
Encoding HTN Planning as a Dynamic CSP
*

Student: Pavel Surynek
Supervisor: Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

pavel.surynek@seznam.cz, roman.bartak@mff.cuni.cz

Abstract. Constraint satisfaction problems provide strong formalism for model-
ing variety of real life problems. This paper presents a work currently in pro-
gress of which the goal is an application of the CSP formalism on hierarchical
task network planning domain. An encoding of HTN planning problems as a
dynamic CSP is presented. We suppose that such encoding would provide a
way for search space reduction through constraint propagation. The paper also
deals with a search strategy and constraint combination suitable for the model.

1 Introduction

Constraint satisfaction methodology has proven to be a successful technique for solv-
ing variety of combinatorial and optimization problems. Despite this fact, it was ex-
ploited very little in the planning domain. In particular hierarchical task network
planning (HTN) [3, 4] seems to be suitable for use of constraint programming. The
formulation of HTN planning problem involves a lot of structural information which
can be used to prune the search space. Encoding of this structural information by
means of constraint programming would provide an effective way for such pruning
during the search for solution.

This paper presents a work currently in progress of which the goal is to develop a
framework and techniques for solving HTN planning problems using constraint pro-
gramming methodology. The first step to achieve the goal is to propose a suitable en-
coding of HTN planning problems into constraints. The paper concentrates mainly on
proposing such encoding. We also suggest a search strategy build upon the proposed
encoding. Finally we discuss the construction of combined constraints which would
provide stronger propagation.

2 HTN planning

From the traditional view of planning, a planning problem is posed as finding of a se-
quence of actions which transforms a specified initial state of the world into a desired
goal state provided that only actions from a set of allowed actions can be used [1]. For

* This work is supported by the Czech Science Foundation under the contract 201/04/1102.

each action a set of preconditions and effects is specified. This approach to planning
corresponds to the way, how so called STRIPS-style planners work [5].

The disadvantage of the traditional STRIPS-style approach is that it is not easy to
incorporate any kind of domain knowledge into the description of the input planning
problem. Since the planning problems are typically very hard to solve (EXPSPACE-
complete), techniques for reduction of the search space are necessary. To overcome
this drawback of STRIPS-style planning another model was developed.

HTN planning augments STRIPS-style action based model with a grammar of le-
gal solutions and with reduction schemas. The key term of HTN planning formalism
is so called task network. The task network is a syntactic construct of the form
(n1:α1)(n2:α2)...(nm:αm) | φ, where ni are task symbols and each αi is a task. φ is an ad-
ditional Boolean formula that puts into relation the objects in the task network.

A task can be primitive, compound, or goal. Primitive tasks are similar to actions in
STRIPS-style planning. Each primitive task has its preconditions and effects (speci-
fied as sets of literals that must hold). Each compound task is associated with a task
network which must be solved to fulfill the compound task. The pair compound task
and its task network defines a reduction schema. Similarly every goal task has speci-
fied the task network that must be solved. Primitive tasks are denoted as
do[f(v1,v2,...,vn)], perform[t(v1,v2,...,vn)] denotes a compound task, where f and t are
task symbols and vi are variables. A goal is denoted as achieve[l], where l is a literal.
Compound and goal tasks are often referred as non-primitive tasks.

An HTN planning problem is specified by an initial state and a task network to
solve. An example of a simple HTN problem is shown in example 1.

Example 1. A package must be transported from location L1 to location L2. A truck and a train
are available for transportation. The truck can go to any place, while the train moves only be-
tween goods stations. It is necessary to bring the package to the station first if we want to trans-
port it by the train. To simplify the description several obvious constructs are omitted.

