
Evolution and Reactivity for the Web

José Júlio Alferes1 and Wolfgang May2

1 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

jja@di.fct.unl.pt
2 Institut für Informatik, Universität Göttingen, 37083 Göttingen, Germany

may@informatik.uni-goettingen.de

Abstract. The Web and the Semantic Web, as we see it, can be un-
derstood as a “living organism” combining autonomously evolving data
sources, each of them possibly reacting to events it perceives. Rather
than a Web of data sources, we envisage a Web of Information Systems,
where each such system, besides being capable of gathering information
(querying persistent data, as well as “listening” to volatile data such as
occurring events), is capable of updating persistent data, communicating
the changes, requesting changes of persistent data in other systems, and
being able to react to requests from other systems. The dynamic char-
acter of such a Web requires declarative languages and mechanisms for
specifying the evolution of the data.

In this course we will talk about foundations of evolution and reactive
languages in general, and will then concentrate on some specific issues
posed by evolution and reactivity in the Web and in the Semantic Web.

1 Introduction

Use of the Web today –commonly known as the “World Wide Web”– mostly
focuses on the page-oriented perspective: most of the Web consists of browsable
HTML pages only. From this point of view, the Web can be seen as a graph
that consists of the resources as nodes, and the hyperlinks form the edges. Here,
queries are stated against individual nodes, or against several nodes. As such, the
Web is mainly seen from its static perspective of autonomous sources, whereas
the behavior of the sources, including active interaction of resources does not
play any important role here.

But there is more on the Web of today than HTML pages. Leaving the su-
perficial point of view of HTML pages, the Web can be seen as a set of data
sources, some of which are still browsing-oriented, but there are also database-
like resources that can actually be queried. Moreover, there are specialized in-
formation sources like Web Services and Portals.

With these representations, the perspective may shift more to the idea of a
Web consisting of (a graph of) information systems. In these information sys-
tems, data extraction may be thought not only in terms of local queries, but also
in terms of global queries that are stated against the Web, or against a group

, LNCS 3564, pp. 134–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
N. Eisinger and J. Ma�luszyński (Eds.): Reasoning Web 2005

Evolution and Reactivity for the Web 135

(or community) of nodes on the Web. Given the highly heterogeneous and au-
tonomous characteristics of the Web, this requires appropriate query languages,
and a way to deal with the integration of data from the various sources.

But such an infrastructure of autonomous sources should allow for more than
querying. Consider a set of sources of travel agencies and airline companies. It
is important to be capable of querying such a set for, e.g. timetables of flights,
availability of flight tickets, etc. But a Web consisting of information systems
should allow for more. For example: it should allow for drawing conclusions
based on knowledge (e.g. in the form of derivation rules) available on each node;
it should allow for making reservations via a travel agency, and automatically
make the corresponding airline company (and also other travel agencies) aware of
that; it should allow airline companies to change their selling policies, and have
travel agencies automatically aware of those changes; etc. The Web, as we see it,
with such capabilities can be seen as forming an active, “living” infrastructure
of autonomous systems, where reactivity, evolution and its propagation plays a
central role.

In this course, we discuss issues related to this question. The focus and the
message of the course is on the concepts – specific formalisms are given as ex-
amples and illustrations. Section 2 classifies different kinds of evolution and
reactivity in the (Semantic) Web and motivates the use of rules, especially ECA
rules as the target formalism. Section 3 discusses foundations for modeling and
reasoning about temporal issues, i.e., formalizing temporal structures, specifica-
tion of actions and processes, and events. These concepts are then combined in
Section 4 where existing rule-based approaches to evolution and reactivity are
discussed. The application of these concepts to the Semantic Web is then dis-
cussed in Section 5. A proposal how such a framework could look like is sketched
in Section 6.

2 Concepts in Evolution and Reactivity in the Web

2.1 Local and Global Reactivity and Evolution

In contrast to the conventional (Hypertext) Web, the Semantic Web consists
of active nodes that are able to answer queries, to evolve and to communicate.
Evolution of the Web is a twofold aspect: on today’s Web, evolution means
mainly evolution of individual Web sites that are updated locally. In contrast,
considering the Web as a “living organism” that consists of autonomous data
sources, but that will show a global “behavior” leads to a notion of evolution of
the Web as cooperative evolution of (the state of) its individual resources.1

Below, we incrementally introduce such behavior and sketch the concepts that
arise: simple reactive behavior (non-state-changing), local evolution of nodes (i.e.
state-changing), and collaboration of nodes, both non-state-changing and state-
changing.

1 For further details on the global behavior, and its relation to querying and evolution
aspects see [42].

136 J.J. Alferes and W. May

Pure Reactivity Without Evolution. The most basic and primitive activity
on the Web is query answering. From the point of view of the user, querying is
a static issue: there is no actual dynamic aspect in it (except possibly a delay).
Nevertheless, from the point of view of the resources, there comes reactivity into
play: when answering queries, the resources must answer in reaction to a query
message, and in case that the query is answered with cooperation of several
resources, the resources do also exchange messages.

Local Updates and Evolution. The state of such a Web node can be classified
into three conceptual levels: facts (e.g. in XML, RDF or OWL; divided into data
and metadata); a knowledge base given by derivation rules; and behavior (e.g.,
reaction patterns), e.g. of a Web Service.

When updating the Conventional Web, the update is expressed as a specific
update operation on a specific Web site, using e.g. an XML update language.
For the Semantic Web data formats, RDF and OWL, also update languages are
available. Here, simple data updates and ontology evolution has to be distin-
guished.

Global Evolution. The power of the Semantic Web raises from the combina-
tion of the knowledge and behavior of sets of data sources. Especially, as an
intelligent Web, a cooperative evolution of (the state of) its individual nodes is
required.

Thus, having data flow and dependencies between Web sites, besides a plain
communication mechanism, mechanisms to maintain consistency between Web
sites by update propagation are required. Update propagation consists of (i)
propagating an update, and (ii) processing/materializing the update at another
Web resource. The latter, as we have just seen, is solved by local update lan-
guages. So, the remaining problem turns out to be how to communicate changes
on the (Semantic) Web. Often a change is not propagated as an explicit update,
but there must be “evolution” of “the Web” as a consequence of a change to
some information.

For this, it is clear that we need a “global” language for communicating
changes, and communication strategies for how to propagate pieces of informa-
tion through the Semantic Web, seeing it globally as the union of all information
throughout the Web. In it, the Semantic-property of the Web is crucial for au-
tomatically mediating between several actual schemata.

In this setting, evolution on the Web takes place by: either local changes in
data sources via updates; or local evolution of Web Services by reaction to events
on the Web due to their own, specified, behavior.

2.2 Event-Condition-Action (Reactive) Rules for Evolution

Following a well-known and successful paradigm, we propose to use rules, more
specifically, reactive rules according to the Event-Condition-Action (ECA) para-
digm for the specification of reactivity. An important advantage of them is that
the content of the communication can be separated from the generic semantics

Evolution and Reactivity for the Web 137

of the rules themselves. Cooperative and reactive behavior is then based on
events (e.g., an update at a data source where possibly others depend on). The
depending resources detect events (either they are delivered explicitly to them,
or they poll them via the communication means of the Web; see next section)
Then, conditions are checked (either simple data conditions, or e.g. tests if the
event is relevant, trustable etc.), which are queries to one or several nodes and
are to be expressed in the proposed query framework. Finally, an appropriate
action is taken (e.g., updating own information accordingly). The action part can
also be formulated as a transaction whose ACID properties ensure that either all
actions in a transaction are performed, or nothing of is done; this also allows to
check postconditions. In the literature, ECA rules are also referred to as triggers,
active rules, or reactive rules.

The language for the ECA rules must comprise a language for describing
events (in the “Event” part; there are atomic events, such as simple data up-
dates or incoming messages, and composite events such as “if first A happens
and then B”), the language for queries (in the “Condition” part), and a language
for actions (including updates) and transactions (in the “Action” part). An im-
portant requirement here is that event specification and detection be as much
declarative and application-level as possible. This point calls for modular design
of the sublanguages and the ECA language, and the respective processors.

