
Asynchronous Backtracking for Asymmetric DisCSPs

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Distributed constraint satisfaction problems (DisCSPs) with asym-
metric constraints reflect the fact that agents may wish to retain their constraints
private. The set of valid pairs of values of every binary constraint is split between
the two constrained agents.
An asynchronous backtracking algorithm for asymmetric DisCSPs is presented.
The new algorithm is based on asynchronous backtracking (ABT), but, propa-
gates assignments both to lower priority agents and to higher priority agents. The
ABT ASC algorithm is evaluated experimentally on randomly generated asym-
metric DisCSPs. Its performance is compared to that of the privacy keeping
version ofABT , proposed by Brito and Meseguer, which splits the search into
two phases. TheABT ASC algorithm improves the run-time of the 2-phase
ABT by a large factor with no additional load on the communication network.

1 Introduction
Distributed constraint satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among variables
of different agents. Agents assign values to variables, attempting to generate a locally
consistent assignment that is also consistent with all constraints between agents (cf.
[Yok00,SGM96]).

Distributed CSPs are an elegant model for many every day combinatorial problems
that are distributed by nature. Take for example a large hospital that is composed of
many wards. Each ward constructs a weekly timetable assigning its nurses to shifts. The
construction of a weekly timetable involves solving a constraint satisfaction problem for
each ward. Some of the nurses in every ward are qualified to work in theEmergency
Room. Hospital regulations require a certain number of qualified nurses (e.g. for Emer-
gency Room) in each shift. This imposes constraints among the timetables of different
wards and generates a complex Distributed CSP [SGM96].

In the hospital example, wards are usually not willing to reveal their constraints to
other wards. A better model for a realisticDisCSP can be such that each inter-agent
constraint is composed of two disjoint parts, each held by one of the two constraining
agents. Each agent holds its part of the constraint data [BM03]. This is in contrast
to common assumptions that are used for asynchronous backtracking. StandardABT
assumes a priority order of all agents. Higher priority agents perform assignments and
send them via messages to lower priority agents [Yok00]. The standard model ofABT
further assumes that every inter-agent constraint can be checked by the lower priority
agent that is involved in the constraint [Yok00].

In many real world problems the above assumptions are too strong. When each of
the constraining agents holds parts of the constraints privately, checking for consistency
has to be performed by both of the constrained agents.

A solution for solving asymmetric DisCSPs was suggested by [BM03], who pro-
posed a model for asymmetric constraints which they termPartially Known Constraints



(PKC). In thePKC model each binary constraint is divided between the two con-
straining agents. In order to solve the resultingDisCSP with asymmetric constraints, a
two phase asynchronous backtracking algorithm (DisFC-PKC) was proposed [BM03].
Similarly to standardABT , a static order of priorities is defined among all agents.

In the first phase an asynchronous backtracking algorithm is performed, in which
only the constraints held by the lower priority agents are examined. In other words,
only one of the two constraining agents in each binary constraint checks its consistency.
When a solution is reached, a second phase is performed in which the consistency of
the solution is checked again, according to the constraints held by the higher priority
agents in each binary constraint. If no constraint is violated, a solution is reported, if
there are violated constraints, the first phase is resumed after the necessaryNogoods
are recorded [BM03].

The first and immediate drawback of a two-phase algorithm is the effort of pro-
ducing solutions in each first phase. Since constraints in the opposite direction are not
examined, large parts of the search space, which could have been pruned if all con-
straints were considered, are being exhaustively scanned. The second drawback is the
synchronized manner in which the algorithm switches between the two phases. For
each such switch among phases, a termination detection mechanism must be performed
which is a complicated task inABT . Furthermore, all agents must be informed about
every switch between phases. This requires global monitoring that is in contrast to the
independency of agents in a distributed asynchronous system.

The present study proposes a distributed search algorithm,Asynchronous Backtrack-
ing for Asymmetric Constraints(ABT ASC), that checks inter-agent constraints asyn-
chronously at both of the constraining agents.

