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1 Introduction

Many practical applications require solving an optimization problem for multiple agents
where each agent has its own preferences in the problem solution. Examples include
resource allocation, scheduling, planning, configuration, voting and many others. Two
major challenges when solving such problems are the complexity of finding optimal
solution and the incentive compatibility for participating agents.

First, these problems are often NP-hard or NP-complete and thus cannot be solved
exactly for large problem sizes in real-world settings. Local search algorithms are usu-
ally used instead of complete search algorithms in such situations: starting from an ini-
tial assignment, the local search procedures make a sequence of local changes, called
moves, to improve the current solution. Many randomization techniques have been stud-
ied to keep such procedures from getting stuck in local minima including simulated
annealing ([12]) and a variety of stochastic local search algorithms ([16, 18, 11]). In
these techniques, the information from current solution is not much taken into account
to guide the search except Walksat algorithms its variants ([16, 13]: it performs random
walks on a variable randomly chosen from unsatisfied clauses, thus guides the search
more directed towards improving some aspect of the solution.

Second, agents in real-world settings usually have conflicting preferences and they
are self-interested, i.e., they want to maximize their own benefit in participating in the
algorithm. The agents are also bounded rational, i.e, they have limited knowledge and
limited computation capacity. The strategic behavior should be taken into account in
designing algorithms for such agents as it might severally damage the efficiency of the
system and prevent it to accomplish the purposes that it was designed for.

This paper discusses a general randomization technique, called random subset op-
timization, for escaping from local minima in local search algorithms. In each local
choice step, the local search procedure will randomly choose a part of the optimization
function, and optimize for this part only. It turns out that this results in a more focussed
optimization strategy and shown to be especially effective in some hard optimization
problems.

We show that the uncertainty of our randomization algorithms can make the agents’
manipulation hard, thus prevent bounded rational agents from manipulating such algo-
rithms. We propose a new hard-to-manipulate local search algorithm using our random-
ization scheme ([6]).



2 Random subset optimization

The performance of local search algorithms strongly depends on the choice of the lo-
cal move in a local choice step. The simplest way to implement this function is hill-
climbing: choose the neighbour that most improves the objective function. However,
this strategy often gets stuck in local optima, where the objective function can only be
improved by making changes beyond the neighbours of the current state. In this case,
random moves can help the search to get out of the minimum.

The first process as such was simulated-annealing ([12]), where with some proba-
bility LocalChoice accepts a move that degrades the objective function. These moves
let the search escape from local optima and give it the possibility to restart hill-climbing
from a hopefully better starting point. This strategy of random walks has become a stan-
dard strategy for SAT algorithms, in particular Walksat and its variants ([16, 13]). Other
algorithms, such as stochastic local search ([4]), randomly allow moves to neighbouring
states that only give some, but not the maximal improvement in the objective function.

Purely random moves such as in the simulated-annealing algorithm have the disad-
vantage that they are not guided towards actually breaking out of a local optimum; this
explains the slow convergence of the algorithm. An exception are the algorithms for
SAT problems, where only moves that satisfy at least one currently unsatisfied clause
are considered. This means that in fact the move is optimal with respect to a part of
the objective function. The underlying realization is that if the current state is not the
globally optimal assignment, then some component of the objective function must have
a better value elsewhere. Escaping from the local optimum requires refocussing the
search on that part of the objective function.

We can generalize this idea to general constraint optimization by having each local
choice step randomly choose a subset of the objective function with a probability p
and only optimize this part. In this way, we avoid moves that only degrade the solution
and rapidly lead back to the original minimum, and focus the search on moves that
actually have a chance to break out of the local optimum. We call this random subset
optimization (RSO).

The behavior of the algorithm is controlled by two parameters:

– d is the number of constraints being left out of the optimization in the current
iteration.

– p is the probability of optimizing over a subset only.

In our experiments, it appears that the best performance is reached when d is small and
p is close to 1.

In another variant, called adaptive random subset optimization (ARSO), we let the
parameter d start with a high value and decrease over time, similarly to the cooling
schedule used in simulated annealing. At each value of d, the algorithm performs a
linear number of local choice steps w.r.t the number of variables. In our implementa-
tion, d is reduced by 1 after each iteration. When d decreases below 0, the algorithm
terminates.

Completeness
It is clear that our method is not always probably approximately complete (PAC)

(introduced in [10]), as there are problems where the optimal assignment v∗ is not



reachable by the algorithm at all. This is the case when the optimal assignment is a
compromise among all relations, i.e. there is no subset of the relations for which v∗ is
also optimal.

