
Robust constraint solving using multiple heuristics*

Student: Alfio Vidotto1

Supervisors: Kenneth N. Brown1, J. Christopher Beck2

1 Cork Constraint Computation Centre,
Dept of Computer Science, UCC, Cork, Ireland

av1@student.cs.ucc.ie, k.brown@cs.ucc.ie
2 Toronto Intelligent Decision Engineering Laboratory,

Dept of Mechanical and Industrial Engineering, University of Toronto, Canada
jcb@mie.utoronto.ca

1 Introduction

Representing and solving problems in terms of constraints can be difficult to do ef-
fectively. A single problem can be modeled in many different ways, either in terms of
representation or in terms of the solving process. Different approaches can outperform
each other over different problem classes or even for different instances within the
same class. It is possible that even the best combination of model and search on aver-
age is still too slow across a range of problems, taking orders of magnitude more time
on some problems than combinations that are usually poorer. This fact complicates
the use of constraints, and makes it very difficult for novice users to produce effective
solutions. The modeling and solving process would be easier if we could develop ro-
bust algorithms, which perform acceptably across a range of problems.

In this paper we present one method of developing a robust algorithm. We combine
a single model and a single basic algorithm with a set of variable and value ordering
heuristics, in a style similar to iterative deepening from standard AI search. The aim is
to exploit the variance among the orderings to get a more robust procedure, which
may be slower on some problems, but avoids the significant deterioration on others.
During the search, we allocate steadily increasing time slices to each ordering, restart-
ing the search at each point. We demonstrate its performance on two problem classes,
showing that it is robust across problem instances and competitive with standard or-
derings used for those problems.

2 Background

The standard process for generating solutions to a CSP is based on backtracking
search. The order in which variables and values are tried has to be specified as part of
the search algorithm, and has a significant effect on the size of the search tree. The
standard ordering heuristic is based on the “fail-first” principle, stating that we should

* funded by Enterprise Ireland (SC/2003/81), with assistance from Science Foundation Ireland

(00/PI.1/C075) and ILOG, SA.

choose the variable with the tightest constraints. This is normally implemented by
choosing the variable with the minimum domain, or the smallest ratio of domain size
to degree. Strategies aiming to “succeed first” have also been investigated, e.g. in [1]
where different variable heuristics showed different search efforts, depending on their
level of “promise”. For an instance of a CSP, a single run with a single ordering heu-
ristic can get trapped in the wrong area of the tree, even if the heuristic is the best on
average. For this reason, the randomized restart strategy has been proposed - for a
single heuristic, if no result has been found up to a given time limit, the search is
started again. Tie breaking and, typically, value ordering are done randomly, and so
each restart explores a different path. This approach is known to work well on certain
problems, including quasi-group with holes [2]. Algorithm portfolios [3] is another
randomized restart search method, which interleaves a set of randomized algorithms.

3 Multi-heuristic and time-slicing

As discussed above, for many problem classes no single ordering heuristic per-
forms well across all problem instances. In some initial experiments on a scheduling
problem, we had noticed that some instances caused a 1000-fold increase in running
time. Further, the hard instances appeared to be different for each ordering. Therefore,
we have developed an approach which tries each ordering in turn for a limited time,
restarting the search after each one, and gradually increasing the time limit if no result
was found. This is similar to the way iterative deepening explores each branch to a
certain depth, and then increases the depth limit, and is similar to randomized restarts,
except we use different ordering heuristics. The pseudo code for the multi-heuristic
(MH) algorithm is:

while Solve(heuristic(i),limit) == false

 limit = Increase(i,limit)

 if i == n then i = 1

 else i = i + 1

Solve(.,.) takes heuristic i (composed of a variable and a value ordering), and ap-
plies standard search up to a time limit. If it finds a solution, or proves there is no so-
lution, it returns true; otherwise it hits the time limit and returns false.

Increase(.,.) is the time limit function. We have considered two versions: (linear)
Increase(i,limit)=limit+� and (magnitude) Increase(i,limit)=limit*10 if i=n; limit oth-
erwise.

Note that MH is complete: the CSP backtracking search space is finite, each order-
ing heuristic is systematic, and limit increases indefinitely, so eventually one of the
heuristics will be given enough time to complete the search. Further, if any one of the
heuristics is deterministic, then MH has a guaranteed upper bound on the ratio of the
time it takes compared to that heuristic.

