

, LNCS 3564, pp. 251 – 274, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rule Modeling and Markup

Gerd Wagner

Institute of Informatics, Brandenburg University of Technology at Cottbus,
P.O.Box 10 13 44, 03013 Cottbus, Germany

G.Wagner@tu-cottbus.de

Abstract. In this paper we address several issues of rule modeling on the basis
of UML. We discuss the relationship between UML class models and OWL
vocabularies. We show how certain rules can be specified in a class diagram
with the help of OCL. We also show how rule concepts can be described, and
how the abstract syntax of RDF, OWL, SWRL and RuleML can be defined, by
means of UML class diagrams in a concise way.

1 Introduction

Rules play an important role not only in everyday life but also in computational
formalisms and information systems. They define derived concepts as elements of the
information state structure and constrain or prescribe the behavior of people and IT
systems. In particular, rules are being used to express privacy protection and access
control policies, both of which are important issues on the Web.

As we model the state structure and behavior of a system to be analyzed or to be
designed, we also have to model the rules defining the derived elements of its
information base and governing its behavior. Therefore, rule modeling is part of a
general model-driven approach to software and information systems engineering.

Rules always come on top of a vocabulary. There is no rule without an underlying
vocabulary. Consequently, for being able to see how rules can be modeled and
represented in formal languages, we also have to understand how vocabularies are
being modeled and expressed. in formal languages.

1.1 Specifying Vocabularies

While the recommended method for specifying domain vocabularies, as part of
systems analysis, in general software engineering is to use the Unified Modeling
Language1 (UML) for making a class model in the semi-visual form of a class
diagram, the W3C has recommended to use the languages RDF and OWL2 for
specifying vocabularies as part of Web applications. In particular, OWL has a great
overlap with UML class models. However, while UML class models have a visual

1 See http://www.uml.org/.
2 RDF is the Resource Description Framework (see http://www.w3.org/RDF/). OWL is the

Web Ontology Language (see http://www.w3.org/2004/OWL).

N. Eisinger and J. Małuszyński (Eds.): Reasoning Web 2005

252 G. Wagner

syntax and are widely used in academic and industrial software engineering activities,
they don't have a formal logic semantics. OWL, on the other hand, has a formal logic
semantics, but has no visual syntax and is not (yet?) widely used in industry.

Clearly, both languages can benefit from each other:

− OWL vocabularies can be captured in the user-friendly form of class diagrams.
For this purpose the UML provides an extension mechanism that allows to use
OWL-specific elements in a class diagram. Expressing OWL construct as
elements of a UML class model gives OWL a kind of operational semantics
and makes it accessible to software engineers who are not familiar with, and
not willing to learn, the description logic semantics of OWL.

− UML class diagrams can be mapped to OWL vocabularies and, in this way,
obtain a logical semantics.

There is yet another good reason to consider UML: UML class diagrams can also be
used as a visual language to describe the vocabulary, and the abstract syntax, of all
kinds of languages in a concise visual manner. The particular fragment of UML class
modeling that has been proposed for this purpose by the OMG is called Meta-Object
Facility3 (MOF); we call it MOF/UML in the sequel We use MOF/UML in this
article for describing the abstract syntax, or the language model, of RDF, OWL,
SWRL4 and RuleML. This representation helps to identify commonalities and
differences between these languages.

1.2 Modeling Rules

Since rules are based on vocabularies, it is natural to add rule constructs to the
language of UML class models for obtaining a general rule modeling language. For
this purpose, the UML has been supplemented by the Object Constraint Language
(OCL), which allows to add integrity rules (called invariants) and derivation rules to
a class model in order to constrain or derive certain model elements. However, UML
and OCL do not provide any visual syntax for rules, nor do they support other kinds
of rules. In particular, the concept of reaction (or event-condition-action) rules is not
supported at all in UML.

The Model Driven Architecture5 (MDA) is a framework for software development
defined by the Object Management Group (OMG). It is based on a fundamental
distinction between three different modeling levels:

1. the level of semi-formal business domain modeling, called 'computation-
independent' modeling (CIM),

2. the level of platform-independent logical design modeling, in short: platform-
independent modeling (PIM), and

3. the level of platform-specific implementation modeling, in short: platform-specific
modeling (PIM).

3 See http://www.omg.org/mof.
4 See the subsection on SWRL below.
5 See http://www.omg.org/mda.

 Rule Modeling and Markup 253

As illustrated in Fig. 1, we consider rules at these three different abstraction levels:

1. At the business domain (CIM) level, rules are statements that express (certain
parts of) a business/domain policy (e.g., defining terms of the domain language or
defining/constraining domain operations) in a declarative manner, typically using a
natural language or a visual language. Examples are:

(R1) “The driver of a rental car must be at least 25 years old”

(R2) “A gold customer is a customer with more than $1Million on deposit”

(R3) “An investment is exempt from tax on profit if the stocks have been bought
more than a year ago”

(R4) “When a share price drops by more than 5% and the investment is exempt
from tax on profit, then sell it”

R1 is an integrity rule, R2 and R3 are derivation rules, and R4 is a reaction rule
(see below for explanations of these rule categories).

