
Using Ontological Concepts for Web Service Composition

Claude Moulin
Compiègne University of Technology
UMR CNRS 6599, Heudiasyc, France

claude.moulin@utc.fr

Marco Sbodio
Hewlett Packard – Italy Innovation Center

C.so Trapani 16, 10139 Torino, Italy
marco.sbodio@hp.com

Abstract

This paper describes an approach for a composition
of web services based on their semantic descriptions.
The process section of OWL-S service descriptions is
built with references to ontology concepts which
represent service input and output data types.

We present a engine that receives a request
containing a concept (OC) corresponding to a service
output and a set of concepts (ICs) corresponding to a
service inputs. The engine produces a sequence of
services whose first element has ICs as inputs and
whose last element has OC as output. The result of the
composition is described as a BPEL process.

1. Introduction

The research area targeted by the TERREGOV
Project is the “Usability and Applicability in large,
complex and real-life environments for coherent
development of interoperable government services”. To
tackle this research issue, the project focuses on the
requirements of governments at local, intermediate and
regional levels for flexible and interoperable tools to
support the change towards eGovernment services. The
“Web Service” paradigms appears as a major brick for
applications interoperability and integration. However,
the implementation of complex and flexible government
processes with Web Services still requires additional
efforts.

The enhancement of Web Services with semantics is
a crucial step for making as easy as possible access to
these services both by 3rd party applications and human
users. Some efforts propose methods for standardizing
e-government services development at the national and
international levels [7], [8], [9]. Some procedures will
only embed already existing legacy systems but new
procedures will substitute hand made tasks. Elementary
processes or sub processes must be completely

transparent to civil servant. Some tasks containing
sequences of subtasks must be dynamically elaborated
by algorithms at run time.

Discovery of services leads to build sequences of
service based on constraints. We consider the following
issue: having some input and output data type, find
services and build a chain whose first service accepts the
input type and the last service accepts the output type?
Two services are chained, if output of the first one is
input of the second one.

2. Scenario

We describe here a simplified but real use case
developed in the TERREGOV project, which focuses on
services that support socio-economic assistance
processes for citizens of the region of Venice. It
involves a citizen asking for socio-economic assistance.
A specific process must be enacted in order to decide
the eligibility of the citizen to this kind of assistance.
The process begins with the collection of relevant
personal, medical and economical data relative to the
citizen. The local municipality uses a web service for
obtaining the personal information (first and last name,
residence, etc.). The input of this service is the personal
identifier (in Italy, the “fiscal code”). A local health care
administration uses a web service for obtaining the
relevant medical data. The input of this service is the
patient's identifier, i.e. the “health card number”.

Unfortunately the two web services require different
inputs: the “fiscal code” and the “health card number”.
The solution resolving this case is a composite process
establishing the minimal list of inputs to ask for. The
system searches other services which could return the
other needed data.

In this case, the minimal list of inputs is reduced to
the fiscal code because it exists a service which can
produce an health care number given a fiscal code. The
existence of the third service is completely transparent
in the process.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

3. Environment

3.1. Semantic service registry

It is necessary to build new registries, containing
enough semantic information for service discovery [10]
(that common UDDI1 registries do not contain). They
allow the publication of semantic service descriptions
and some service discovery mechanisms based on
service features. We have decided to adopt OWL-S2,
even if this standard is still evolving, because some
technical resources such as Java libraries are already
available and will be updated.

In OWL-S a service presents a profile, is described
by a model and supports a grounding. The profile is
related with the knowledge domain of the service. The
model (or process) is used to define the inputs, outputs,
preconditions and effects of a service. The grounding
describes the implementation of a service. It is linked
with WSDL3 service descriptions.

We use profile and process for service discovery.
The concepts such as HealthCard and HealthCardId are
defined in our ontology.

3.2. Workflow engine extension

Current technologies address the service
composition issue through web services orchestration;
the major industry initiative is BPEL4WS4. BPEL4WS
distinguishes between executable processes (actual
behavior model of a participant in a business
interaction) and abstract process (technological
interface description of business processes). BPEL4WS
focuses on representing static compositions, where both
the flow of the process and its building blocks (the web
services) are known a priori.

In order to achieve the dynamic composition of web
services, it is also necessary to extend this traditional
workflow engines, with the addition of modules
allowing the dynamic discovery of web services based
on their semantic information. Accordingly, abstract and
executable processes have to be updated in such a way
that dynamic processes based on qualified patterns could
be implemented at run time. The algorithms they
perform, use the ability of discovering available web
services.

1 http://www.uddi.org/
2 http://www.daml.org/services/owl-s/
3 http://www.w3.org/TR/wsdl
4 http://www-128.ibm.com/developerworks/library/ws-bpel/

3.3. Ontology

The backend of the application interoperability in the
eGovernment domain relies on ontologies. They have to
be rich enough for fulfilling several goals. The first one
is the complete description of services allowing a
dynamic discovery. Search engines have to merge
elements extracted from service descriptions and
ontology concept for making the right inferences. Our
eGovernment ontology is also used for indexing
documents and resources in knowledge bases. Elements
for building the upper eGovernment domain ontologies
can be found in [9].

