traditional

constraint model presented in [10] referred to as CBM. The other two are en-
codings which use specialised constraints, a binary constraint referred to as HR2
and an n-ary constraint referred to as HRN. These experiments where run on
the same machine as above.

50,/13/4]100,/20/5[500,/63/8[1k/100/10]5k /250,20]20k /550,37 |50k /1.2k /42
CBM| 024 | 0.36 1.69 475 - - -
HR2| 0.15 | 0.18 0.42 0.88 9.91 112 -
HRN| 0.12 | 0.15 0.19 0.22 0.53 1.42 12

Table 4. Average computation times in seconds to find all solutions to 100 randomly-
generated HR instances with attributes n/m/c.

Table 4 shows average time taken to create the model and find all solutions
for one hundred randomly generated instances. The sizes of the instances are
shown in the format n/m/c, where n is the number of residents, m is the number
of hospitals and ¢ is the uniform capacities of the hospitals. Again we see the
specialised constraints significantly outperform the more traditional model. The
performance on instances 50k/1.2k/42 are of particular interests because these
problems are similar in size to those in the National Resident Matching Program
(NRMP) in the US. This suggests that our specialised constraints are of practical
worth.

CBM HR2 HRN
time O((n +m)3c)|0((n +m)>c)|0((n + m)3c)
constraints space| O(nmc) O(nm) O(nm)
variables space | O(n+mc) | O(n+m) O(n+m)

Table 5. a summary of the complexities of the three HR constraint models

Table 5 shows a summary of both the time and space complexities of the
three HR constraint models.

4 Conclusion

We have discussed some issues that need to be taken into account when writ-
ing specialised constraints. We have shown that specialised constraints can be



used to solve matching problems quicker and more efficiently than traditional
constraint models. We have also shown that the gain in efficiency is not at the
cost of versatility, by solving SESMP an impure SM derivative. Furthermore,
our empirical study of random HR instances strongly suggests that specialised
constraints are indeed a practical solution technique for this important problem.

5 Future work

The matching problems as outlined in this paper both assume that all preference
lists are strictly ordered. An extension of these matching problems is to allow the
preference lists to contain ties. By ties we mean that there is indifference between
two or more possible matches. I have created a prototype binary constraint for
SM with ties and will be documented in the near future. I will then extend this
to create an n-ary constraint for the same problem, then look into HR with ties.
I will then go on to look at other problems with a view to solving them with
specialised constraints.
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