
Improved Algorithm for Finding

(a,b)-super Solutions

Student name: Emmanuel Hebrard
Supervisor name: Toby Walsh

NICTA and UNSW, Sydney, Australia

ehebrard@cse.unsw.edu.au

Abstract. Super solutions are a mechanism to provide robustness to

constraint programs. We introduce a new algorithm that exploits the

similarity between a super solution and its repairs in order to do inference

during search. It improves on previous methods since it is more space

efficient and also faster in practice.

1 Introduction

The super model framework [4], and its equivalent in constraint programming
(super solutions [3]) allow to characterize the notion of fault tolerance. An (a, b)-
super solution is a solution in which, if a small number of variables lose their
values, we are guaranteed to be able to repair the solution with only a few
changes. This concept is useful in dynamic and uncertain environments when
robustness is a valuable property. We introduce a new algorithm for finding
super solutions that improves upon the method introduced in [2] in several di-
mensions. This algorithm is more space efficient as it only requires to double the
size of the original constraint satisfaction problem. We decompose the problem
into a master problem and a number of sub-problems generated during search.
This approach is simple and can be implemented using most of the constraint
toolkits currently available. We then show how we can do inference while solving
a subproblem to reduce the master problem.

2 Formal background and notations

A constraint satisfaction problem (CSP) P consists of a set of variables X , a set
of domains D such that D(Xi) is the finite set of values that can be taken by
the variable Xi, and a set of constraints C that specify allowed combinations of
values for subsets of variables. We use upper case for variables (Xi) and lower
case for values (v). A full or partial instantiation S = {〈X1 : v1〉, . . . 〈Xn : vn〉}
is a set of assignments 〈Xi : vj〉 such that vj ∈ Xi. We will use S[i] to denote the
value assigned to Xi in S. A (partial) solution is an instantiation satisfying the
constraints. Given a constraint CV on a set of variables V (its scope), a support
for Xi = vj on C is a partial solution involving the variables in V and containing



Xi = vj . A variable Xi is generalized arc consistent (GAC ) on C iff every value
in D(Xi) has support on C. A constraint C is GAC iff each constrained variable
is GAC on C, and a problem is GAC iff all constraints in C are GAC. Given a
CSP P and a subset A = {Xi1 , . . .Xik

} of X , a solution S of the restriction of
P to A (denoted P |A) is a partial solution on A such that if we restrict D(Xi)
to {S[i]} for i ∈ [i1..ik], then P can be made GAC without domain wipe-out.

We introduce some notations used later in the paper. the function H(S, R)
is defined to be the Hamming distance between two solutions R and S, i.e.,
the number of variables assigned to different values in S and R. We also de-
fine HA(S, R) to be the Hamming distance restricted to the variables in A:
HA(S, R) =

∑
Xi∈A(S[i] 6= R[i]). An a-break A on a solution S is a combination

of a variables among the variables in S. A b-repair of S for A is a solution R such
that HA(S, R) = |A| and H(S, R) ≤ (a + b). In other words, R is an alternative
solution for S such that if the assignments of the variables in A are forbidden,
the remaining “perturbation” is restricted to b variables.

Definition 1. A solution S is an (a, b)-super solution iff for every a′ ≤ a, and
for every a′-break A of S, there exists a b-repair of S for A.

3 The basic algorithm

We first describe a very simple and basic version of the algorithm without any
unnecessary features. Then we introduce some inference rules that make the
algorithm more efficient and more effective.

The basic idea is to ensure that the current partial solution is also a partial
super solution. In order to do so, we create as many sub-problems as possible
breaks for this partial solution, that is

∑
i≤a(k

i ) for a partial solutionover k

variables. The solutions to these sub-problems are partial repair solutions. We
therefore work on a copy of the original problem that we change and solve for
each test of repairability. Note that the sub-problem is much easier to solve
than the main problem. They are in fact polynomial to solve for fixed a and b.
Indeed, since a repair solution must have less than a + b discrepancies with the
main solution, the number of possibilities is bounded by na+bda+b. Furthermore,
we shall demonstrate later that we can infer inconsistent values in the master
problem from the process of looking for a repair. Pruning the master problem
is critical, as it reduces the search tree, and consequently the number of sub-
problems to be solved.