In ABT ASC, agents send their proposed assignments to all their neighbors in the
constraints graph. Agents assign their local variables according to the priority order as
in standardABT , but check the constraints also against the assignment of lower priority
agents. When an agent detects a conflict between its own assignment and the assignment
of an agent with a lower priority than itself, it sends aNogood to the lower priority
agentbut keeps its assignment. Agents which receive aNogoodfrom higher priority
agents, perform the same operations as if they have produced thisNogood themselves.
As in ABT [Yok00,BMBM05], the agents remove their current assignment from their
current-domain, store the eliminatingNogood and reassign their variable.

This results in a one phase, correct and complete asynchronous backtracking algo-
rithm, which solvesDisCSPs with asymmetric constraints. The asynchronous pro-
cessing of all the constraints in a single phase generates a much smaller search space.
The search space scanned byABT ASC is the same size as would have been searched
by standardABT on symmetricDisCSPs with the same constraints. The improve-
ment in efficiency over the two phase algorithm of [BM03] is large.

The same privacy preservation methods suggested in thePKC model for a two-
phase algorithm [BM03] can be used inABT ASC. Therefore, the large improvement
in run-time, is achieved byABT ASC without revealing additional information. The
experiments presented in the present study, show that this improvement is achieved with
no additional load on the communication network.

2 Distributed Asymmetric CSPs

Asymmetric constraints are defined forDisCSPs by thePKC model of [BM03]. All
constraints are binary constrains. For each pair of agentsAi andAj , the setCij includes
all constraints betweenAi andAj . The setCij is divided into two non intersecting



Fig. 1.An Asymmetric DisCSP.

subsetsC(i)j , which is held by agentAj , andCi(j) which is held by agentAi. Consider
the example in Figure 1. There are three agents in the constraints network in Figure 1:
A, B, C. The domains of the agents are depicted in the figure, A and B have the values
0, 1 and C has 1,2. Each agent holds its part of the constraints. A has forbidden pairs of
assignments with C< A1, C2 >,< A0, C1 >. B has forbidden pairs of assignments
with C < B0, C1 >,< B1, C1 >. Agent C holds two binary constraints it is involved
in. With agent A it has the forbidden pair of assignments< A1, C1 > and with agent
B the pair< B1, C2 >.

Running standardABT on the example in Figure 1, both agents A and B assign the
value 0 and sendok? messages to agent C. Agent C receives the twook? messages,
updates itsAgentV iew and assigns itself the value 1. This value is consistent with
both assignments of its higher priority agents (A and B),according to the part of the
constraints held by C. Clearly, this assignment conflicts with the parts of the constraints
held by both A and B. If C sends the solution for checking by higher order agents (i.e.
A and B), as it does in a two phase algorithm [BM03], it will fail. A possible solution
to the asymmetricDisCSP in Figure 1 is< A, 0 >,< B, 0 >,< C, 2 >.

3 Asynchronous Backtracking for Asymmetric Constraints

In order to perform asynchronous backtracking, in a single phase, on asymmetric DisC-
SPs, all constraints must be satisfied including the constraints held by the higher pri-
ority agents. In standardABT , binary constraints are held completely by the lower
priority agent involved in each constraint according to a static priority order among
agents [Yok00,BMBM05]. Lower priority agents check consistency of assignments re-
ceived from higher priority agents viaok?messages [Yok00]. In asymmetricDisCSPs,
constraints are only partially known to each of the participating agents. Consequently,
both of the constrained agents need to check the consistency of their assignments against
each other. This means that checking consistency of a pair of constrained assignments
by the lower priority agent of the two is no longer sufficient.

