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1   Introduction 

Representing and solving problems in terms of constraints can be difficult to do ef-
fectively. A single problem can be modeled in many different ways, either in terms of 
representation or in terms of the solving process. Different approaches can outperform 
each other over different problem classes or even for different instances within the 
same class. It is possible that even the best combination of model and search on aver-
age is still too slow across a range of problems, taking orders of magnitude more time 
on some problems than combinations that are usually poorer. This fact complicates 
the use of constraints, and makes it very difficult for novice users to produce effective 
solutions. The modeling and solving process would be easier if we could develop ro-
bust algorithms, which perform acceptably across a range of problems. 

In this paper we present one method of developing a robust algorithm. We combine 
a single model and a single basic algorithm with a set of variable and value ordering 
heuristics, in a style similar to iterative deepening from standard AI search. The aim is 
to exploit the variance among the orderings to get a more robust procedure, which 
may be slower on some problems, but avoids the significant deterioration on others. 
During the search, we allocate steadily increasing time slices to each ordering, restart-
ing the search at each point. We demonstrate its performance on two problem classes, 
showing that it is robust across problem instances and competitive with standard or-
derings used for those problems. 

2   Background 

The standard process for generating solutions to a CSP is based on backtracking 
search. The order in which variables and values are tried has to be specified as part of 
the search algorithm, and has a significant effect on the size of the search tree. The 
standard ordering heuristic is based on the “fail-first” principle, stating that we should 
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choose the variable with the tightest constraints. This is normally implemented by 
choosing the variable with the minimum domain, or the smallest ratio of domain size 
to degree. Strategies aiming to “succeed first” have also been investigated, e.g. in [1] 
where different variable heuristics showed different search efforts, depending on their 
level of “promise”. For an instance of a CSP, a single run with a single ordering heu-
ristic can get trapped in the wrong area of the tree, even if the heuristic is the best on 
average. For this reason, the randomized restart strategy has been proposed - for a 
single heuristic, if no result has been found up to a given time limit, the search is 
started again. Tie breaking and, typically, value ordering are done randomly, and so 
each restart explores a different path. This approach is known to work well on certain 
problems, including quasi-group with holes [2]. Algorithm portfolios [3] is another 
randomized restart search method, which interleaves a set of randomized algorithms.  

3   Multi-heuristic and time-slicing 

As discussed above, for many problem classes no single ordering heuristic per-
forms well across all problem instances. In some initial experiments on a scheduling 
problem, we had noticed that some instances caused a 1000-fold increase in running 
time. Further, the hard instances appeared to be different for each ordering. Therefore, 
we have developed an approach which tries each ordering in turn for a limited time, 
restarting the search after each one, and gradually increasing the time limit if no result 
was found. This is similar to the way iterative deepening explores each branch to a 
certain depth, and then increases the depth limit, and is similar to randomized restarts, 
except we use different ordering heuristics. The pseudo code for the multi-heuristic 
(MH) algorithm is:  

while Solve(heuristic(i),limit) == false 

   limit = Increase(i,limit) 

   if  i == n then i = 1 

            else    i =  i + 1 
 

Solve(.,.) takes heuristic i (composed of a variable and a value ordering), and ap-
plies standard search up to a time limit. If it finds a solution, or proves there is no so-
lution, it returns true; otherwise it hits the time limit and returns false.  

Increase(.,.) is the time limit function. We have considered two versions: (linear) 
Increase(i,limit)=limit+� and (magnitude) Increase(i,limit)=limit*10 if i=n; limit oth-
erwise.  
 

Note that MH is complete: the CSP backtracking search space is finite, each order-
ing heuristic is systematic, and limit increases indefinitely, so eventually one of the 
heuristics will be given enough time to complete the search. Further, if any one of the 
heuristics is deterministic, then MH has a guaranteed upper bound on the ratio of the 
time it takes compared to that heuristic. 