Initialization: The input is a CSP, i.e., a triplet P = (X ,D, C) and the
output a (a, b)-super solution S. We first create a copy P ′ of P , where X ′i ∈ X ′

iff Xi ∈ X and C ′ ∈ C′ iff C ∈ C. This copy will be used to find b-repairs. At
any point in the algorithm, D(Xi) (resp. D′(X ′i)) is the current domain of Xi

(resp. X ′i) . The set Past ⊆ X contains all variables that are already bound to a
value and we denote Past′ the set containing the same variables, but “primed”,
Past′ = {X ′i|Xi ∈ Past}.

Main Backtracker: Algorithm 1 searches and backtracks on the main prob-
lem P . It is in very similar to a classical backtracker that maintains GAC at



each node of the search tree, except that we also add a call to the procedure
repairability at each node. Note that any solver or local/global consistency
property can be used instead as long as the procedure repairability is called. A
possible way of implementing repairability –in a standard constraint toolkit–
can be as a global constraint containing internally the extra data structure P ′

and an associated specialised solver.

Algorithm 1: backtrack(P, P ′, S, Past, a, b) : Bool
if Past = X then return True;
choose Xi ∈ X \ Past;
Past← Past ∪ {Xi};
foreach v ∈ D(Xi) do

save D;
D(Xi)← {v};
S ← S ∪ {〈Xi : v〉};
if AC-propagate(P ) & repairability(P, P ′, S, Past, a, b) then

if backtrack(P, S, Past, a, b) then return True;

restore D;
S ← S − {〈Xi : v〉};

Past = Past − {Xi};
return False;

Enforcing repairability: The procedure repairability (Algorithm 2) en-
sures that each a-break of the solution S has a b-repair. If |S| = k then we check
all combinations with maximally a variables in S, that is

∑
j≤a(k

j ) breaks. This
expression has no closed form, although it is bounded above by ka. For each
a-break, we model the problem of the existence of a b-repair using P ′. Given the
main solution S and a break A, we need to find a b-repair, that is, a solution
R of P ′|Past′ such that HA(S, R) = |A| and H(S, R) ≤ |A| + b. The domains of
all variables are set to their original state. Then for any X ′i ∈ A, we remove the
value S[i] from D′(X ′i), thus making sure that HA(S, R) = |A|. We also add an
AtMostkDiff constraint that ensures H(S, R) ≤ k, where k = |A|+ b. Finally,
we solve P ′|Past′ , it is easy to see that any solution is a b-repair.

Algorithm 2: repairability(P, S, Past, a, b):Bool

foreach A ⊆ Past′ such that |A| ≤ a do

foreach Xi ∈ A do

D′(X′

i
)← D(Xi)− {S[i]};

k ← (|A|+ b);
S′ ← solve(P ′|

P ast′
+AtMostkDiff(X ′ , S));

if S′ = nil then return False;

return True;

Propagating the AtMostkDiff constraint:

Definition 2. AtMostkDiff(X ′1, . . . X
′
n, S) holds iff k ≥

∑
i∈[1..n](X

′
i 6= S[i])

This constraint ensures that the solution we find is a valid partial b-repair by
constraining the number of discrepancies to the main solution to be lower than
a + b. To enforce GAC on such a constraint, we first compute the smallest
expected number of discrepancies to S. Since S is a partial solution we consider



the possible extensions of S. Therefore, when applied to the auxiliary CSP P ′

this number is simply d = |{i|D′(X ′i) ∩ D(Xi) = ∅}|
We have three cases:

1. If d < k then the constraint is GAC as every variable can be assigned any
value providing that all other variables X ′i take a value included in D(Xi),
and we will still have d ≤ k.

2. If d > k then the constraint cannot be satisfied.
3. If d = k then we can set the domain of any variable X ′i such that D(X ′i) ∩

D(Xi) 6= ∅ to S[i].