Usually, ECA rules are patterns that contain variables to be bound in the
event part that are communicated to the condition and action parts.
A well-known example for simple ECA rules are e.g. the SQL triggers:

ON database-update WHEN condition BEGIN pl/sql-fragment END

where the values of the updated tuple are accessible as old and new.
These triggers react on local events in the database. For cooperative evolution

and reactivity on the Web, events and other information must be communicated.

2.3 Communication Structure and Propagation of Knowledge

Communication on the Web as a living organism consisting of autonomous
sources takes place as peer-to-peer communication. In this setting, evolution takes
place if a resource (or its knowledge) evolves locally, and another resource that
depends upon it also evolves (as a reaction). The communication can be classified
by communication strategies.

– Push: an information source informs a client of the updates. A directed,
targeted propagation of changes by the push strategy is only possible along
registered communication paths. It takes place by explicit messages, that can
be update messages, or just information about what happened. In this case,
control flow and data flow are in parallel and synchronous.

– Pull: resources that obtain information from a source can pull updates by ei-
ther explicitly asking whether it executed some updates recently, or can regu-
larly update themselves based on queries against the source. Communication
is based on queries and answers (that are in fact again sent as messages).

138 J.J. Alferes and W. May

In this case, control flow and data flow are antiparallel, which has obvious
drawbacks.

The above basic forms describe direct communication. Advanced communication
strategies are then based on these, providing more efficient data and control flow:

– broadcast: general push to all peers.
– blackboard: separates the data source from answering of pull -queries and al-

lows for a pre-filtering by a short push (to the blackboard) from where clients
pull.

– publish-and-subscribe services (see e.g. [60]) receive messages from publish-
ers and notify subscribers if the messages match the subscriptions. Here,
the communication follows a pure push pattern, i.e., information (published
items) are pushed from their originators to the pub/sub service, and derived
information (notification about changes) is pushed from the pub/sub service
to its subscribers.

– continuous query systems (see e.g., NiagaraCQ [14]) allow users to “register”
queries at the service that then continuously evaluates the query (together
with other queries) against the source, and informs the user about the an-
swer (or when the answer changes). Here, communication combines pull and
push: the CQ system pulls information from sources, and pushes derived
information to the end user.

Note that both in the case of push and pull strategies, the actual reactivity, i.e.,
how the instance that is informed reacts on an event, can be expressed by ECA
rules as described in the previous section:

– push: on an event (update), send a message (control flow + data flow).
– pull: regularly send a query (control flow) and, on a query, send an answer

(data flow).
– The behavior of pub/sub and continuous query systems can also be expressed

by simple ECA rules.

3 Foundations of Evolution and Reactivity

In the previous section we described the concepts that enable evolution and
reactivity on the Semantic Web. In this section, we describe the theoretical
background and formal means for analyzing and describing these concepts2.

For dealing with evolution, be it in the Web or in any other context, a formal
understanding of how the knowledge evolves and how to represent such evolution
is needed. We start this section by describing foundational work on models for
(temporal) knowledge evolution, that considers sequences of states. We then
proceed by presenting temporal logics, that allow to reason about evolution in
these models. When considering evolving sequences of states, the actions that

2 A more complete survey on these foundational issues can be found at [1].

Evolution and Reactivity for the Web 139

cause transitions of states are also relevant. For this, in Sections 3.3 and 3.4,
we show logics for dealing with transition systems and formalisms for defining
(complex) actions, respectively. Finally, we focus our attention on events, which
in general are manifestations (i.e. visible consequences) of action execution, that
may trigger evolution.

All these concepts are combined in Section 4, where existing rule-based ap-
proaches for evolution and reactivity are exposed.

3.1 Models of Dynamics and Temporal Structures

Kripke structures serve as a generic model-theoretic framework for multi-state
structures: the semantics of the individual states is given by some single-state
interpretations, and the Kripke structure provides the “infrastructure” that con-
nects the states. Some (arbitrary) logic is used for the single-state interpretations,
and this logic is extended, in a modular way, with additional concepts for han-
dling the multi-state aspects. This can be done by modalities (in our situation,
temporal modalities, but modalities of knowledge and belief are also often used).

Many approaches to multi-state reasoning use Kripke structures explicitly;
here, temporal logics will be described. Other, often specialized, formalisms ex-
tend single-state formalisms with a notion of state (in which Kripke structures
are –more or less explicitly– the model of choice).

Yet other formalisms –although basically mappable to Kripke semantics–
put emphasis on the dynamic aspects, whereas the individual states and their
properties become less important (Transaction Logic, and, even much stronger,
process calculi).

Kripke Structures. Assume some logic (e.g., first-order logic) to describe in-
dividual states. A (first-order) Kripke structure is a triple K = (G,R,M) where
G is a set of states (to be interpreted as states or possible worlds), R ⊆ G ×G is
an accessibility relation, and M is a function which maps every state g ∈ G to a
(first-order) structure M(g) = (M(g),U(g)) over Σ with universe U(g). G and
R are called the frame of K. A path p in a Kripke structure K = (G,R,M) is a
sequence p = (g0, g1, g2, . . .), gi ∈ G with R(gi, gi+1) holding for all i.

As mentioned above, Kripke structures provide just a multi-state “infrastruc-
ture”: a suitable single-state-logic must then be chosen for an application, which
is then extended to Kripke structures. Temporal extensions, where the Kripke
structure is interpreted as a temporal structure, are suitable for our project.
Even in the area of temporal applications, there are different interpretations of
Kripke structures.

Labeled Transition Systems/Path Structures. Labeled transition systems
are one of the fundamental concepts for modeling processes (cf. [51], [61]). We
present LTSs here (semantically equivalent to the original literature) as an exten-
sion of the above Kripke Structures. A labeled transition system (LTS) consists
of a set G of states/configurations, a set A of actions/labels (elementary actions,

140 J.J. Alferes and W. May

or programs), and, for every a ∈ A, R(a) ⊆ G × G is a binary relation that
provides the interpretation of actions (i.e., the labeled accessibility relation).

M(g0)

g0

M(g1)

g1

M(g2)

g2 . . .

a1 a2

R(a1) = {(g0, g1), . . .} and R(a1) = {(g1, g2), . . .}

Fig. 1. Excerpt of a Kripke Structure as an LTS

Another view of the same thing are path structures. The idea goes back to
propositional Dynamic Logic [32], the term path model came up with Process
Logic [34], where especially extended, derived accessibility relations for compos-
ite actions/programs/processes are defined (see Section 3.3).

3.2 Temporal Logics

Temporal –and other– model logics provide modal operators for modalizing the
semantics of formulas of an underlying single-state logic. Due to the historical
development of modal logics, the modal operators � and � were introduced.
�F stands for “F is necessary true”, resp. “F holds in all possible worlds”,
and �F for “F is possibly true”, resp. “there is some possible world where F
holds”. Translated to modal logic of time (temporal logic), the operators are
interpreted as: �F – “always” (F holds in all subsequent states), and �F –
“sometimes” (F eventually holds). For reasoning in temporal Kripke structures,
there are two alternatives: linear time considers a single path, whereas branching
time considers a whole tree-like structure.

Linear Time Temporal Logics. The most intuitive idea for interpreting tem-
poral logic is a sequence of states. Here, the basic operators of temporal modal
logic are others, having a pure temporal semantics: ◦ (“nexttime”) and until:

– ◦F : in the next state, F holds.
– F until G: there is a subsequent state where G holds, and in all states between

now and this state, F holds.

The semantics of the temporal modal operators � and �, is equivalently defined
via until (note that there is a also an inductive definition based on ◦ which is
typically used for model checking-like approaches):

– �P := true until P and �P := ¬�¬P .

The Logics PLTL and FOTL. Linear Temporal Logic LTL (as propositional
PLTL or as first-order FOTL) extends propositional logic with the above tem-
poral operators: each state is a propositional or first-order interpretation, and

Evolution and Reactivity for the Web 141

the states are connected as a linear Kripke structure (or, a single path in a
branching Kripke structure is considered).
The language of LTL formulas is defined as follows:

– Every (propositional or first-order) formula is an LTL formula.
– With F and G LTL formulas, ◦F , �F , �F and (F until G) are LTL formulas.

