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Abstract. In this paper we address several issues of rule modeling on the basis 
of UML. We discuss the relationship between UML class models and OWL 
vocabularies. We show how certain rules can be specified in a class diagram 
with the help of OCL. We also show how rule concepts can be described, and 
how the abstract syntax of RDF, OWL, SWRL and RuleML can be defined, by 
means of UML class diagrams in a concise way. 

1   Introduction 

Rules play an important role not only in everyday life but also in computational 
formalisms and information systems. They define derived concepts as elements of the 
information state structure and constrain or prescribe the behavior of people and IT 
systems. In particular, rules are being used to express privacy protection and access 
control policies, both of which are important issues on the Web.  

As we model the state structure and behavior of a system to be analyzed or to be 
designed, we also have to model the rules defining the derived elements of its 
information base and governing its behavior. Therefore, rule modeling is part of a 
general model-driven approach to software and information systems engineering. 

Rules always come on top of a vocabulary. There is no rule without an underlying 
vocabulary. Consequently, for being able to see how rules can be modeled and 
represented in formal languages, we also have to understand how vocabularies are 
being modeled and expressed. in formal languages.   

1.1   Specifying Vocabularies 

While the recommended method for specifying domain vocabularies, as part of 
systems analysis, in general software engineering is to use the Unified Modeling 
Language1 (UML) for making a class model in the semi-visual form of a class 
diagram, the W3C has recommended to use the languages RDF and OWL2 for 
specifying vocabularies as part of Web applications. In particular, OWL has a great 
overlap with UML class models. However, while UML class models have a visual 
                                                           
1  See http://www.uml.org/. 
2  RDF is the Resource Description Framework (see http://www.w3.org/RDF/). OWL is the 

Web Ontology Language (see http://www.w3.org/2004/OWL). 
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syntax and are widely used in academic and industrial software engineering activities, 
they don't have a formal logic semantics. OWL, on the other hand, has a  formal logic 
semantics, but has no visual syntax and is not (yet?) widely used in industry.  

Clearly, both languages can benefit from each other:  

− OWL vocabularies can be captured in the user-friendly form of class diagrams. 
For this purpose the UML provides an extension mechanism that allows to use 
OWL-specific elements in a class diagram. Expressing OWL construct as 
elements of a UML class model gives OWL a kind of operational semantics 
and makes it accessible to software engineers who are not familiar with, and 
not willing to learn, the description logic semantics of OWL. 

− UML class diagrams can be mapped to OWL vocabularies and, in this way, 
obtain a logical semantics. 

There is yet another good reason to consider UML: UML class diagrams can also be 
used as a visual language to describe the vocabulary, and the abstract syntax, of all 
kinds of languages in a concise visual manner. The particular fragment of UML class 
modeling that has been proposed for this purpose by the OMG is called Meta-Object 
Facility3 (MOF); we call it MOF/UML in the sequel  We use MOF/UML in this 
article for describing the abstract syntax, or the language model, of RDF, OWL, 
SWRL4 and RuleML. This representation helps to identify commonalities and 
differences between these languages.  

1.2   Modeling Rules 

Since rules are based on vocabularies, it is natural to add rule constructs to the 
language of UML class models for obtaining a general rule modeling language. For 
this purpose, the UML has been supplemented by the Object Constraint Language 
(OCL), which allows to add integrity rules (called invariants) and derivation rules to 
a class model in order to constrain or derive certain model elements. However, UML 
and OCL do not provide any visual syntax for rules, nor do they support other kinds 
of rules. In particular, the concept of reaction (or event-condition-action) rules is not 
supported at all in UML. 

The Model Driven Architecture5 (MDA) is a framework for software development 
defined by the Object Management Group (OMG). It is based on a fundamental 
distinction between three different modeling levels:  

1. the level of semi-formal business domain modeling, called 'computation-
independent' modeling (CIM), 

2. the level of platform-independent logical design modeling, in short: platform-
independent modeling (PIM), and  

3. the level of platform-specific implementation modeling, in short: platform-specific 
modeling (PIM). 

 

                                                           
3 See http://www.omg.org/mof. 
4 See the subsection on SWRL below. 
5 See http://www.omg.org/mda. 
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As illustrated in Fig. 1, we consider rules at these three different abstraction levels: 

1. At the business domain (CIM) level, rules are statements that express (certain 
parts of) a business/domain policy (e.g., defining terms of the domain language or 
defining/constraining domain operations) in a declarative manner, typically using a 
natural language or a visual language. Examples are: 

(R1) “The driver of a rental car must be at least 25 years old” 

(R2) “A gold customer is a customer with more than $1Million on deposit” 

(R3) “An investment is exempt from tax on profit if the stocks have been bought 
more than a year ago” 

(R4) “When a share price drops by more than 5% and the investment is exempt 
from tax on profit, then sell it” 

R1 is an integrity rule, R2 and R3 are derivation rules, and R4 is a reaction rule 
(see below for explanations of these rule categories).  

