
Consistency for Partially Defined Constraints

Student:Andrëı Legtchenko; Supervisor:Arnaud Lallouet

Université d’Orléans — LIFO
BP6759, F-45067 Orléans, France

legtchen|lallouet@lifo.univ-orleans.fr

Abstract. Partially defined or Open Constraints can be used to model
the incomplete knowledge of a concept or a relation. We propose to com-
plete its definition by using Machine Learning techniques. Our technique
is composed of two steps: first we learn a classifier for the constraint’s
projections and then we transform the classifier into a propagator. We
show that our technique not only has good learning performances but
also yields a very efficient solver for the learned constraint.

Keywords: Open Constraints; Automatic Solver Construction; Machine
Learning.

1 Introduction

The success of Constraint Programming takes its roots in its unique combination
of modeling facilities and solving efficiency. In this paper, we propose to use
partially defined finite domain constraints called Open Constraints. In an Open
Constraint [7], some tuples are known to be true, some other are known to be
false and some are just unknown.

Let us take an example in which Open Constraints occur naturally: in a large
company, the canteen serves a large number of meals a day. One day, the Chef
is asked to prepare as first course a salad which should be good but also the
cheapest possible. The Chef owns a cookbook composed of 53 recipes of salads
and has various ingredients such as tomatoes, mayonnaise, shrimps. . . All are
given with price and available quantity. A first idea would be to select from the
cookbook the cheapest recipe possible given the available ingredients. But, since
not all knowledge about salads is contained in the cookbook, the invention of
a new salad is also an interesting option. The concept of “good salad” can be
modeled as an Open Constraint whose solution tuples are good salads and non-
solutions are bad ones. The cookbook is then viewed as a set of examples for the
open constraint (for the sake of learning, we should also give examples of bad
salads).

The idea of the technique we use for learning comes directly from the clas-
sical model of solvers computing a chaotic iteration of reduction operators [2].
We begin by learning the constraint. But instead of learning it by a classifier
which takes as input all its variables and answers ”yes” if the tuple belongs to
the constraint and ”no” otherwise, we choose to learn the support function of

the constraint for each value of its variables’ domains. A tuple is part of the con-
straint if accepted by all support functions for each of its values and rejected as
soon as it gets rejected by one. This method is non-standard in Machine Learn-
ing but we show in section 4 that it can achieve a low error ratio — comparable
to well-established learning methods — when new tuples are submitted, which
proves experimentally its validity. We also show that the learned solver yields a
strong pruning along the search space.

2 Preliminaries: building consistencies

We first recall the basic notion of consistency in order to present the approxi-
mation scheme we use for learning. For a set E, we denote by P(E) its powerset
and by |E| its cardinal. Let V be a set of variables and D = (DX)X∈V be their
family of (finite) domains. For W ⊆ V , we denote by DW the set of tuples on
W , namely ΠX∈W DX . Projection of a tuple or a set of tuples on a set of vari-
ables is denoted by |. A constraint c is a couple (W,T) where W ⊆ V are the
variables of c and T ⊆ DW is the set of solutions of c. A Constraint Satisfaction
Problem (or CSP) is a set of constraints. A solution is a tuple which satisfy all
constraints. In this paper, we use the common framework combining search and
domain reduction by a consistency.

A search state is a set of yet possible values for each variable: for W ⊆ V , it is
a family s = (sX)X∈W such that ∀X ∈ W, sX ⊆ DX . The corresponding search
space is SW = ΠX∈WP(DX). Some search states we call singletonic represent
a single tuple and play a special role as representant of possible solutions. A
singletonic search state s is such that |Πs| = 1.

A consistency can be modeled as the greatest fixpoint of a set of so-called
propagators and is computed by a chaotic iteration [2]. For a constraint c =
(W,T), a propagator is an operator f on SW

1 having important properties like
monotony, contractance and correctness.

We can decompose an arc-consistency operator according each value of X’s
domain, for all X ∈ W . We call an Elementary Reduction Function (or ERF)
a Boolean function fX=a checking if a value a in X’s domain has a support. In
order to achieve this check, this function uses as input the domain of the other
variables of the constraint. By combining ERFs for each domain value, we can
reconstitute the arc-consistency operator. These functions are implemented with
many optimizations in the GAC-schema [5].

If we give each domain value an ERF but if we assume that if ERF takes as
input only the bounds of the other variables’ domains, we get a new intermediate
consistency, weaker than arc-consistency.

