
Speeding up constrained path solvers with a reachability
propagator

Student: Luis Quesada Supervisors: Peter Van Roy and Yves Deville

Université catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

{luque, pvr, yde}@info.ucl.ac.be

1 Introduction

We present a propagator which we call Reachability that implements a generalized
reachability constraint on a directed graph g. Given a source node source in g, we
can identify three parts in the Reachability constraint: (1) the relation between each
node of g and the set of nodes that it reaches, (2) the association of each pair of nodes
〈source, i〉 with its set of cut nodes (i.e., the nodes that are included in all paths going
from source to i), and (3) the association of each pair of nodes 〈source, i〉 with its set
of bridges (i.e., the edges that are included in all paths going from source to i).

Our contribution is a propagator that is suitable for solving the Simple Path problem
with mandatory nodes [Sel02,CB04]. This problem consists in finding a simple path in a
directed graph containing a set of mandatory nodes. A simple path is a path where each
node is visited once. Certainly, this problem can be trivially solved if the graph has no
cycles since in that case there is only one order in which we can visit the mandatory
nodes [Sel02]. However, if the graph has cycles the problem is NP complete since we
can easily reduce the Hamiltonian Path problem [GJ79,CLR90] to this problem.

Notice however that we can not trivially reduce Simple Path with mandatory nodes
to Hamiltonian path. One could think that optional nodes (i.e. nodes that are not manda-
tory) can be eliminated in favor of new edges as a preprocessing step, which finds a path
between each pair of mandatory nodes. However, the problem is that the paths that are
precomputed may share nodes. This may lead to violations of the requirement that a
node should be visited only once.

In figure 1, we illustrate this situation. Mandatory nodes are in solid lines. In the
second graph we have eliminated the optional nodes by connecting each pair of manda-
tory nodes depending on whether there is a path between them. However, we observe
that the second graph has a simple path going from node 1 to node 4 while the first
one does not. Indeed, the simple path in the second graph is not a valid solution to the
original problem since it implies that node 3 is visited twice.

The other reason that makes the elimination of optional nodes difficult is that finding
k pairwise disjoint paths between k pairs of nodes 〈s1, d1〉,〈s2, d2〉,...,〈sk, dk〉 is NP
complete [SP78].

In general, we can say that the set of optional nodes that can be used when going
from a mandatory node a to a mandatory node b depends on the path that has been
traversed before reaching a. This is because the optional nodes used in the path going
from the source to a can not be used in the path going from a to b.



2 Luis Quesada et al.

Fig. 1. Relaxing Simple Path with mandatory nodes by eliminating the optional nodes

2 The reachability propagator

2.1 Reachability constraint

The Reachability Constraint is defined as follows:

Reachability(g, source, rn, cn, be) ≡ ∀i∈N .

rn(i) = Reach(g, i)∧
cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(1)
where g is a graph whose set of nodes is a subset of N , source is a node of g,

rn(i) is the set of nodes that i reaches in g (defined by Reach(g, i)), cn(i) is the set of
nodes appearing in all paths from source to i in g (defined by CutNodes(g, source, i)),
and be(i) is the set of edges appearing in all paths from source to i in g (defined by
Bridges(g, source, i)) 1.

The above definition of Reachability implies the following properties which are
crucial for the pruning that Reachability performs. These properties define relations
between the functions rn, cn, be, nodes and edges. These relations can then be used for
pruning, as we show in section 2.2.

1. If 〈i, j〉 is an edge of g, then i reaches j.

∀〈i,j〉∈edges(g) .j ∈ rn(i) (2)

2. If i reaches j, then i reaches all the nodes that j reaches.

∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) (3)

3. If source reaches i and j is a cut node between source and i in g, then j is reached
from source and j reaches i:

∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) (4)

1 Any node in N is a cut node between i and j if there is no path going from i to j. Similarly,
any edge in N × N is a bridge between i and j if there is no path going from i to j.