4 Experiments and results

We want to test the performance of the time-sliced multi-heuristic approach. Spe-
cifically, (i) is it more robust than the standard default ordering heuristic, i.e. does it

report a result within acceptable time limits in more cases across a range of problems?
(ii) does it avoid a significant increase in run time, i.e. is the overhead of restarting the
search, and repeating some search paths, significant? (iii) how does it compare to the
randomized restart method, i.e. is its performance due to the restart mechanism, or to
the multiple heuristics? To answer these questions, we have tested the approach on
two problem classes: scheduling tasks with fixed start and end points, and quasi-
groups with holes. All implementations are coded in C++ using Ilog Solver 6.0, and
run on a Pentium 2.6 GHz processor under Linux. For (i) and (ii), we compare MH
against the min domain (msd) variable ordering heuristic (lexicographic tie breaking).
For (iii) we use the same msd but with random tie breaks, and random value ordering.

Scheduling - We considered one class of scheduling problems, where tasks have
fixed start and end times, but can be allocated to a number of different resources. We
assume that resources come in categories, and that categories are ranked. Each task
has a rank, and must be allocated to a resource of that rank or higher. Each resource
can process one task at a time, and each task must be processed without interruption
on a single resource. Given a set of resources and tasks, the problem is to determine
whether or not the tasks can be scheduled. This problem is known to be NP-complete
[4]. In our model, we represent the tasks as variables, and the resources as the values
to be assigned, and the constraints ensure tasks do not overlap. We consider one set of
test problems, <100, 10, N>, with 100 resources in 10 classes. We varied the number
of tasks, N, from 130 to 200 (in single steps), and for each one we generated 500 ran-
dom problems, choosing start times in [0..40], durations in [17..25] and ranks in
[1..10], all uniformly at random. For each instance, we impose a maximum time of 41
seconds, which allows time slices of 0.01, 0.1, 1 sec for 33 possible heuristics, includ-
ing the overhead on initializing the problem.

Fig. 1. Scheduling: tasks with ranks, fixed start and end times (left); a possible solution (right).

We combined a list of variable orderings (H1...H11), and a list of value orderings
(W1…W3), getting an algorithm we call MH(11x3). H1 and H2 are versions of msd,
breaking ties randomly (H1), and lexicographically (H2). H3 to H10 are created from
sorting the tasks by start time s and min resource class m, in all combinations (i.e. H3
increasing s breaking ties by increasing m, .., H10 decreasing m breaking ties by de-
creasing s). H11 involves a measure of contention among tasks. It sorts by counting,
for each task, the number of other tasks which it overlaps in time (e.g. in Fig. 1, T3 is
the most overlapping task and would be the first choice). The value heuristic W1(W2)
orders the resources by increasing (decreasing) class, while W3 is a random order.

Quasi-group with holes (QWH) - A quasi-group of order N is a Latin Square (LS) of
N by N cells. The solution of a LS requires an allocation to each cell of a number
from 1 to N, so that all the numbers appearing on each row are different and all the
numbers appearing on each column are also different. A QWH is a solved LS from

Task Rank Start End
T1 3 0 2
T2 2 0 2
T3 3 1 3
T4 1 2 4

Res.[rank] 1 2 3
R1[1] T4
R2[3] T2
R3[3] T1
R4[4] T3

 0

 1

 2

 3

 4

 5

 130 140 150 160 170 180 190 200
 0

 20

 40

 60

 80

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

size [N]

mean r-time - SCHEDULING { M100K10, N130..200, s0..40, d17..25 } - tmax 41s - limit[0] = 0.01s

msd
MH(11x3) linear

MH(11x3) magnitude

which some allocations are deleted. The problem is to find an allocation which com-
pletes the LS. We represent the cells as variables, and the numbers as the values to be
assigned. We use the Ilog global constraint IloAllDiff on each row and column.

Fig. 2. Quasi group with holes: an instance, remaining domains, and a solution.

We utilized a list of variable orderings (H1...H10), and a list of value orderings
(W1…W3), (MH(10x3)). H1 and H2 are versions of msd, breaking ties randomly
(H1), and lexicographically (H2). H3 to H10 are created by sorting the cells by col-
umn c and row r, in all combinations (i.e. H3 is increasing c breaking ties by increas-
ing r, .., H10 is decreasing r breaking by decreasing c). The value heuristic W1(W2)
simply chooses smallest (biggest) number first, while W3 uses a measure of conflict
among numbers. If variable X is chosen, W3 looks the number frequency in the do-
mains of the unassigned variables in the same row and column as X. Knowing that all
numbers must appear once in the column and once in the row, W3 chooses the one
that appears least in domains of the unassigned variables in the row and column (e.g.
assuming X = bottom right cell in Fig.2, then W3 would select number 2).

Comparing to min domain on scheduling – In Fig.3 we show the number of times
msd and MH(11x3) hit the time limit, and the mean run time. MH consistently outper-
forms and improves msd. It is more robust – it hits the time limit on fewer occasions.
It also has a lower mean run time across the range. Note that the line on the graph
from top left to bottom right shows solubility, and relates to the right hand axis – e.g.
almost 50% of size 150 problems have a solution. The hardness peak is where most
problems have no solution.