However, our method can be shown to be PAC by a constructive proof for decom-
posable problems such as max-SAT and graph coloring problems.

3 Achieving bounded-rational incentive compatibility

The local search procedure can only work correctly if agents accurately report their
relations to the algorithm. Using side payments, we can create an incentive-compatible
protocol where agents are motivated to truthfully report these relations. Well-known
results in game theory ([8]) have shown that all protocols that are incentive-compatible,
individually rational and select the optimal solution must be a kind of VCG mechanism
([17, 2, 9]). Furthermore, Nisan and Ronen [14] have shown that a VCG mechanism
requires a provably optimal solution. Thus, there is no mechanism that makes local
search incentive-compatible while maintaining individual rationality.

We thus introduce a weaker notion of incentive compatibility, called bounded-rational
incentive-compatibility that uses computational complexity to rule out manipulation.
A mechanism is bounded rational incentive compatible if by varying a parameter, the
probability that a bounded rational agent can manipulate the protocol can be made ar-
bitrarily close to 0.

We adopt a similar randomization scheme as in the section the section 2 where we
randomly select a set of relations to be left out of the optimization at a local choice step.
It turns out that a good way to select these relations is to take all the relations belonging
to a randomly selected agent. We shown in [6] that with high probability, the number
of states that a manipulator need to be considered for a successful manipulation of the
algorithm will grow exponentially with the size of the problem. Thus, for a sufficiently
large problem size it will exceed the computational capacity of a bounded rational agent.

This scheme of randomization also allows us to simultaneously guarantee budget-
balance of the VCG tax mechanism by simply paying the payment surplus/deficit to
the agent that was excluded from the optimization step. This mechanism is similar to
the proposal in [3], who proposed giving the surplus to agents that have no interest in
the variable being considered. We call such agents uninterested agents. The mechanism
proposed here applies even when no uninterested agent exists. When there are uninter-
ested agents, optimization can be improved by selecting these to be chosen as excluded
agents. More details on the mechanism can be found in [5].

The algorithm is individually rational in expectation as shown in [6] because no
agent is systematically disadvantaged by the randomization.

4 Experimental results

We have evaluated the performance of our algorithms both on decomposable and non-
decomposable problems. As decomposable problems, we chose network resource allo-
cation (as in [6]). As a non-decomposable problem, we chose the graph coloring with



minimized colors on random graphs and some benchmarks from the DIMACS chal-
lenge ([1]).

We compare our algorithms (RSO and ARSO) with several known local search
techniques: HC-hillclimbing without randomization, RHC-hillclimbing with random
restarts (similar to GSAT [15]); SA-simulated annealing ([12]; SLS-stochastic local
search [7, 18]. The averaged results are taken over 100 runs.

Figure 1 shows the results for random network resource allocation problems. It can
be seen that our results are very promising: RSO, ARSO and SA all eventually reach
the same solution quality and slightly outperform the other algorithms. However, RSO
converges much faster than all other algorithms, and seems to be a clear winner for this
application.

Figure 2 and 3 shows the results for min-coloring problems on random graph with
50 vertices. We start with 10 colors (xc = 10) and set the initial assignment such that
all the vertices have different colors. Interestingly, our algorithms, especially ARSO,
outperform all other algorithms not only in speed of convergence, but also in the final
solution quality achieved. Still, our results are obtained with no tuning of parameters.
This is important to us, given that we cannot guarantee any completeness result on such
a non-decomposable problem.
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Fig. 1. Average utility gain of different local search algorithms as a function of the number of
steps.

5 Conclusion

Local search algorithms are often the only possibility to solve large optimization prob-
lems. We have introduced a general randomization technique for improving local search
algorithms. We presented a set of preliminary experiments on small problems that show
that random subset optimization seems to be an excellent local search algorithm. We are
currently conducting experiments on benchmark problems from the DIMACS bench-
mark instances to prove its performance on large and difficult optimization problems.
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Fig. 2. Average number of colors used of different local search algorithms as a function of the
number of steps.
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Fig. 3. Average utility gain of different local search algorithms as a function of the number of
steps.



Our randomization method can be also made to be bounded-rational incentive com-
patible for bounded-rational agents in multi-agent constraint optimization problems by
using randomization to make the manipulation hard.

The success of our approach is based on exploiting the information in the current
sub-optimal solution to guide the search more focussed in the right directions. The
price to pay is that such a technique is not guaranteed to be probably approximately
complete on all problems. It would be interesting to explore further and in more details
the method on hard optimization problems.
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