4 Improvements

The observation that we make in order to improve the search for a super solution
is that there must be at least n− (a+ b) variables assigned equally in the master
problem and any sub-problem. For instance consider the particular case of a
(1, 0)-super solution. Suppose that we are checking the break A = {Xi}, thus we
have X ′i 6= S[i]. Moreover, since n − 1 variables must be assigned as in P , and
since X ′i cannot be equal to Xi, we can post X ′j = Xj , ∀j 6= i. Now consider
a value v such that for some j 6= i, Xj = v is consistent (for a given local
consistency) whilst X ′j = v is not. This is for instance possible if Xi = S[i] was
the only support of Xj = v. We can prune Xj = v in both the master problem
and the sub-problem. This pruning can in turn trigger some propagation, hence
reducing the search space of the master problem.

However, as soon as one repair (or more) is allowed, that is b > 0, then
identifying the variables, for a given sub-problem, that must be assigned the
same as in the master problem is more difficult. Indeed, any variable can, at the
outset, be assigned differently as in the master problem (this will be the repair).
We now explore some ways to deduce equality constraints between a variable
and its primed homologue.

The first idea is to enforce a given level of consistency as pre-processing on
the sub-problem P ′. We will from now on consider that the level of consistency
is GAC, however it may be worthwhile to explore stronger consistencies (such
as Singleton Arc Consistency [1]). Suppose that after enforcing GAC on P ′,
the least number of discrepancies is exactly a + b, that is, Diff = {i|D(Xi) 6=
D′(X ′i)} & |Diff | = a + b. We can deduce ∀j 6∈ Diff, X ′j = Xj .

The second idea is that, intuitively, a repair must be close to the break in the
constraint graph. For instance, in a (1, 1)-super solution, any “repaired” variable
must share a constraint with the “broken” variable (say X). Indeed if it was not
the case, then it would mean that all the constraints involving X are satisfied by
the solution S for both X = S[X ] and X = v for a value v 6= S[X ]. Moreover, we
know that S satisfies all constraints, since it is a solution, therefore, the break
{X} need no repair at all, a valid alternative is X = v. We shall extend this
reasoning to any a, b, but first, let us introduce some necessary notation:

A path linking two variables X and Y is a sequence of constraints CV1
, . . . CVk

such that i = j+1 ⇒ Vi∩Vj 6= ∅ and X ∈ V1 and Y ∈ Vk, k is the length of the



path. The distance between two variables δ(X, Y ) is the length of the shortest
path between these variables (δ(X, X) = 0). ∆d(X) denotes the neighborhood
at a distance exactly d of X , i.e., ∆d(X) = {Y | δ(X, Y ) = d}. Γd(X) denotes
the neighborhood up to a distance d of X i.e., Γd(X) = {Y | δ(X, Y ) ≤ d}.
Similarly, we define the neighborhood Γd(A) (resp. ∆d(A)) of a subset of variable
A as simply

⋃
X∈A Γd(X) (resp. ∆d(A)).

Now we can state the following lemma. Informally, it shows that if there
exists a b-repair for a particular a-break A, then all reassignments are within the
neighborhood of A up to a distance b.

Lemma 1. Given a solution S and a set A of a variables, the following equiv-
alence (where R and R′ both denote repair solutions for the break A, that is
H(S|A, R|A) = a and H(S|A, R′|A) = a) holds:

∃R s.t. H(S, R) < d ⇔ ∃R′ s.t. H(S|Γd−a(A), R
′|Γd−a(A)) = H(S, R′) < d

Proof. We prove this lemma constructively. We start from two solutions S and
R that satisfy the premise of this implication and construct R′ such that S, R′

satisfy the conclusion, the converse is straightforward. We have H(S, R) = k1 <

k, therefore exactly k1 variables are assigned differently between S and R. We
also know that H(S|A, R|A) = |A| = a therefore only b = k1 − a are assigned
differently outside A. Now we change R into R′ in the following way. Let d be the
smallest integer such that ∀Xi ∈ ∆d(A), R[i] = S[i]. It is easy to see that d ≤ b

as ∆d1
(A) and ∆d2

(A) are disjoint iff d1 6= d2. We leave all variables in Γd(A)
unchanged, and for all other variables we set R′[i] to S[i]. Now we show that
R′ satisfies all constraints. Without loss of generality, consider any constraint
CV on a set of variables V . By definition, the variables in V belongs to at most
two sets ∆d1