Fig. 3. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;

1 3 2 4
3 2 4 1
2 4 1 3
4 1 3 2

1 2
 2

1 3,4 2 3,4
3,4 2 1,3,4 1,3,4

2,3,4 1,3,4 1,3,4 1,2,3,4
2,3,4 1,3,4 1,3,4 1,2,3,4

failure frequency [%]
Size
[N]

msd
MH

magnitude
130 10 4
140 22 12
150 62 16
160 58 32
170 82 40
180 28 22
190 2 0
200 0 0

 0

 50

 100

 150

 200

 250

 140 160 180 200 220 240 260 280 300

tim
e

[s
ec

]

size [H]

mean r-time - QWH { N20, H140..300 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

msd
MH(10x3) linear

MH(10x3) magnitude

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 140 160 180 200 220 240 260

tim
e

[s
ec

]

size [H]

mean r-time - QWH { N20, H140..260 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

MH(10x3) linear
MH(10x3) magnitude

RR(msd) linear
RR(msd) magnitude

Comparing to min domain on balanced QWH – In Fig. 4, we again show robust-
ness and run time, this time for balanced QWH(20). MH(10x3) again consistently
outperforms msd both in terms of robustness and time. All problems have solutions.

Fig. 4. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;

Comparing to randomized-restarts (RR) - RR is regarded to be the best method for
QWH. We have compared MH with RR on both QWH and scheduling. RR is gener-
ally used with time limits that increase each restart, so we have implemented MH with
the same time policy, and RR with an order of magnitude time increased every N re-
starts, for comparison.

QWH (Fig. 5) – RR is better than MH almost everywhere, regardless of which
time slicing mechanism we use. Both MH and RR performed slightly better with time
slices increased by a magnitude every loop of restarts, for which we report the statistic
on the frequency of failure.

Fig. 5. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;

Scheduling (Fig. 6) - MH clearly reduces the peak of difficulty, which is located in
the region where approximately 90% of instances have no solution. The gap is present
for both slicing versions, with the magnitude mechanism better on average.

failure frequency [%]
Size
[H]

msd
MH

magnitude
150 0 0
170 70 20
190 100 50
210 60 20
230 70 0
250 60 0
270 30 0
290 20 0

failure frequency [%]
Size
[H]

RR
magnitude

MH
magnitude

150 0 0
160 0 0
170 30 20
180 40 50
190 20 50
200 10 30
210 0 20
220 10 0

 0

 1

 2

 3

 4

 130 140 150 160 170 180 190 200
 0

 25

 50

 75

 100

tim
e

[s
ec

]

%
 s

ol
ut

io
n

size [N]

mean r-time - SCHEDULING { M100K10, N130..200, s0..40, d17..25 } - tmax 41s - limit[0] = 0.01s

RR linear
RR magnitude

MH(11x3) linear
MH(11x3) magnitude

Fig. 6. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;

5 Conclusions and future work

We have developed a multi-heuristic approach for constraint solving, designed to
improve search robustness. We have tested it on two problem classes, and shown that
it is more robust than the standard recommended heuristic, without decreasing run
time – in fact, on average it improves the run time. We have also compared to ran-
domized restarts, the leading method for one of our problem classes (QWH) and
which uses a similar restart policy. We have shown that the multi heuristic approach
is poorer in run time and robustness on QWH, but better on our scheduling problem
class. Note that the different heuristics we use and the different time limits have not
been tuned – they were generated by inspection of the problem characteristics, and
better performance should be achievable. For the immediate future, we intend to in-
vestigate whether MH does perform better on insoluble problems (as indicated by the
scheduling results).

We can conclude that the multi heuristic method offers a robust and competitive
approach to constraint solving, and merits further investigation, since it offers one
possible solution to the goal of making CP easier to use.

References

1 Beck, J. C; Prosser, P; and Wallace, R. J. Variable Ordering Heuristics Show
Promise, Proceedings of the Tenth International Conference on Principles
and Practice of Constraint Programming (CP'04), 2004.

2 Gomes, C. P.; and Shmoys, D. B. 2004. Approximations and Randomization
to Boost CSP Techniques. In Annals of Operation Research, 130:117-141.

3 Gomes, C. P.; and Selman, B. 2001. Algorithm portfolios. In Artificial Intel-
ligence 126(1-2):43-62.

4 Arkin, E. M.; and Silverberg, E. B. 1987. Scheduling jobs with fixed start
and end times. In Discrete Applied Mathematics, 18:1-8.

failure frequency [%]
Size
[N]

RR
magnitude

MH
magnitude

130 2 4
140 14 12
150 18 16
160 42 32
170 62 40
180 32 22
190 0 0
200 0 0

