
Probabilistic Arc Consistency?

Student: Deepak Mehta Supervisor: M.R.C. van Dongen

Boole Centre for Research in Informatics/Cork Constraint Computation Centre

Abstract. The two most popular backtrack algorithms for solving Constraint
Satisfaction Problems (CSPs) are Forward Checking (FC) and Maintaining Arc
Consistency (MAC). MAC maintains full arc consistency while FC maintains a
limited form of arc consistency during search. Previous work has shown that there
is no single champion algorithm: MAC is more efficient on sparse problems which
are tightly constrained but FC has an increasing advantage as problems become
dense and constraints loose. Ideally a good search algorithm should find the right
balance—for any problem—between visiting fewer nodes in the search tree and
reducing the work that is required for detecting and removing inconsistent values.
We propose to maintain a probabilistic arc consistency during search to achieve
this. The idea is to assume that a support exists and skip the process of seeking
a support if the probability of having some support for a value is at least equal
to some, carefully chosen, stipulated bound. Experimental results show that the
probabilistic approach performs well on both sparse and dense problems and in
fact better than MAC and FC on the hardest problems in the phase transition.

1 Introduction

The two most popular backtrack algorithms for solving Constraint Satisfaction Prob-
lems (CSPs) are MAC [6] and FC [4]. MAC maintains full arc consistency during search.
It ensures that each value in the domain of each variable is supported by at least one
value in the domain of every variable by which it is constrained. FC maintains a limited
form of arc consistency. It ensures that each value in the domain of each variable is
FC consistent, i.e. supported by the value assigned to every past variable by which it is
constrained. Previous work [3, 2] has shown that there is no single champion algorithm.
MAC is more efficient than FC on sparse problems which are tightly constrained but FC

has an increasing advantage as problems become dense and constraints become loose.
For difficult problems the relationship between sparsity and tightness and between den-
sity and looseness roughly allows us to say that hard loose problems are better solved
with FC, whereas hard tight problems are better solved with MAC. The reason why FC

performs better than MAC for hard dense problems is that it exploits a common sense
probabilistic argument: the looser the constraints (the denser the hard problem), the
higher the probability that FC consistency is tantamount to arc consistency.

Ideally, a good search algorithm should find the right balance—for any problem —
between visiting fewer nodes in the search tree and reducing the work that is required for
detecting and removing inconsistent values. More specifically, for hard dense problems

? This work has received some support from Science Foundation Ireland under Grant No.
00/PI.1/C075.

a good search algorithm should keep the best features of MAC and FC by staying closer
to MAC in terms of the number of visited nodes and closer to FC in terms of checks
while for hard sparse problems it should behave like MAC. This is precisely what the
probabilistic arc consistency discussed in this paper is able to do.

Arc consistency involves revisions of domains, which require support checks for
identifying and deleting all unsupported values from the domain of a variable. In many
revisions, some or all values find some support. For example, when RLFAP #11 is solved
using MAC-3 or MAC-2001, 83% of the total revisions are ineffective and do not result
in deleting any value. If we can predict the existence of a support with a high probability
and avoid the process of seeking a support when the probability of having some support
is at least equal to some, carefully chosen, stipulated threshold then a considerable
amount of work can be saved.

In order to do so, first we show how to compute the probability of having some
support for a value. Next, we introduce the notions of a Probabilistic Support Condition
(PSC) and a Probabilistic Revision Condition (PRC). The PSC holds iff the probability of
having some support for a value is above the threshold. If the PSC holds then we assume
that a support exists and we will not seek it. The PRC holds iff for each value in a domain
the probability of having some support is above the threshold. If the PRC holds then we
assume that some support exists for each value and avoid the corresponding revision.

2 Background

For the purpose of this paper, before starting search all search algorithms transform
the input CSP to its arc consistent equivalent. The original domain of a variable is the
domain of that variable in this arc consistent equivalent. For the remainder of this paper
for any variable x, we use D(x) for the current domain of x and Do(x) for the original
domain of x. The directed constraint graph of a given CSP is a directed graph having
an arc (x, y) for each combination of two mutually constraining variables x and y. We
will use G to denote the directed constraint graph of the input CSP.