TransportPackage :- d1 = ((t:perform[TransportPackageByTruck]) | φ1 = additional
 Boolean formula) or d2 = ((t:perform[TransportPackageByTrain]) | φ2)
TransportPackageByTruck :- d3 = ((a1:do[moveTruck(L3,L1)]), (a2:do[loadTruck(L1)]),
 (a3:do[moveTruck(L1,L2)]), (a4:do[unloadTruck(L2)]) | φ3)
TransportPackageByTrain :- d4 = ((a1:do[moveTruck(L3,L1)]), (a2:do[loadTruck(L1)]),
 (a3:do[moveTruck(L1,S1)]), (a4:do[moveTrain(S3,S1)]), ... | φ3)
achieve[packageAtDestination] :- d5 = ((t:perform[TransportPackage]) | φ5)
Constant symbols for three locations and three good stations: {L1,L2,L3,S1,S2,S3}
Initial state: I = {packageAt(L1), truckAt(L3), trainIn(S3)}
Task network we want to plan for: d = (g:achieve[packageAtDestination])
Example of additional formula: φ3 = {(a1 before a2) & (a2 before a3) & (a3 before a4)}
Example of primitive task: moveTruck(L1,L2)= (preconditions:truckAt(L1))
 (effects:truckAt(L2),¬truckAt(L1)).

3 Dynamic constraint model of HTN planning problem

We encode HTN planning problem as a dynamic constraint satisfaction problem. The
dynamicity of our constraint model consists in changes that we made during the

search for solution. As the search proceeds and earlier decisions of the search algo-
rithm become fixed, the model is extended with the parts modeling later decisions.

A dynamic constraint satisfaction problem [2] is a sequence of CSPs P1,P2,...,Pα,...,
where each problem is a result of a modification of the preceding one. All the static
problems in the sequence must be solved to solve the DCSP. However, in our modifi-
cation it is sufficient to solve the last static problem in the sequence.

Given an HTN problem Q, the corresponding DCSP model encodes a problem of
finding k-step plan for Q. First we will describe static characteristics of our encoding.

Three types of variables are used to encode the k-step planning problem. Variables
of the first type encode ground instances of primitive tasks. Their domains contain
possible steps of execution of the corresponding primitive task. We will refer to these
variables as primitive task variables. Primitive task variables are always bound with
its superior non-primitive task (with respect to reduction schemas). Primitive task
variables will be denoted as ai(p), where p is the primitive task and i is an index used
to distinguish its superior non-primitive task.

Non-primitive tasks are encoded using the variables of the second type. Their do-
mains correspond to sets of possible task reductions, i.e., the domain contains an ele-
ment for each ground task network that solves the non-primitive task. Variables of
this type will be referred as non-primitive task variables. Non-primitive task variables
are bound with its superior task as well. ti(n) will be used to denote compound task
variables and g(n) will denote goal task variables, where n is the non-primitive task
and i is the index with the same meaning as in the case of primitive tasks.

States of the world are expressed through posting sets of ground atoms true in that
state. For each predicate symbol and step in the plan we define a variable. We will re-
fer to these variables as state variables. The state variable for predicate p of arity a at
step s will be denoted as ps/a. The domain of the variable consists of all ground in-
stantiations of the corresponding predicate. We can restrict ground instantiations only
to those that make sense for the predicate symbol. Since the language of HTN plan-
ning does not contain function symbols and the number of constant symbols is finite,
the number of all ground atoms is also finite. This fact allows the state variables to
have finite domains. An example of variable construction for an HTN problem from
example 1 is shown in example 2.

Example 2. Variables modeling the HTN problem from example 1 for four steps. The example
illustrates types of variables and their domains used to model the problem. It does not show
conditions under which they appear in the model.

A goal task variable: g(achieve[packageAtDestination]) ∈ {d5}
A non-primitive task variable corresponding to choosing d5 to satisfy the goal task:
 t1(TransportPackage) ∈ {d1, d2}
A non-primitive task variable corresponding to choosing d1 to satisfy the task
TransportPackage: t2(TransportByTruck) ∈ {d3}
Example of primitive task variable corresponding to d3 that satisfies the task
TransportPackageByTruck: a1(moveTruck(L3,L1)) ∈ {1,...,4}
Example of world states variables: packageAti/1 ∈ {(L1);(L2);(L3)}, for all i ∈ {1,...,4}
A set variables of the CSP: X = {g(achieve[packageAtDestination]),
 t1(TransportPackage), ..., a1(moveTruck(L3,L1)), ..., packageAti/1, ...}.