4   Experiments and results 

We want to test the performance of the time-sliced multi-heuristic approach. Spe-
cifically, (i) is it more robust than the standard default ordering heuristic, i.e. does it 



report a result within acceptable time limits in more cases across a range of problems? 
(ii) does it avoid a significant increase in run time, i.e. is the overhead of restarting the 
search, and repeating some search paths, significant? (iii) how does it compare to the 
randomized restart method, i.e. is its performance due to the restart mechanism, or to 
the multiple heuristics? To answer these questions, we have tested the approach on 
two problem classes: scheduling tasks with fixed start and end points, and quasi-
groups with holes. All implementations are coded in C++ using Ilog Solver 6.0, and 
run on a Pentium 2.6 GHz processor under Linux. For (i) and (ii), we compare MH 
against the min domain (msd) variable ordering heuristic (lexicographic tie breaking). 
For (iii) we use the same msd but with random tie breaks, and random value ordering.  

 
Scheduling - We considered one class of scheduling problems, where tasks have 
fixed start and end times, but can be allocated to a number of different resources. We 
assume that resources come in categories, and that categories are ranked. Each task 
has a rank, and must be allocated to a resource of that rank or higher. Each resource 
can process one task at a time, and each task must be processed without interruption 
on a single resource. Given a set of resources and tasks, the problem is to determine 
whether or not the tasks can be scheduled. This problem is known to be NP-complete 
[4]. In our model, we represent the tasks as variables, and the resources as the values 
to be assigned, and the constraints ensure tasks do not overlap. We consider one set of 
test problems, <100, 10, N>, with 100 resources in 10 classes. We varied the number 
of tasks, N, from 130 to 200 (in single steps), and for each one we generated 500 ran-
dom problems, choosing start times in [0..40], durations in [17..25] and ranks in 
[1..10], all uniformly at random. For each instance, we impose a maximum time of 41 
seconds, which allows time slices of 0.01, 0.1, 1 sec for 33 possible heuristics, includ-
ing the overhead on initializing the problem.  

 

 

Fig. 1. Scheduling: tasks with ranks, fixed start and end times (left); a possible solution (right). 

We combined a list of variable orderings (H1...H11), and a list of value orderings 
(W1…W3), getting an algorithm we call MH(11x3). H1 and H2 are versions of msd, 
breaking ties randomly (H1), and lexicographically (H2). H3 to H10 are created from 
sorting the tasks by start time s and min resource class m, in all combinations (i.e. H3 
increasing s breaking ties by increasing m, .., H10 decreasing m breaking ties by de-
creasing s). H11 involves a measure of contention among tasks. It sorts by counting, 
for each task, the number of other tasks which it overlaps in time (e.g. in Fig. 1, T3 is 
the most overlapping task and would be the first choice). The value heuristic W1(W2) 
orders the resources by increasing (decreasing) class, while W3 is a random order.  
 
Quasi-group with holes (QWH) - A quasi-group of order N is a Latin Square (LS) of 
N by N cells. The solution of a LS requires an allocation to each cell of a number 
from 1 to N, so that all the numbers appearing on each row are different and all the 
numbers appearing on each column are also different. A QWH is a solved LS from 

Task Rank Start End 
T1 3 0 2 
T2 2 0 2 
T3 3 1 3 
T4 1 2 4 

Res.[rank]              1              2                3  
R1[1]   T4 
R2[3] T2   
R3[3] T1   
R4[4]  T3  
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which some allocations are deleted. The problem is to find an allocation which com-
pletes the LS. We represent the cells as variables, and the numbers as the values to be 
assigned. We use the Ilog global constraint IloAllDiff on each row and column.  

 
 
 

Fig. 2. Quasi group with holes: an instance, remaining domains, and a solution. 

We utilized a list of variable orderings (H1...H10), and a list of value orderings 
(W1…W3), (MH(10x3)). H1 and H2 are versions of msd, breaking ties randomly 
(H1), and lexicographically (H2). H3 to H10 are created by sorting the cells by col-
umn c and row r, in all combinations (i.e. H3 is increasing c breaking ties by increas-
ing r, .., H10 is decreasing r breaking by decreasing c). The value heuristic W1(W2) 
simply chooses smallest (biggest) number first, while W3 uses a measure of conflict 
among numbers. If variable X is chosen, W3 looks the number frequency in the do-
mains of the unassigned variables in the same row and column as X. Knowing that all 
numbers must appear once in the column and once in the row, W3 chooses the one 
that appears least in domains of the unassigned variables in the row and column (e.g. 
assuming X = bottom right cell in Fig.2, then W3 would select number 2).  