The satisfaction relation |=LTL (for short also denoted by |=) is defined according
to the inductive definition of the syntax with respect to a propositional or first-
order (infinite) linear Kripke structure K = (G = {g1, g2, . . .}, {(n, n+1) | n ∈
IN},M), based on the propositional satisfaction relation |=PL or |=FOL:
Let g = gi a state in K, A an atomic formula, F and G LTL formulas and, in
the first-order case, χ a variable assignment. Then,

(g, χ) |= A :⇔ (M(g), χ) |=PL/FOL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧ G :⇔ (g, χ) |= F and (g, χ) |= G ,

(gi, χ) |= ◦F :⇔ (gi+1, χ) |= F ,

(gi, χ) |= F until G :⇔ there is a j ≥ i s.t. (gj , χ) |= G
and for all k : i ≤ k < j, (gk, χ) |= F .

Branching Time Temporal Logics. Applying the classical temporal modal-
ities � and � (without ◦ and until) in a branching structure leads to surprising
interpretations: Whereas in linear time logic, g |= �F means that F will eventu-
ally hold in the possible future (“sometimes”), the same formula for branching
time means that there is a future, where F will eventually hold (“not never”).
For this aspect and the (dis)advantages of linear vs. branching time logic, see [37]
(L. Lamport: “’Sometimes’ is Sometimes ’Not Never’”) and [20] (E. A. Emerson
and C.-L. Lei: “Modalities for Model Checking: Branching Time Strikes Back”)
and several other papers.

The Logic CTL. For combining the expressiveness of both linear and branching
time logic, the logics UB (unified branching time) [5] and CTL (Computation
Tree Logic) [16] have been introduced:

– temporal modal operators ◦, �, � and until (although � and � can be ex-
pressed by until, they are used here as “basic” operators to obtain the syntax
definition described below),

– an existential path quantifier E (“there exists a path such that ...”) and a
universal path quantifier A (“on all paths”).

CTL distinguishes between two different types of formulas: state formulas that
hold in a state (all first-order formulas are state-formulas), and path formulas,
that hold on paths, i.e., on sequences of states.

The language of CTL-formulas does not allow arbitrary combinations, but is
defined as follows:

142 J.J. Alferes and W. May

– Every first-order formula is a CTL-state formula.
– With F and G CTL-state formulas, ¬F , F ∧ G and F ∨ G are CTL-state

formulas.
– With F a CTL-state formula and x a variable, ∀x : F and ∃x : F are CTL-

state formulas.
– With F and G CTL-state formulas, ◦F , �F , �F and (F until G) are CTL-

path formulas.
– With P a CTL-path formula, ¬P is a CTL-path formula.
– With P a CTL-path formula, AP and EP are CTL-state formulas.
– Every CTL-state formula is a CTL-formula.

With the above definition, in CTL every (possibly negated) modal operator is
immediately preceded by a path quantifier.

The satisfaction relation |=CTL (for short also denoted by |=) is defined ac-
cording to the inductive definition of the syntax with respect to a first-order
Kripke structure K = (G,R,M), based on the first-order satisfaction relation:

Let g ∈ G be a state, p = (g0, g1, . . .) a path in K, A an atomic first-order
formula, F and G CTL-state formulas, P a CTL-path formula and χ a variable
assignment. Then,

(g, χ) |= A :⇔ (M(g), χ) |=PL/FOL A ,

(g, χ) |= ¬F :⇔ not (g, χ) |= F ,

(g, χ) |= F ∧ G :⇔ (g, χ) |= F and (g, χ) |= G ,

(p, χ) |= ◦F :⇔ (g1, χ) |= F ,

(p, χ) |= F until G :⇔ there is an i ≥ 0 s.t. (gi, χ) |= G and
for all j : 0 ≤ j < i, (gi, χ) |= F ,

(p, χ) |= ¬P :⇔ not (p, χ) |= P ,

(g, χ) |= EP :⇔ there is a path p =(g = g0, g1, . . .) in K s.t. (p, χ) |=P .

The semantics of the modal operators �, �, and of the path quantifier A is
defined via until and E:

�P := true until P , �P := ¬�¬P , AP := ¬E¬P .

Extensions. There exist multiple extensions of CTL in different directions. The
CTL family itself provides even more expressiveness,

– CTL+ and CTL� extend to arbitrary combinations of temporal operators
to path formulas; especially, “fairness” requirements cannot be expressed in
CTL, but need more complex path formulas:
• “Justice” requires that an action that is executable continuously (“wait-

ing”) from a certain state on, is eventually executed:
CTL�: A((��(Action waiting)) → �(Action is executed))
(carefully note the implication semantics A → B ⇔ ¬A∨B of this formula)

Evolution and Reactivity for the Web 143

• “Compassion (strong Fairness)” is the (stronger) requirement that every
action that is executable/asked for infinitely often, is also eventually exe-
cuted: CTL�: A((��(Action waiting)) → �(Action is executed))

– The semantics of the accessibility relation wrt. execution of actions is con-
sidered e.g., in Dynamic Logic and Hennessy-Milner-Logic (see subsequent
sections).

– Past Tense Logics add past-time temporal operators: • (previous state), �
(sometimes in the past), � (always in the past), and since (e.g., A since B),
symmetrical to the future tense operators.
In [22], it is shown that in the propositional case, past-tense connectives do
not increase the expressiveness of temporal logic. The use of modal temporal
logic for executable process specifications is described in [23], quite similar
to Transaction Logic (see Section 4.3).

3.3 Logics for Labeled Transition Systems and Path Structures

The above approaches formalize a sequence of states without any special se-
mantics for the transition. When considering evolving sequences of states, the
transition is also relevant. In approaches taking this into account, in general
there is a set A of (atomic) actions with which the transitions are labeled. The
labeled transition relation leads straightforwardly to polymodal logics (i.e., each
modality is also labeled with actions).

The following logics use not only atomic actions in their formulas, but de-
fine also restricted languages for composite actions or programs based on these
actions.

Dynamic Logic. Dynamic Logic [32, 33, 52] provides a logic for labeled transi-
tion systems. The main difference between CTL and Dynamic Logic lies in the
scope of the modalities: There, the modal operators � and � are interpreted
in their historical sense as “possibly” and “necessarily”, i.e., they do not apply
to paths here, but only to single transitions. The modal operators are labeled
with programs given by the algebra 〈A, {; ,∪,� }〉, (“;” denotes sequential com-
position, ∪ denotes alternative composition (“choice”), and � denotes iteration).
With every program a, a binary transition relation R(a) ⊂ G × G is assigned.
– any (propositional or) first order formula is a DL formula, and
– for any DL formula F and any action or program a, 〈a〉DLF is a DL formula

with the semantics

g |= 〈a〉DLF ⇔ there is a state h such that (g, h) ∈ R(a) and h |= F .

In agreement with the tradition, �DLF := ¬�DL¬F is defined to be the dual
of �DL.

Here, the difference between the interpretation of the modal operators be-
tween CTL and Dynamic Logic becomes visible: In CTL, the modal operators
reach into the future along a single path and the path quantifiers range or-
thogonally over all possible futures, speaking about paths not about states. In

144 J.J. Alferes and W. May

Dynamic Logic, the modal operators look ahead one step on every path (i.e.,
they correspond to CTL’s path quantifiers, not to CTL’s modal operators).
Thus, the eventually, always, and until -operators can not be expressed in DL
without resorting to a fixpoint logic. Instead, “if now, a is executed, F will
definitely/probably hold” can be expressed.

Hennessy-Milner Logic. In [58] and [48], Hennessy-Milner-Logic, HML, a
modal logic interpretation of the CCS calculus (see Section 3.4) is given whose
modalities are very similar to those of Dynamic Logic. The set of formulas of
Hennessy-Milner-Logic, FmlHML, is defined inductively as

– T ∈ FmlHML ,
– F ∈ FmlHML ⇒ ¬F ∈ FmlHML ,
– F,G ∈ FmlHML ⇒ F ∧ G ∈ FmlHML ,
– F ∈ FmlHML and a ∈ A ⇒ �aHMLF ∈ FmlHML .