2. At the platform-independent operational design (PIM) level, rules are formal 
statements, expressed in some formalism or computational paradigm, which can be 
directly mapped to executable statements of a software system. Examples of rule 
languages at this level are SQL:1999, OCL 2.0, and DOM Level 3 Event Listeners. 
Remarkably, SQL provides operational constructs for all three business rule 
categories mentioned above: checks/assertions operationalize a notion of integrity 
rules, views operationalize a notion of derivation rules, and triggers operationalize 
a notion of reaction rules. 

3. At the platform-specific implementation (PSM) level, rules are statements in a 
language of a specific execution environment, such as Oracle 10g views, Jess 3.4, 
XSB 2.6 Prolog, or the Microsoft Outlook 6 Rule Wizard. 

Generally, rules are self-contained knowledge units that typically involve some form 
of reasoning. They may, for instance, specify: 

− static or dynamic integrity constraints (e.g. for constraining the state space or the 
execution histories of a system), 

− derivations (e.g. for defining derived concepts), 
− reactions (for specifying the reactive behavior of a system in response to events)  

Given the linguistic richness and the complex dynamics of application domains, it 
should be clear that any specific mathematical account of rules, such as classical logic 
Horn clauses, must be viewed as a limited descriptive theory that captures just a 
certain fragment of the entire conceptual space of rules, and not as a definitive, 
normative account. Rather, we need a pluralistic approach to the heterogeneous 
conceptual space of rules. Therefore, the goal should be to define a family of rule 
languages capturing the most important types of rules. While these languages should 
come with a recommended standard semantics, their rule expressions may, in 
addition, allow alternate semantics, which are also considered acceptable. This will 
accommodate various formalisms based on non-standard logics, supporting temporal, 
fuzzy, defeasible, and other forms of reasoning. 
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Fig. 1. Various rule concepts and rule languages at different levels of abstraction 

We assume that the reader is familiar with the basic conceptual modeling constructs 
of UML class diagrams (types/classes, attributes, associations, role names, 
multiplicity constraints, aggregations, generalization) and to some degree also with 
OCL. We explain some of theses modeling constructs in the next section when 
discussing an example..   

The structure of this article is as follows: after showing with an example ho to use 
UML class models for specifying vocabularies and rules in section 2, the foundational 
vocabularies of OWL/SWRL and RuleML are compared with each other in section 3. 
In section 4, different rule categories are discussed and modeled as class diagrams. In 
section 5, MOF/UML meta-models of OWL, SWRL and RuleML are presented. 
Finally, in section 6, the relationship between UML class models and OWL 
vocabularies is discussed.    

2   Rule Modeling and Markup – An Example 

An example, where a derived attribute in a UML class model is defined by a 
derivation rule, is the following: 

A car is available for rental if it is not assigned to any rental contract and 
does not require service. 

This rule defines the derived Boolean-valued attribute isAvailable of the class 
RentalCar by means of an association isAssignedTo between cars and rental 
contracts and the stored Boolean-valued attribute requiresService, as shown in the 
UML class diagram in Fig. 2.  

This class diagram specifies a vocabulary fragment consisting of 

− two basic entity types (classes), RentalCar and RentalContract 
− one attribution fact type that can be verbalized as: RentalCar has String as 

RentalCarID; 
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− two subtypes of RentalCar, AvailableRentalCar and the derived subtype 
RentalCarRequiringService, both being represented by Boolean-valued 
attributes 

− an association fact type: RentalCar isAssignedTo RentalContract, which comes 
with three integrity rules and a clarification: 

1. Functional: It is necessary that each RentalCar isAssignedTo at most one 
RentalContract. 

2. Inverse Total: It is necessary that each RentalContract is assigned at least one 
RentalCar. 

3. Inverse functional: It is necessary that each RentalContract is assigned at 
least one RentalCar 

4. Not total: It is possible that a RentalCar isAssignedTo no RentalContract 

An implicational OCL invariant, attached to the RentalCar class rectangle, is used 
to state that for a specific rental car whenever there is no rental contract associated 
with it, and it does not require service, then it must be available (for a new rental). In 
this OCL invariant expression, the condition RentalContract->isEmpty() 
means that the set of associated rental contracts must be empty. 

