
Domain Reduction for the Circuit Constraint

Student: Latife Genc Kaya
Supervisor: Prof. John Hooker

Carnegie Mellon University Pittsburgh PA 15213 USA

Abstract. We present an incomplete filtering algorithm for the cir-
cuit constraint. The filter removes redundant values by eliminating non-
Hamiltonian edges from the associated graph (i.e., edges that are part of
no Hamiltonian cycle). We prove a necessary condition for an edge to be
Hamiltonian, which provides the basis for eliminating edges of a smaller
graph defined on a separator of the original graph.

1 Introduction

The circuit constraint, circuit(y1, . . . , yn), where yj ∈ {1, . . . , n}, is true if and
only if for each j ∈ {1, . . . , n}, yj is the successor of j in some permutation of
1 . . . n and yj ∈ Dj , where Dj is the domain of variable j. In this paper we
consider designing a filtering algorithm for the circuit constraint.

On a graph of vertices 1, . . . , n, the circuit constraint can be thought as
defining a directed Hamiltonian cycle. Nodes of the graph represent the variables.
A directed edge (i, j) exists if and only if j is in the domain of variable i.
Moreover, elimination of an edge (i, j) from the graph means elimination of the
value j from the domain of variable i. With this representation, the problem of
domain reduction for the circuit constraint reduces to identifying and eliminating
non-Hamiltonian edges on a digraph (i.e., edges that belong to no Hamiltonian
cycle).

Shufelt and Berliner (see [3]) describe a set of patterns to identify Hamil-
tonian and non-Hamiltonian edges on an undirected graph. These patterns can
be adapted for digraphs and used to eliminate non-Hamiltonian edges when some
part of the Hamiltonian cycle has been constructed. It is not intended for the
elimination of non-Hamiltonian edges for the general case in which arbitrary
variable domains are given. Also the analysis of [3] relies on the special structure
of the problem for which it was developed, namely the construction of a knight’s
tour on a chessboard.

In this paper, a necessary condition for an edge to be Hamiltonian on a
(undirected or directed) graph is given. By this condition, we present a recur-
sive algorithm that eliminates non-Hamiltonian edges from the graph via graph
separators. A much smaller but denser multi-graph is constructed from a sepa-
rator of the original graph. Then by applying a filtering algorithm for the global
cardinality constraint together with in and out-vertex degree constraints, non-
Hamiltonian edges are identified and eliminated from the graph.

2 Preliminaries

Let G = (V,A) be a directed graph. A pair of vertices vi and vj are neighbors
if (vi, vj) or (vj , vi) ∈ A. A directed path P between vertices v1, vm ∈ V is
a sequence of edges (v1, v2), (v2, v3), . . . , (vm−1, vm) ∈ A. P is a simple path if
v1, . . . , vm−1 are distinct. The endpoints v1, vm are connected by P .

G is connected if any two vertices of G are connected by some directed path.
For convenience we will say that an edge (u, w) connects two node sets V1, V2 if
v ∈ V1 and w ∈ V2. An edge connects V1 with graph (V2, A2) if it connects V1

with V2.
A nonempty vertex set V ′ ⊂ V induces a connected component of G if V ′

induces a connected subgraph, and no edge of G connects V ′ with V \ V ′. A set
S ⊂ V separates a connected graph G into connected components C1, . . . , Cp

if V \ S induces a subgraph ḠS with connected components C1, . . . , Cp. We
say S is a (vertex) separator of G if it separates G into at least two connected
components. 1

A directed cycle of G is a directed path of which every vertex is an endpoint.
A Hamiltonian cycle is a simple cycle whose vertices are precisely those in V .
An edge (v, w) of G is Hamiltonian if (v, w) belongs to a Hamiltonian cycle.

