Robust constraint solving using multiple heuristics

Student: Alfio Vidottd
Supervisors: Kenneth N. Brownl. Christopher Beék

1Cork Constraint Computation Centre,
Dept of Computer Science, UCC, Cork, Ireland
avl@student.cs.ucc.ie, k.brown@cs.ucc.ie

%2Toronto Intelligent Decision Engineering Laboratory
Dept of Mechanical and Industrial Engineering, W@msity of Toronto, Canada
jcb@mie.utoronto.ca

1 Introduction

Representing and solving problems in terms of caimgs can be difficult to do ef-
fectively. A single problem can be modeled in mdifferent ways, either in terms of
representation or in terms of the solving procBsiferent approaches can outperform
each other over different problem classes or eeerdifferent instances within the
same class. It is possible that even the best e@tibh of model and search on aver-
age is still too slow across a range of problealdng orders of magnitude more time
on some problems than combinations that are uspalyer. This fact complicates
the use of constraints, and makes it very diffiboftnovice users to produce effective
solutions. The modeling and solving process wowdasier if we could develop ro-
bust algorithms, which perform acceptably acrossnage of problems.

In this paper we present one method of developirapast algorithm. We combine
a single model and a single basic algorithm wigetof variable and value ordering
heuristics, in a style similar to iterative deemgnirom standard Al search. The aim is
to exploit the variance among the orderings toagehore robust procedure, which
may be slower on some problems, but avoids thdfi&ignt deterioration on others.
During the search, we allocate steadily increatimg slices to each ordering, restart-
ing the search at each point. We demonstrate ifsnpgance on two problem classes,
showing that it is robust across problem instarsoes competitive with standard or-
derings used for those problems.

2 Background

The standard process for generating solutions @SR is based on backtracking
search. The order in which variables and valuedraa@ has to be specified as part of
the search algorithm, and has a significant effecthe size of the search tree. The
standard ordering heuristic is based on the “faskf principle, stating that we should

* funded by Enterprise Ireland (SC/2003/81), with isiaace from Science Foundation Ireland
(00/P1.1/C075) and ILOG, SA.

choose the variable with the tightest constraifitds is normally implemented by
choosing the variable with the minimum domain, ler $mallest ratio of domain size
to degree. Strategies aiming to “succeed first"ehalso been investigated, e.g. in [1]
where different variable heuristics showed différsgarch efforts, depending on their
level of “promise”. For an instance of a CSP, agkrrun with a single ordering heu-
ristic can get trapped in the wrong area of the,teven if the heuristic is the best on
average. For this reason, the randomized restategly has been proposed - for a
single heuristic, if no result has been found umtgiven time limit, the search is
started again. Tie breaking and, typically, valudeoing are done randomly, and so
each restart explores a different path. This apgréag known to work well on certain
problems, including quasi-group with holes [2]. &tghm portfolios [3] is another
randomized restart search method, which interleawst of randomized algorithms.

3 Multi-heuristic and time-dlicing

As discussed above, for many problem classes rglesordering heuristic per-
forms well across all problem instances. In sonigalnexperiments on a scheduling
problem, we had noticed that some instances caadéiP0-fold increase in running
time. Further, the hard instances appeared toffexetit for each ordering. Therefore,
we have developed an approach which tries eachringdim turn for a limited time,
restarting the search after each one, and gradnaligasing the time limit if no result
was found. This is similar to the way iterative pleing explores each branch to a
certain depth, and then increases the depth lamd,is similar to randomized restarts,
except we use different ordering heuristics. Theugs code for the multi-heuristic
(MH) algorithm is:

whil e Sol ve(heuristic(i),limt) == fal se
limt = Increase(i,limt)
if i ==ntheni =1
dse i= i+l

Solve(.,.)takes heuristi¢ (composed of a variable and a value ordering), amd
plies standard search up to a tilmeit. If it finds a solution, or proves there is no so-
lution, it returngrue; otherwise it hits the time limit and returfadse

Increase(.,.)s the time limit function. We have considered twarsions: ljnear)
Increase(i,limit)=limit+o and (magnitudg Increase(i,limit)=limit*10 if i=n; limit oth-
erwise

Note that MH is complete: the CSP backtrackingaeapace is finite, each order-
ing heuristic is systematic, arithit increases indefinitely, so eventually one of the
heuristics will be given enough time to complete slearch. Further, if any one of the
heuristics is deterministic, then MH has a guamahtgpper bound on the ratio of the
time it takes compared to that heuristic.

