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Abstract. In the context of previous work on redundant miodglpermutation
problems and matrix modeling, we introduce the amotf partial redundant
modeling and categorical channeling constraints. To do so, we look at prob-
lems with categorical structure. Categorical chéingeconstraints also intro-
duce the more general notion of channeling comgsaiver global constraints
in redundant modelsThis paper provides only the motivation for partiet
dundant modeling and channeling categorical comsstaFuture work will in-
clude implementation and testing as well as chegcfon scalability and flexi-
bility of the proposed technique.

1 Introduction

Considering a problem from different points of vieway provide additional infer-
ence power. Redundant modeling combines differendets of the same problem
using channeling constraints [1]. Channeling caists allow different formula-
tions of a problem to interact, propagating thestaints between different formula-
tions. This can result in a significant improveminperformance.

Finding alternative models for a problem is notafea simple task. Nonetheless,
some common CSP problem types have been idenfifieshich finding an alterna-
tive model is fairly straightforward. One such gdesh type is gpermutation problem
[5]. This is a problem that has the same numberagibles and values, where all
the variables have the same domain and no twohtasidan be assigned the same
value. Other constraints in the problem determih&lkvpermutations are acceptable
as solutions. A permutation problem formulatione(firimal model) can be trans-
lated into itsdual by interchanging the variables with the values. THeversion of
a permutation problems can also be formulated asteix problem [3]. It is often
the case in CSP that problems can be formulatednaatrix of decision variables. In
a matrix problem some (or all) of the rows canrerichanged with some (or all) of
the columns, thus different formulations of the sapmoblem are also readily ob-
tained in this generalized case.

Originally, work on redundant modeling assuntbdt redundant models must
fully characterize the problem [1]. Later, Smittgaed that only the primal model



need fully characterize the problem, while the duatlel need only have all the dual
variables and channeling constraints between tloentadels (aminimal combined
model) [5]. A primal model plus two redundant partial mizdeave also been used to
represent all the variables twice [2].

This paper extends the notion of a minimal combimediel. It proposes the omis-
sion of some dual variables as well as the duastcaimts, resulting in what we call
partial redundant modeling. It also suggests that problem solving may berfiedin
more than two points of view, as practiced so faredundant modeling. Partial
redundant models originate in problems withcategorical structure, where the
variables may be subdivided into categorieften these categories can be identified
as groups of variables that fall under n-ary caists that partition the variables
into disjoint sets. Real world problems, such asedaling and rostering, may also
have categorical structurkogic puzzes are a class of problems with a simplified
version of categorical structure. The advantagsuch simplified (both in size and
regularity of structure) problems is in the easeexgbosition and investigation for
possible future extension to more general categbstructures. We also introduce
categorical channeling constraints, channeling constraints between global con-
straints in different partial redundant models.

This paper only provides an exposition and maivafor partial redundant mod-
eling and categorical constraints. Future workudels implementation and testing,
as well as the exploration of the scalability aledibility of the proposed technique.
In the next section we introduce logic puzzles, emicbduce theross-hatch table, a
representation often used for solving logic puzziBse third section relates the
cross-hatch table to permutation problems, as aglnatrix and redundant model-
ing, and introduces partial redundant modeling.al®nwe provide thoughts for
future work.

2 Logic puzzles

A logic puzzle consists of a set olfjects, a set ofcategories (same-size disjoint
subsets of those objects), a sesafantic relations, which specify the relationships
that hold between the categories, and a set o§ ¢tuéhe solution. From these clues
and the semantic relations, new clues can be sdewnntil the problem is solved. A
CSP consists of a set adriables, a set of possible values for each variabledgts
main), and a set ofongraints that restrict the values these variables can assum
Logic puzzles can be modeled as CSPs with a ssojlgion and a categorical struc-
ture. In a logic puzzle, each category can be eikas a subset of the CSP variables
under an all-diff constraint [4], or a&n-1) / 2 not-equal binary constraints, where n
is the size of the category. One category can beerhas the domain; the semantic
relations along with the initial clues specify ttanstraints.