2. At the platform-independent operational design (PIM) level, rules are formal
statements, expressed in some formalism or computational paradigm, which can be
directly mapped to executable statements of a software system. Examples of rule
languages at this level are SQL:1999, OCL 2.0, and DOM Level 3 Event Listeners.
Remarkably, SQL provides operational constructs for all three business rule
categories mentioned above: checks/assertions operationalize a notion of integrity
rules, views operationalize a notion of derivation rules, and triggers operationalize
a notion of reaction rules.

3. At the platform-specific implementation (PSM) level, rules are statements in a
language of a specific execution environment, such as Oracle 10g views, Jess 3.4,
XSB 2.6 Prolog, or the Microsoft Outlook 6 Rule Wizard.

Generally, rules are self-contained knowledge units that typically involve some form
of reasoning. They may, for instance, specify:

− static or dynamic integrity constraints (e.g. for constraining the state space or the
execution histories of a system),

− derivations (e.g. for defining derived concepts),
− reactions (for specifying the reactive behavior of a system in response to events)

Given the linguistic richness and the complex dynamics of application domains, it
should be clear that any specific mathematical account of rules, such as classical logic
Horn clauses, must be viewed as a limited descriptive theory that captures just a
certain fragment of the entire conceptual space of rules, and not as a definitive,
normative account. Rather, we need a pluralistic approach to the heterogeneous
conceptual space of rules. Therefore, the goal should be to define a family of rule
languages capturing the most important types of rules. While these languages should
come with a recommended standard semantics, their rule expressions may, in
addition, allow alternate semantics, which are also considered acceptable. This will
accommodate various formalisms based on non-standard logics, supporting temporal,
fuzzy, defeasible, and other forms of reasoning.

254 G. Wagner

Fig. 1. Various rule concepts and rule languages at different levels of abstraction

We assume that the reader is familiar with the basic conceptual modeling constructs
of UML class diagrams (types/classes, attributes, associations, role names,
multiplicity constraints, aggregations, generalization) and to some degree also with
OCL. We explain some of theses modeling constructs in the next section when
discussing an example..

The structure of this article is as follows: after showing with an example ho to use
UML class models for specifying vocabularies and rules in section 2, the foundational
vocabularies of OWL/SWRL and RuleML are compared with each other in section 3.
In section 4, different rule categories are discussed and modeled as class diagrams. In
section 5, MOF/UML meta-models of OWL, SWRL and RuleML are presented.
Finally, in section 6, the relationship between UML class models and OWL
vocabularies is discussed.

2 Rule Modeling and Markup – An Example

An example, where a derived attribute in a UML class model is defined by a
derivation rule, is the following:

A car is available for rental if it is not assigned to any rental contract and
does not require service.

This rule defines the derived Boolean-valued attribute isAvailable of the class
RentalCar by means of an association isAssignedTo between cars and rental
contracts and the stored Boolean-valued attribute requiresService, as shown in the
UML class diagram in Fig. 2.

This class diagram specifies a vocabulary fragment consisting of

− two basic entity types (classes), RentalCar and RentalContract
− one attribution fact type that can be verbalized as: RentalCar has String as

RentalCarID;

 Rule Modeling and Markup 255

− two subtypes of RentalCar, AvailableRentalCar and the derived subtype
RentalCarRequiringService, both being represented by Boolean-valued
attributes

− an association fact type: RentalCar isAssignedTo RentalContract, which comes
with three integrity rules and a clarification:

1. Functional: It is necessary that each RentalCar isAssignedTo at most one
RentalContract.

2. Inverse Total: It is necessary that each RentalContract is assigned at least one
RentalCar.

3. Inverse functional: It is necessary that each RentalContract is assigned at
least one RentalCar

4. Not total: It is possible that a RentalCar isAssignedTo no RentalContract

An implicational OCL invariant, attached to the RentalCar class rectangle, is used
to state that for a specific rental car whenever there is no rental contract associated
with it, and it does not require service, then it must be available (for a new rental). In
this OCL invariant expression, the condition RentalContract->isEmpty()
means that the set of associated rental contracts must be empty.

Fig. 2. An OCL invariant that constrains the derived attribute isAvailable

However, such an OCL invariant does not really define anything but rather puts a
constraint on the model elements it refers to. OCL 2.0, in addition to expressing
integrity rules ('invariants'), also allows to express derivation rules for defining
derived elements of a class model. Using this possibility, we get the following OCL
expression:

context RentalCar::isAvailable : Boolean derive:
RentalContract->isEmpty() and not requiresService

This OCL derivation rule assigns the truth value of the conjunction

RentalContract->isEmpty() and not requiresService

to the Boolean attribute isAvailable of the class RentalCar, and in this way it
is a definition and not just a constraint.