4 Experimentsand results

We want to test the performance of the time-slicrdti-heuristic approach. Spe-
cifically, (i) is it more robust than the standatefault ordering heuristic, i.e. does it

report a result within acceptable time limits inmngases across a range of problems?
(i) does it avoid a significant increase in ruméj, i.e. is the overhead of restarting the
search, and repeating some search paths, sign#fi¢gin how does it compare to the
randomized restart method, i.e. is its performahee to the restart mechanism, or to
the multiple heuristics? To answer these questimeshave tested the approach on
two problem classes: scheduling tasks with fixeattsand end points, and quasi-
groups with holes. All implementations are codeit+ using llog Solver 6.0, and
run on a Pentium 2.6 GHz processor under Linux.(Faand (ii), we compare MH
against the min domaim(sd variable ordering heuristic (lexicographic tieelking).

For (iii) we use the sanmasdbut with random tie breaks, and random value amnder

Scheduling - We considered one class of scheduling problemsrevtasks have
fixed start and end times, but can be allocateal noamber of different resources. We
assume that resources come in categories, anddtegories are ranked. Each task
has a rank, and must be allocated to a resourteabfank or higher. Each resource
can process one task at a time, and each tasklbaystocessed without interruption
on a single resource. Given a set of resourcedashd, the problem is to determine
whether or not the tasks can be scheduled. Thislgmois known to be NP-complete
[4]. In our model, we represent the tasks as vlagaland the resources as the values
to be assigned, and the constraints ensure taskstdwverlap. We consider one set of
test problems, <100, 10, N>, with 100 resourcek0rtlasses. We varied the number
of tasks, N, from 130 to 200 (in single steps), foxceach one we generated 500 ran-
dom problems, choosing start times in [0..40], tdares in [17..25] and ranks in
[1..10], all uniformly at random. For each instanee impose a maximum time of 41
seconds, which allows time slices of 0.01, 0.1ed fer 33 possible heuristics, includ-
ing the overhead on initializing the problem.

Task Rank Start End Res.[rank] 1 2 3
T1 3 0 2 R1[1] | T4
T2 2 0 2 R2[3] T2
T3 3 1 3 R3[3] T1
T4 1 2 4 R4[4] | T3

Fig. 1. Scheduling: tasks with ranks, fixed start and &mes(left); a possible solutiofright).

We combined a list of variable orderings (H1...H14)d a list of value orderings
(W1...W3), getting an algorithm we call MH(11x3). HaicaH2 are versions ofisd
breaking ties randomly (H1), and lexicographicgi?). H3 to H10 are created from
sorting the tasks by start tinseand min resource class in all combinations (i.e. H3
increasings breaking ties by increasiny, .., H10 decreasing breaking ties by de-
creasings). H11 involves a measure of contention among tdslksorts by counting,
for each task, the number of other tasks whiclwvérlaps in time (e.g. in Fig. 1, T3 is
the most overlapping task and would be the firsia). The value heuristic W1(W2)
orders the resources by increasing (decreasingg,alhile W3 is a random order.

Quasi-group with holes (QWH) - A quasi-group of order N is a Latin Square (LS) of
N by N cells. The solution of a LS requires an edition to each cell of a number
from 1 to N, so that all the numbers appearing achaow are different and all the
numbers appearing on each column are also diffefe@WH is a solved LS from

which some allocations are deleted. The probleto find an allocation which com-
pletes the LS. We represent the cells as variahlesthe numbers as the values to be
assigned. We use the llog global constraint lloAfibn each row and column.

1 2 1 34 2 3.4 1/13[2]4
2 3.4 2 134] 134 3121411
234113211341 1.23x¢ 2141113
234113241132411.23¢ 41113[2

Fig. 2. Quasi group with holes: an instance, remainingalos) and a solution.

We utilized a list of variable orderings (H1...H1@nd a list of value orderings
(W1...W3), (MH(10x3)). H1 and H2 are versions oifsd breaking ties randomly

(H1), and lexicographically (H2). H3 to H10 are ated by sorting the cells by col-
umnc and rowr, in all combinations (i.e. H3 is increasindpreaking ties by increas-

ing r, .., H10 is decreasingbreaking by decreasing. The value heuristic W1(W2)

simply chooses smallest (biggest) number firstlevidV3 uses a measure of conflict
among numbers. If variable X is chosen, W3 looks iimber frequency in the do-
mains of the unassigned variables in the same raAccalumn as X. Knowing that all

numbers must appear once in the column and ontieeimow, W3 chooses the one
that appears least in domains of the unassignedblas in the row and column (e.g.
assuming X = bottom right cell in Fig.2, then W3ulMbselect number 2).

Comparing to min domain on scheduling — In Fig.3 we show the number of times
msdand MH(11x3) hit the time limit, and the mean time. MH consistently outper-
forms and improvemsd It is more robust — it hits the time limit on femwoccasions.