 

Fig. 2. An OCL invariant that constrains the derived attribute isAvailable 

However, such an OCL invariant does not really define anything but rather puts a 
constraint on the model elements it refers to. OCL 2.0, in addition to expressing 
integrity rules ('invariants'), also allows to express derivation rules for defining 
derived elements of a class model. Using this possibility, we get the following OCL 
expression: 

context RentalCar::isAvailable : Boolean derive: 
RentalContract->isEmpty() and not requiresService 

This OCL derivation rule assigns the truth value of the conjunction  

RentalContract->isEmpty() and not requiresService 

to the Boolean attribute isAvailable of the class RentalCar, and in this way it 
is a definition and not just a constraint. 
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We now present the concrete XML syntax of this rule according to the RuleML 
0.88 syntax. Notice that the head element corresponds to the Conclusion, and the 
body element corresponds to the Condition of Fig. 6. It is assumed that the attribute 
requiresService is optional, that is it does not need to have a value (in case it is 
unknown whether a particular car requires service or not). By contrast, the attribute 
isAvailable is assumed to be mandatory.  

The first condition of this rule, RentalContract->isEmpty(), corresponds 
to a negation-as-failure, which is expressed by the tag <naf> in RuleML, while 
the second condition, not requiresService, corresponds to a strong 
negation since it requires that the value of this Boolean attribute is explicitly false. 
If it would be unknown, its negation with not would result in unknown and not in 
true. So, this rule involves two kinds of negation, marked up with <Naf> and <Neg>  
in RuleML: 

<Implies> 
 <head> 
  <Atom> 
   <Rel>isAvailable</Rel> 
   <Var>Car</Var> 
  </Atom> 
 </head> 
 <body> 
  <Atom> 
   <Rel>RentalCar</Rel> 
   <Var>Car</Var> 
  </Atom> 
  <Neg> 
   <Atom> 
    <Rel>requiresService</Rel> 
    <Var>Car</Var> 
   </Atom> 
  </Neg> 
  <Naf> 
   <Atom> 
   <Rel>isAssignedToRentalContract</Rel> 
   <Var>Car</Var> 
   </Atom> 
  </Naf> 
 </body> 
</Implies> 

Rule markup languages are a vehicle for using rules on the Web. They allow 
deploying, publishing and communicating rules on the Web. They are also converging 
towards a lingua franca for exchanging rules between different systems and tools. 

In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax 
for the Web. In a broader sense, it should be defined by an abstract syntax as a 
common basis for defining various concrete languages serving different purposes. The 
main purpose of a rule markup language is to permit reuse, interchange and 
publication of rules.  
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3   Foundational Concepts for Vocabularies and Rules 

Rules are built on vocabularies, which include proper names designating individuals, 
type terms designating entity types (or classes) and fact types expressions designating 
fact types or predicates. 

In this section, we discuss the foundational concepts (or meta-concepts) being used 
in this report and the terms we are using to designate them. These concepts, and their 
canonical designations, are described in a foundational vocabulary, which is also 
called a foundational (or ‘upper level’) ontology. They define a range of top-level 
domain-independent ontological categories, which form a general foundation for 
more elaborated domain-specific vocabularies. Our foundational vocabulary is based 
on the Unified Foundational Ontology (UFO) proposed in [1,2].  

Our analysis is focused on four languages for expressing vocabularies and rules:  

1. SBVR – "Semantics of Business Vocabularies and Rules", the main submission to 
the OMG BSBR CFP [3] 

2. UML – the Unified Modeling Language of the OMG [4] 
3. RDF – the Resource Description Framework of the W3C [5] 
4. OWL – the Web Ontology Language of the W3C [6] 

All these languages come with their own foundational vocabulary, employing 
different (or the same) designations for the same (or different) concepts. We will 
therefore use our own 'unified' foundational vocabulary as defined in the first column, 
called REWERSE I1 (after the name of the REWERSE working group on rule 
markup), of the terminology tables below. The I1 foundational vocabulary helps to 
understand the differences and overlaps among these terminologies. 

For simplicity, we will not always be consistent in distinguishing the conceptual from the 
terminological level; we will, for instance, often say "rule" instead of "rule expression", 
"fact" instead of "fact statement", and "fact type" instead of "fact type expression".  

3.1   Things, Sets, Entities and Individuals 

A thing is 'anything perceivable or conceivable’. This includes concrete entities and 
also abstract things such as sets A set is a thing that has other things as members (in 
the sense of set theory). 

An entity is a thing that is not a set; neither the set-theoretic membership relation 
nor the subset relation can unfold the internal structure of an entity. An individual is 
an entity that does not have any instances, i.e., that is not an entity type. A data value 
is a member of a datatype, which is a particular kind of named set. 