256 G. Wagner

We now present the concrete XML syntax of this rule according to the RuleML
0.88 syntax. Notice that the head element corresponds to the Conclusion, and the
body element corresponds to the Condition of Fig. 6. It is assumed that the attribute
requiresService is optional, that is it does not need to have a value (in case it is
unknown whether a particular car requires service or not). By contrast, the attribute
isAvailable is assumed to be mandatory.

The first condition of this rule, RentalContract->isEmpty(), corresponds
to a negation-as-failure, which is expressed by the tag <naf> in RuleML, while
the second condition, not requiresService, corresponds to a strong
negation since it requires that the value of this Boolean attribute is explicitly false.
If it would be unknown, its negation with not would result in unknown and not in
true. So, this rule involves two kinds of negation, marked up with <Naf> and <Neg>
in RuleML:

<Implies>
 <head>
 <Atom>
 <Rel>isAvailable</Rel>
 <Var>Car</Var>
 </Atom>
 </head>
 <body>
 <Atom>
 <Rel>RentalCar</Rel>
 <Var>Car</Var>
 </Atom>
 <Neg>
 <Atom>
 <Rel>requiresService</Rel>
 <Var>Car</Var>
 </Atom>
 </Neg>
 <Naf>
 <Atom>
 <Rel>isAssignedToRentalContract</Rel>
 <Var>Car</Var>
 </Atom>
 </Naf>
 </body>
</Implies>

Rule markup languages are a vehicle for using rules on the Web. They allow
deploying, publishing and communicating rules on the Web. They are also converging
towards a lingua franca for exchanging rules between different systems and tools.

In a narrow sense, a rule markup language is a concrete (XML-based) rule syntax
for the Web. In a broader sense, it should be defined by an abstract syntax as a
common basis for defining various concrete languages serving different purposes. The
main purpose of a rule markup language is to permit reuse, interchange and
publication of rules.

 Rule Modeling and Markup 257

3 Foundational Concepts for Vocabularies and Rules

Rules are built on vocabularies, which include proper names designating individuals,
type terms designating entity types (or classes) and fact types expressions designating
fact types or predicates.

In this section, we discuss the foundational concepts (or meta-concepts) being used
in this report and the terms we are using to designate them. These concepts, and their
canonical designations, are described in a foundational vocabulary, which is also
called a foundational (or ‘upper level’) ontology. They define a range of top-level
domain-independent ontological categories, which form a general foundation for
more elaborated domain-specific vocabularies. Our foundational vocabulary is based
on the Unified Foundational Ontology (UFO) proposed in [1,2].

Our analysis is focused on four languages for expressing vocabularies and rules:

1. SBVR – "Semantics of Business Vocabularies and Rules", the main submission to
the OMG BSBR CFP [3]

2. UML – the Unified Modeling Language of the OMG [4]
3. RDF – the Resource Description Framework of the W3C [5]
4. OWL – the Web Ontology Language of the W3C [6]

All these languages come with their own foundational vocabulary, employing
different (or the same) designations for the same (or different) concepts. We will
therefore use our own 'unified' foundational vocabulary as defined in the first column,
called REWERSE I1 (after the name of the REWERSE working group on rule
markup), of the terminology tables below. The I1 foundational vocabulary helps to
understand the differences and overlaps among these terminologies.

For simplicity, we will not always be consistent in distinguishing the conceptual from the
terminological level; we will, for instance, often say "rule" instead of "rule expression",
"fact" instead of "fact statement", and "fact type" instead of "fact type expression".

3.1 Things, Sets, Entities and Individuals

A thing is 'anything perceivable or conceivable’. This includes concrete entities and
also abstract things such as sets A set is a thing that has other things as members (in
the sense of set theory).

An entity is a thing that is not a set; neither the set-theoretic membership relation
nor the subset relation can unfold the internal structure of an entity. An individual is
an entity that does not have any instances, i.e., that is not an entity type. A data value
is a member of a datatype, which is a particular kind of named set.

3.2 Entity Types and Datatypes

An entity type is an entity that has an extension (the set of entities that are instances of
it) and an intension, which includes an applicability criterion for determining if an
entity is an instance of it. A basic entity type is an entity type whose instances are
individuals. A datatype is a set whose members are data values.