In Asynchronous Backtracking for Asymmetric Constraints (ABT ASC) each agent
checks its constraints with all constraining agents (i.e. neighbors in the constraint graph).
This includes higher priority, as well as lower priority constraining agents. Agents hold
in their Agent V iews assignments of agents with higher and lower priorities. Values
from the domain of agents are eliminatedonly if they violate constraints with higher
priority agents. After a new assignment is found to be consistent with all assignments
of higher priority agents in theAgent view, the selected assignment is checked against
the assignments of lower priority agents. If a conflict is detected, the agent keeps its
assignment and sends aNogood including its own assignment and the conflicting as-
signment to the lower priority agent that owns the conflicting assignment. An agent



when received (ok?,(xj , dj)) do:
1. add(xj , dj) to Agent V iew;
2. remove inconsistent nogoods;
3. if (conflicting(xi, di) and(xj , dj))
4. if (xj has lower priority thanxi)
5. nogood← {(xi, di)(xj , dj)};
6. send (nogood, (xi, nogood)) to xj ;
7. else
8. nogood← (xj , dj);
9. storenogood;
10. check agent view;

when received(nogood, xj , nogood) do:
1. if (nogood consistent withAgent V iew

andcurrent assignment)
2. storenogood;
3. if (nogood contains an agentxk

that is not a neighbor ofxi)
4. addxk to neighbor list;
5. requestxk to addxi as a neighbor;
6. add(xk, dk) to Agent V iew;
7. check agent view;
8. else
9. send (ok?, (xi, current value)) to xj ;

procedurecheck agent view
1. if (no value inDi is consistent with higher

priority assignments inAgent V iew)
2. backtrack;
3. else
4. selectd ∈ Di which is consistent with higher

priority assignments inAgentV iew;
5. current value← d;
6. send(ok?,(xi, d)) to neighbors;
7. for each (conflicting lower priority

assignment (xj , dj))
8. nogood← {(xi, di)(xj , dj)};
9. send (nogood, (xi, nogood)) to xj ;

procedurebacktrack
1. nogood← resolve inconsistent subset;
2. if (nogood is empty)
3. broadcast to other agents that there

is no solution;
4. stop;
5. select (xj , dj) wherexj has the lowest

priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove(xj , dj) from Agent V iew;
8. check agent view;

Fig. 2.ABT ASC algorithm

which receives aNogood acts the same withNogoods received from higher and lower
priority agents.

Figure 2 presents the code ofABT ASC. When anok? message is received, the
Agent V iew is updated with the received assignments and non consistentNogoods
are eliminated (lines 1,2). A conflicting assignment is treated according to the priority
of the sending agent. If its priority is lower than the receiving agent, the receiving agent
keeps its assignment and sends aNogood to the lower priority sender which contains
the received and the current assignment (lines 4-6). If the priority of the sending agent
is higher than the receiver, the receiving agent stores theNogood containing the re-
ceived assignment and calls procedurecheck agent view in order to find a different
assignment, consistent with the updatedAgent V iew (lines 8-10).

When aNogoodis received, the agents act exactly the same as in the standardABT
algorithm. Procedurebacktrack is also the same as in standardABT [Yok00,BMBM05].

The main difference betweenABT ASC andABT is in procedurecheck agent view.
After an assignment, which is consistent with all assignments of agents with higher pri-
ority in theAgent V iew is selected (lines 1-5), it is checked against the assignments of
lower priority agents. For each violation of a constraint between the selected assignment
and an assignment of a lower priority agent in theAgent V iew, aNogood containing
both conflicting assignments is sent to the lower priority agent (lines 7-9). As in the
case when a conflictingok? message from a lower priority agent is received, aNogood
is sent but the current assignment is not changed.

4 Experimental Evaluation

The common approach in evaluating the performance of distributed algorithms is to
compare two independent measures of performance - time, in the form of steps of com-



(a) (b)

Fig. 3. Non concurrent constraints checks performed (a) and Total number of messages sent (b),
by ABT 2-Phase andABT ASC (p1 = 0.4).

(a) (b)

Fig. 4. Non concurrent constraints checks performed (a) and Total number of messages sent (b),
by ABT 2-Phase andABT ASC (p1 = 0.7).

putation [Lyn97,Yok00], and communication load, in the form of the total number of
messages sent [Lyn97]. Comparing the number of non-concurrent steps of computation
of search algorithms on DisCSPs, measures the time of run of the algorithms.

Non concurrent computation steps, are counted by the method of [MRKZ02]. In
order to take into account the local computational effort of agents in each step, the
number of non concurrent constraints check performed (NCCCs) is counted instead
of computation steps [MRKZ02].