Consider, for example, the Relay Relativity puzZiEhe Sontags and three other
father-daughter teams competed in a relay racessped by the Garden Spring
Girls’ Club. From the following clues, determineettiull names of each father-
daughter team (one daughter’'s name is Lisa) andrither in which the four teams



finished. Ed and his daughter did not finish ldlse Ahns did not finish first; Joyce
finished either third or last. Gary and his daughiého finished before the Carters,
did not finish first; Inez finished either first @econd. Hank and his daughter fin-
ished neither first nor last; Karen did not finiitst. Frank and his daughter fin-
ished immediately after the Pizzi team, which doesinclude Hank. Inez and her
father finished immediately before Joyce and hénefa” This puzzle includes 4
categories (Father, Daughter, Last name, finisheQrdtach category has 4 objects,
for a total of 16 objects. The implicit semantitat®ns here are that each team is
made up of one father and one daughter, and tbwtathth have the same last name.

Casting a logic puzzle as a CSP means that it eamddeled as a matrix. How-
ever, with such a representation, the concept tefgeay is easily lost, since all the
variables occupy the rows of the matrix withoutstduing them by category. The all-
diff constraints suggest the category subdiviskrt,do not capture the relationships
between the categories.

3 Cross-Hatch Table

A cross-hatch table is a common representation tssedlve logic puzzles. Assume
that objects in a problem are partitioned intgategories of size. A submatrix is a
matrix whose rows and columns are labeled by thextsbin a category. The dual of
a submatrix A is a new submatrix B in which the scand columns of A have been
interchanged. Acategory matrix is anmx m matrix each of whose entries is a sub-
matrix. A cross-hatch table is a partial category matrix; it includes only skcsub-
matrices whose rows and columns are labeled bgrdift categories, and it excludes
the duals of its submatrices. The cross-hatch fRfibe our example appears in Fig-
ure 1.

FATHER DAUGHTER ORDER
Ed |Frank| Gary | Hank| Inez |Joyce|Karen| Lisa | first second third |fourth

Ahn 0
5 carter 0 0
3 | Pizzi 0 0 0

Sontag
o first 0 0 0 0 0
2 i T

i

© [Houth | 0 0 [0 [0
1o Inez
& |_Joyce
g Kgren
(=] Liza

Fig. 1. Cross-hatch table T for the Relay Relativity logigzzle with initial entries
from the clues in the problem definition.



In the remainder of this paper we will refer toiidual entries in the submatrices
of T as T(a,b), where a is the submatrix-row ladmedl b is the submatrix-column
label. A 1 entry in a submatrix indicates that digects labeling the corresponding
row and column are related to each other. For el@mpFigure 1, T(Third, Joyce)
= 1 indicates that Joyce and her father arrivethan third position. Two types of
inference are intrinsic to the cross-hatch tabjgasentation. The first type éclu-
sion/elimination. Since each row and column in a submatrix muse texactly one 1
entry, zeros can be inserted in the remaining &nin that row and column (within
the submatrix) by elimination. Similarly, in axn submatrix, if there are-1 zeroes
in a row or column, the remaining entry must be lay Exclusion. The second type
of inference inherent in the cross-hatch tableasgmtation isubmatrix row/column
duplication. T(A, B) = 1 means that A and B correspond to eattter. Therefore,
everything that is known about A can be inferredBo This is easily reflected by
duplicating every submatrix row or column corregfiag to A into every row or
column corresponding to B in another submatrix &iwg versa. For example, if
T(First, Lisa) = 1, we can duplicate the row oruroh for First in the Order-X sub-
matrix, where X is some category other than Daughit¢o the row or column for
Lisa in the Daughter-X submatrix. Figure 2 showaffer all exclusion/elimination
and submatrix row/column duplication on Figure Tté&Nthe amount of added in-
formation in the table obtained only through infese.