258 G. Wagner

Table 1. Different kinds of things

REWERSE-I1 UML SBVR RDF OWL
thing n.a. n.a. n.a.
entity

Thing
n.a.

individual
object

resource (an
instance of
rdfs:Resource)

individual (an
instance of
owl:Thing)

data value data value

individual concept
literal (an instance
of rdfs:Literal)

data value

Table 2. Different kinds of entity types

REWERSE-I1 UML SBVR RDF OWL
entity type n.a.

basic (1st order)
entity type

type / class
class (an
instance of
rdfs:Class)

class (an
instance of
owl:Class, which
is a subclass of
rdfs:Class)

datatype datatype

object type /
general
concept

datatype (an instance of
rdfs:Datatype)

In Fig. 3, the foundational vocabulary about things, sets, entities and individuals
adopted by I1 from UFO is described in the form of a UML class diagram.

Fig. 3. The foundational vocabulary about things, sets, entities and individuals adopted by I1
from UFO

In Fig. 4 the foundational vocabulary supported by RDF(S) is summarized. Notice
that rdfs:Class is an instance of itself. Fig. 5 describes the relationships between some
basic RDF(S) concepts and their OWL counterparts.

 Rule Modeling and Markup 259

3.3 Facts and Statements

We distinguish between 5 different kinds of facts (or atomic statements), as depicted
by Table 3. In addition to the basic fact kinds of classification facts, association facts
and attribution facts, we also consider categorization facts and aggregation facts. A
categorization fact states that an entity, as an instance of a type, is an instance of a
'category', i.e. a subtype of that type. An aggregation fact is a part-whole statement.

3.4 Fact Types

A fact type corresponds to a predicate in predicate logic. But while there is no further
distinction between different kinds of predicates in standard predicate logic, we
distinguish between four different kinds of fact types as depicted in Table 4.

Fig. 4. The foundational vocabulary supported by RDF(S)

Fig. 5. The relationships between RDF(S) concepts and their OWL counterparts

260 G. Wagner

Table 3. Different kinds of facts

REWERSE-I1 UML SBVR RDF OWL
association fact link associative fact n.a. n.a.
binary
association
(reference
property) fact

binary link binary associative
fact

individual-valued
property fact

attribution fact object-attribute-
value triple

is-property-of fact

triple,
statement

data-valued
property fact

classification
fact

instanceOf
dependency

assortment fact rdf:type
statement

classification fact

categorization
fact

n.a. categorization fact n.a. n.a.

aggregation fact aggregation link partitive fact n.a. n.a.
generalization
statement

generalization specialization fact subclassOf
statement

subclass axiom

Table 4. Different kinds of fact types

REWERSE-I1 UML SBVR RDF OWL
association
fact type

association fact type n.a. n.a.

binary
association
fact type

binary
association

binary
associative fact
type

individual-valued
property (an instance
of owl:ObjectProperty)

attribution fact
type attribute is-property-of

fact type

property (an
instance of
rdf:Property) data-valued property

(an instance of
owl:DatatypeProperty)

categorization
fact type

n.a. categorization
fact type

n.a. n.a.

aggregation
fact type aggregation partitive fact

type n.a. n.a.

4 Rule Categories

We briefly discuss the main categories of rules: integrity rules, derivation rules,
reaction rules, production rules and transformation rules. The different parts of a rule
expression can be any of the five semantic categories listed in Table 5.

Table 5. Semantic categories of rule expression parts

Type Semantic Category
Logical Sentence Truth value
Logical Formula Function from variable bindings to truth values
Event Term Event
Action Term Action
Term Can denote anything (an element from some term algebra)

 Rule Modeling and Markup 261

4.1 Derivation Rules

Logical derivation rules (also called deduction rules), in general, consist of one or
more conditions and one or more conclusions6, which are both roles played by
expressions of the type LogicalFormula.
 For specific types of derivation rules, such as definite Horn clauses or normal logic
programs, the types of condition and conclusion are specifically restricted.

Fig. 6. The abstract concept of derivation rules

For instance, in RuleML 0.85, conditions are quantifier-free logical formulas with
weak and strong negation, called AndOrNafNeg-Formula in Fig. 7. More precisely,
they are quantifier-free predicate logic formulas with weak and strong negation,
called AndOrNafNeg-PL-Formula (this formula class specializes the abstract class
AndOrNafNeg-Formula, which admits also of other kinds of atoms such as OCL-like
atoms, by restricting it to predicate logic atoms).

Fig. 7. Quantifier-free formulas with weak and strong negation

6 Notice that we don’t consider rules with no condition or no conclusion. These expressions are

better not called “rules”, but “facts” and “denial constraints”.

262 G. Wagner

The distinction between weak and strong negation is present in several computational
languages: in extended logic programs it is present in explicit form, while it is only
implicitly present in SQL and OCL. Intuitively speaking, weak negation captures the
absence of positive information, while strong negation captures the presence of
explicit negative information (in the sense of Kleene's 3-valued logic). Under the
preferential model semantics of minimal/stable models, weak negation captures the
computational concept of negation-as-failure (or closed-world negation).

There are three different kinds of atoms in RuleML, as depicted by Fig. 8.