Lecture Notes in Computer Science 3

4. Reached nodes, cut nodes and bridges are nodes and edges of g:

∀i∈N .rn(i) ⊆ nodes(g)
(5)

∀i∈N .cn(i) ⊆ nodes(g)
(6)

∀i∈N .be(i) ⊆ edges(g)
(7)

2.2 Pruning rules

We implement the constraint in Equation 1 with the propagator

Reachability(G, Source, RN, CN, BE) (8)

In this propagator we have that:

– G is a graph variable (i.e., a variable whose domain is a set of graphs [DDD05]).
The upper bound of G (max(G)) is the greatest graph to which G can be instanti-
ated, and its lower bound (min(G)) is the smallest graph to which G can be instan-
tiated. So, i ∈ nodes(G) means i ∈ nodes(min(G)) and i 6∈ nodes(G) means i 6∈
nodes(max(G)) (the same applies for edges). In what follows, {〈N1, E1〉#〈N2, E2〉}
will denote a graph variable whose lower bound is 〈N1, E1〉 and upper bound is
〈N2, E2〉. I.e., if g = 〈n, e〉 is the graph that G approximates, then N1 ⊆ n ⊆ N2

and E1 ⊆ e ⊆ E2.
– Source is an integer representing the source in the graph.
– RN(i) is a Finite Integer Set (FS) [Ger97] variable associated with the set of nodes

that can be reached from node i. The upper bound of this variable (max(RN(i)))
is the set of nodes that could be reached from node i (i.e., nodes that are not in the
upper bound are nodes that are known to be unreachable from i). The lower bound
(min(RN(i))) is the set of nodes that are known to be reachable from node i. In
what follows {S1#S2} will denote a FS variable whose lower bound is the set S1

and upper bound is the set S2.
– CN(i) is a FS variable associated with the set of nodes that are included in every

path going from Source to i.
– BE(i) is a FS variable associated with the set of edges that are included in every

path going from Source to i.

The definition of Reachability and its derived properties give place to a set of prop-
agation rules. We show here the most representative ones. The others are given in
[QVD05b]. A propagation rule is defined as C

A
where C is a condition and A is an

action. If C is true, the pruning defined by A can be performed.

– From (2) ∀〈i,j〉∈edges(g) .j ∈ rn(i) we obtain:

〈i, j〉 ∈ edges(min(G))

j ∈ min(RN(i))
(9)

– From (3) ∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) we obtain:

j ∈ min(RN(i)) ∧ k ∈ min(RN(j))

k ∈ min(RN(i))
(10)



4 Luis Quesada et al.

– From (4)∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) we
obtain:

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

j ∈ min(RN(Source))
(11)

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

i ∈ min(RN(j))
(12)

– From (1)∀i∈N .rn(i) = Reach(g, i) we obtain:

j 6∈ Reach(max(G), i)

j 6∈ max(RN(i))
(13)

– From (1)∀i∈rn(source).cn(i) = CutNodes(g, source, i) we obtain:

j ∈ CutNodes(max(G), Source, i)

j ∈ min(CN(i))
(14)

– From (1)∀i∈rn(source).be(i) = Bridges(g, source, i) we obtain:

e ∈ Bridges(max(G), Source, i)

e ∈ min(BE(i))
(15)

– From (5) ∀i∈N .rn(i) ⊆ nodes(g), (6)∀i∈N .cn(i) ⊆ nodes(g) and (7)∀i∈N .be(i) ⊆
edges(g) we obtain:

k ∈ min(RN(i))

k ∈ nodes(min(G))
(16)

k ∈ min(CN(i))

k ∈ nodes(min(G))
(17)

e ∈ min(BE(i))

e ∈ edges(min(G))
(18)

Reachability has been implemented using a message passing approach on top of
the multi-paradigm programming language Oz [Moz04]. In [QVD05a], we discuss the
implementation of Reachability in detail.

In [QVD05b], we show the effectiveness of our Reachability propagator by applying
it to the Simple Path problem with mandatory nodes. We do an experimental evaluation
of Reachability that shows that it provides strong pruning, obtaining solutions with very
little search. Furthermore, we show that Reachability is also useful for defining a good
labeling strategy and dealing with ordering constraints among mandatory nodes. These
experimental results give evidence that Reachability is a useful primitive for solving
constrained path problems over graphs.

3 Related work

– The cycle constraint of CHIP [BC94,Bou99] cycle(N, [S1, ..., Sn]) models the prob-
lem of finding N distinct circuits in a directed graph in such a way that each node
is visited exactly once. Certainly, Hamiltonian Path can be implemented using this
constraint. In fact, [Bou99] shows how this constraint can be used to deal with the
Euler knight problem (which is an application of Hamiltonian Path). However, this
constraint only covers the case where we are to visit all the nodes of the graph,
which is a specific case of Simple Path with mandatory nodes.