All experiments were conducted on random networks with 15 agents (n = 15)
each holding exactly one variable, 10 values for each variable (k = 10). Two values of
constraints density were usedp1 = 0.4 andp1 = 0.7 The tightness valuep2, is varied
between 0.1 and 0.9, to cover all ranges of problem difficulty. For every two agentsAi

andAj , the set of illegal pairs of valuesCij , was randomly split among the two agents
and each part was uniquely assigned to one of the agents involved. For each pair of
fixed density and tightness (p1, p2), 50 different random problems were solved by each
algorithm and the results presented are an average of these 50 runs.

Figure 3(a) presents the computational effort in number ofNCCCs to find a solu-
tion for Asymmetric DisCSPs. ABT ASC is compared to the 2-phase version ofABT
proposed by [BM03]. As can be seen in Figure 3(a),ABT ASC performs much better
than2-phase ABT. On the hardest instances (p2 = 0.6), the factor of improvement is 6.

Figure 3(b) presents the total number of messages sent by both algorithms. The
load on the network is very similar for both algorithms. It is important to note that these
results do not include the overhead caused in the two phase version by informing agents
that the second phase begins, and a need for multiple idle detection.



Figures 4(a) and 4(b) present similar results for high densityAsymmetric DisCSPs.
While the runtime improvement is similar to the improvement in low densityDisCSPs
the results in network load are conclusive in favor ofABT ASC.

5 Discussion

During the algorithm run,explicit Nogoods are sent by higher priority agents to lower
priority agents. Although2-phaseABT records similarNogoods it does so only when
it examines solutions of the first phase during the second phase [BM03].

To enhance privacy preservation of constraints, one can use two approaches. The
first can be used when the agents know the content of the initial domain of their neigh-
boring agents. If this is the case, the algorithm is performed using the method of [BM03]
(DisFC). Instead of including the selected assignment in anok? message, agents send
to their neighbors the subset of the neighbor’s domain, which is consistent with the
assignment, in the message. Agents hold in theirAgentViewsa counter of the number
of changed assignments received from each agent. This way, agents generateNogoods
which include the counter values in theirAgentViewsi.e. the indices of the assignments
instead of the assignments themselves. This of course conceals the constraints which
would have bean revealed by theexplicit Nogoods.

If domains are not known, agents can conceal the identity of the message sender
in Nogood messages. This way the receiver of aNogood will not know if it is an
explicit Nogood sent by a higher priority agent or aregular Nogood sent by a lower
priority agent. This idea has one flaw. InABT when aNogood is not accepted, an
ok? message must be sent back to the sending agent to inform that the receiver keeps
its assignment [Yok00,BMBM05]. If the sender is unknown, an agent which discards a
receivedNogood must send anok? message to all its neighbors. This will increase the
number of messages sent by the algorithm.

TheABT ASC algorithm, proposed in the present study, performs a single phase
asynchronous backtracking algorithm to solveAsymmetric DisCSPs. All constraints are
processed asynchronously in a single phase and the resulting search space explored is
the same as in standardABT . The experimental results show a clear advantage of the
proposedABT ASC algorithm over the 2-phaseABT (DisFC-PKC) algorithm of
[BM03]. This advantage is achieved without additional network load.

References

[BM03] I. Brito and P. Meseguer. Distributed forward checking. InProc. CP-2003, pages
801–806, September, Ireland, 2003.

[BMBM05] C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking
without adding links: a new member in the abt family.Artificial Intelligence, 161:1-
2:7–24, January 2005.

[Lyn97] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[MRKZ02] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of

distributed constraints processing algorithms. InProc. AAMAS-2002 Workshop on
Distributed Constraint Reasoning DCR, pages 86–93, Bologna, July 2002.

[SGM96] G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed con-
straint satisfaction problems (dcsps). InConstraint Processing-96, pages 561–2,
New Hamphshire, October 1996.

[Yok00] M. Yokoo. Algorithms for distributed constraint satisfaction problems: A review.
Autonomous Agents & Multi-Agent Sys., 3:198–212, 2000.


