
Full Arc Consistency in WCSP and in

Constraint Hierarchies with Finite Domains

Student: Josef Zlomek
Supervisor: Roman Barták

Department of Theoretical Computer Science
Faculty of Mathematics and Physics

Charles University
Prague, Czech Republic
zlomek@kti.mff.cuni.cz

Abstract. Consistency techniques proved to be an efficient method for
reducing the search space of CSP. Several consistency techniques were
proposed for soft constraint frameworks too. In this paper, we propose
a full arc consistency (FAC) for weighted CSP (WCSP) and algorithms
for enforcing FAC and maintaining it during Branch & Bound search.
We also define the transformation of constraint hierarchies with finite
domains to WCSP.

1 Introduction

Consistency techniques reduce the search space of CSP and thus make larger
problems solvable. They reduce the variables’ domains by removing values that
can’t be in any solution. Given a constraint, the value can be pruned if there
are no values in the domains of other variables of the constraint such that the
constraint is satisfied by these values.

Weighted CSP [2] extends classical CSP by assigning costs to tuples. The
costs from different constraints are combined together. Solutions of WCSP are
those complete assignments that have the lowest combined cost. Because of the
costs, we can use the optimality reasoning in addition to feasibility reasoning.
If all the complete assignments that contain a given value assigned to a given
variable have a combined cost greater than the minimal cost, we can prune such
a value because it can’t be in a solution.

Several consistency techniques have been introduced for WCSP. The star arc
consistency (AC*) [3] enforcing algorithm transforms the WCSP problem by
sending costs from binary constraints to unary ones and from unary constraints
to nullary constraint C∅. This enables an efficient way to detect values that would
cause a too high combined cost. The values are pruned if their cost together with
the cost of C∅ is too high.

The costs are never sent from unary constraints to binary constraints by AC*
algorithm. The definition of a full star directional arc consistency [2] allows the
cost sending process to be extended by sending desirable amount of cost from

unary constraints to binary ones, but only in one direction according to the
order of variables. This extension makes it possible to send the cost from one
variable to another, which causes more costs to be combined together and thus
more values to be pruned.

In this paper, we sketch a possible direction for future research in consistency
techniques for soft constraints. In particular, we extend the cost sending process
from [2] even more. We define a full star arc consistency that enables the costs
to be sent between variables in any direction. We also show that the WCSP
algorithms can be used for constraint hierarchies with finite domains too. We
consider the order of variables during propagation too because it might affect
the effectivity.

The paper is structured as follows. Section 2 gives preliminary definitions.
Section 3 defines full star arc consistency and proposes an enforcing algorithm.
Section 4 defines transformation of constraint hierarchies to WCSP so that the
proposed algorithm could be used for them too. Section 5 considers the order of
variables when solving constraint hierarchies. Finally, Section 6 gives conclusions
and directions for future work.

2 Preliminaries

2.1 Frameworks

A constraint satisfaction problem (CSP) is a triple P = (V, D, C). V is a set
of variables. Each variable vi ∈ V has a finite domain Di ∈ D of possible
values. (i, a) denotes the assignment of value a ∈ Di to variable vi. C is a set of
constraints. Constraint c is a relation defined on a subset of variables, denoted
as vars(c). A unary constraint is a constraint Ci ⊆ Di, a binary constraint is a
constraint Cij ⊆ Di×Dj . A tuple is an assignment to a set of variables. Tuple t is
consistent if all constraints referring only to variables assigned by t are satisfied.
A solution of P is a consistent complete assignment. A constraint graph of P is
a graph whose vertices are the variables and edges are the (binary) constraints.

Following the paper [2], a weighted CSP (WCSP) is a tuple P = (k, V, D, C).
k ∈ {1, . . . ,∞} defines the valuation structure S(k) = ({0, . . . , k},⊕,≥), where
⊕ is defined as a ⊕ b = min(k, a + b) and ≥ is the standard order on natural
numbers. V is a set of variables, D is a set of variables’ domains, and C is
a set of constraints. Constraints assign costs to assignments to variables. For
instance, a binary constraint is a function Cij : Di × Dj → {0, . . . , k}. C∅ is a
nullary constraint. The cost of a tuple is the combined cost of the constraints.
A solution is a tuple with the minimal cost.

A constraint hierarchy H = H0 ∪ . . .∪Hl is a (finite) multiset of constraints.
H0 denotes the set of required constraints, H1 is the set of the most preferred
constraints etc. The constraints of the i-th level Hi are more preferred than the
constraints in Hi+1. A comparator better is an irreflexive and transitive relation
that compares two assignments with respect to the hierarchy. If there is an
assignment that satisfies all constraints up to level k, then all better assignments

satisfy all constraints up to level k too. Comparators use error functions to find
out how well the assignment satisfies a constraint. The error is a non-negative
real number, the lower error the better. Global comparators aggregate errors for
each level and compare the aggregated errors while local comparators compare
the error for each constraint separately. The solution is such an assignment of
variables that satisfies all the required constraints and satisfies the preferential
constraints best.