Fig. 8. Three kinds of atomic formulas in RuleML

A positional atom corresponds to an atomic formula in standard predicate logic. A
data predicate atom (also called built-in) is formed with the help of a datatype
predicate. An object description atom corresponds to an OWL individual description:
it refers to an individual, classifies it, and makes a number of property-value-
assertions about it, as depicted in Fig. 10.

Fig. 9. A positional atom consists of a user-defined predicate and a sequence of one or more
individual terms (as defined in Fig. 20) as arguments

In the example discussed in section 2 it may seem that the implicational invariant is
equivalent to the corresponding derivation rule. However, there is an important
conceptual difference between an implicational constraint p → q and the
corresponding derivation rule from p derive q. While the former only constrains the
logical state space (and is also satisfied by the truth of ¬p), it does not prescribe a
derivation procedure to be applied for deriving the conclusion q. We may consider the
rule from p derive q to be one of several possible derivation procedures that comply

 Rule Modeling and Markup 263

with the constraint p → q. Another one would be the derivation procedure consisting
of the two rules from p derive r and from r derive q.

Derivation rules should be semantically distinguished from implications. While an
implication is an expression of a logical formula language (such as classical predicate
logic or OCL), typically possessing a truth-value, a derivation rule is a meta-logical
expression, which does not possess a truth-value, but has the function to generate
derived sentences. There are logics, which do not have an implication connective, but
which have a derivation rule concept. In standard logics (such as classical and
intuitionistic logic), there is a close relationship between a derivation rule (also called
“sequent”) and the corresponding implicational formula: they both have the same
models. For nonmonotonic rules (e.g. with negation-as-failure) this is no longer the
case: the intended models of such a rule are, in general, not the same as the intended
models of the corresponding implication.

Fig. 10. An object description atom refers to an object (its 'subject'), classifies it, and makes a
number of property-value-assertions about it

4.2 Integrity Rules (Constraints)

Integrity rules, also known as (integrity) constraints, consist of a constraint modality
and a constraint assertion, which is a sentence in some logical language such as first-
order predicate logic or OCL. This is depicted in Fig. 11. We consider two constraint
modalities: the alethic and the deontic one. The alethic constraint modality can be
expressed by a phrase such as "it is necessarily the case that". The deontic constraint
modality can be expressed by phrases such as "it is obligatory that" or "it should be
the case that". Notice that in English the phrase "it must be the case that" is
ambiguous: it can denote either the alethic or the deontic modality.

The constraint assertion is a logical sentence that must necessarily, or that should,
hold in all evolving states and state transition histories of the discrete dynamic system
to which it applies. Notice that not only software systems, but also physical,

264 G. Wagner

Fig. 11. The abstract concept of integrity rules

biological and social systems, such as organizations, can be viewed as discrete
dynamic systems. Typically, we describe the natural and social laws that govern
material (i.e. physical, biological and social) systems in the form of CIM integrity
rules (at the domain modeling level). Then, when we transform the domain model into
an operational design, we formalize these rules in the chosen PIM language, after
which they no longer refer to the material system itself but to its computational
model. So, a PIM constraint refers to the state (and execution histories) of the
software system that models (or represents) the material system under consideration.

Rule R1 is an example of a (deontic) static CIM constraint. An example of a
(deontic) dynamic CIM constraint is: “The confirmation of a rental reservation must
lead to an allocation of a car of the requested car group for the requested date prior to
that date”. Well-known languages for expressing PIM constraints are SQL and OCL.
In logic programming, rules with empty heads (also called “denials”) corresponding
to the negation of the conjunction of all body atoms are sometimes used as
constraints.

4.3 Reaction Rules

Reaction rules are the second important type of rule in RuleML. Integrity and
transformation rules have not received as much attention as derivation and reaction
rules. Reaction rules are considered to be the most important type of business rule in [7].

Fig. 12. The abstract concept of reaction rules

 Rule Modeling and Markup 265

Reaction rules consist of a mandatory triggering event term, an optional condition,
and a triggered action term or a post-condition (or both), which are roles of type
EventTerm, LogicalFormula, ActionTerm, and LogicalFormula, respectively, as
shown in Fig. 12. While the condition of a reaction rule is, exactly like the condition
of a derivation rule, a quantifier-free formula, the post-condition is restricted to a
conjunction of possibly negated atoms (called CAN-formula)..

Action and event terms may be composite and specified in different ways. For
instance, the UML Action Semantics could be used to specify triggered actions in a
platform-independent manner.

There is a little known parallel between derivation rules and reaction rules.
Reaction rules are to dynamic (temporal logic) implication constraints what derivation
rules are to static implication constraints.

There are basically two types of reaction rules: those that do not have a post-
condition, which are the well-known Event-Condition-Action (ECA) rules, and those
that do have a post-condition, which we call ECAP rules.