3 Basic Idea

The separator graph GS for a separator S of G = (V,A) is defined as follows.
The node set of GS is S. GS contains a directed edge (v, w) with label C if C
is a connected component of ḠS and (v, ci) and (cj , w) are edges of G for some
pair of vertices ci, cj in C (possibly ci = cj). GS contains an unlabeled directed
edge (v, w) when (v, w) ∈ A. mS is the number of edges (labeled or unlabeled)
in the separator graph.

A Hamiltonian cycle of GS is permissible if it contains at least one edge of
each label. The following theorem may allow one to identify a graph (or edge) as
non-Hamiltonian by looking for a certain kind of Hamiltonian cycle in a much
smaller graph.

Theorem 1. Suppose S separates graph G into p connected components. Then
G is Hamiltonian only if the separator graph GS has a permissible Hamiltonian
cycle. Furthermore, an edge e connecting vertices of GS is Hamiltonian only if
GS has a permissible Hamiltonian cycle that contains e.

Proof. Consider an arbitrary Hamiltonian cycle H of G. We can construct
a permissible Hamiltonian cycle HS for GS as follows. Let v1, . . . , vn, v1 be the
sequence of vertices in H. Consider any pair of vertices vj , vk of H such that
vj , vk ∈ S and no vertices of S lie on the portion of H between vj and vk. If
vj , vk are adjacent in H then (vj , vk) is an unlabeled edge of GS . In this case, let

1 If S separates G into at least three components, S is a shredder.

unlabeled edge (vj , vk) belong to HS . If vj , vk are not adjacent then all vertices
between vj , vk lie in the same component C and (vj , vk) is an edge of GS with
label C. So let (vj , vk) with label C belong to HS . Note that HS is a Hamiltonian
cycle of GS . Since at least two edges of H connect any given component to S,
there is at least one edge of HS with label C for every component C. Therefore,
HS is permissible.

Corollary 1. If S separates G into more than |S| components, then G is non-
Hamiltonian.

Proof. The separator graph GS has |S| vertices and therefore cannot have a
Hamiltonian cycle with more than |S| edges.

Corollary 2. If S separates G into |S| components, then no edge connecting
vertices of S is Hamiltonian.

Proof. An edge e that connects vertices in S is unlabeled in GS . If e is
Hamiltonian, some Hamiltonian cycle in GS that contains e must have at least
|S| labelled edges. But since the cycle must have exactly |S| edges, all the edges
must be labelled and none can be identical to e.

4 The Algorithm

Given circuit constraint circuit(y1, . . . , yn) with variable domains D1, . . . , Dn,
we present the following domain reduction algorithm:

1. Construct the corresponding graph G = (V,A).
2. Find a vertex separator S in G
3. Construct the separator graph GS

4. Find a set, AN , of edges of GS that do not satisfy the
necessary condition of Theorem 1.
(a) If GS is not Hamiltonian, then STOP. G is not

Hamiltonian.
(b) Else, set G = (V,A \AN) and go to 2.

4.1 Finding A Separator

One straightforward heuristic for identifying a vertex separator uses Breadth
First Search (BFS). To construct BFS tree, initially all nodes of G are unlabeled.
An arbitrary node v is chosen as root of the tree and it is labelled level 0.
Neighbors of v are labelled level 1. At step k, all unlabeled nodes that are
neighbors to some node in level (k − 1) are labelled level k and so on. When
there is no remaining unlabeled node in the graph, the BFS tree is constructed.
Assuming the highest level is at least 2, every intermediate level in the BFS tree
is a vertex separator of the graph. We are currently investigating more effective
heuristics for identifying small separators of a graph.

4.2 Filtering for the Separator Graph

In step 4 of the algorithm, to find a set of non-Hamiltonian edges on GS , we
will view the condition that GS contains a permissible Hamiltonian cycle as a
constraint and construct a filter for a relaxation of this constraint.

The constraint can be written per-circuit(GS , z1, . . . , z|S|) where zi is the ith

edge of a permissible Hamiltonian cycle. We will filter per-circuit by filtering a
relaxation of it, consisting a Global Cardinality Constraint and vertex degree
constraints.