(instead of �aHML , also 〈a〉HML can be written).
CCS (see Section 3.4) does not use a notion of propositional or first-order states,
but is based on the notion of processes as nodes of its LTS structures. The
satisfaction relation |=HML (for short also denoted by |=) between processes and
HML-formulas is defined similar to Dynamic Logic by

1. P |= T for all processes P ,
2. P |= ¬F :⇔ not P |= F ,
3. P |= F ∧ G :⇔ P |= F and P |= G ,

4. P |= �aHMLF :⇔ there is a process P ′ s.t. P a→ P ′ and P ′ |= F .

Additionally, derived expressions in HML are defined:
– F ≡ ¬T ,
– F ∨ G ≡ ¬(¬F ∧ ¬G) ,
– �aHMLF ≡ 〈a1〉HML . . . 〈an〉HMLF for a = a1. · · · .an ,
– �aHMLF ≡ ¬�aHML¬F .

Similar to the discussion about CTL and Dynamic Logic above, it is not possible
in HML to express properties like “P will eventually execute a” or “in the next
step, P will execute a”. Instead, “if now, a is executed, F will definitely/probably
hold” can be expressed.

Process Logic. In contrast to Dynamic Logic and Hennessy-Milner Logic,
where all formulas apply to states, the syntax of logics for path structures fo-
cusses on the notion of path formulas: their |=-relation relates paths to formulas.
Nevertheless, in those logics, paths consisting of exactly one state actually take
the role of states.

Process Logic [34] is a (propositional) logic for describing activities, based on
path structures. It uses path structures with a slightly different focus of the

Evolution and Reactivity for the Web 145

semantics of formulas: P is a relation assigning sets of paths to programs, i.e.,
it extends R to compound programs (thereby defining a restricted language of
compound programs or transactions):

– if α and β are programs, then so are αβ, α ∪ β, and α∗.

Note that Process Logic does not have a notion of “parallel” actions. The acces-
sibility relation is in the same way extended to these programs:

Pα = Rα for actions/primitive programs α,
Pαβ = PαPβ = {pq | p ∈ Pα and q ∈ Pβ} ,
Pα∪β = Pα ∪ Pβ ,
Pα∗ =

⋃
i<ω Pαi .

In Process Logic, all formulas are path formulas, i.e., evaluated against paths.
Its syntax extends Dynamic Logic with the following connectives:

– if X and Y are formulas, then so are fX, and X suf Y .
– if α is a program and X is a formula, then �α PRX is a formula.

The satisfaction relation |= is extended to a relation between paths and state
formulas. Let p = (so, s1, . . .) be a path.

p |= X ⇔ s0 |= X for primitive (propositional or first-order) formulas X.
(not explicit, but see [34–Def.4.1, p.155])

p |= fX ⇔ s0 |= X .
p |= X suf Y ⇔ there is a q ∈ Pα s.t.

(i) q is a proper suffix of p and q |= Y , and
(ii) for all r, if r is a proper suffix of p and q is a proper

suffix of r, then r |= X .
p |= �α PRX ⇔ there is a q ∈ Pα s.t. pq |= X .

Note that the semantics of �α PR is different from the usual semantics of �:
p |= �α PRX states that from the endpoint of path p, there is a path q executing
α s.t. then the whole path pq satisfies X.

Transaction Logic (cf. Section 4.3) is another logic which is based on path
structures; using temporal connectives instead of temporal modal operators.

Summary and Examples. While the static aspects (i.e., the states) use the
same formalism (except in Hennessy-Milner Logic), i.e., propositional or first-
order logic (where special approaches exist that use predicates only (Datalog) or
functions only (Evolving Algebras) [30, 31]), the dynamic aspects are described
differently in the above approaches as shown below:

Example 1. Consider two persons, Alice and Bob who have bank accounts with
a given balance given by a function, balance(name). Actions are debit(name, amount)
and deposit(name, amount).
Considering the excerpt of a Kripke Structure given in Figure 1, e.g.,

M(g0) = {balance(Alice) = 200, balance(Bob) = 100} ,
(g0, g1) ∈ R(debit(Alice, 20)) , (g1, g2) ∈ R(deposit(Bob, 20)) .

146 J.J. Alferes and W. May

Obviously,

M(g1) = {balance(Alice) = 180, balance(Bob) = 100} and
M(g2) = {balance(Alice) = 180, balance(Bob) = 120} .

The semantics of debit can be specified in Hennessy-Milner Logic and Dynamic
Logic by

∀Acc,Am1, Am2 :
balance(Acc1) = Am → [debit(Acc1, Am2)]balance(Acc1) = Am1–Am2

(where [a] denotes the “always” modality �a).

Both logics allow now for reasoning about sequences, e.g., expressing a simple in-
tegrity constraint that any sequence of actions debit(Acc1, Am) and deposit(Acc2, Am)
keeps the sum of the overall balances unchanged.
Hennessy-Milner Logic can express this by

∀Acc1, Acc2, Am,B1, B2, Sum :
Sum = balance(Acc1)+balance(Acc2) →

[debit(Acc1, Am) · deposit(Acc2, Am)]Sum = balance(Acc1)+balance(Acc2) .

Analogous for Dynamic Logic (with “;” as sequential concatenation).
Process Logic’s transition relation P for programs will e.g. contain

(g0, g2) ∈ Pdebit(Alice,20) deposit(Bob,20) ,

making the above “transition by a composite action” explicit in the model. We
also have

(g0, g1) |= f(balance(Alice) = 200 ∧ balance(Bob) = 100) ∧
〈deposit(Bob, 20)〉last(balance(Alice) = 180 ∧ balance(Bob) = 120)
with last as formally defined in [34] .

The above example shows that modal logics are useful for reasoning about tem-
poral structures, especially proving correctness. Up to here, “actions” occurred
only for the definition of paths that then satisfy formulas – i.e., to check if some-
thing “is true” after executing some actions. Also, the notions of actions and
events are not really distinguishable, because both notions are identified with
the labels of the transitions. So far, one can see an action as an action from the
point of view of generating the next state, and as an event from the point of
view of looking at the transition afterwards.

For specifying pure evolution, the notions of actions, transactions (that have
to satisfy several requirements), and processes are used to describe what se-
quences of transitions are actually executed. When coming to reactivity, we want
to express implications (rules) that under certain circumstances, something must
be done. These circumstances can not only be static conditions, but also dynamic
occurrences of events. The goal of these rules is to check if something happened,
and then to make something happen.

Evolution and Reactivity for the Web 147

3.4 Actions, Transactions, and Processes

Some of the above languages already define restricted mechanisms for (reasoning
about the effects of) actions and composite actions. Other, rule-based formalisms
will be discussed in Section 4.1. There are also several frameworks and formalisms
for the definition of composite actions as programs, processes, or transactions
(which is essentially the same from different points of view and with different
consequences regarding parallelism and interference). Simple “programs” have
been discussed above for Dynamic Logic. More complex specifications of activ-
ities and interaction, e.g. between different Web nodes, can be given in terms
of Process Algebras that are discussed just below. Transaction Logic is another,
rule based formalism for defining, executing, and even a restricted amount of
planning that will be discussed later in Section 4.3.

Process Algebras. Process Algebras describe the semantics of processes in
an algebraic way, i.e., by a set of elementary processes (carrier set) and a set
of constructors. The semantics can either be given as denotational semantics,
i.e., by specifying the denotation of every element of the algebra (e.g., CSP –
Communicating Sequential Processes, [35]), or as an operational semantics by
specifying the behavior of every element of the algebra (e.g., CCS – Calculus
of Communicating Systems, [45, 46]). Processes defined by Process Algebras can
e.g. be used for the specification of communication, i.e., for basic protocols, or for
defining the behavior of interacting (Semantic) Web Services (note that process
algebras provide concepts for defining infinite processes), or in the action part
of ECA rules.

Basic Process Algebra (BPA). For a given set A of atomic actions,

BPAA = 〈A, {⊥,+, ·}〉

is the basic algebra – i.e., containing the least reasonable set of operators – for
constructing processes over A. ⊥ is a constant denoting a deadlock, + denotes
alternative composition, and · denotes sequential composition: if x and y are
processes, then x+y and x · y are processes (syntax and semantics are formally
introduced later on with CCS). These are essentially the processes that have also
been presented above in Dynamic Logic and Hennessy-Milner-Logic.