Fig. 13. The post-condition in a reaction rules is a conjunction of possibly negated atoms, also
called CAN-formula

The post-condition of a reaction rule is either an atomic formula, a negation of an
atomic formula or a conjunction of these (thus corresponding to a disjunctive normal
form conjunct). This is called a CAN-Formula in Fig. 13. Such a definite formula
specifies an update in a declarative way.

Event-Condition-Action-Postcondition (ECAP) rules extend ECA rules by adding
a postcondition that accompanies the triggered action. ECAP rules allow specifying
the effect of a triggered action on the system state in a declarative manner, instead of
specifying this state change procedurally by means of corresponding state change
operations (like SQL UPDATEs).

An application-specific ECA rule language may be used in software applications
for handling application events in an automated fashion. A prominent example of this
is the Microsoft Outlook rule wizard, which allows specifying email handling rules
referring to incoming (or outgoing) message events.

266 G. Wagner

4.4 Production Rules

Production rules consist of a condition and a produced action, which are roles of the
type LogicalFormula and ActionTerm, respectively, as shown in Fig. 14. While OCL
could be used in a platform-independent production rule language to specify
conditions on an object-oriented system state, the UML Action Semantics could be
used to specify produced actions.

These rules have become popular as a widely used technique to implement ‘expert
systems’ in the 1980s. However, in contrast to (e.g. Prolog) derivation rules, the
production rule paradigm lacks a precise theoretical foundation and does not have a
formal semantics. This problem is partly due to the fact that early systems used
production/ECA-like rules, where the semantic categories of a rule’s events and
conditions in the left-hand-side, and of its actions and effects in the right-hand-side,
were mixed up.

Fig. 14. The abstract concept of production rules

Production rules do not explicitly refer to events, but events can be simulated in a
production rule system by externally asserting corresponding facts into the working
memory. In this way, production rules can implement reaction rules.

A derivation rule can be implemented by a production rule of the form if-
Condition-then-assert-Conclusion using the special action assert that changes the
state of a production rule system by adding a new fact to the set of available facts.

Production rule platforms are the rule technology that is most widely used in the
business rules industry. Well-known examples of production rule systems are JESS,
Fair Isaac/Blaze Advisor, iLOG Rules/JRules, CA Aion, ART*Enterprise, Haley, and
ESI Logist.

5 Semantics of Business Vocabularies and Rules

The Semantics of Business Vocabularies and Rules (SBVR) is an OMG proposal [3]
for developing and structuring business vocabularies suited for business people to
express business rules. A business vocabulary contains all the specialized terms and
definitions of concepts that a given organization or community uses in their talking
and writing in the course of doing business.

 Rule Modeling and Markup 267

The SBVR follows a common-sense definition of ‘business rule’ as a rule that is
under business jurisdiction. ‘Under business jurisdiction’ is taken to mean that the
business can enact, revise and discontinue their business rules as they see fit.

All business rules need to be actionable. This means that a person who knows
about a business rule could observe a relevant situation (including his or her own
behavior) and decide directly whether or not the business was complying with the
rule. Just because business rules are actionable, this does not imply they are always
automatable. Many business rules, especially operative business rules, are not
automatable in IT systems.

In SBVR, a rule is “an element of guidance that introduces an obligation or a
necessity”. The two fundamental categories of rule are:

− Structural Rule (necessities): These are rules about how the business chooses to
organize (i.e., ‘structure’) the things it deals with. Structural Rules supplement
definitions.:

− Operative Rules (obligations): These are rules that govern the conduct of business
activity. In contrast to Structural Rules, Operative Rules are ones that can be
directly violated by people involved in the affairs of the business.

The preferred mode of expression for vocabularies and rules is SBVR Structured
English, a controlled English that works with verbalization patterns and font markup.

The SBVR Structured English is not meant to offer all of the variety of common
English, but rather, it uses a small number of English structures and common words to
provide a simple and straightforward mapping.

The following keywords are used in SBVR Structured English:

• IF, THEN, OR, AND, NOT – designate logical connectives
• The keyword "the": 1. Used with a designation to make a pronominal reference to a

previous use of the same designation; this is formally a binding to a variable of a
quantification. 2. Introduction of a name of an individual thing or of a definite
description.

• The keywords "a, an": Universal or existential quantification, depending on context
based on English rules.

• The keyword "that": 1. When preceding a designation for a type or role, this is a
binding to a variable (as with ‘the’). 2. When after a designation for a type or role
and before a designation for a fact type, this is used to introduce a restriction on
things denoted by the previous designation based on facts about them

Below, we use the following font types markup for the different parts of a SBVR
Structured English expression:

! type term – designates a type (that is part of a vocabulary being used or defined)
! type term – This markup is applied to a type term in the special case where the

term is used to name the represented concept rather than to refer to things
denoted by the term. This is a reference to the concept itself.