(A) and ∆d2
(A) such that d1 and d2 are consecutive (or possibly

d1 = d2). We have 3 cases:

1. d1 ≤ d and d2 ≤ d: any X ∈ V is assigned as in R, therefore CV is satisfied.
2. d1 > d and d2 > d: any X ∈ V is assigned as in S, therefore CV is satisfied.
3. d1 = d and d2 = d+1: any X ∈ ∆d2

(A) is assigned as in S, and by definition
of R′, any X ∈ ∆d1=d(A) is assigned as in S, therefore CV is satisfied.

ut
Computing this neighborhood can be done as a preprocessing step by a simple

breadth first search on the constraint graph, i.e., the graph were any two variables
are connected iff they are constrained by the same constraint. The neighborhood
Γd(A) of a break A is recomputed each time, however it just requires a simple
union operation over the neighborhood of the elements in A.

Using this lemma we can infer the following equality constraints, given a
sub-problem P ′ for a break A: ∀i, Xi 6∈ Γb(A) ⇒ X ′i = Xi.

We give an example of such pruning, consider the problem P :

X1 = {1, 2, 4}
X2 = {1, 2}
X3 = {1, 2}
X4 = {1, 2}

X1 X2

sum is even 6=

X4

X3

=

sum ≤ 3



It is easy to see that P is arc consistent. Now suppose that we look for a
(1, 1)-super solution, and our first decision is to assign the value 1 to X1. The
domains are reduced so that P remains arc consistent:

X1 = {1}, X2 = {1}, X3 = {1, 2}, X4 = {1, 2}

Then we want to make sure that there exists a 1-repair for the break {X1}. We
then consider P ′ where D(X ′1) is set to D(X ′1) \ {1}. Moreover the constraint
AtMost2Diff is posted on Γ1({X1}) = (X1, X2):

X ′1 = {2, 4}, X ′2 = {1, 2}, X ′3 = {1, 2}, X ′4 = {1, 2}

Since P ′|{X′

1
} is satisfiable, (for instance, {〈X ′1 : 2〉} is a partial solution that

does not produce a domain wipe out in any variable of P ′) we continue searching.
However, if before solving P ′ in order to find a repair we first propagate arc
consistency, then we obtain the following domains:

X ′1 = {2, 4}, X ′2 = {2}, X ′3 = {1}, X ′4 = {2}

Observe that 2 ∈ D(X3) whilst 2 6∈ D(X ′3), this means that no repair for X1
can assign the value 2 to X3. However, by lemma 1 we can post the following
equality constraints: X ′3 = X3 & X ′4 = X4, since X ′3, X

′
4 6∈ Γ1(X

′
1). We can thus

conclude prune the value 2 from X3. In this toy example, this removal will make
P arc inconsistent, and therefore we can conclude without searching that X1

cannot be assigned to 1.

5 Conclusion and Future Work

A preliminary implementation of this algorithm showed considerable improve-
ment upon earlier methods for finding super solutions to the job-shop scheduling
problem. Although this method does not yet scale up to large instances, these
improvements might prove very useful when applied to the optimization ver-
sion [2]. In this case, we do not require all breaks to be repairable, but we try to
maximize their number. With this approach, we can tackle much larger instances
since we start from a regular solution, and then only, improve its repairability.
We expect this optimization algorithm to profit from the techniques introduced
in this paper.

References

1. Romuald Debruyne and Christian Bessière. Some practicable filtering techniques

for the constraint satisfaction problem. In IJCAI’97, pages 412–417, 1997.

2. E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satisfaction

and optimization. In Proceedings ECAI’04, 2004.

3. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming.

In Proceedings CP-AI-OR’04, 2004.

4. A. Parkes M. Ginsberg and A. Roy. Supermodels and robustness. In Proceedings

AAAI’98, pages 334–339, 1998.