Calculus of Communicating Systems (CCS). CCS extends BPA by more expres-
sive operators. The carrier set of a CCS [45, 46, 47] algebra is given by a set A of
action names from which processes are built by using several connectives. Every
element of the algebra is called a process. By carrying out an action, a process
changes into another process. Considering the modeling as an LTS, a process
can be regarded as a state or a configuration. Action names become labels and
the transition relation is given by the rules specifying the execution of actions.
A CCS algebra with a carrier set A is defined as follows:

1. With X a (process) variable, X is a process expression.
2. Every a ∈ A is a process expression.

148 J.J. Alferes and W. May

3. With a ∈ A and P a process expression, a : P is a process expression (pre-
fixing; sequential composition).

4. With P and Q process expressions, P × Q is a process expression (parallel
composition).

5. With I a set of indices, Pi : i ∈ I process expressions,
∑

i∈I Pi is a process
expression (alternative composition).

6. With A ⊆ A a set of actions and P a process expression, P � A is a process
expression (restriction to a set of visible actions).

7. With I a set of indices, Xi variables, Pi process expressions, fixjXP is a
process expression (definition of a communicating system of processes). The
fix operator binds the variables Xi, and fixj is one of the |I| processes which
are defined by this expression.

The fix operator can be omitted if defining equations of the form Q := P are
allowed, where Q is a new process identifier and P is a process expression. Process
expressions not containing any free variables are processes.
The (operational) semantics of a CCS algebra is given by transition rules:

a : P a→ P ,
Pi

a→ P
∑

i∈I Pi
a→ P

(for i ∈ I) ,
P a→ P ′ Q b→ Q′

P × Q ab→ P ′ × Q′
,

,
P a→ P ′

P � A a→ P ′ � A
(for a ∈ A) ,

Pi{fix XP /X} a→ P ′

fixiXP a→ P ′ .

Additionally, there are some derived operators and constants

0 :=
∑

∅
Pi , P1+P2 :=

∑

i∈{1,2}
Pi ,

and, for asynchronous communication and delays,

∂P := fix X(1 : X + P) , X not free in P , and
P1|P2 := P × ∂Q + ∂P × Q

with the corresponding transition rules

P a→ P ′

P+Q a→ P ′ ,
Q a→ Q′

P+Q a→ P ′ , ∂P 1→ ∂P ,
P a→ P ′

∂P a→ P ′

P a→ P ′

P |Q a→ P ′|Q
,

Q a→ Q′

P |Q a→ P |Q′ ,
P a→ P ′ Q b→ Q′

P |Q ab→ P ′|Q′

In CCS and related concepts, such as CSP [35] and ACP [6], there is no explicit
notion of states, the properties of a state are given by the (sequences of) actions
which can be executed.

Evolution and Reactivity for the Web 149

Example 2. Consider again the scenario of Example 1. There, it has been de-
scribed how to reason about a structure. Having now a notion of processes, we
can describe how transitions belong together:

– a common money transfer is already a simple process:
transfer(Am,Acc1, Acc2) := debit(Acc1, Am) : deposit(Acc2, Am) .

– a standing order (i.e., a banking order that has to be executed regularly) is
defined as a fixpoint process. The following process transfers a given amount
from one account to another every first of a month:
fix X(rec msg(first of month) : debit(Acc1, Am) : deposit(Acc2, Am) : ∂X)

(assuming the receipt of a message as a communicating action).
– A more detailed view could e.g. communicate with the repository for checking

if the balance will stay positive:

fix X(rec msg(first of month) : send msg(query (Acc1 > Am?)) :
(∂ : rec msg(yes) : debit(Acc1, Am) : deposit(Acc2, Am)+
(∂ : rec msg(no) : send msg(error))) : ∂X)

In this example, the fact that it is the 1st of a month is communicated explicitly
by sending (issued e.g. by a timer process) and receiving actions.

Another way would be to consider “1st of a month” as an event and, instead
of a fixpoint process, have a rule that states “if this event occurs, then do ...”.
Also, for querying the account, this model uses active waiting (∂) – here it would
also be possible to have a rule that reacts on the incoming message.

3.5 Event Languages and Event Algebras

The main difference between actions and events is roughly that an event is the
visible consequence of an action. E.g., the action is to “debit of 200 E from
Alice’s bank account”, and visible events are “a change of Alice’s bank account”
(that is immediately detectable from an update), or “the balance of Alice’s
bank account becomes below zero” (which has to be derived from an update).
Additionally, there are system events and external events like temporal events
(“1st of a month”) and incoming messages. Obviously, actions and events are
correlated, but an action can raise several events, raising the problem how events
are detected. In this section we focus on languages for event specification and on
event detection.

In the context of the Web, an (atomic) event is in general any detectable oc-
currence, i.e., local events (updates, temporal events, and transactional events),
incoming messages including queries and answers, updates of data anywhere in
the Web, or any occurrences somewhere in an application, that are (possibly)
represented in explicit data, or signaled events.

Reactivity is in general not based on atomic events only, but uses the notion
of composite events, e.g., “when E1 happened and then E2 and E3, but not E4

after at least 10 minutes, then do A”. Composite events are usually defined in
terms of an event algebra.

150 J.J. Alferes and W. May

So, there is the need for several integrated languages: a language for atomic
events and their metadata, and (application-specific) languages for expressing
the contents of different types of events, and a declarative language for describing
complex events, together with algorithms for handling complex events. The latter
languages are not concerned with what the information contained in the event
might be, but only with types of events.

Complex Events, Event Algebras

Event Algebras. The term “algebra” describes a very generic (mathematical)
concept that has many applications in Computer Science: Boolean Algebra, Re-
lational Algebra, or natural numbers (with only an operator succ(.), or with
operators “+” and “*”) are algebras. An algebra consists of a “domain” (i.e.,
a set of “things”), and a set of operators (with a given arity). Operators map
elements of the domain to other elements of the domain. Algebra terms are
formed by nesting operators. Each of the operators has a “semantics”, that is, a
definition how the result of applying it to some input should look like. Algebra
expressions are built over basic constants and operators (inductive definition).

For an event algebra, the constants are the atomic events, and the operators
serve for combining composite events, e.g.: “A and B”, “A or B”, or “A and
then B”. Event algebras contain not only the aforementioned straightforward
conjunctive, disjunctive and sequential connectives, but also additional opera-
tors. A bunch of event algebras have been defined that provide also e.g. “negative
events” in the style that “when E1 happened, and then E3 but not E2 in between,
then do something”, “periodic” and “cumulative” events, e.g., [13, 55].

An Example. In [13], an event algebra which is used for event detection in the
context of ECA-rules (“on 〈event〉 if 〈condition〉 do 〈action〉”) in active databases
is proposed. Semantically, an event is a predicate E : T → {true, false} where
T denotes a set of time instances (or, in embedding into the model of Kripke
structures, transitions where the event could be detected). For a given set of
elementary events, the set of events is defined inductively:

– If E and F are events, then E∇F and E�F are events.
– If E1, . . . , En are events and m < n ∈ IN, then ANY(m,E1, . . . , En) is an

event.
– If E and F are events, then E;F is an event.
– If E1, E2 and E3 are events, then A(E1, E2, E3) and A∗(E1, E2, E3) are

events.
– If E1, E2 and E3 are events, then ¬(E1)[E2, E3] is an event.

The semantics of composite events is defined as follows, where detection of a
complex event means that its “final” atomic subevent is detected:

(1) (E∇F)(t) :⇔ E1(t) ∨ E2(t) ,
(2) (E�F)(t) :⇔ E1(t) ∧ E2(t) ,
(3) (E1;E2)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E2(t) ,

Evolution and Reactivity for the Web 151

(4) ANY(m,E1, . . . , En)(t) :⇔ ∃t1 ≤ . . . ≤ tm–1 ≤ t, 1 ≤ i1, . . . , im ≤ n pairwise
distinct s.t. Eij

(tj) for 1 ≤ j < m and Eim
(t),

(5) ¬(E2)[E1, E3](t) :⇔ E3(t) ∧ (∃t1 : E1(t1)∧
∧ (∀t2 : t1 ≤ t2 < t : ¬(E2(t2) ∨ E3(t2)))) ,

(6) A(E1, E2, E3)(t) :⇔ E2(t) ∧ (∃t1 : E1(t1) ∧ (∀t2 : t1 ≤ t2 < t : ¬E3(t2))),
(7) A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t) ,

when this event occurs, a specified action for every
occurrence of E2 has to be executed in t.