! connecting verb phrase – designates a (user-defined) domain predicate symbol
! predefined connecting verb phrase – designates a predefined predicate symbol
! name – designates an individual or data value

268 G. Wagner

This markup differs from the original SBVR markup, but is equivalent. The
description of the SBVR Structured English is divided into sections:

− Expressions in SBVR Structured English
− Describing a Vocabulary
− Vocabulary Entries
− Specifying a Rule Set
− Rule and Clarification Entries

There are two styles of SBVR Structured English:

1. Prefixed Rule Keyword Style
2. Embedded (Mixfix) Rule Keyword Style

The Prefix Style introduces rules by prefixing a statement with keywords that convey
a modality

Operative Business Rules and Clarifications Structural Rules and Clarifications

It is obligatory that It is necessary that
It is prohibited that It is impossible that
It is permitted that It is possible that

The Embedded Style features the use of rule keywords embedded (usually in front of
verbs) within rules statements of appropriate kind. The following key words are used
within expressions having a verb (often modified to be infinitive) to form verb
complexes that add a modal operation.

Operative Business Rules and Clarifications Structural Rules and Clarifications

… must … … always …
… must not … … never …
… may … … sometimes …

5.1 Examples of SBVR-Style Rule Expressions

UML associations are verbalized as association fact type expressions. For instance,
consider the binary association between the classes rental car and rental in Fig. 15. It
can be verbalized by the following fact type expressions:

rental car is assigned to a rental

Rules can be verbalized on the basis of fact type expressions. For instance, the rule
that defines the derived association fact type

rental car is available at branch

can be expressed in the following way:

IF rental car is stored at the branch AND rental car is NOT a rental car
scheduled for service AND rental car is NOT assigned to a rental THEN rental
car is available at the branch.

 Rule Modeling and Markup 269

rental
reservation date
pick up date
expected return date
actual return date
/rental price
start date
end date

branch
branch name
branch address
branch postcode

rental car
body number
odometer reading
damage code
last maintenance date
service reading
registration number
registration location
acquisition date
disposal date

rented car0..1
* is assigned to

storage branch

1 *

stores / is stored at

«phase type»
/rental car

scheduled for service

*
/available car

*

/is available at

«phase type»
reserved

rental

«phase type»
opened
rental

«phase type»
closed
rental

Fig. 15. A business vocabulary fragment for the domain of car rental

In OCL, this derivation rule can be expressed as:

context Branch::availableCar: RentalCar derive:
self.storedCar->select(c |
 not oclIsKindOf(RentalCarScheduledForService)
 and c.Rental->isEmpty())

6 MOF/UML Metamodels as Language Definitions

UML class models also allow to specify the abstract syntax of a language. The set of
class modeling core constructs needed for this purpose is called Meta Object Facility
(MOF). The MOF/UML language models are also called metamodels. They allow a
concise definition of a language in a graphical notation.

We briefly show how the abstract syntax of OWL, SWRL and RuleML can be
defined by means of MOF/UML language models.

6.1 OWL

The W3C Web Ontology Language OWL defines an ontology as a set of axioms and a
set of facts, as shown in Fig. 16.

270 G. Wagner

Fig. 16. An OWL ontology consists mainly of 'axioms' and 'facts'

There are six kinds of axioms. Three kinds of axioms allow to state conceptual
relationships: disjointness axioms, class expression equivalences and subsumption
atoms; whereas the remaining kinds of axioms allow to 'define' datatypes, classes and
(various kinds of) properties.7 A fact is either an equality/inequality assertion, or an
'individual description', which refers to an individual term and aggregates a number of
classification facts and property-value-facts about it, as depicted in Fig. 17.

Fig. 17. An OWL 'individual description fact' is a collection of classification facts, attribution
facts and binary association facts, all concerning one particular individual

7 Notice that, strictly speaking, the semantics of OWL does not support the computational

distinction between definition and constraint, which is reflected by the distinction between
invariants and derivation rules in OCL, and which is also an essential part of the SBVR
approach. Class 'definitions' in OWL are typically expressed by means of equivalence axioms.

 Rule Modeling and Markup 271

Fig. 18. An RDF data literal is either a plain literal, possibly associated with a language, or a
typed literal

Fig. 19. A datatype in OWL is an RDF datatype or a data literal enumeration, or it is equal to
the set of RDF literals

Fig. 20. The abstract syntax of SWRL rules

6.2 SWRL

The Semantic Web Rule Language (SWRL) extends the concept of an OWL ontology
by adding a notion of logical variables and terms as well as a seventh kind of axiom,

272 G. Wagner

called 'rule', which is a kind of implication that allows to include property atoms and
built-in atoms in the condition and conclusion part of a rule.