A Global Cardinality Constraint (gcc) has the form (X, V, l, u) where X =
{x1, . . . , xm} is a set of variables which take their values in a subset of V =
{v1, . . . , vp}. It constrains the number of times a value vi ∈ V is assigned to a
variable in X to be in an interval [li, ui].

In this case, let X = {(vi, vj)|vi and vj are adjacent in GS} and V =
{C1, . . . , Cp, U, D} where C1, . . . , Cp are labels corresponding to the components
of ḠS , U corresponds to ”unlabeled” and D is a dummy value. Let l and u
be (lci

, uci
) = (1, |S| − p + 1) for each Ci, (lU , uU) = (0, |S| − p) for U and

(lD, uD) = (mS − |S|,mS − |S|) for D.
A solution (z1, . . . , z|S|) of per-circuit defines a permissible Hamiltonian cycle

HS . HS corresponds to a solution of the above gcc constraint in which (vi, vj)
receives the value:

Ck when (vi, vj) is an edge of HS with label Ck

U when (vi, vj) is an unlabeled edge of HS

D when (vi, vj) is not an edge of HS

We can use Regin’s filtering algorithm for gcc (see [2]) to find and eliminate
edges that can be part of no permissible Hamiltonian cycle in GS .

4.3 Global cardinality Constraint with Degree Constraints

We can further constrain the solution of gcc with out and in-degree constraints:

1. Given any (vi, vj) and (vi, vk), at least one must have label D.
2. Given any (vj , vi) and (vk, vi), at least one must have label D.

We can incorporate (1) or (2), but not both, in the filtering algorithm for gcc
as follows. Suppose we incorporate (1). Define the value graph [2] and the value
network as follows:

Definition 1. The value graph is the bipartite graph GV = ((vi, vj)|(vi, vj) ∈
AS , {C1, . . . , Cp, U}, E) where ((vi, vj), Ck) ∈ E if and only if (vi, vj) is a labeled
edge on GS, ((vi, vj), U) ∈ E if and only if (vi, vj) is an unlabeled edge on GS..

We add a third set of vertices, v1, v2, . . . , v|S| to the value graph. These
vertices are connected to the variables part of the value graph by the set of
edges, {(vi, (vi, vj))|(vi, vj) ∈ AS} 2.

The value network, GN is obtained from the modified value graph by:

– orienting each edge of GV from values to variables, and orienting each ad-
ditional edge from variables to new vertices. For both kind of arcs the lower
bound is 0, and the capacity is 1

– adding a vertex s, and an arc from s to each value,i.e., labels. For such an
arc, if the value is U , then the lower bound is 0, and the capacity is |S| − p.
For all other values, as we require each label to appear at least once in the
solution, the lower bound is 1, and the capacity is |S| − p + 1

– adding a vertex t, and an arc from each new vertex to t. For such an arc,
the lower bound is 0, and the capacity is 1.

– adding an arc from t to s with the lower bound 0 and the capacity ∞

We will use Regin’s filtering algorithm on this value network to filter gcc
combined with out-vertex degree constraints. When (2) is incorporated in gcc,
the resulting value network will be used to filter gcc combined with in-vertex
degree constraints. We will use both of these filters and the filter for gcc itself
to filter per-circuit constraint on the separator graph.

5 Conclusion

In this work, we have introduced a necessary condition for an edge to be Hamil-
tonian in a graph. Moreover, we have presented a partial filter for the circuit
constraint.

Currently, besides investigating effective heuristics for identifying small sepa-
rators that will allow us to eliminate non-Hamiltonian edges on a directed graph,
we are working on testing the efficiency of the proposed filter.

References

1. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. John Wiley Sons (2000).

2. Regin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. AAAI,
(1996).

3. Shufelt J., Berliner, H.: Generating Hamiltonian Circuits Without Backtracking
from Errors. Theoretical Computer Science, 132(1-2) (1994) 347-375

2 When (2) is incorporated, edges (vi, (vj , vi)) are added to the value graph.