4 Cross-Hatch Tableand CP Modding

An intuitive CSP model for our problem would besklect the objects in one cate-
gory as the domain values, and take all other tthjecthe other categories to be the
variables. Four different models can be obtainésl way, each choosing a different
category as the domain values. We will refer to onthese models arbitrarily as the

FATHER DAUGHTER CORDER
Ed |Frank| Gary | Hank] Inez |Joyce|Karen| Lisa | first gecong third |fourth
Ahn 0 0 0
5| carer 0 0 0 0
3 Pz 0 0 0 0
Sontag
- first ] 0 0 0 1] 0 0 1
W second | 0 0 1 0 0 0
% third Q Q 0 1 0 Q
fourth 0 1 0 0 0 0 1 0
it Inez 0 0
£ Joyce 0 0
§ Karen 0 1 0 0
[=] Lisa 1 0 0 0

Fig. 2. Cross-hatch table for the problem of Figure 1rafteclusion/elimination (italics)
and submatrix row/column duplication (bold) infecen



primal model, on which all the constraints of threljgfem are expressed. Four addi-
tional models of the problem can be obtained byering each of these into their
0/1 equivalent. The sub-matrices in the first rdwhe cross-hatch table correspond
to a CSP 0/1 matrix representation of the problehere the objects in the Father,
Daughter and Order categories are the variableb s objects in Last are the val-
ues. In the full category matrix, the middle rowdahe bottom row each correspond
to alternative but equivalent 0/1 models of the sgmoblem.

The cross-hatch table closely resembles CSP me¢dundant modeling. How-
ever, redundant modeling typically uses one primaldel on which all the con-
straints are specified, and one dual model withnoleting constraints. The cross-
hatch table maintains multiple points of view or roblem to retain information
about the categories and their relationship. Inpsoblem there are four 0/1 alterna-
tives to the primal model. Using all of them wouldywever, be overly redundant;
too much repeated information would add nothingh®inference process; it would
simply increase the expense of propagating champalonstraints over all these
models. Given the categorical structure of the lgrabwe can use portions of multi-
ple redundant models to gain propagation efficiefitye cross-hatch table represen-
tation shows that redundant information is usefuleé include only sub-matrices
whose rows and columns are labeled by differenegmates and not include sub-
matrix duals. In this way we retain information abthe relationship between the
categories, andbtain greater propagation power via channelingtraints between
the submatrices while keeping redundancy to a mimm

The exclusion/elimination inference process of thess-hatch table amounts to
propagating an all-diff constraint over the varésbin a category (the subproblems).
Although all-diff constraints must be included ith the models (primal as well as
partial redundant models), these are optimizedtcaings.

Walsh shows that all-diff constraints in the primabdel have greater propagation
power than arc consistency on the channeling caims$r [6]. He also demonstrates
that arc consistency on channeling constraintsgneater propagation power than
arc consistency on not-equal constraints in thengrimodel. Thus, in situations
where the efficiency of global constraints cannetelxploited, redundant modeling
and channeling constraints can be an improvement.

Given the categorical structure of logic problems,can exploit both these results
through partial redundant modeling. We can usethdiff constraint on the subma-
trices (the partial redundant models), but usendency and the power of channel-
ing constraints between these partial submodele dd#ded power of the partial
redundant model is that of exploiting submatrix f@sumn duplication borrowed
from the cross-hatch table. In the CSP version athdiff constraint determines the
category subdivision. Therefore, submatrix row/owhuduplication in CSP amounts
to adding channeling constraints between the #lledinstraints in the redundant
partial models. These channeling constraints makeio that value assignments
under the all-diff constraint in one partial modeé reflected under an all-diff con-
straint in some other partial model. We call thestegorical channeling con-
straints.



In problems with a categorical structure determibgdall-diff constraints on sub-
problems, we can exploit the propagation powerasfipl redundant models by im-
posing categorical channeling constraints overalhéiff constraints of the primal
and partial redundant models. Implementation amdpbexity details of categorical
channeling constraints will be considered in futwek.

5 Future Work

We have defined partial redundant modeling for ewois with categorical structure.
Partial redundant modeling introduces the ideasaigicategorical channeling con-
straints between the all-diff constraints. This agpt can be generalized to explore
channeling constraints over other global constsaifihis paper provides only an
initial insight on possible work to be done. Futwaerk includes the implementation
and testing of partial redundant modeling and aategl channeling constraints for
logic puzzles. Implementation and scalability ofegmrical channeling constraints
needs to be tested. Channeling constraints over &thds of global constraints will
also be sought.
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