The constructs ∇ (“or”) and � (“and”) are standard and straightforward.
“(E1;E2)” denotes the successive occurrence of E1 and E2, where in case that
E2 is a complex event, it is possible that subevents of E2 occur before E1 occurs.
ANY denotes the occurrence of m events out of n in arbitrary order, which is
also expressible by a special ∇-�-;-schema. (5) is a complex event which detects
the non-occurrence of E2 in the interval between E1 and the next E3. (6) is an
“aperiodic” event which is signaled whenever E2 occurs after E1 without E3 oc-
curring in-between. Note that ¬(E2)[E1, E3] occurs with the terminating event
E3 whereas A(E1, E2, E3) occurs with every E2 in the interval (if E3 never oc-
curs, the interval is endless). The “cumulative aperiodic event” (7) occurs with
E3 and then requires the execution of a given set of actions corresponding to
the occurrences of E2 in the meantime. Thus, it is not a simple event, but more
an active rule, stating a temporal implication of the form “if E1 occurs, then
for each occurrence of an instance of E2, collect its parameters, and when E3

occurs, report all collected parameters (in order to do something)”.
In general, events are parameterized, and event specifications contain free

variables that are bound in the event detection.

Example 3. Consider again the scenario of Example 1. Events in this scenario
are e.g. “1st of a month”, “a deposit to account x” (in this case, the event directly
corresponds to an action), or “the balance of account x goes below zero” (due to
a debit action). Composite events are e.g.,“there were no deposits to an account
for 100 days” which can be expressed in the above event language as

E1(Acct) :=
(¬(∃X : deposit(Acct,X)))[deposit(Acct,Am) ∧ t = date, date = t+100days] .

An aperiodic event is e.g. “the balance of account x goes below zero and there
is another debit without any deposit in-between” which is expressed in the above
event language as

E2(Acct) := A(debit(Acct,Am1) ∧ balance(Acct) < 0,
debit(Acct,Am2), deposit(Acct,Am3)) .

A cumulative periodic event is e.g. used for “after the end of a month, send an
account statement with all entries of this month:

E3(Acct, list) :=
A∗(first of month, (debit(Acct,Am)∇deposit(Acct,Am)), first of next month)

152 J.J. Alferes and W. May

where the event occurs with first of next month and carries a list of the debit
and deposit actions.

Event Detection. As described above, an event algebra mainly consists of the
definition of event combinators and their semantics (given in general in terms of
sequences that “satisfy” the composite event). For practical issues, it is necessary
to detect the event. Since events are volatile data (and for efficiency reasons),
it is not possible to do this by querying, but event detection must be done
incrementally on-the-fly.

Work on complex events does not only define the semantics of events and
complex events, but in general also describes algorithms for efficient detection
and tracing of events. Incremental residuation has been used in [55] in an ap-
proach that uses an event-style algebra for scheduling of tasks, which is similar
to the reduction steps in the operational semantics given in Section 3.4 for CCS.

Past tense modalities with incremental bookkeeping have been employed for
checking temporal constraints and temporal conditions in ECA-style rules, e.g.
in [15, 56]. [15] uses full first-order past temporal logic, with ∃ and ∀ quantifiers.
[56] replaces the quantifiers by a functional assignment [X ← t]ϕ(X) that binds
a variable X to the value of a term t in a given state. This ensures safety
of formulas, but the full expressiveness of using a universal quantifier is not
provided.

From the theoretical point of view, the used techniques amount to the same
principles, although formalized differently by residuation, automata, graph tech-
niques and rewriting.

They are in general restricted to the area of distributed/active databases
where the location and communication of events is fixed.

Example 4. Consider again the scenario of Example 3.
Detection of the first event means to start event detection of E1(Acct) (with

internal parameter t0) for Acct whenever a deposit occurs at timepoint t0. The
detection ends when either another deposit to Acct occurs, or the date t0+100 days
is reached, and the event actually occurs.

Detection of the second event means to start event detection of E2(Acct)
whenever a debit occurs and the resulting balance is below zero. The detection
ends when either a deposit to Acct occurs (then, the event is not reported), or
another debit happens (then, the event is actually detected and reported).

Detection of the third event means to start event detection of E3(Acct) at
the first day of a month. Internal bookkeeping is done for every debit or deposit
(action/event), and the event finally occurs at the first day of the next month.

Considering an event “(if) balance of Account changes (then immediately
phone me)”, the detection means to translate it as “either a debit or a deposit
occurs”.

In the (Semantic) Web, event detection requires to solve two issues:

– translating (atomic) event specifications into underlying actions (as the final
one in the above example), and

Evolution and Reactivity for the Web 153

– detecting remote events. Up to now, events were always considered to be
local, or at least communicated explicitly by messages.

3.6 Combining Static and Dynamic Aspects

It is desirable that event sequences can be combined with requirements on the
state of resources at given intermediate timepoints, e.g. “when at timepoint t1,
a cancelation comes in and somewhere in the past, a reservation request came
in at a timepoint when all seats were booked, then, the cancelation is charged
with an additional fee”. In this case, the event detecting engine has to state a
query at the moment when a given (sub)event is detected. For being capable of
describing these situations, a formalism (and system) that deals with sequences
of events and queries is required. This is not covered by the above approaches
(except in some extent [15]).

A language that covers these issues will be presented in Section 4.3: Trans-
action Logic.

4 Rule-Based Languages for Evolution and Reactivity

Rule-based languages for evolution and reactivity can mainly be grouped into
two aspects:

– languages defining individual actions directly in terms of their effects on a
structure. These languages can immediately be used for “programming” and
reasoning.

– languages defining the higher-level interplay of actions, i.e., when and how a
certain sequence of actions has to be executed. Here also transaction models
have to be considered.

4.1 Action Languages

Action languages are formal models that are used for representing actions and for
reasoning about the effects of actions [53, 4, 24, 25, 27, 28, 29, 18] that have been
mainly developed in the Knowledge Representation and Reasoning community.

Central to this method of formalizing actions is the concept of a labeled
transition system (LTS). Usually, the states are first-order structures, where the
predicates are divided into static and dynamic ones, the latter called fluents
(cf. [54]). Action programs (in languages such as language B and C, below)
are sets of sentences that describe the transitions by specifying which dynamic
predicates change in the environment after the execution of an action. Evolving
Algebras/Abstract State Machines, also described below, are a special kind of
action programs.

Usual problems here are to predict the consequences of the execution of a
sequence of (sets of) actions, or to determine a set of actions implying a desired
conclusion in the future (planning). Several action query languages exist that
allow for querying such a transition system, going beyond the simple queries

154 J.J. Alferes and W. May

of knowing what is true after a given sequence of actions has been executed
(allowing e.g. to reason about which sets of actions lead to a state where some
goal is true, i.e. planning as in [18]).

Situation Calculus. The first, and most prominent concept here is the situa-
tion calculus (originally in [44], reprinted in [43], see also [53]).

States (or situations) are elements of the domain, occurring as an argument
for distinguished predicates holds(p(x), s) and occurs(a(x), s) where p is a pred-
icate of the application domain and a is an action. Events (mainly equivalent
to actions) in a situation produce new situations: do a(s) denotes the situation
which is obtained by executing an action a in a situation s. A situation is a
first order functional term do an(do an–1(. . . (do a1(s0)))), where ai are actions
and s0 is a constant denoting the initial situation; the values of fluents in s0 are
specified by formulas of the form holds(p(x), s0).
Actions are characterized by preconditions, e.g.

occurs(a(x), S) → holds(p(x), S)

and their normal effect, e.g.

holds(p(x), S) ∧ occurs(a(x), S) → holds(q(y), do a(x)(S))

describing how an action changes some fluents. The frame problem is solved by
adding axioms for assuming that fluents which are not explicitly changed, remain
unchanged.