3.2   Entity Types and Datatypes 

An entity type is an entity that has an extension (the set of entities that are instances of 
it) and an intension, which includes an applicability criterion for determining if an 
entity is an instance of it. A basic entity type is an entity type whose instances are 
individuals. A datatype is a set whose members are data values. 
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Table 1. Different kinds of things 

REWERSE-I1 UML SBVR RDF OWL 
thing n.a. n.a. n.a. 
entity 

Thing 
n.a. 

individual 
object 

resource (an 
instance of 
rdfs:Resource) 

individual (an 
instance of 
owl:Thing) 

data value data value 

individual concept 
literal (an instance 
of rdfs:Literal) 

data value 

Table 2.  Different kinds of entity types 

REWERSE-I1 UML  SBVR RDF OWL 
entity type n.a. 

basic (1st order) 
entity type 

type / class 
class (an 
instance of 
rdfs:Class) 

class (an 
instance of 
owl:Class, which 
is a subclass of 
rdfs:Class) 

datatype datatype 

object type /
general 
concept 

datatype (an instance of 
rdfs:Datatype) 

In Fig. 3, the foundational vocabulary about things, sets, entities and individuals 
adopted by I1 from UFO is described in the form of a UML class diagram. 

 

Fig. 3. The foundational vocabulary about things, sets, entities and individuals adopted by I1 
from UFO 

In Fig. 4 the foundational vocabulary supported by RDF(S) is summarized. Notice 
that rdfs:Class is an instance of itself. Fig. 5 describes the relationships between some 
basic RDF(S) concepts and their OWL counterparts.  
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3.3   Facts and Statements 

We distinguish between 5 different kinds of facts (or atomic statements), as depicted 
by Table 3. In addition to the basic fact kinds of classification facts, association facts 
and attribution facts, we also consider categorization facts and aggregation facts. A 
categorization fact states that an entity, as an instance of a type, is an instance of a 
'category', i.e. a subtype of that type. An aggregation fact is a part-whole statement.   

3.4   Fact Types  

A fact type corresponds to a predicate in predicate logic. But while there is no further 
distinction between different kinds of predicates in standard predicate logic, we 
distinguish between four different kinds of fact types  as depicted in Table 4.  

 

Fig. 4. The foundational vocabulary supported by RDF(S) 

 

Fig. 5. The relationships between RDF(S) concepts and their OWL counterparts 
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Table 3. Different kinds of facts 

REWERSE-I1 UML  SBVR RDF OWL 
association fact link associative fact n.a. n.a. 
binary 
association 
(reference 
property) fact 

binary link binary associative 
fact 

individual-valued 
property fact 

attribution fact  object-attribute-
value triple 

is-property-of fact 

triple, 
statement  

data-valued 
property fact 

classification 
fact 

instanceOf 
dependency 

assortment fact rdf:type 
statement 

classification fact 

categorization 
fact 

n.a. categorization fact n.a. n.a. 

aggregation fact aggregation link partitive fact n.a. n.a. 
generalization 
statement 

generalization specialization fact subclassOf 
statement 

subclass axiom 

Table 4. Different kinds of fact types 

REWERSE-I1 UML  SBVR RDF OWL 
association 
fact type 

association fact type n.a. n.a. 

binary 
association 
fact type 

binary 
association 

binary 
associative fact 
type 

individual-valued 
property (an instance 
of owl:ObjectProperty) 

attribution fact 
type attribute is-property-of 

fact type 

property (an 
instance of 
rdf:Property) data-valued property 

(an instance of 
owl:DatatypeProperty) 

categorization 
fact type 

n.a. categorization 
fact type 

n.a. n.a. 

aggregation 
fact type aggregation partitive fact 

type n.a. n.a. 

4   Rule Categories 

We briefly discuss the main categories of rules: integrity rules, derivation rules, 
reaction rules, production rules and transformation rules. The different parts of a rule 
expression can be any of the five semantic categories listed in Table 5. 

Table 5. Semantic categories of rule expression parts 

Type  Semantic Category 
Logical Sentence Truth value 
Logical Formula Function from variable bindings to truth values 
Event Term Event 
Action Term Action 
Term Can denote anything (an element from some term algebra) 
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4.1   Derivation Rules 

Logical derivation rules (also called deduction rules), in general, consist of one or 
more conditions and one or more conclusions6, which are both roles played by 
expressions of the type LogicalFormula.  
    For specific types of derivation rules, such as definite Horn clauses or normal logic 
programs, the types of condition and conclusion are specifically restricted. 
 

 

Fig. 6. The abstract concept of derivation rules 

For instance, in RuleML 0.85, conditions are quantifier-free logical formulas with 
weak and strong negation, called AndOrNafNeg-Formula in Fig. 7. More precisely, 
they are quantifier-free predicate logic formulas with weak and strong negation, 
called AndOrNafNeg-PL-Formula (this formula class specializes the abstract class 
AndOrNafNeg-Formula, which admits also of other kinds of atoms such as OCL-like 
atoms, by restricting it to predicate logic atoms). 
 

