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Abstract. In the context of previous work on redundant modeling, permutation 
problems and matrix modeling, we introduce the notion of partial redundant 
modeling and categorical channeling constraints. To do so, we look at prob-
lems with categorical structure. Categorical channeling constraints also intro-
duce the more general notion of channeling constraints over global constraints 
in redundant models. This paper provides only the motivation for partial re-
dundant modeling and channeling categorical constraints. Future work will in-
clude implementation and testing as well as checking for scalability and flexi-
bility of the proposed technique.  

1   Introduction 

Considering a problem from different points of view may provide additional infer-
ence power. Redundant modeling combines different models of the same problem 
using channeling constraints [1]. Channeling constraints allow different formula-
tions of a problem to interact, propagating the constraints between different formula-
tions. This can result in a significant improvement in performance.  

Finding alternative models for a problem is not always a simple task. Nonetheless, 
some common CSP problem types have been identified for which finding an alterna-
tive model is fairly straightforward. One such problem type is a permutation problem 
[5]. This is a problem that has the same number of variables and values, where all 
the variables have the same domain and no two variables can be assigned the same 
value. Other constraints in the problem determine which permutations are acceptable 
as solutions. A permutation problem formulation (the primal model) can be trans-
lated into its dual by interchanging the variables with the values. The 0/1 version of  
a permutation problems can also be formulated as a matrix problem [3]. It is often 
the case in CSP that problems can be formulated as a matrix of decision variables. In 
a matrix problem some (or all) of the rows can be interchanged with some (or all) of 
the columns, thus different formulations of the same problem are also readily ob-
tained in this generalized case.  

Originally, work on redundant modeling assumed that redundant models must 
fully characterize the problem [1]. Later, Smith argued that only the primal model 



need fully characterize the problem, while the dual model need only have all the dual 
variables and channeling constraints between the two models (a minimal combined 
model) [5]. A primal model plus two redundant partial models have also been used to 
represent all the variables twice [2]. 

This paper extends the notion of a minimal combined model. It proposes the omis-
sion of some dual variables as well as the dual constraints, resulting in what we call 
partial redundant modeling. It also suggests that problem solving may benefit from 
more than two points of view, as practiced so far in redundant modeling. Partial 
redundant models originate in problems with a categorical structure, where the 
variables may be subdivided into categories. Often these categories can be identified 
as groups of variables that fall under n-ary constraints that partition the variables 
into disjoint sets. Real world problems, such as scheduling and rostering, may also 
have categorical structure. Logic puzzles are a class of problems with a simplified 
version of categorical structure. The advantage of such simplified (both in size and 
regularity of structure) problems is in the ease of exposition and investigation for 
possible future extension to more general categorical structures. We also introduce 
categorical channeling constraints, channeling constraints between global con-
straints in different partial redundant models. 

 This paper only provides an exposition and motivation for partial redundant mod-
eling and categorical constraints. Future work includes implementation and testing, 
as well as the exploration of the scalability and flexibility of the proposed technique. 
In the next section we introduce logic puzzles, and introduce the cross-hatch table, a 
representation often used for solving logic puzzles. The third section relates the 
cross-hatch table to permutation problems, as well as matrix and redundant model-
ing, and introduces partial redundant modeling. Finally we provide thoughts for 
future work.  

2   Logic puzzles 

A logic puzzle consists of a set of objects, a set of categories (same-size disjoint 
subsets of those objects), a set of semantic relations, which specify the relationships 
that hold between the categories, and a set of clues to the solution. From these clues 
and the semantic relations, new clues can be inferred, until the problem is solved. A 
CSP consists of a set of variables, a set of possible values for each variable (its do-
main), and a set of constraints that restrict the values these variables can assume. 
Logic puzzles can be modeled as CSPs with a single solution and a categorical struc-
ture.  In a logic puzzle, each category can be viewed as a subset of the CSP variables 
under an all-diff constraint [4], or as n(n-1) / 2 not-equal binary constraints, where n 
is the size of the category. One category can be chosen as the domain; the semantic 
relations along with the initial clues specify the constraints.  

Consider, for example, the Relay Relativity puzzle: “The Sontags and three other 
father-daughter teams competed in a relay race sponsored by the Garden Spring 
Girls’ Club. From the following clues, determine the full names of each father-
daughter team (one daughter’s name is Lisa) and the order in which the four teams 



finished. Ed and his daughter did not finish last; the Ahns did not finish first; Joyce 
finished either third or last. Gary and his daughter, who finished before the Carters, 
did not finish first; Inez finished either first or second. Hank and his daughter fin-
ished neither first nor last; Karen did not finish first. Frank and his daughter fin-
ished immediately after the Pizzi team, which does not include Hank. Inez and her 
father finished immediately before Joyce and her father.” This puzzle includes 4 
categories (Father, Daughter, Last name, finish Order). Each category has 4 objects, 
for a total of 16 objects. The implicit semantic relations here are that each team is 
made up of one father and one daughter, and that they both have the same last name. 

Casting a logic puzzle as a CSP means that it can be modeled as a matrix. How-
ever, with such a representation, the concept of category is easily lost, since all the 
variables occupy the rows of the matrix without clustering them by category. The all-
diff constraints suggest the category subdivision, but do not capture the relationships 
between the categories.  

3   Cross-Hatch Table 

A cross-hatch table is a common representation used to solve logic puzzles. Assume 
that objects in a problem are partitioned into m categories of size n. A submatrix is a 
matrix whose rows and columns are labeled by the objects in a category. The dual of 
a submatrix A is a new submatrix B in which the rows and columns of A have been 
interchanged. A category matrix is an m × m matrix each of whose entries is a sub-
matrix. A cross-hatch table is a partial category matrix; it includes only those sub-
matrices whose rows and columns are labeled by different categories, and it excludes 
the duals of its submatrices. The cross-hatch table T for our example appears in Fig-
ure 1.  