Lecture Notes in Computer Science 5

Fig. 2. Discovering cut nodes

Fig. 3. Discovering bridges

– [Sel02] suggests some algorithms for discovering mandatory nodes and non-viable
edges in directed acyclic graphs. These algorithms are extended by [CB04] in order
to address directed graphs in general with the notion of strongly connected com-
ponents and condensed graphs. Nevertheless, examples like [tes] represent tough
scenarios for this approach since almost all the nodes are in the same strongly con-
nected component.

– CP(Graph) introduces a new computation domain focussed on graphs including a
new type of variable, graph domain variables, as well as constraints over these vari-
ables and their propagators [DDD05]. CP(Graph) also introduces node variables
and edge variables, and is integrated with the finite domain and finite set computa-
tion domain. Consistency techniques have been developed, graph constraints have
been built over the kernel constraints and global constraints have been proposed.
Certainly, Simple Path with mandatory nodes can be implemented in terms of the
global constraints of this framework. However, we still have to compare the perfor-
mance of Reachability with respect to this approach.

4 Conclusion and future work

We presented Reachability: a constrained path propagator that can be used for speed-
ing up constrained path solver. After introducing its semantics and pruning rules, we
showed how our approach differ from related approaches.



6 Luis Quesada et al.

It is important to remark that both the computation of cut nodes and the computa-
tion of bridges play an essential role in the performance of Reachability. The reason is
that each one is able to prune when the other can not. Notice that Figure 2 is a context
where the computation of bridges cannot infer anything since there is no bridge. Sim-
ilarly, Figure 3 represents a context where the computation of bridges discovers more
information than the computation of cut nodes.

A drawback of our approach is that each time we compute cut nodes and bridges
from scratch, so one of our next tasks is to overcome this limitation. I.e., given a graph
g, how can we use the fact that the set of cut nodes between i and j is s for recomputing
the set of cut nodes between i and j after the removal of some edges? We believe that a
dynamic algorithm for computing cut nodes and bridges will improve our performance
in a radical way.

As mentioned before, the implementation of Reachability was suggested by a prac-
tical problem regarding mission planning in the context of an industrial project. Our
future work will concentrate on making propagators like Reachability suitable for non-
monotonic environments (i.e., environments where constraints can be removed). In-
stead of starting from scratch when such changes take place, the pruning previously
performed can be used to repair the current pruning.

References

[BC94] N. Beldiceanu and E. Contejean. Introducing global constraints in chip, 1994.
[Bou99] Eric Bourreau. Traitement de contraintes sur les graphes en programmation par con-

traintes. Doctoral dissertation, Université Paris, Paris, France, 1999.
[CB04] Hadrien Cambazard and Eric Bourreau. Conception d’une contrainte globale de chemin.

In 10e Journées nationales sur la résolution pratique de problèmes NP-complets
(JNPC’04), pages 107–121, Angers, France, June 2004.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press,
1990.

[DDD05] G. Dooms, Y. Deville, and P. Dupont. CP(Graph):introducing a graph computation
domain in constraint programming. In CP2005 Proceedings, 2005.

[Ger97] C. Gervet. Interval propagation to reason about sets: Definition and implementation of
a practical language. CONSTRAINTS journal, 1(3):191–244, 1997.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide to the The
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[Moz04] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004. Available
at http://www.mozart-oz.org/.

[QVD05a] Luis Quesada, Peter Van Roy, and Yves Deville. Reachability: a constrained path
propagator implemented as a multi-agent system. In CLEI2005 Proceedings, 2005.

[QVD05b] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability propagator. Re-
search Report INFO-2005-07, Université catholique de Louvain, Louvain-la-Neuve,
Belgium, 2005. Available at http://www.info.ucl.ac.be/˜luque/SPMN/paper.pdf.

[Sel02] Meinolf Sellmann. Reduction Techniques in Constraint Programming and Combinato-
rial Optimization. Doctoral dissertation, University of Paderborn, Paderborn, Germany,
2002.

[SP78] Y. Shiloach and Y. Perl. Finding two disjoint paths between two pairs of vertices in a
graph. Journal of the ACM, 1978.

[tes] Spmn 52a. Available at http://www.info.ucl.ac.be/˜luque/CICLOPS2005/test 52.ps.