The traditional approach to find if a ∈ D(x) is supported by y is to identify some b ∈
D(y) that supports a, which usually results in a sequence of support checks. Identifying
the support is more than is needed to guarantee that a value is supportable: knowing
that a support exists is enough. Most arc consistency algorithms proposed so far put
a lot of effort in identifying a support. To reduce unnecessary checks and revisions to
some extent, the notions of a support condition (SC) and a revision condition (RC) are
introduced in [5] (see also [1]). SC guarantees that a value has some support while RC

guarantees that all values have some support without identifying it. In the following
paragraph we present a special version of SC and RC which facilitates the introduction
of their probabilistic equivalents, which are to be presented in the following section.

Let Cxy be the constraint between x and y, let a ∈ D(x), and let R(y) = Do(y) \
D(y) be the removed values from the original domain of y. The support count of (x, a)
with respect to y, denoted sc(x, y, a), is the number of values in Do(y) supporting a.
Note that |R(y) | is an upper bound on the number of lost supports of (x, a) in D(y).
Therefore, if the following condition holds then (x, a) is supported by y:

sc(x, y, a) > |R(y) |. (1)

Hence, there is no need to seek support for a in D(y). The condition in Equation (1) is
(a special version of) what is called a Support Condition (SC) in [5]. SCs help avoiding
many (but not all) sequences of support checks eventually leading to a support.

For a given arc, (x, y), the support count of x with respect to y, denoted sc(x, y), is
defined by sc(x, y) = min ({sc(x, y, a) : a ∈ D(x)}). If

sc(x, y) > |R(y) | (2)

then all values in D(x) are supported by y. The condition in Equation (2) is (a special
version of) what is called a Revision Condition (RC) in [5]. RCs avoid many (but not
all) unnecessary revisions and much queue maintenance overhead.

3 Probabilistic Approach

Even if the SC and RC are used they do not always make MAC solve more quickly than
FC. We propose a probabilistic approach to achieve this. We generalise the notions of
a support condition and a revision condition to the notions of a probabilistic support
condition (PSC) and a probabilistic revision condition (PSC) respectively. The idea is
to assume that a support exists if the probability of having some support is relatively
high and to avoid the process of seeking a support. Similarly, if the probability of having
some support is relatively high for each value then we avoid the corresponding revision.

3.1 Probabilistic Support Condition

Let Ps (x,y,a) be the probability that (x, a) has some support in D(y). Then

Ps(x,y,a) = 1 −

(

|R(y) |

sc(x, y, a)

)

/

(

|Do(y) |

sc(x, y, a)

)

. (3)

The justification for this equation is that its right hand side is equal to the probability
that none of the

(|R(y) |
sc(x,y,a)

)

subsets of size sc(x, y, a) of R(y) contains all supports of
(x, a). Note that if SC is satisfied, i.e. sc(x, y, a) > |R(y) |, then Equation (3) reduces
to Ps (x,y,a) = 1. Indeed, if fewer values have been removed than there were supports
in the original domain then the probability that a support exists is equal to 1.

We now introduce a probabilistic version of the support condition. Let T be some
desired threshold. If Ps (x,y,a) ≥ T then (x, a) will have support with y with a proba-
bility of T or more. We call this condition a Probabilistic Support Condition. If it holds
then we avoid seeking support for a.