 

Fig. 1. Cross-hatch table T for the Relay Relativity logic puzzle with initial entries 
from the clues in the problem definition. 



In the remainder of this paper we will refer to individual entries in the submatrices 
of T as T(a,b), where a is the submatrix-row label and b is the submatrix-column 
label. A 1 entry in a submatrix indicates that the objects labeling the corresponding 
row and column are related to each other. For example, in Figure 1, T(Third, Joyce) 
= 1 indicates that Joyce and her father arrived in the third position. Two types of 
inference are intrinsic to the cross-hatch table representation. The first type is exclu-
sion/elimination. Since each row and column in a submatrix must have exactly one 1 
entry, zeros can be inserted in the remaining entries in that row and column (within 
the submatrix) by elimination. Similarly, in an n×n submatrix, if there are n-1 zeroes 
in a row or column, the remaining entry must be a 1 by exclusion. The second type 
of inference inherent in the cross-hatch table representation is submatrix row/column 
duplication. T(A, B) = 1 means that A and B correspond to each other. Therefore, 
everything that is known about A can be inferred for B. This is easily reflected by 
duplicating every submatrix row or column corresponding to A into every row or 
column corresponding to B in another submatrix and vice versa. For example, if 
T(First, Lisa) = 1, we can duplicate the row or column for First in the Order-X sub-
matrix, where X is some category other than Daughter, into the row or column for 
Lisa in the Daughter-X submatrix. Figure 2 shows T after all exclusion/elimination 
and submatrix row/column duplication on Figure 1. Note the amount of added in-
formation in the table obtained only through inference.  

4   Cross-Hatch Table and CP Modeling 

An intuitive CSP model for our problem would be to select the objects in one cate-
gory as the domain values, and take all other objects in the other categories to be the 
variables. Four different models can be obtained this way, each choosing a different 
category as the domain values. We will refer to one of these models arbitrarily as the 

 

Fig. 2. Cross-hatch table for the problem of Figure 1 after exclusion/elimination (italics) 
and submatrix row/column duplication (bold) inference. 



primal model, on which all the constraints of the problem are expressed. Four addi-
tional models of the problem can be obtained by converting each of these into their 
0/1 equivalent. The sub-matrices in the first row of the cross-hatch table correspond 
to a CSP 0/1 matrix representation of the problem, where the objects in the Father, 
Daughter and Order categories are the variables, and the objects in Last are the val-
ues. In the full category matrix, the middle row and the bottom row each correspond 
to alternative but equivalent 0/1 models of the same problem.  

The cross-hatch table closely resembles CSP matrix redundant modeling. How-
ever, redundant modeling typically uses one primal model on which all the con-
straints are specified, and one dual model with channeling constraints. The cross-
hatch table maintains multiple points of view on the problem to retain information 
about the categories and their relationship. In our problem there are four 0/1 alterna-
tives to the primal model. Using all of them would, however, be overly redundant; 
too much repeated information would add nothing to the inference process; it would 
simply increase the expense of propagating channeling constraints over all these 
models. Given the categorical structure of the problem, we can use portions of multi-
ple redundant models to gain propagation efficiency. The cross-hatch table represen-
tation shows that redundant information is useful if we include only sub-matrices 
whose rows and columns are labeled by different categories and not include sub-
matrix duals. In this way we retain information about the relationship between the 
categories, and obtain greater propagation power via channeling constraints between 
the submatrices while keeping redundancy to a minimum. 

The exclusion/elimination inference process of the cross-hatch table amounts to 
propagating an all-diff constraint over the variables in a category (the subproblems). 
Although all-diff constraints must be included in all the models (primal as well as 
partial redundant models), these are optimized constraints.  

Walsh shows that all-diff constraints in the primal model have greater propagation 
power than arc consistency on the channeling constraints [6]. He also demonstrates 
that arc consistency on channeling constraints has greater propagation power than 
arc consistency on not-equal constraints in the primal model. Thus, in situations 
where the efficiency of global constraints cannot be exploited, redundant modeling 
and channeling constraints can be an improvement.  

Given the categorical structure of logic problems, we can exploit both these results 
through partial redundant modeling. We can use the all-diff constraint on the subma-
trices (the partial redundant models), but use redundancy and the power of channel-
ing constraints between these partial submodels. The added power of the partial 
redundant model is that of exploiting submatrix row/column duplication borrowed 
from the cross-hatch table. In the CSP version, the all-diff constraint determines the 
category subdivision. Therefore, submatrix row/column duplication in CSP amounts 
to adding channeling constraints between the all-diff constraints in the redundant 
partial models. These channeling constraints make certain that value assignments 
under the all-diff constraint in one partial model are reflected under an all-diff con-
straint in some other partial model. We call these categorical channeling con-
straints.  



In problems with a categorical structure determined by all-diff constraints on sub-
problems, we can exploit the propagation power of partial redundant models by im-
posing categorical channeling constraints over the all-diff constraints of the primal 
and partial redundant models. Implementation and complexity details of categorical 
channeling constraints will be considered in future work.  

5 Future Work 

We have defined partial redundant modeling for problems with categorical structure. 
Partial redundant modeling introduces the idea of using categorical channeling con-
straints between the all-diff constraints. This concept can be generalized to explore 
channeling constraints over other global constraints. This paper provides only an 
initial insight on possible work to be done. Future work includes the implementation 
and testing of partial redundant modeling and categorical channeling constraints for 
logic puzzles. Implementation and scalability of categorical channeling constraints 
needs to be tested. Channeling constraints over other kinds of global constraints will 
also be sought.  
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