2.2 Some Local Consistencies in WCSP

Definition. [2] (i, a) is star node consistent (NC*) if C∅ ⊕Ci(a) < k. Variable
vi is NC* if all its values are NC* and there exists a value a ∈ Di such that
Ci(a) = 0. P in NC* if every variable is NC*.

Definition. [2] (i, a) is arc consistent (AC) with respect to constraint Cij if
there is a value b ∈ Dj such that Cij(a, b) = 0. Variable vi is AC if all its
values are AC with respect to every binary constraint affecting vi. P is AC* if
all variables are AC and NC*.

Definition. [2] (i, a) is directional arc consistent (DAC) with respect to con-
straint Cij , j > i, if there is a value b ∈ Dj such that Cij(a, b) ⊕ Cj(b) = 0.
Variable vi is DAC if all its values are DAC with respect to every constraint Cij ,
j > i. P is DAC* if all variables are DAC and NC*.

Definition. [2] P is full star directional arc consistent (FDAC*) if it is DAC*
and AC*.

Definition. [2] Subtraction 	 of b from a is defined as

a 	 b =

{

a − b a 6= k

k a = k

Definition. [2] Projection of α cost units from Cij ∈ C to value (i, a) means
subtracting α from Cij(a, b) ∀b ∈ Dj and adding α to Ci(a).

Definition. [2] Extension of β cost units from value (i, a) to Cij ∈ C means
adding β to Cij(a, b) ∀b ∈ Dj and subtracting β from Ci(a).

The projection and extension are used by the consistency algorithms [2, 3] to
send the costs from one constraint to another.

3 Full Arc Consistency in WCSP

FDAC* is the strongest form of consistency defined above. However, it allows
the costs to be propagated only in one direction with respect to the fixed order of
variables. This is rather limiting so we propose a form of consistency that allows
to propagate in any direction. Because it may not be always possible to send
the cost along a directed edge, the proposed extension enables the costs to be
sent along other paths and to be concentrated in different variables. Because we
might combine more costs, we could prune more values from variables’ domains.

Definition. (i, a) is full arc consistent (FAC) with respect to constraint Cij if
there is a value b ∈ Dj such that Cij(a, b) ⊕ Cj(b) = 0. Variable x is FAC
with respect to variable y if there exists a path x = x0, . . . , xp = y such that
∀i = 0, . . . , p − 1 all values of xi are FAC with respect to constraint Cxi,xi+1

.
Problem P is FAC if there exists a variable x such that x is FAC with respect to
every variable y 6= x. P is FAC* if it is FAC and NC*.

Remark. If (i, a) is FAC with respect to constraint Cij using support b, then
(j, b) is AC with respect to constraint Cji using support a.

Remark. The FAC relation can be seen as a rooted tree where ∀v ∈ V parent(v)
is FAC with respect to v.

Now we will describe in more detail how to make the problem FAC* and
maintain it FAC* during the Branch & Bound search.

At first, we make the problem FAC* by moving the costs towards one variable
and to C∅. We move the costs from one variable to another by extending and
projecting certain cost units. While making the problem FAC*, we remember
the maximal cost ∀vi ∈ V ∀a ∈ Di m(i, a) that value a of variable vi had.
So m(i, a) is equal to C∅ + Ci(a) at some moment during the FAC* enforcing
process. Because m(i, a) is the cost moved from other variables, it is the lower
bound of the cost of the solution that contains (i, a).

Then, we move the costs from one variable to another to update m(i, a)
where necessary. Since m(i, a) is used as a lower bound of the cost of solution
that contains (i, a), we do not have to visit all edges (constraints) but we would
like to visit all variables. Nevertheless, the lower bounds would be more accurate
if we visited all edges.

When we are going to assign a value to variable vi during Branch & Bound
search, we make variable vi FAC* with respect to all other variables. Thus, the
costs move to vi. The updated maximal costs m(i, a) can be used as a heuristic
to choose a value of the variable. If m(i, a) ≥ k, we can prune the value a because
m(i, a) is the lower bound and the current best solution can’t be improved by
extending the current assignment. When we find a solution, we update k to the
cost of the solution.

After we choose an assignment (i, a), we actually delete all other values of
variable vi. This enables us to move costs Ci(a) to C∅ and Cij(a, b) to Cj(b) for
every constraint Cij similarly to [3]. These costs are propagated along the rest of
the constraint graph and the values m(i, a) are updated during the propagation.
The values m(i, a) also limit the propagation – if m(j, b) will not increase when
moving cost to (j, b), is it not necessary to move cost to (j, b).