There exist different versions of the situation calculus, e.g., the one used
in GOLOG [40], a logic programming language. There, the predicate holds is
omitted and the preconditions are characterized by a distinguished predicate, i.e.
Poss(a(x), s) ≡ holds(p(x), S). In GOLOG, frame axioms are stated explicitly.

Statelog. Statelog [38] provides a logical framework for active rules which pre-
cisely and unambiguously defines the meaning of rules. Moreover, it allows to
study fundamental properties of active rules like termination, confluence and
expressive power.

A Statelog rule r is an expression of the form

[S+k0]H ← [S+k1]B1, . . . , [S+kn]Bn

where the head H is a Datalog atom, Bi are Datalog literals (atoms A or negated
atoms ¬A), and ki ∈ IN0. Access to different database states is accomplished via
state terms of the form [S+k] , where S+k denotes the k-fold application of the
unary function symbol “+1” to the state variable S. A rule r is called local it
k0 = ki for all i = 1, . . . , n, progressive, if k0 ≥ ki for all i = 1, . . . , n, and
1-progressive, if k0 = ki+1 for all i = 1, . . . , n. A Statelog program is a finite
set of progressive Statelog rules. In general, the rules of a Statelog program
define a sequence of (intermediate) transitions. A Statelog activity (raised by an
external event that makes some progressive rule applicable) ends when no more

Evolution and Reactivity for the Web 155

progressive rules are applicable. Then the system is idle until the next external
event occurs.

Logic Programming notions (e.g., local stratification) and declarative seman-
tics (e.g., perfect model) developed for deductive rules can be applied directly
to Statelog. It uses a notion of state-stratified semantics as the canonical model
of a Statelog program wrt. a given database state: P is called state-stratified, if
there are no negative cyclic rule dependencies within a single state. This notion
is closely related to XY-stratification [65] and ELS-stratification [36].

Language B. The B language [27, 25] is a generalization of the so-called lan-
guage A [24](which itself represents the propositional fragment of the ADL for-
malism [50]). It allows conditional and non-deterministic actions and, unlike A,
also for the representation of actions with indirect effects. A program in B is a
set of static and dynamic laws, of the forms, respectively:

L if F, and
A causes L if F

where L is a fluent literal, F a conjunction of literals, and A an action name.
Intuitively a static law states that every possible state satisfying the conjunction
F must also satisfy L, and a dynamic law states that if F is satisfied when
action A occurs then L is true in the subsequent state. Given a set of static
and dynamic laws, a labeled transition system is defined. Basically, states are all
interpretations closed under the static laws, and there is an arc from a state s
to a state s′ with label a iff all Ls of dynamic rules of the form a causes L if F ,
where F holds in s, belong to s′, and nothing else differs from s to s′.

A program in A is as in B but without static laws. Besides the above briefly
described language B, several other extension of the language A exist. Language
AR [26], as for B, also allows for modeling indirect effects of actions but in
this case, instead of static laws, constraints of the form always F , where F
is a propositional formula, are used. Language AK [57] further extends AR
for formalizing sensing actions (i.e. actions for determining the truth value of
fluents). Another extension of A is the language PDL [41] which is particularly
tailored for specifying policies. A survey and comparisons on extensions of A can
be found in [19].

Language C. As in language B, also in C [29, 28] statements of the language
are divided into static and dynamic laws. The main distinction between C and
B, besides the fact that C allows for arbitrary formulas to be caused by actions
(rather than simply literals as in B) and arbitrary formulas as conditions (rather
than conjunction only), is that C distinguishes between asserting that a fluent
“holds” and making the stronger assertion that “it is caused”, or “has a causal
explanation”.

A program in C is a set of static and dynamic laws of the forms, respectively:

caused F if G, and
caused F if G after U

156 J.J. Alferes and W. May

where F and G are formulas over fluent literals, and U is a formula with both
fluent literals and action names.

Intuitively, a static law states that the formula G causes the truth of the for-
mula F , and a dynamic rule states that after U , the static rule “caused F if G”
is in force. The definition of a transition system for C is based on causal theories
[28]. The idea behind causal theories is that something is true iff it is caused by
something else. Every state s is now characterized by a set M(s) and a causal
theory T (s) (consisting of the static rules from P and possibly additional ones).
Given a causal theory T and a set M of fluents, the causal theory TM of formulae
is defined as follows:

TM = {F | “caused F if G” ∈ T and M |= G}

We say M is a causal model of T iff M is the unique model of TM . For all states
s in the LTS, the interpretation M(s) must be a causal model of T (s).

Given a state s with T (s), M(s) and a set of actions K (executed in a
transition), the resulting causal theory T (s,K) is given by the static laws of P
and the static laws enforced by the dynamic laws whose preconditions are true
in M(s) ∪ K. Then there is an arc with label K between s and a state s′ iff
T (s′) = T (s,K) and M(s′) is a causal model of T (s, k). It is worth noting that
in C, contrary to B, fluent inertia is not assumed by default.

Various extensions to C have recently appeared in the literature. Most promi-
nently, the language C++ [28] and the language K [18]. C++ further allows for
multi-valued, additive fluents which can be used to encode resources and allows
for a more compact representation of several practical problems. The language
K allows for representing and reasoning about incomplete states, and for solving
planning problems.

For more details on these languages, as well on the implementation of frag-
ments of them in logic programming, see [19, 25, 28].

Evolving Algebras/Abstract State Machines. The concept of “Evolving
Algebras” has been introduced for specifying the operational semantics of pro-
cesses in [30, 31]. Evolving Algebras have originally not been introduced from the
logical point of view, but for describing the operational semantics of processes
in the sense of Turing’s Thesis: “Every algorithm can be described by a suitable
Evolving Algebra”. Thus, for any given algorithm, on any level of abstraction
an Evolving Algebra can be given.

In universal algebra, a first-order structure over a signature where the equality
symbol is the only relation symbol (i.e., everything is represented by functions),
is called an algebra.

The signature Σ of an Evolving Algebra is a finite set of function symbols,
each of them with a fixed arity, including 0-ary constants. Note that every re-
lation can be represented by its characteristic function. The names in Σ are
divided into two groups: static and dynamic functions (i.e., fluents as in e.g.,
Situation Calculus [53], GOLOG [40], also [54]). A state of an Evolving Algebra
over Σ is then an interpretation of Σ, inducing an evaluation of terms.

Evolution and Reactivity for the Web 157

An Evolving Algebra EA is given by an initial state Z(EA) (which also deter-
mines the interpretation of the static function symbols for all states) and a pro-
gram P(EA) (a set of transition rules and rule schemata) describing the change
of the interpretation of state-dependent function symbols in a Pascal-like syntax.

An elementary update rule is an update of the interpretation of a function
symbol at one location: f(t1, . . . , tn) := t0 , where f is an n-ary function symbol
and ti are terms.

The set of rules is defined by structural induction by defining blocks and
conditionals (if-then); also rule schemata that contain free variables are allowed.
A program P(EA) of an Evolving Algebra EA is a finite set of rules and rule
schemata. A program is then executed by applying rules, inducing again a Kripke
structure.

4.2 Event-Condition-Action Rules in Databases

Event-Condition-Action rules have already been motivated in Section 2.2 as a
common means to express system behavior. They are intuitively easy to under-
stand, and provide a well-understood formal semantics: when an event occurs,
evaluate a condition, and if the condition is satisfied then execute an action.
Above, we have discussed several approaches for the event and action parts. Ad-
ditionally, several execution models can be chosen that specify how the rule is
applied (before or after or deferred, statement-oriented or set-oriented, its trans-
actional embedding etc.), modified by further policies of the ECA engine (e.g.
for conflict resolution).

Depending on the choice of the above sublanguages and semantics, a broad
range of behaviors can be designed. ECA languages based on atomic events
are e.g. used for maintaining consistency (as in the well-known SQL triggers) in
course of execution of a surrounding process. On the other end of the range, ECA
languages that allow for complex events can themselves be used for specifying
the behavior of a system in a rule-based way.