1 When iterating operators for constraints on different sets of variables, a classical
cylindrification on V is applied.

3 Open Constraints

A classical constraint c = (W,T) is supposed to be known in totality. When
dealing with incomplete information, it may happen that some parts of the
constraint are unknown. We call such a partially defined constraint an Open
Constraint:

Definition 1 (Open Constraint).
An open constraint is a triple c = (W, c+, c−) where c+ ⊆ DW , c− ⊆ DW and

c+ ∩ c− = ∅.
An open constraint needs to be closed to be usable in a constraint solving

environment. The closure of an open constraint c is done by choosing a class (it
belongs or not to the constraint) for all unknown tuples. This can be obtained
by supervised classification: it consists in the induction of a function which as-
sociates to all tuples a class from a set of examples given with their respective
class.

4 Open Constraint Acquisition

We propose to learn a classifier by using a representation which is well adapted
to be turned to an efficient solver. We propose to build an independent classifier
for each value a of the domain of each variable X ∈ W in the spirit of ERFs
introduced in section 2. This classifier computes a Boolean function stating if
the value a should remain in the current domain (output value 1) or if it can
be removed (value 0). We call it an elementary classifier. It takes as input the
value of every other variable in W − {X}.

We propose to use as representation for learning an Artificial Neural Network
(ANN) with an intermediate hidden layer. Other kinds of classifiers can also
be used but we cannot describe them for lack of space. For a constraint c =
(W, c+, c−), the classifier we build for X = a is a tree of neurons with one
hidden layer as depicted in figure 1. Let (ni)i∈I be the intermediary nodes and
out be the output node. All neurons of the hidden layer have as input a value
for each variable in W −{X} and are connected to the output node. Let us call

Fig. 1. Structure of the ANN

n<X=a> the network concerning X = a. Since neurons are continuous by nature,

we use an analog coding of the domains and a threshold decision unit at the last
level of the network, as depicted in figure 1.

The global classifier for the open constraint is composed of all of these ele-
mentary classifiers for all values in the domain of all variables {n<X=a> | X ∈
W,a ∈ DX}. Following the intuition of ERFs for solving, we can use these ele-
mentary classifiers to decide if a tuple belongs to the extension of the constraint
or not by checking if the tuple gets rejected or not by one of the classifiers. Let
t ∈ DW be a candidate tuple and let (n<X=t|X>(t|W−{X}))X∈W be the family
of 0/1 answers of the elementary classifiers for all values. We can interpret the
answers according two points of view:

– vote with veto: the tuple is accepted if and only if it is accepted by all
elementary classifiers.

– majority vote: the tuple is accepted if accepted by a majority of elementary
classifiers.

In order to produce the extension of the open constraint, these classifiers are
trained on examples and counter-examples. For E ⊆ DW , X ∈ W and a ∈
DX , we denote by E<X=a> the selection of tuples of DW having a as value
on X: E<X=a> = {t ∈ E | t|X = a}. Thus, in order to build the classi-
fier n<X=a>, we take the following sets of examples and counter-examples:
e+
<X=a> = c+

<X=a>|W−{X} and e−<X=a> = c−<X=a>|W−{X}.
The networks are trained by the classical backpropagation algorithm [13]

which finds a value for the weights using gradient descent. This framework has
been implemented in a system called Solar and tested on the salad example
presented in introduction and on various Machine Learning databases2 used as
open constraint descriptions. We compare the generalization performance of our
technique to the popular decision tree learning system C5.0 [12] using standard
10-folds cross-validation method. The technique we propose challenges powerful
techniques such as boosting [8], both in generalization performance and scatter-
ing of results as measured by standard deviation and error. Nevertheless, the
vote of elementary classifiers cannot be viewed as a variant of boosting. An
important difference is that we partition the set of examples.

5 From classifiers to solvers

When put in a CSP, a constraint should contribute to the domain reduction. We
propose to use the learned classifiers also for solving. In order to do this, let us
recall some notions on interval analysis [10]. Here are the canonical extensions
to intervals of some operators we use in classifiers:

[a, b] + [c, d] = [a + c, b + d]
[a, b]× [c, d] = [min(P),max(P)]

where P = {ac, ad, bc, bd}
exp([a, b]) = [exp(a), exp(b)]

2 The databases are taken from the UCI Machine Learning repository
(http://www.ics.uci.edu/~mlearn).

If e is an expression using these operators and E the same expression obtained
by replacing each operator by a monotonic extension, then ∀I ∈ IntR,∀x ∈
I, e(x) ∈ E(I). This property of monotonic extensions is called ”The Funda-
mental Theorem of Interval Arithmetic” [10]. It also holds when domains are
replaced by cartesian products of intervals. By taking the canonical extension of
all basic operators in an expression e, we obtain an extension E which is called
the natural extension.