Fig. 21. There are two kinds of logical terms: object terms and data terms

6.3 RuleML

In RuleML 0.88, a rulebase or knowledge base (KB) consists of universally quantified
atoms, implications and atom equivalences, as depicted in Fig. 23. RuleML atoms
have been defined in Fig. 8.

Fig. 22. The conclusion of a RuleML derivation rule is either an atom or a strongly negated
atom

Fig. 23. A RuleML knowledge base consists of universally quantified atoms, implications and
atom equivalences

 Rule Modeling and Markup 273

7 Correspondence Between OWL and UML

As already described in Table 1, there is a close correspondence between OWL and
UML. We summarize the commonalities and differences between UML and OWL in
Table 6.

Table 6. Commonalities and differences between UML and OWL

UML OWL
datatype datatype
class class
n.a. class description
association n.a.

binary association individual-valued property (an instance of
owl:ObjectProperty)

attribute data-valued property (an instance of
owl:DatatypeProperty)

aggregation n.a.
multiplicity constraint cardinality restriction
generalization subsumption axiom
n.a. class expression equivalence
n.a. anonymous class expression

UML binary associations correspond to OWL object properties. For instance, the
association

corresponds to the following OWL property axiom (expressed in the abstract syntax
of OWL):

ObjectProperty(supplier
 domain(person) range(vendor) inverseOf(customer))

UML attributes correspond to OWL datatype property axioms. For instance, consider
the following attributes of a class person:

The attribute phone number corresponds to the following OWL datatype property
axiom:

DatatypeProperty(phone_number
 domain(person) range(xsd:string))

UML multiplicity constraints correspond to OWL cardinality restrictions. But while
the graphical notation for multiplicity constraints in UML is simple and elegant, the

274 G. Wagner

OWL syntax for cardinality restrictions is rather cumbersome and hard to read. A
related issue is the lack of a shorthand for total properties. While properties can be
declared to be functional and inverse functional, there is no corresponding shorthand
construct for declaring a property to be total, resp. inverse total.

Another usability issue is the lack of a convenient mechanism in OWL to declare
classes as mutually disjoint, which is the default assumption in UML

Since many core constructs of UML class models can be mapped to OWL, such a
mapping provides a logical semantics for UML class models Exploiting this mapping
possibility and the inference tools available for OWL, UML tools could e.g. check the
consistency of a class diagram by running an OWL. inference engine.

8 Conclusions

We have shown that there is a close correspondence between the Web ontology
language OWL and the vocabulary language of UML class diagrams, which can be
exploited for capturing OWL ontologies with the more user-friendly graphical
notation of UML. UML class diagrams, in the form of MOF/UML metamodels, can
also be used to define the abstract syntax of OWL, SWRL and RuleML. These
language metamodels provide a level of abstraction that allows to unify apparently
distinct constructs. For instance, the metamodel for RuleML 'slot atoms' (better called
object description atoms) shown in Fig. 10, reveals that RDF descriptions and OWL
individual descriptions can be mapped to this RuleML construct.

References

[1] G. Guizzardi & G. Wagner. A Unified Foundational Ontology and some Applications of it
in Business Modeling. In P. Green and M. Rosemann (Eds.), Business Systems Analysis
with Ontologies, IDEA Publishing, 2005.

[2] G. Guizzardi & G. Wagner. Towards Ontological Foundations for Agent Modelling
Concepts Using the Unified Foundational Ontology. In P. Bresciani et al. (Eds.): AOIS
2004, LNAI 3508, pp. 110 – 124, Springer-Verlag, 2005.

[3] Semantic of Business Vocabulary and Business Rules (SBVR). Revised Submission to
OMG BEI RFP br/2003/06/03, http://www.omg.org/cgi-bin/doc?bei/2005-03-01.

[4] UML, http://www.uml.org/.
[5] G.Klyne and J.J.Caroll (Eds.), Resource Description Framework (RDF): Concepts and

Abstract Syntax, W3C, 2004.
[6] OWL Web Ontology Language, http://www.w3.org/2004/OWL.
[7] Taveter K., Wagner, G.: Agent-Oriented Enterprise Modeling Based on Business Rules.

In Proc. of 20th Int. Conf. on Conceptual Modeling (ER2001), Springer-Verlag, LNCS
2224, pp. 527–540, 2001.

	Introduction
	Specifying Vocabularies
	Modeling Rules

	Rule Modeling and Markup – An Example
	Foundational Concepts for Vocabularies and Rules
	Things, Sets, Entities and Individuals
	Entity Types and Datatypes
	Facts and Statements
	Fact Types

	Rule Categories
	Derivation Rules
	Integrity Rules (Constraints)
	Reaction Rules
	Production Rules

	Semantics of Business Vocabularies and Rules
	Examples of SBVR-Style Rule Expressions

	MOF/UML Metamodels as Language Definitions
	OWL
	SWRL
	RuleML

	Correspondence Between OWL and UML
	Conclusions
	References