Now it is necessary to specify constraints that define relations between suggested
variables. A set of preconditions and a set of effects are given for each primitive task.
The preconditions are specified as a set of literals that must hold before the action can
be executed. Similarly, the effects are specified as a set of positive and negative liter-
als. We can easily incorporate action's preconditions and effects into the model by
adding a constraint for each primitive task that puts into relation every matching
primitive task variable with the relevant world state variables.

HTN formalism also allows the user to post additional constraints in the form of a
Boolean formula for every task network (reduction schema). The formula usually ex-
presses temporal ordering of the individual tasks. Even though there are virtually no
restrictions on the constructs used in the formula, it is possible to incorporate the addi-
tional constraints into the encoding in a straightforward way.

Example 3. An example of constraint model for the HTN problem from example 1. Constraints
are denoted as C(d), E(d), B(n), G and I, where d is the task network (selected reduction) and n
is the non-primitive task. C constraints represent reduction sub-problems corresponding to the
selected reduction schema, B constraints bind satisfiability of those reduction sub-problems
with the values in the domains of non-primitive task variables. E constraints encode primitive
task's preconditions and effects, I constraint defines the initial state, and finally G is a constraint
saying that the goal must be satisfied to solve the problem. For simplicity reasons, only a cutout
of the complete set of constraints is presented.

A constraint representing the goal: G = (C(d5) and B(achieve[packageAtDestination]))
A constraint binding non-primitive task variable’s domain with reduction sub-problems:
 B(achieve[packageAtDestination]) = (if g(achieve[packageAtDestination])=d5
 then C(d5))
A constraint representing reduction sub-problem corresponding to choosing d5:
 C(d5) = ((C(d1) or C(d2)) and B(TransportPackage))
Another example of binding constraint:
B(TransportPackage) = ((if t1(TransportPackage)=d1 then C(d1)) and
 (if t1(TransportPackage)=d2 then C(d2)))
...
An example of the reduction sub-problem constraint at the bottom of the hierarchy:
C(d3) = (a1(moveTruck(L3,L1)) < a1(loadTruck(L1))) and (a1(loadTruck(L1)) <
 < a1(moveTruck(L1,L2))) and (a1(moveTruck(L1,L2)) < a1(unloadTruck(L2))) and E(d3)

A constraint encoding primitive task’s preconditions and effects:
 E(d3) = (if a1(moveTruck(L3,L1))=1 then ((truckAt1/1= (L3) & truckAt2/1=(L1) &
 & truckAt2/1)≠(L3)) and (if a1(loadTruck(L1))=2 then (truckAt2/1=(L1) &
 & packageAt2/1=(L1) & packageInTruck3/1=true & packageAt3/1≠ (L1)) and ...

Initial state constraint: I = (packageAt/1=(L1) and truckAt/1=(L3) and trainIn/1=(S3))
The final CSP problem (X,C) = (X, {G, I}) (X is the set from example 2).

The constraint model (example 3) is constructed hierarchically with goal task con-

straints on the top and primitive task constraints at the bottom. Each value in the do-
main of a non-primitive variable represents a decision which reduction schema is se-
lected to achieve the task. If a reduction schema is selected, a set of constraints
corresponding to this selection must hold. Those constraints form some kind of a sub-
problem, we will refer to these sub-problems as reduction sub-problems. Having the

non-primitive task at least one of its reduction sub-problems must have solution, thus
disjunction of the sub-problems must be satisfied. Each reduction sub-problem further
consists of reduction sub-problems according to the task hierarchy. The lower levels
of the model hierarchy consist of constraints binding primitive task variables.

The solution of the traditional CSP model is a complete instantiation of the vari-
ables such that all the constraints are satisfied. But here it is sufficient to instantiate
variables that are relevant to the selected reductions, the remaining variables can have
assigned an arbitrary value from their domains. Similar approach is also known as a
conditional CSP [6].

4 Search strategy and combined constraints

The model described in the previous section is constructed dynamically as the search
proceeds. The search can be built upon any backtracking based algorithm for con-
strain satisfaction. When non-primitive task variables are instantiated the model is ex-
tended with the corresponding reduction sub-problems. The depth of the hierarchical
model is always limited. There is the only condition that must be satisfied to ensure
completeness of the search. When the domain of a non-primitive task becomes single-
ton, i.e., it contains only one element, the model must be extended with the corre-
sponding reduction sub-problem. The extension of the particular branch of the model
stops, when primitive tasks are reached on the branch or the number of allowed steps
is exceeded. Figure 1 shows a simple framework of the backtracking based search al-
gorithm for solving suggested DCSP encoding.