3.2 Probabilistic Revision Condition

Remember that sc(x, y) is the least support count of the values of D(x) with respect
to y. Similar to the definition of a probabilistic support condition, we now define a
probabilistic revision condition. Let Ps (x,y) be the least probability that some value in
D(x) is supported by y. Note that for any value a ∈ D(x), we immediately have

Ps(x,y) = 1 −

(

|R(y) |

sc(x, y)

)

/

(

|Do(y) |

sc(x, y)

)

≤ Ps(x,y,a). (4)

Function PAC-3: Boolean;
begin

Q := G
Set threshold T such that 1 − 1/dmax < T ≤ 1.
while Q not empty do begin

select any v from {x : (x, y) ∈ Q }
effective revisions := 0
for each y such that (x, y) ∈ Q do

remove (x, y) from Q
revisep(x, y, changex)

if D(x) = ∅ then
return False

else if changex then
effective revisions := effective revisions + 1

y′′ := y;
if effective revisions = 1 then

Q := Q ∪ { (y′, x) ∈ G : y′ 6= y′′ , Ps
(y′ ,x)

< T }

else if effective revisions > 1 then
Q := Q ∪ { (y′, x) ∈ G : Ps

(y′,x)
< T }

return True;
end;

Fig. 1. PAC-3

Function revisep(x, y, var changex)
begin

changex := False
for each a ∈ D(x) do

if Ps(x,y,a) ≥ T then

continue
if @b ∈ D(y) such that b supports a then

D(x) := D(x) \ { a }
changex := True

end;

Fig. 2. Algorithm revisep

Let T be some threshold. If Ps (x,y) ≥ T then, each value in D(x) is supported by y
with a probability of T or more. We call the condition Ps (x,y) ≥ T a Probabilistic
Revision Condition (PRC). If it holds then we skip the revision of D(x) against D(y).
Note that when sc(x, y) > |R(y) |, then

(|R(y) |
sc(x,y)

)

= 0 and, with a probability of 1, each
values in D(x) is supported by y.

4 Description of the new algorithm

Figure 1 depicts the result of incorporating PSC and PRC into AC-3 equipped with
reverse variable based revision ordering heuristics [5]. We call this algorithm PAC-3
(Probabilistic AC-3). In Figure 1, arcs are only added if the PRC does not hold. The
new revise function, which we call revisep, uses PSC as shown in Figure 2. It seeks
support for an arc-value pair only when Ps (x,y,a) falls below the threshold. In order to
use PSC and PRC, the support count for each arc-value pair must be computed prior to
search. The algorithm used to do so is mentioned in [5, Figure 2]. In order to ensure
that PAC-3 does at least the amount of constraint propagation which is carried out by
FC, T > 1 − 1/dmax , where dmax is the maximum domain size of the variables.

Since PAC-3 needs to be invoked at each node of the search tree, we call the new
backtrack algorithm that maintains PAC-3 during search MPAC-3. The space complexity
of using a support count for each arc-value pair is O(e d). The space complexity of stor-
ing the support count for each arc is O(e) but it may increase to O(e n) during search.
The reason for this is that the support count of an arc may change as values are pruned
during search and when backtrack occurs this count has to be restored. Therefore, the
overall space complexity of MPAC-3 is O(e d + e n) = O(emax (d, n)).

5 Experimental Results

In this section, we shall present some results demonstrating the practical efficiency
of MPAC-3 when compared to MAC-3 and FC. All algorithms were equipped with a

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 0.2 0.4 0.6 0.8 1

S
up

po
rt

 C
he

ck
s

(lo
gs

ca
le

)

Constraint Tightness (p2)

p1 =1.0

p1 =0.5

p1 =0.4

p1 =0.3

p1 =0.2

p1 =0.1

MAC-3
FC

MPAC-3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.2 0.4 0.6 0.8 1

N
od

es
 V

is
ite

d
(lo

gs
ca

le
)

Constraint Tightness (p2)

p1 =1.0

p1 =0.5

p1 =0.4

p1 =0.3

p1 =0.2

p1 =0.1

MAC-3
FC

MPAC-3

Fig. 3. Mean performance in terms of checks and nodes visited for 〈 30, 10, p1, p2 〉

dom/deg variable ordering with a lexicographical tie breaker. The experiments were
carried out on a PC Pentium III having 256 MB of RAM running at 2.266 GHz pro-
cessor with linux. All algorithms were written in C. We experimented with random
problems which were generated by Frost et al.’s model B generator In this model a
random CSP instance is typically represented as 〈n, d, p1, p2 〉 where n is the number of
variables, d is the uniform domain size, p1 is the average density, and p2 is the uniform
tightness. For each combination of 〈n, d, p1, p2〉, 100 random problems were generated
and their mean performance is reported.