It also has a lower mean run time across the raNgee that the line on the graph
from top left to bottom right shows solubility, anelates to the right hand axis — e.g.
almost 50% of size 150 problems have a solutiore Adrdness peak is where most
problems have no solution.

mean r-time - SCHEDULING { M100K10, N130..200, s0..40, d17..25 } - tmax 41s - limit[0] = 0.01s

failure frequency [%] ’ . .mdd — 1"
S|ze MH MH(11x3) magnitude --------
[N] msd magnitude r 1
130 10 4
140 22 12
150 | 62 16 g
160 | 58 32 £
170 82 40
180 28 22
190 2 0
200 0 0

. .
160 170
size [N]

Fig. 3. MH vs. SH: left, frequency [%] of failure to solwéthin t-max right, mean r-time;

Comparing to min domain on balanced QWH - In Fig. 4, we again show robust-
ness and run time, this time for balanced QWH(20§(10x3) again consistently
outperformansdboth in terms of robustness and time. All problérage solutions.

failure frequency [%]

Size MH
[H] msd magnitude
150 0 0
170 70 20
190 | 100 50
210 60 20
230 70 0
250 60 0
270 30 0
290 20 0

time [sec]

mean r-time - QWH { N20, H140..300 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

250

200

150 -

100

! msd
MH(10x3) linear
MH(10x3) magnitude -

o
140

= L L i R .
160 180 200 220 240
size [H]

L L
260 280

300

Fig. 4. MH vs. SH: left, frequency [%)] of failure to solwvéthin t-max right, mean r-time;

Comparing to randomized-restarts (RR) - RR is regarded to be the best method for
QWH. We have compared MH with RR on both QWH arftksgelling. RR is gener-
ally used with time limits that increase each nésto we have implemented MH with
the same time policy, and RR with an order of magld time increased every N re-
starts, for comparison.
QWH (Fig. 5) — RR is better than MH almost everywhere, regasdigf which

time slicing mechanism we use. Both MH and RR peré slightly better with time
slices increased by a magnitude every loop of msstir which we report the statistic

on the frequency of failure.

mean r-time - QWH { N20, H140..260 (step 10) } - 10 instances per size H - tmax 200s - limit[0] = 0.01s

failure frequency [%]
Size RR MH
[H] | magnitude| magnitude
150 0 0
160 0 0
170 30 20
180 40 50
190 20 50
200 10 30
210 0 20
220 10 0

time [sec]

180

160

140 |

120

MH(10x3f linear

T
MH(10x3) magnitude

RR(msd) linear -
RR(msd) magnitude

ol L L e
160 180 200 220
size [H]

240

260

Fig. 5. MH vs. SH: left, frequency [%] of failure to solwéthin t-max right, mean r-time;

Scheduling (Fig. 6)- MH clearly reduces the peak of difficulty, whichlocated in
the region where approximately 90% of instance® hmavsolution. The gap is present
for both slicing versions, with the magnitude metdblm better on average.

mean r-time - SCHEDULING { M100K10, N130..200, s0..40, d17..25 } - tmax 41s - limit[0] = 0.01s
100

failure frequency [%]) ‘ ‘ ‘ ‘ T —
Size RR MH) MH(DS) magnisde
[N] | magnitude| magnitude A
130 2 4
140 14 12 _ B}
150 18 16 8
160 42 32 s 5
170 62 40
180 32 22
190 0 0
200 0 0

. . . . e
130 140 150 160 170 180 190 200
size [N]

Fig. 6. MH vs. SH: left, frequency [%)] of failure to solvéthin t-max right, mean r-time;

5 Conclusionsand futurework

We have developed a multi-heuristic approach ferstraint solving, designed to
improve search robustness. We have tested it orpteldlem classes, and shown that
it is more robust than the standard recommendedigtiey without decreasing run
time — in fact, on average it improves the run tive have also compared to ran-
domized restarts, the leading method for one of mablem classes (QWH) and
which uses a similar restart policy. We have shdivat the multi heuristic approach
is poorer in run time and robustness on QWH, btieb@n our scheduling problem
class. Note that the different heuristics we us# the different time limits have not
been tuned — they were generated by inspectiohefptoblem characteristics, and
better performance should be achievable. For thmediate future, we intend to in-
vestigate whether MH does perform better on indelpiboblems (as indicated by the
scheduling results).

We can conclude that the multi heuristic methoersffa robust and competitive
approach to constraint solving, and merits furtimmestigation, since it offers one
possible solution to the goal of making CP easiarse.

References

1 Beck, J. C; Prosser, P; and Wallace, R. J. Vari@otiering Heuristics Show
Promise,Proceedings of the Tenth International ConferennePoinciples
and Practice of Constraint Programmiri§P'04), 2004.

2 Gomes, C. P.; and Shmoys, D. B. 2004. Approximatemd Randomization
to Boost CSP Techniques. Amnals of Operation Research30:117-141.

3 Gomes, C. P.; and Selman, B. 2001. Algorithm pbato In Artificial Intel-
ligencel26(1-2):43-62.

4 Arkin, E. M.; and Silverberg, E. B. 1987. Schedglijpbs with fixed start
and end times. IDiscrete Applied Mathematic$8:1-8.