An elementary classifier n<X=a> defines naturally a Boolean function of its
input variables. Let N<X=a> be the natural interval extension of n<X=a>. Then,
by using as input the current domain of the variables, we can obtain a range for
its output. Since we put a 0.5 threshold after the output neuron, we can reject
the value a for X if the maximum of the output range is less than 0.5, which
means that all tuples are rejected in the current domain intervals. Otherwise,
the value remains in the domain.

Proposition 2. N<X=a> is an ERF. Moreover, the ERFs N<X=a>, ∀X ∈ W ,
∀a ∈ DX define a consistency for c.

We call learned consistency the consistency defined by the learned propaga-
tors. Because we use multiple occurences of the same variable and because each
ERF takes as input only the bounds of the other variables’ domains, we get a
new intermediate consistency, weaker than arc-consistency.

The propagators for each variable are independent, thus the generalization
obtained when using the solver is the one obtained with veto vote. This is due
to the independent scheduling of the consistency operators for each variable in
the fixpoint computed by chaotic iteration [2].

The Solar system takes an Open Constraint as input and outputs a set of
consistency operators which can be adapted to any solver. In our experiments,
we used a custom made solver. We made a number of experiments in order
to evaluate the learned consistency. These experiments show that the learned
consistency is weaker than more classical consistencies but still reduces notably
the search space.

6 Related work and Conclusion

Open constraints were introduced in [7] in the context of distributed reasoning
but with the goal of minimizing the number of requests needed to complete
the definition. Solver learning has been introduced in [3] with a special rule
system. This work has been extended by [1] and [9] but still in the context of
closed constraints. None of these method can combine generalization and solver
efficiency. The idea of learning constraints has been used in [11] in the context of
soft constraints. While the learning is effective, the problem of building a solver
for the constraint is not tackled in this work. In [6] and [4], a CSP composed
of predefined constraints like = or ≤ is learned. The constraints are discovered
by a version-space algorithm which reduce the possible constraints during the
learning process.

Summary Open Constraints allow the use of constraints partially defined by
examples and counter-examples in decision and optimization problems. In this
work, we propose a new technique for learning open constraints by using special
classifiers. Not only the generalization we obtain has remarkable properties from
a Machine Learning point of view, but it can also be turned into a very efficient
solver which gives an active behavior to the learned constraint.

References

1. Slim Abdennadher and Christophe Rigotti. Automatic generation of rule-based
constraint solvers over finite domains. Transaction on Computational Logic, 5(2),
2004.

2. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179–210, 1999.

3. K.R. Apt and E. Monfroy. Automatic generation of constraint propagation algo-
rithms for small finite domains. In Joxan Jaffar, editor, International Conference
on Principles and Practice of Constraint Programming, volume 1713 of LNCS,
pages 58–72, Alexandria, Virginia, USA, 1999. Springer.

4. Christian Bessière, Rémi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Lever-
aging the learning power of examples in automated constraint acquisition. In Mark
Wallace, editor, Principles and Practice of Constraint Programming, volume 3258
of LNCS, pages 123–137, Toronto, Canada, 2004. Springer.

5. Christian Bessière and Jean-Charles Régin. Arc-consistency for general constraint
networks: preliminary results. In IJCAI’97, pages 398–404, Nagoya, 1997. Morgan
Kaufmann.

6. R. Coletta, C. Bessière, B. O’Sullivan, E. C. Freuder, S. O’Connell, and J. Quinque-
ton. Semi-automatic modeling by constraint acquisition. In Francesca Rossi, editor,
International Conference on Principles and Practice of Constraint Programming,
number 2833 in LNCS, pages 812–816, Kinsale, Ireland, 2003. Springer.

7. Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In Pascal
van Hentenryck, editor, International Conference on Principles and Practice of
Constraint Programming, volume 2470 of LNCS, pages 356–370, Ithaca, NY, USA,
Sept. 7 - 13 2002. Springer.

8. Y. Freund and R. Shapire. A short introduction to boosting. Journal of Japanese
Society for Artificial Intelligence, 14(5):771–780, 1999.

9. Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrëı Legtchenko, and AbdelAli Ed-Dbali.
Finite domain constraint solver learning. In Georg Gottlob, editor, International
Joint Conference on Artificial Intelligence, pages 1379–1380, Acapulco, Mexico,
2003. AAAI Press. Poster.

10. Ramon E. Moore. Interval Analysis. Prentice Hall, 1966.
11. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in

interactive constraint system. Constraints, 9(4), 2004.
12. RuleQuest Research. See5: An informal tutorial, 2004.

http://www.rulequest.com/see5-win.html.
13. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations

by error propagation. Parallel Distributed Processins, vol 1:318–362, 1986.