 

Fig. 7. Quantifier-free formulas with weak and strong negation 

                                                           
6  Notice that we don’t consider rules with no condition or no conclusion. These expressions are 

better not called “rules”, but “facts” and “denial constraints”. 
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The distinction between weak and strong negation is present in several computational 
languages: in extended logic programs it is present in explicit form, while it is only 
implicitly present in SQL and OCL. Intuitively speaking, weak negation captures the 
absence of positive information, while strong negation captures the presence of 
explicit negative information (in the sense of Kleene's 3-valued logic). Under the 
preferential model semantics of minimal/stable models, weak negation captures the 
computational concept of negation-as-failure (or closed-world negation). 

There are three different kinds of atoms in RuleML, as depicted by Fig. 8. 

 

Fig. 8. Three kinds of atomic formulas in RuleML 

A positional atom corresponds to an atomic formula in standard predicate logic. A 
data predicate atom (also called built-in) is formed with the help of a datatype 
predicate. An object description atom corresponds to an OWL individual description: 
it refers to an individual, classifies it, and makes a number of property-value-
assertions about it, as depicted in Fig. 10. 

 

 

Fig. 9. A positional atom consists of a user-defined predicate and a sequence of one or more 
individual terms (as defined in Fig. 20) as arguments 

In the example discussed in section 2 it may seem that the implicational invariant is 
equivalent to the corresponding derivation rule. However, there is an important 
conceptual difference between an implicational constraint p → q and the 
corresponding derivation rule  from p derive q. While the former only constrains the 
logical state space (and is also satisfied by the truth of ¬p), it does not prescribe a 
derivation procedure to be applied for deriving the conclusion q. We may consider the 
rule from p derive q to be one of several possible derivation procedures that comply 
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with the constraint p → q. Another one would be the derivation procedure consisting 
of the two rules from p derive r and from r derive q. 

Derivation rules should be semantically distinguished from implications. While an 
implication is an expression of a logical formula language (such as classical predicate 
logic or OCL), typically possessing a truth-value, a derivation rule is a meta-logical 
expression, which does not possess a truth-value, but has the function to generate 
derived sentences. There are logics, which do not have an implication connective, but 
which have a derivation rule concept. In standard logics (such as classical and 
intuitionistic logic), there is a close relationship between a derivation rule (also called 
“sequent”) and the corresponding implicational formula: they both have the same 
models. For nonmonotonic rules (e.g. with negation-as-failure) this is no longer the 
case: the intended models of such a rule are, in general, not the same as the intended 
models of the corresponding implication. 

 

 

Fig. 10. An object description atom refers to an object (its 'subject'), classifies it, and makes a 
number of property-value-assertions about it 

4.2   Integrity Rules (Constraints) 

Integrity rules, also known as (integrity) constraints, consist of a constraint modality 
and a constraint assertion, which is a sentence in some logical language such as first-
order predicate logic or OCL. This is depicted in Fig. 11. We consider two constraint 
modalities: the alethic and the deontic one. The alethic constraint modality can be 
expressed by a phrase such as "it is necessarily the case that". The deontic constraint 
modality can be expressed by phrases such as "it is obligatory that" or "it should be 
the case that". Notice that in English the phrase "it must be the case that" is 
ambiguous: it can denote either the alethic or the deontic modality.  

The constraint assertion is a logical sentence that must necessarily, or that should, 
hold in all evolving states and state transition histories of the discrete dynamic system 
to which it applies. Notice that not only software systems, but also physical, 
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Fig. 11. The abstract concept of integrity rules 

biological and social systems, such as organizations, can be viewed as discrete 
dynamic systems. Typically, we describe the natural and social laws that govern 
material (i.e. physical, biological and social) systems in the form of CIM integrity 
rules (at the domain modeling level). Then, when we transform the domain model into 
an operational design, we formalize these rules in the chosen PIM language, after 
which they no longer refer to the material system itself but to its computational 
model. So, a PIM constraint refers to the state (and execution histories) of the 
software system that models (or represents) the material system under consideration. 

Rule R1 is an example of a (deontic) static CIM constraint. An example of a 
(deontic) dynamic CIM constraint is: “The confirmation of a rental reservation must 
lead to an allocation of a car of the requested car group for the requested date prior to 
that date”. Well-known languages for expressing PIM constraints are SQL and OCL. 
In logic programming, rules with empty heads (also called “denials”) corresponding 
to the negation of the conjunction of all body atoms are sometimes used as 
constraints.  

4.3   Reaction Rules 

Reaction rules are the second important type of rule in RuleML. Integrity and 
transformation rules have not received as much attention as derivation and reaction 
rules. Reaction rules are considered to be the most important type of business rule in [7]. 