Our main aim was to investigate how MPAC-3 behaves with sparse and dense prob-
lems. For the first set of experiments, n was kept at 30. The domain size d was kept at
10 which defines the range (0.9, 1] for T , required by MPAC-3. The value of T was set
to 0.95. We varied density p1 in steps of 0.1 in the range [0.1 . . . 1] and p2 in steps of
0.01 in the range as shown in Figure 3.

Figure 3 shows the mean performance of MPAC-3, MAC-3, and FC in terms of checks
and the nodes visited. As expected MAC-3 always outperforms FC in terms of the visited
nodes while FC outperforms MAC-3 in terms of the number of checks. Note that for
dense problems when a peak occurs in the phase transition, MPAC-3 is more efficient
compared to both MAC-3 and FC, when the effort is measured in terms of checks. The
number of nodes visited by MPAC-3 is closer to MAC-3 than FC. The gap between

Table 1. Comparison between FC, MAC-3, and MPAC-3 on sparse problems.

〈n, d, p1, p2〉 Algorithm Checks Time (seconds) Revisions Visited nodes
FC 24,088,980 5.04 2,531,453 739,054

〈65, 20, 0.08, 0.65〉 MAC-3 15,138,669 1.44 974,903 10,545
MPAC-3 8,271,149 1.55 948,283 12,918
FC 1,375,383,859 360.81 187,037,415 47,250,225

〈90, 20, 0.07, 0.59〉 MAC-3 867,722,685 105.86 67,002,984 617,760
MPAC-3 507,456,096 113.43 72,798,693 892,139

MAC-3 and FC in terms of the visited nodes increases as the problems become sparse
but it decreases between MAC-3 and MPAC-3. As the problems become sparse MAC-3
starts to perform better than FC. Although this may not be clear from Figure 3 but results
shown in Table 1 confirm this. This time the value of threshold was set to 0.951, since
T should be greater than 1 − 1/20. Overall, unlike MAC-3 and FC, MPAC-3 performs
well on average, both in terms of checks and the nodes visited.

6 Conclusions and Future Work

This paper presents a new search algorithm called MPAC-3 which maintains probabilis-
tic arc consistency during search using probabilistic support condition and probabilistic
revision condition. More specifically, it seeks for a support only when the probability
of having some support falls below a stipulated bound. Unlike MAC and FC where the
strength of constraint propagation is static and the behaviour is different on dense and
sparse problems, maintaining probabilistic arc consistency allows to adjust the strength
of constraint propagation dynamically during search and performs well on both dense
and sparse problems. In future, we would like to investigate the use of probabilistic
approach in solving real-world problems and academic problems. It seems relatively
straightforward to generalise the notions of PSC and PRC to achieve probabilistic sin-
gleton consistencies and probabilistic hyper-arc consistency for non-binary CSPs.

References

1. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Support inference for generic filtering. In
Proceedings of the Tenth International Conference on Principles and Practice of Constraint
Programming, 2004.

2. A. Chmesis and L. Sais. Constraint satisfaction problems:backtrack search revisited. In Pro-
ceedings of the Sixteenth IEEE International Conference on Tools with Artificial Intelligence,
pages 252–257, Boca Raton, FL, USA, 2004. IEEE Computer Society.

3. S.A. Grant and B.M. Smith. The phase transition behaviour of maintaining arc consistency. In
W. Wahlster, editor, Proceedings of the Twelfth European Conference on Artificial Intelligence
(ECAI’96), pages 175–179, 1996.

4. R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, 14(3):263–313, 1980.

5. D. Mehta and M.R.C. van Dongen. Reducing checks and revisions in coarse-grained MAC
algorithms. Accepted for publication in the proceedings of IJCAI’05.

6. D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
A.G. Cohn, editor, Proceedings of the Eleventh European Conference on Artificial Intelligence
(ECAI’94), pages 125–129. John Wiley and Sons, 1994.