4. Model and Algorithm

This section gives a description of the data model
and the algorithm used in our system. As a general
background we assume to have a set of web services
exposing a single operation and having both WSDL and
OWL/S descriptions of these services. The OWL-S
service description provides information about inputs
and output referring to concepts (Ci) defined in an
ontology. We write {C1,C2, …, Cn} WS Cx to
represent a web service WS having a set of inputs
represented by concepts C1, C2, …, Cn and whose output
is represented by concept Cx.

Dynamic composition of Web Services is done
building sequences of web services that use available
inputs (specified as ontology concepts) and produce a
required output (specified as an ontology concept). We
write {Ci,Cj, …, Cp} < S > Cy to represent a
sequence that consuming inputs defined by concepts Ci,
Cj, …, Cp produces an output represented by the concept
Cy.

4.1. Data model

The relations among inputs/output concepts Ci and
web services are extracted from the descriptions of the
services, and are mapped in an internal representation
model consisting of RDF statements. Let’s consider a
simple example: a web service WS1 and the following
fragment of its OWL/S description:

<process:AtomicProcess rdf:ID="Process">
 <process:hasInput>
 <process:Input rdf:ID="in0">
 <process:parameterType
 rdf:resource="⪚C1"/>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="in1">

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

 <process:parameterType
 rdf:resource="⪚C2"/>
 </process:Input>
 </process:hasInput>
 <process:hasOutput>
 <process:Output rdf:ID="out0">
 <process:parameterType
 rdf:resource="⪚C3"/>
 </process:Output>
 </process:hasOutput>
</process:AtomicProcess>

The above fragment describes {C1,C2} WS1 C3

. WS1 is identified by the URI pointing to its OWL-S
description. We build our internal representation model
as a set of RDF statements which maps the relations
among C1, C2, C3 and WS1:

@prefix eg: <urn:x-hp-terregov:eg/> .
<eg:C1> <eg:i> <eg:WS1>: “C1 input WS1”
<eg:C2> <eg:i> <eg:WS1>: “C2 input WS1”
<eg:WS1> <eg:o> <eg:C3>: “WS1 output C3”

The internal representation model is built at start-up
time reading all information from the available OWL/S
descriptions, and is intended to be dynamically updated
whenever a new service is published (i.e. a new OWL/S
description becomes available). We only assume that
any OWL/S description is identifiable and referable
through a URI.

The internal representation model serves as a data
model for the composition algorithm described in the
following section, and avoids re-iterated readings of the
service description. The composition algorithm is
essentially based on the inputs/output of services, and
our model captures exactly this information.

4.2. Algorithm

The algorithm that has been implemented is a simple
composition algorithm. It is intended to discover
sequences of web services invocations consuming a set
of available inputs and return an expected output.

The algorithm is an implementation of the recursive
back-changing pseudo-code available form the work
done in [1] and listed here:

initialization:
weHave = {input set}; weWant = {output set};
findServiceChain (weHave, weWant)
 {svcs = getServicesOutputtingWeWant(weWant);
 foreach service in svcs
 {chain = new chain;
 foreach input in service.inputs
 if input not in weHave
 {newSvcs =
 findServiceChain(
 weHave, service.inputs);
 chain.add(newSvcs);}
 if all service.inputs in weHave
 {chain.add(service);
 return chain;}

 }
 return null;} // no chain found

Our implementation uses the internal representation
model described in section 4.2 as the data
model.getServicesOutputtingWeWant(…) uses RDQL5

to query this model; for example the following RDQL
query, returns all services having concept C3 as output:
SELECT ?x
WHERE (?x <urn:x-hp-terregov:eg/o>
 < urn:x-hp-terregov:eg/C3>)

Similarly we retrieve information on required inputs
of a service with a query on the data model.

As a generalization, the implemented algorithm can
generate a set of sequences satisfying some conditions,
where conditions are primarily expressed as the set of
available inputs and the required output. Additional
conditions could express other constraints. These
additional conditions could allow to search the
“optimal” sequence of services.

5. Architecture

This section gives a description of the system
architecture. The implementation is based on Java (HP
Jena framework6, Mindswap OWL/S API [2]). We
isolate the composition concern, which requires
semantic capabilities, from the execution concern, which
requires an execution framework:

• Composition concern: we exploit OWL/S features
for reasoning on service constraints and
capabilities.

• Execution concern: we exploit BPEL4WS as a
formalism having a strong execution orientation.

The major components of the architecture are:
• Interoperability and coordination layer: it is the

system entry point. It allows programmatic
requests of services specifying inputs and outputs.