 
Comparing to min domain on scheduling – In Fig.3 we show the number of times 
msd and MH(11x3) hit the time limit, and the mean run time. MH consistently outper-
forms and improves msd. It is more robust – it hits the time limit on fewer occasions. 
It also has a lower mean run time across the range. Note that the line on the graph 
from top left to bottom right shows solubility, and relates to the right hand axis – e.g. 
almost 50% of size 150 problems have a solution. The hardness peak is where most 
problems have no solution. 

 
 

 
 

Fig. 3. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;  

 

1 3 2 4 
3  2 4 1 
2 4 1 3 
4 1 3 2 

1  2  
 2   
    
    

1 3,4 2 3,4 
3,4 2 1,3,4 1,3,4 

2,3,4 1,3,4 1,3,4 1,2,3,4 
2,3,4 1,3,4 1,3,4 1,2,3,4 

failure frequency [%] 
Size 
[N] 

msd 
MH 

magnitude 
130 10 4 
140 22 12 
150 62 16 
160 58 32 
170 82 40 
180 28 22 
190 2 0 
200 0 0 
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Comparing to min domain on balanced QWH – In Fig. 4, we again show robust-
ness and run time, this time for balanced QWH(20). MH(10x3) again consistently 
outperforms msd both in terms of robustness and time. All problems have solutions.  

 
 

 

 

 

 

 

 

Fig. 4. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;  

Comparing to randomized-restarts (RR) - RR is regarded to be the best method for 
QWH. We have compared MH with RR on both QWH and scheduling. RR is gener-
ally used with time limits that increase each restart, so we have implemented MH with 
the same time policy, and RR with an order of magnitude time increased every N re-
starts, for comparison. 

QWH (Fig. 5) – RR is better than MH almost everywhere, regardless of which 
time slicing mechanism we use. Both MH and RR performed slightly better with time 
slices increased by a magnitude every loop of restarts, for which we report the statistic 
on the frequency of failure. 

 
 

 

 

 

 

 

 

Fig. 5. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;  

Scheduling (Fig. 6) - MH clearly reduces the peak of difficulty, which is located in 
the region where approximately 90% of instances have no solution. The gap is present 
for both slicing versions, with the magnitude mechanism better on average.  

 

failure frequency [%] 
Size 
[H] 

msd 
MH 

magnitude 
150 0 0 
170 70 20 
190 100 50 
210 60 20 
230 70 0 
250 60 0 
270 30 0 
290 20 0 

failure frequency [%] 
Size 
[H] 

RR 
magnitude 

MH 
magnitude 

150 0 0 
160 0 0 
170 30 20 
180 40 50 
190 20 50 
200 10 30 
210 0 20 
220 10 0 
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Fig. 6. MH vs. SH: left, frequency [%] of failure to solve within t-max; right, mean r-time;  

5   Conclusions and future work 

We have developed a multi-heuristic approach for constraint solving, designed to 
improve search robustness. We have tested it on two problem classes, and shown that 
it is more robust than the standard recommended heuristic, without decreasing run 
time – in fact, on average it improves the run time. We have also compared to ran-
domized restarts, the leading method for one of our problem classes (QWH) and 
which uses a similar restart policy. We have shown that the multi heuristic approach 
is poorer in run time and robustness on QWH, but better on our scheduling problem 
class. Note that the different heuristics we use and the different time limits have not 
been tuned – they were generated by inspection of the problem characteristics, and 
better performance should be achievable. For the immediate future, we intend to in-
vestigate whether MH does perform better on insoluble problems (as indicated by the 
scheduling results).  

We can conclude that the multi heuristic method offers a robust and competitive 
approach to constraint solving, and merits further investigation, since it offers one 
possible solution to the goal of making CP easier to use. 
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