Algorithm 1. A basic framework of the search algorithm for solving DCSP encoding.

function Find_k-Plan((X,C))
1 v←variable to instantiate suggested by variable
 ordering heuristic
2 dv←value from the domain of v suggested by value
 ordering heuristic
3 C←C (v=dv) and propagate the constraint (v=dv)
4 if (X,C) is solved then return true
5 (X,C)←extension of (X,C) according to the
 encoding extension criterion for k-step plan
6 return Find_k-Plan(X,C)

∪

To build an algorithm it is necessary to have a variable and a value ordering heu-

ristic that are aware of the used encoding. The preferred order of variable instantiation
is top-down. Variables that represent tasks higher in the task hierarchy should be in-
stantiated earlier. The second necessary ingredient is an encoding extension criterion.
It tells how to extend the CSP with the reduction sub-problems if some values are
ruled out from the variable domains (non-primitive task reductions become fixed).
The model is always extended to a limited depth with respect to the task hierarchy.
The deeper the extension is the more the problem is constrained and the search space

can be pruned more. On the other hand the memory consumption may be higher. We
expect that extension of a small number of layers of the task hierarchy would be the
best compromise.

The crucial technique in constraint programming is constraint propagation. In our
CSP model we often use constraint combination via logical conjunctions. Although
reification [7] is the most frequently used technique for constraint combination, it is
unsuitable for our model. The disadvantage of this approach is that it can result in
weaker constraint propagation. Fortunately there exists a different technique for com-
bination of disjunctive constraints. Constructive disjunction [8] provides much
stronger constraint propagation which is much more suitable for our model.

5 Conclusion and future work

In this paper we propose a new approach for solving HTN planning problems based
on constraint satisfaction. An encoding of the HTN planning problem as the DCSP is
suggested. We also propose the framework of the backtracking based algorithm for
solving such DCSP problem. We hope that our encoding would help to reduce the
size of the search space by early pruning of parts not containing any solution.

We are starting to implement the proposed framework for working with HTN prob-
lems in order to make necessary experiments and to precise the details of encoding.
Especially the dynamic change of the model, i.e., the encoding extension criterion
needs to be specified more exactly. This is impossible without both algorithmic and
experimental studies. Next we need to explore how the constraint propagation works
for our model. In particular the benefits of constructive disjunction must be verified.

References

1. J. Allen, J. Hendler, A. Tate: Readings in Planning. Morgan Kaufmann Publishers, 1990.
2. R. Dechter, A. Dechter: Belief Maintenance in Dynamic Constraint Networks. In Proceed-

ings the 7th National Conference on Artificial Intelligence (AAAI-88), 37-42, 1988.
3. K. Erol, J. Hendler, D. S. Nau: UMCP: A Sound and Complete Procedure for Hierarchical

Task Network Planning. In Proceedings of the 2nd International Conference on AI Planning
Systems (AIPS-94), 249-254, 1994.

4. K. Erol, J. Hendler, D. S. Nau: HTN Planning: Complexity and Expressivity. In Proceedings
of the 12th National Conference on Artificial Intelligence (AAAI-94), 1123-1128, 1994.

5. R. E. Fikes, N. J. Nilsson: STRIPS: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2 (3/4):189-208, 1971.

6. S. Mittal, and B. Falkenhainer: Dynamic Constraint Satisfaction Problems. In Proceedings
of the 8th National Conference on Artificial Intelligence (AAAI-90), 25–32, 1990.

7. Ch. Schulte: Programming Deep Concurrent Constraint Combinators. In Proceedings of the
2nd International Workshop on Practical Aspects of Declarative Languages (PADL-2000),
215-229, 2000.

8. J. Würtz, T. Müller: Constructive Disjunction Revised. In Proceedings of the 20th Annual
German Conference on Artificial Intelligence (KI-96), 377-386, 1996.