4 Consistency on Constraint Hierarchies

Constraint hierarchies [1] are another popular soft constraint framework, which
provides a very simple way for a user to specify preferences. We would like to
use the ideas from the previous section for the constraint hierarchies too. We

describe how a constraint hierarchy with unsatisfied-count-better comparator
can be transformed to WCSP. Other global comparators may be transformed in
a very similar way. After the transformation, we can use the WCSP algorithm.

Definition. Unsatisfied-count-better comparator [1] is a global comparator, its
aggregated error for level Hi is the number of unsatisfied constraints from Hi.

Constraint hierarchy with the unsatisfied-count-better comparator can be
transformed to WCSP as follows.

HCl = 1 (1)

HCi = (1 + |Hi+1|) · HCi+1 ∀i = 0, . . . , l − 1 (2)

k = HC0 (3)

∀cj ∈ H cj(t) =

{

0 cj(t) holds
HCi ¬cj(t) ∧ cj ∈ Hi

(4)

Cv(t) =
∑

ci ∈ H

vars(ci) = v

ci(t) (5)

(1) means that the cost of the weakest constraints is equal to 1. (2) makes
the cost of a stronger constraint to be higher than the sum of costs of all weaker
constraints. (3) enforces that the solution must satisfy all required constraints.
(4) sets the appropriate costs to tuples of a constraint of the constraint hierarchy.
(5) combines the costs of constraints that are defined over the same variables.

5 Order of Variables

When enforcing FDAC*, a “good” order of variables is needed so that the con-
sistency could eliminate as many values as possible. The initial step of FAC
enforcing algorithm may find more accurate lower bounds too when the “good”
order of variables is used.

Definition. A weighted constraint graph for WCSP is a constraint graph with
weights assigned to edges. The weight of the edge is the maximal cost of the
corresponding constraint.

Because the costs are being sent along directed paths, it seems reasonable
to order the variables so that the constraint graph would contain many paths
directed according to the variables. Path P = (vp1

, . . . , vpm
) is directed according

to the variables if pi < pi+1 ∀i ∈ {1, . . . , m − 1}.
For example, we could order the variables as follows. At first, we create a

weighted constraint graph and find its maximum spanning tree. Then, we choose
one leaf of the spanning tree and make all edges directed from the chosen leaf.
Finally, we topologically sort the spanning tree while preferring the variables
of the stronger constraints if there are more options. The desired order of the
variables is the topological order.

Example. Figure 1.a shows a WCSP with variables x, y and z, the domain of
every variable is {1, 2, 3}. The WCSP was transformed from a constraint hier-
archy with a strong constraint Cxy(a, b) = true iff a < b and a weak constraint
Cyz(a, b) = true iff a < b. Hence, the cost of unsatisfaction of the strong con-
straint is 2 and the cost of unsatisfaction of the weak constraint is 1. Unary costs
are illustrated inside the domain value. The edges illustrate the binary costs –
thin edges represent a cost of 1 while strong edges represent a cost of 2.

Figure 1 demonstrates how the costs are being moved from one constraint
to another when the order of variables is (x, y, z). Problem 1.a is the original
situation. Figure 1.b is the equivalent problem after projecting 2 cost units from
Cxy to Cx(3) and 1 cost unit from Cyz to Cy(3). Figure 1.c shows the state after
extending 1 cost unit from Cy(3) to Cxy and projecting 1 cost unit from Cxy to
Cx(2). The problem 1.c is FAC* with respect to variable z.

If the order of variables was (x, z, y), only projections from Cxy to Cx(3) and
from Czy to Cz(1) could be performed. Cx(2) would be 0, which is less accurate
lower bound than the lower bound for the variable order (x, y, z).

Fig. 1. Example of propagation

6 Conclusions

This paper suggests possible directions for research in soft constraints propaga-
tion. We have strengthen the cost propagation by allowing to send costs in any
direction which should cause propagation of more costs and stronger domain
pruning. In future, we would like to define the algorithm formally and compare
the results. We would also like to use the ideas from WCSP to solve constraint
hierarchies directly. We believe that it is promising to order the variables. We
would like to study possible orderings more deeply.

References

1. A. Borning, M. Maher, A. Martindale, M. Wilson. Constraint Hierarchies and Logic

Programming. In Proceedings of 6th International Conference on Logic Program-
ming, pages 149–164, MIT Press, 1989.

2. J. Larrosa, T. Schiex. In the quest of the best form of local consistency for Weighted

CSP. In Proceedings of IJCAI–03, Acapulco, Mexico, 2003.
3. J. Larrosa, T. Schiex. Solving Weighted CSP by Maintaining Arc Consistency.

Artificial Intelligence, Volume 159 (1–2), 1–26, November 2004.