• Repository: it is an adapter component that offers
access to service description.

• Analyzer/Checker: it is in charge of implementing
the algorithm that explore available services and
try to dynamically build the service sequence.

• Instantiator: it is an adapter component which
translates a web service sequence dynamically
composed by the “Analyzer/Checker” into a
BPEL4WS description, and instantiates it within a
classical BPEL engine.

• Execution Engine/Monitoring: it is a classical
BPEL engine, with monitoring capabilities

5 http://www.hpl.hp.com/semweb/rdql.htm
6 http://jena.sourceforge.net/index.html

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

6. Related Works

Our approach is similar to the one described in [1],
but we have augmented the capabilities of standard
BPEL4WS execution engine, with automated reasoning
on OWL/S descriptions. Both approaches try to build
web services sequences that consume a set of inputs, and
produce a set of expected outputs.

Mandell and McIlraith proposed a “Semantic
Discovery Service” (SDS) which sits between the
BPEL4WS engine and the service partners. The SDS
accomplishes both dynamic discovery and dynamic
composition, and act as a proxy between the discovered
partners and the BPEL4WS engine. In our approach we
separate concerns: the semantic UDDI registry is
concerned with dynamic discovery; the eProcedure
module is concerned with the dynamic composition; the
BPEL4WS engine is concerned with the execution

Another approach to web service composition is
described in [3]. A semi-automatic approach at dynamic
composition is proposed: an operator is assisted in the
composition of a web service sequences by a program,
which presents at each step of the composition the
possible matching services. In our case, the composition
must be dynamic and implemented at run time.

The matchmaking algorithm given in [4] tests if a
request can provide all required inputs of a service and
if the offered output also satisfies the demands. The test
can have several degrees of accuracy (for example
exact, or subclass/superclass matching). A similar work
has also been done within the matcher for the LARKS
developed by Sycara et al. [5]. some interesting insight
on the matchmaking problem is given in [6].

7. Conclusions

Besides semantics of inputs/outputs, the
preconditions and effects constraints described by
OWL/S, can be used for service discovery. Some
request, for example, could lead to reject services with
undesired effects. We also intend to investigate the
possibility of reinforcing the matching using subclasses
and superclasses relations as in [4][3].

Regarding the dynamic composition problem, we are
aware of the potential performance issues related to the
simple recursive algorithm that we’re currently using.
For this reason we intend to investigate the possibility of
building a composition-engine for building arbitrary and
consistent services sequences.

This component could explore the available services,
and try to chain them in consistent sequences (a
sequence would be consistent as long as the outputs of

the web service at the previous step can be pipelined as
inputs of web service at the next step).

8. Acknowledgments

The IP project TERREGOV is co-funded by the
European Commission7 under the IST Programme,
eGovernment unit.

9. References

[1] Mandell, D.J. and McIlraith, S.A., Adapting BPEL4WS
for the Semantic Web: The Bottom-Up Approach to Web
Service Interoperation, in Proc. of the International Semantic
Web Conference (ISWC) (2003), pp. 227-241.

[2] Mindswap Java OWL/S API
http://www.mindswap.org/2004/owl-s/api/

[3] Sirin E., Hendler J., and Parsia B., Semi-automatic
Composition of Web Services using Semantic Descriptions,
in: Proc. of Web Services: Modeling, Architecture and
Infrastructure, Workshop in Conjunction with ICEIS2003,
Angers, France, (2003).

[4] Paolucci, M., Kawmura, T., Payne, T., Sycara, K.:
Semantic matching of web services capabilities. In: Proc. of
the First International Semantic Web Conference, Sardinia,
Italy (2002).

[5] Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks:
Dynamic matchmaking among heterogeneous software agents
in cyberspace. Autonomous Agents and Multi-Agent Systems,
5, (2002), pp. 173-203.

[6] Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A
semantic web approach to service description for
matchmaking of services. In: Proc. of the Intl. Semantic Web
Working Symposium (SWWS), Stanford, CA, USA (2001).

[7] Bakry, S.H., Development of e-government: a STOPE
view, International journal of Network Management, 14,
(2004), pp. 339-350.

[8] Tarabanis K., Peristeras V., Knowledge Management
requirements and Models for Pan-European Public
Administration Service Delivery, KmGov conference, (2003).

[9] Peristeras, V. and Tarabanis, K., Advancing the
Government Enterprise Architecture -GEA: The Service
Execution Object Model. in Database and Expert Systems
Applications, DEXA, Zaragoza, Spain, (2004).

[10] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara,
K., Importing the Semantic Web in UDDI. in Web Services,
E-Business and Semantic Web Workshop, CAiSE 2002,
(Toronto, Canada, 2002), pp. 225-236.

7 The content of this paper is the sole responsibility of the

authors and in no way represents the views of the European
Commission or its services.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)

0-7695-2415-X/05 $20.00 © 2005 IEEE