 

Fig. 12. The abstract concept of reaction rules 
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Reaction rules consist of a mandatory triggering event term, an optional condition, 
and a triggered action term or a post-condition (or both), which are roles of type 
EventTerm, LogicalFormula, ActionTerm, and LogicalFormula, respectively, as 
shown in Fig. 12. While the condition of a reaction rule is, exactly like the condition 
of a derivation rule, a quantifier-free formula, the post-condition is restricted to a 
conjunction of possibly negated atoms (called CAN-formula)..  

Action and event terms may be composite and specified in different ways. For 
instance, the UML Action Semantics could be used to specify triggered actions in a 
platform-independent manner. 

There is a little known parallel between derivation rules and reaction rules. 
Reaction rules are to dynamic (temporal logic) implication constraints what derivation 
rules are to static implication constraints. 

There are basically two types of reaction rules: those that do not have a post-
condition, which are the well-known Event-Condition-Action (ECA) rules, and those 
that do have a post-condition, which we call ECAP rules. 

 

 
Fig. 13. The post-condition in a reaction rules is a conjunction of possibly negated atoms, also 
called CAN-formula 

The post-condition of a reaction rule is either an atomic formula, a negation of an 
atomic formula or a conjunction of these (thus corresponding to a disjunctive normal 
form conjunct). This is called a CAN-Formula in Fig. 13. Such a definite formula 
specifies an update in a declarative way. 

Event-Condition-Action-Postcondition (ECAP) rules extend ECA rules by adding 
a postcondition that accompanies the triggered action. ECAP rules allow specifying 
the effect of a triggered action on the system state in a declarative manner, instead of 
specifying this state change procedurally by means of corresponding state change 
operations (like SQL UPDATEs). 

An application-specific ECA rule language may be used in software applications 
for handling application events in an automated fashion. A prominent example of this 
is the Microsoft Outlook rule wizard, which allows specifying email handling rules 
referring to incoming (or outgoing) message events. 
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4.4   Production Rules 

Production rules consist of a condition and a produced action, which are roles of the 
type LogicalFormula and ActionTerm, respectively, as shown in Fig. 14. While OCL 
could be used in a platform-independent production rule language to specify 
conditions on an object-oriented system state, the UML Action Semantics could be 
used to specify produced actions. 

These rules have become popular as a widely used technique to implement ‘expert 
systems’ in the 1980s. However, in contrast to (e.g. Prolog) derivation rules, the 
production rule paradigm lacks a precise theoretical foundation and does not have a 
formal semantics. This problem is partly due to the fact that early systems used 
production/ECA-like rules, where the semantic categories of a rule’s events and 
conditions in the left-hand-side, and of its actions and effects in the right-hand-side, 
were mixed up. 

 

Fig. 14. The abstract concept of production rules 

Production rules do not explicitly refer to events, but events can be simulated in a 
production rule system by externally asserting corresponding facts into the working 
memory. In this way, production rules can implement reaction rules.  

A derivation rule can be implemented by a production rule of the form if-
Condition-then-assert-Conclusion using the special action assert that changes the 
state of a production rule system by adding a new fact to the set of available facts. 

Production rule platforms are the rule technology that is most widely used in the 
business rules industry. Well-known examples of production rule systems are JESS, 
Fair Isaac/Blaze Advisor, iLOG Rules/JRules, CA Aion, ART*Enterprise, Haley, and 
ESI Logist. 

5   Semantics of Business Vocabularies and Rules 

The Semantics of Business Vocabularies and Rules (SBVR) is an OMG proposal [3] 
for developing and structuring business vocabularies suited for business people to 
express business rules. A business vocabulary contains all the specialized terms and 
definitions of concepts that a given organization or community uses in their talking 
and writing in the course of doing business. 
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The SBVR follows a common-sense definition of ‘business rule’ as a rule that is 
under business jurisdiction. ‘Under business jurisdiction’ is taken to mean that the 
business can enact, revise and discontinue their business rules as they see fit.   

All business rules need to be actionable. This means that a person who knows 
about a business rule could observe a relevant situation (including his or her own 
behavior) and decide directly whether or not the business was complying with the 
rule. Just because business rules are actionable, this does not imply they are always 
automatable. Many business rules, especially operative business rules, are not 
automatable in IT systems.  

In SBVR, a rule is “an element of guidance that introduces an obligation or a 
necessity”. The two fundamental categories of rule are: 

− Structural Rule (necessities): These are rules about how the business chooses to 
organize (i.e., ‘structure’) the things it deals with.  Structural Rules supplement 
definitions.:  

− Operative Rules (obligations): These are rules that govern the conduct of business 
activity. In contrast to Structural Rules, Operative Rules are ones that can be 
directly violated by people involved in the affairs of the business.  

The preferred mode of expression for vocabularies and rules is SBVR Structured 
English, a controlled English that works with verbalization patterns and font markup. 

The SBVR Structured English is not meant to offer all of the variety of common 
English, but rather, it uses a small number of English structures and common words to 
provide a simple and straightforward mapping. 

The following keywords are used in SBVR Structured English: 

• IF, THEN, OR, AND, NOT – designate logical connectives 
• The keyword "the": 1. Used with a designation to make a pronominal reference to a 

previous use of the same designation; this is formally a binding to a variable of a 
quantification. 2. Introduction of a name of an individual thing or of a definite 
description. 

• The keywords "a, an": Universal or existential quantification, depending on context 
based on English rules. 

• The keyword "that": 1. When preceding a designation for a type or role, this is a 
binding to a variable (as with ‘the’). 2. When after a designation for a type or role 
and before a designation for a fact type, this is used to introduce a restriction on 
things denoted by the previous designation based on facts about them 

Below, we use the following font types markup for the different parts of a  SBVR 
Structured English expression: 

! type term – designates a type (that is part of a vocabulary being used or defined) 
! type term – This markup is applied to a type term in the special case where the 

term is used to name the represented concept rather than to refer to things 
denoted by the term. This is a reference to the concept itself.   

! connecting verb phrase – designates a (user-defined) domain predicate symbol 
! predefined connecting verb phrase – designates a predefined predicate symbol 
! name – designates an individual or data value 

 



268 G. Wagner 

 

This markup differs from the original SBVR markup, but is equivalent. The 
description of the SBVR Structured English is divided into sections: 

− Expressions in SBVR Structured English 
− Describing a Vocabulary 
− Vocabulary Entries 
− Specifying a Rule Set 
− Rule and Clarification Entries 

There are two styles of SBVR Structured English:   

1. Prefixed Rule Keyword Style 
2. Embedded (Mixfix) Rule Keyword Style 

The Prefix Style introduces rules by prefixing a statement with keywords that convey 
a modality 

 
Operative Business Rules and Clarifications Structural Rules and Clarifications 

It is obligatory that It is necessary that 
It is prohibited that It is impossible that 
It is permitted that It is possible that 

 
The Embedded Style features the use of rule keywords embedded (usually in front of 
verbs) within rules statements of appropriate kind. The following key words are used 
within expressions having a verb (often modified to be infinitive) to form verb 
complexes that add a modal operation. 

 
Operative Business Rules and Clarifications Structural Rules and Clarifications 

… must … … always … 
… must not … … never … 
… may … … sometimes … 

5.1   Examples of SBVR-Style Rule Expressions  

UML associations are verbalized as association fact type expressions. For instance, 
consider the binary association between the classes rental car and rental in Fig. 15. It 
can be verbalized by the following fact type expressions: 

rental car is assigned to a rental 

Rules can be verbalized on the basis of fact type expressions. For instance, the rule 
that defines the derived association fact type 

rental car is available at branch 

can be expressed in the following way: 

IF rental car is stored at the branch AND rental car is NOT a rental car 
scheduled for service AND rental car is NOT assigned to a rental THEN rental 
car is available at the branch. 
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rental
reservation date
pick up date
expected return date
actual return date
/rental price
start date
end date

branch
branch name
branch address
branch postcode

rental car
body number
odometer reading
damage code
last maintenance date
service reading
registration number
registration location
acquisition date
disposal date

rented car0..1
* is assigned to

storage branch

1 *

stores / is stored at

«phase type»
/rental car 

scheduled for service

*
/available car

*

/is available at

«phase type»
reserved

rental

«phase type»
opened
rental

«phase type»
closed
rental

 

Fig. 15. A business vocabulary fragment for the domain of car rental 

In OCL, this derivation rule can be expressed as: 

context Branch::availableCar: RentalCar derive: 
self.storedCar->select( c |  
   not oclIsKindOf( RentalCarScheduledForService)  
   and c.Rental->isEmpty()) 

6   MOF/UML Metamodels as Language Definitions 

UML class models also allow to specify the abstract syntax of a language. The set of 
class modeling core constructs needed for this purpose is called Meta Object Facility 
(MOF). The MOF/UML language models are also called metamodels. They allow a 
concise definition of a language in a graphical notation. 

We briefly show how the abstract syntax of OWL, SWRL and RuleML can be 
defined by means of MOF/UML language models. 

6.1   OWL 

The W3C Web Ontology Language OWL defines an ontology as a set of axioms and a 
set of facts, as shown in Fig. 16. 
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Fig. 16. An OWL ontology consists mainly of 'axioms' and 'facts' 

There are six kinds of axioms. Three kinds of axioms allow to state conceptual 
relationships: disjointness axioms, class expression equivalences and subsumption 
atoms; whereas the remaining kinds of axioms allow to 'define' datatypes, classes and 
(various kinds of) properties.7 A fact is either an equality/inequality assertion, or an 
'individual description', which refers to an individual term and aggregates a number of 
classification facts and property-value-facts about it, as depicted in Fig. 17.   
 

 
Fig. 17. An OWL 'individual description fact' is a collection of classification facts, attribution 
facts and binary association facts, all concerning one particular individual 

                                                           
7  Notice that, strictly speaking, the semantics of OWL does not support the computational 

distinction between definition and constraint, which is reflected by the distinction between 
invariants and derivation rules in OCL, and which is also an essential part of the SBVR 
approach. Class 'definitions' in OWL are typically expressed by means of equivalence axioms. 
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Fig. 18. An RDF data literal is either a plain literal, possibly associated with a language, or a 
typed literal 

 

Fig. 19. A datatype in OWL is an RDF datatype or a data literal enumeration, or it is equal to 
the set of RDF literals 

 
Fig. 20. The abstract syntax of SWRL rules 

6.2   SWRL 

The Semantic Web Rule Language (SWRL) extends the concept of an OWL ontology 
by adding a notion of logical variables and terms as well as a seventh kind of axiom, 
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called 'rule', which is a kind of implication that allows to include property atoms and 
built-in atoms in the condition and conclusion part of a rule. 

 

Fig. 21. There are two kinds of logical terms: object terms and data terms 

6.3   RuleML 

In RuleML 0.88, a rulebase or knowledge base (KB) consists of universally quantified 
atoms, implications and atom equivalences, as depicted in Fig. 23. RuleML atoms 
have been defined in Fig. 8. 

 

 

Fig. 22. The conclusion of a RuleML derivation rule is either an atom or a strongly negated 
atom 
 

 

Fig. 23. A RuleML knowledge base consists of universally quantified atoms, implications and 
atom equivalences 
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7   Correspondence Between OWL and UML 

As already described in Table 1, there is a close correspondence between OWL and 
UML. We summarize the commonalities and differences between UML and OWL in 
Table 6. 

Table 6. Commonalities and differences between UML and OWL 

UML  OWL 
datatype datatype 
class class 
n.a. class description 
association n.a. 

binary association individual-valued property (an instance of 
owl:ObjectProperty) 

attribute data-valued property (an instance of 
owl:DatatypeProperty) 

aggregation n.a. 
multiplicity constraint cardinality restriction 
generalization subsumption axiom 
n.a. class expression equivalence 
n.a. anonymous class expression 

UML binary associations correspond to OWL object properties. For instance, the 
association 

 
corresponds to the following OWL property axiom (expressed in the abstract syntax 
of OWL):  

ObjectProperty( supplier  
   domain(person) range(vendor) inverseOf(customer))   

UML attributes correspond to OWL datatype property axioms. For instance, consider 
the following attributes of a class person: 

 

The attribute phone number corresponds to the following OWL datatype property 
axiom: 

DatatypeProperty( phone_number  
   domain(person) range(xsd:string)) 

UML multiplicity constraints correspond to OWL cardinality restrictions. But while 
the graphical notation for multiplicity constraints in UML is simple and elegant, the 
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OWL syntax for cardinality restrictions is rather cumbersome and hard to read. A 
related issue is the lack of a shorthand for total properties. While properties can be 
declared to be functional and inverse functional, there is no corresponding shorthand 
construct for declaring a property to be total, resp. inverse total. 

Another usability issue is the lack of a convenient mechanism in OWL to declare 
classes as mutually disjoint, which is the default assumption in UML 

Since many core constructs of UML class models can be mapped to OWL, such a 
mapping provides a logical semantics for UML class models Exploiting this mapping 
possibility and the inference tools available for OWL, UML tools could e.g. check the 
consistency of a class diagram by running an OWL. inference engine. 

8   Conclusions 

We have shown that there is a close correspondence between the Web ontology 
language OWL and the vocabulary language of UML class diagrams, which can be 
exploited for capturing OWL ontologies with the more user-friendly graphical 
notation of UML. UML class diagrams, in the form of MOF/UML metamodels, can 
also be used to define the abstract syntax of OWL, SWRL and RuleML. These 
language metamodels provide a level of abstraction that allows to unify apparently 
distinct constructs. For instance, the metamodel for RuleML 'slot atoms' (better called 
object description atoms) shown in Fig. 10, reveals that RDF descriptions and OWL 
individual descriptions can be mapped to this RuleML construct.  
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