Types of ECA rules. Mainly, two kinds of ECA rules can be distinguished:

– low-level: rules that react directly on changes of the underlying data. These
are provided as triggers in most database systems, e.g., SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END

where the values of the updated tuple are accessible as old and new.
– application-level: ECA engines that react on application-level events that are

raised by updates of underlying data, messages etc.

4.3 Transaction Logic

Transaction Logic TR [8] is another comprehensive rule-based formalism that
does not have a strict ECA distinction, but follows the Logic Programming
style. In TR, in contrast to modal logic where states are given as first-order
structures, states are given as abstract theories over a signature L – that can
e.g. be first-order theories, or OWL-based worlds. The evaluation of formulas

158 J.J. Alferes and W. May

wrt. states is provided by an abstract state data oracle Od that answers queries
(possibly with free variables) for every individual state. Transitions are given
by the state transition oracle Ot which maps pairs of database states to sets of
ground formulas (over a set A of action names, corresponding to the labels of
the elementary transitions). Thus, with G denoting the set of state identifiers,
(G,Ot,Od) gives the same information as a labeled Kripke structure, an LTS,
or a path model for Process Logic.

Since in Transaction Logic, the internal representation and model of states is
not predetermined, structures of any type are allowed as a basis. For example,
a pure functional signature (e.g. static algebras), a pure relational signature
(Datalog), first-order, or even object-oriented (F-Logic) or OWL models can be
used in the data oracle.

Formally, the semantics of TR formulas is based on a version of path struc-
tures, i.e., the satisfaction of formulas is defined on paths, not on states: A path
of length k ≥ 1 is a finite sequence π = 〈D1,D2, . . . ,Dk〉 of state identifiers;
π1 ◦ π2 = 〈D1, . . . ,Di〉 ◦ 〈Di, . . . ,Dk〉 is a split of π.
A path structure (here: over a first-order L) M is a triple 〈U , IF , Ipath〉 where
– U is the domain of M,
– IF is a (state-independent) interpretation of the function symbols in L,
– Ipath assigns to every path π = 〈D1, . . . ,Dn〉 a semantic structure 〈U , IF , IP〉

where IP is an interpretation of the predicate symbols in L ∪ A.
Ipath is subject to two restrictions:

– Compliance with the data oracle: Ipath(〈D〉) |= φ for every φ ∈ Od(D),
– Compliance with the transition oracle: Ipath(〈D1,D2〉) |= a whenever a ∈

Ot(D1,D2).

Transaction formulas are built by the connectives ¬,∨,∧,⊕,⊗, and the quanti-
fiers ∃ and ∀. Let π be a path and β a variable assignment. Then,

for formulas of the state language L:
(M, 〈D〉, β) |=TR s–fml ⇔ (Ipath(〈D〉), β) |=(Od,Ot) s–fml

⇔ s–fml ∈ Od(D) ,
for formulas of the transition language A:
(M, 〈D1,D2〉, β) |=TR t–fml ⇔ (Ipath(〈D1,D2〉), β) |=(Od,Ot) t–fml

⇔ t–fml ∈ Ot(D1,D2) ,
(M, π, β) |=TR φ ⊗ ψ ⇔ (M, π1, β) |=TR φ and (M, π2, β) |=TR ψ

for some split π = π1 ◦ π2 of π , and
(M, π, β) |=TR φ ⊕ ψ ⇔ (M, π1, β) |=TR φ or (M, π2, β) |=TR ψ

for every split π = π1 ◦ π2 of π .

Due to the restriction of Ot to elementary actions, parallel composition of ac-
tions in a single transition is not possible. In [9], an interleaving semantics for
parallelism is given.

Example 5. Consider again the states from Example 1 (note that the function
balance is interpreted state-dependently), consider the path π := 〈g0, g1, g2〉. For

Evolution and Reactivity for the Web 159

each state gi, Od(gi) is the theory induced by M(gi). The transition oracle Ot

represents the transition relation R, i.e., φ ∈ Ot(g, g′) if and only if (g, g′) ∈
R(φ) for action literals φ:

Ot(g0, g1) = {debit(Alice, 20)} and Ot(g1, g2) = {deposit(Bob, 20)} .

We have (M, π) |= debit(Alice, 20) ⊗ deposit(Bob, 20) and also – mixing state
and transition queries
(M, π) |= (balance(Alice)+balance(Bob) = 300) ⊗ debit(Alice, 20) ⊗

deposit(Bob, 20) ⊗ (balance(Alice)+balance(Bob) = 300) .

ECA Semantics by Serial Implication. In the same way as standard impli-
cation is derived from disjunction as A → B ⇔ ¬A∨B, (right) serial implication
is defined as A ⇒ B ⇔ ¬A ⊕ B (which is the main application of the serial dis-
junction). With this, temporal constraints in the style of ECA rules can be
defined.

Example 6. Consider again Examples 1 and 5. The rule “if there is a debit
and the resulting balance is below zero, then send a message” is specified by

debit(Acct,Am) ⊗ balance(Am) < 0 ⇒ sendmsg(...) .

Analogously, left serial implication allows for stating preconditions.

Transaction Bases and the Serial Horn Fragment. A transaction base is
a set of formulas of the form a0 ← a1 ⊗ . . . ⊗ an, which play a special role for
Transaction Logic programming, providing a top-down SLD-style proof proce-
dure. With such rules, transactions can be defined, providing a declarative spec-
ification of the database evolution. To execute a0 (in LP terminology: to prove
a0) in a state D means to execute or prove a0 ← a1 ⊗ . . . ⊗ an by generating
intermediate states; thus, the final state a0(D) is “specified” as a1⊗ . . .⊗an(D).
Note that depending on the “nature” of the ai they can denote events (that can-
not be forced, but whose presence constrains the ways to make the body true),
conditions on states (also acting as constraints), or actions (which are then to
be executed/proven as heads of other rules).

Example 7. Consider again Examples 1 and 5. The “money transfer” transac-
tion is defined as

transfer(Am,Acc1, Acc2) ← debit(Acc1, Am) ⊗ deposit(Acc2, Am) .

Consider now the case that debit and deposit are not atomic actions, but instead
there is an underlying (relational) database with a table balance(Acct, Amount),
manipulated by delete and insert actions. Then, debit and deposit actions can
be specified by their effect on balance:

debit(Acc,Am) ←
balance(Acc) = N ⊗ balance.delete(Acc,N) ⊗ balance.insert(Acc,N–Am)

deposit(Acc,Am) ←
balance(Acc) = N ⊗ balance.delete(Acc1, N) ⊗ balance.insert(Acc,N+Am) .

160 J.J. Alferes and W. May

The combination of the above mechanisms for expressing and enforcing con-
straints, expressing ECA rules, defining transactions, planning with SLD res-
olution and further features of Transaction Logic provides a very expressive
framework.

4.4 Transactional Requirements

In general, evolution consists not of arbitrary execution of independent ac-
tions, but of execution of certain processes (e.g. defined as a process algebra
in Section 3.4). The interaction between these processes can be more or less
close:
– each of them runs mainly on independent data, doing only some communi-

cation as provided by CCS, or
– processes run on shared data.

In both cases, besides communication/cooperation there are certain additional
requirements. Here, the database community uses the notion of transactions
for guaranteeing correct behavior. Usually, transactions adhere to the ACID
paradigm:

Atomicity: A transaction is (logically) a unit that cannot be further decom-
posed: its effect is atomic, i.e., all updates are executed completely, or nothing
at all (“all-or-nothing”).

Concistency: A transaction is a correct transition from one state to another.
The final state is not allowed to violate any integrity condition (otherwise
the transaction is undone and rejected).

Isolation: Databases are multi-user systems. Although transactions are running
concurrently, this is hidden against the user (i.e., after starting a transaction,
the user does not see changes by other transactions until finishing his trans-
action, simulated single-user).

Durability: If a transaction completes successfully, all its effects are durable
(=persistent).

In the Web environment, not only “simple” transactions, but also long transac-
tions and hierarchical transactions are used.

Summary. The previous sections – especially those on Kripke Structures and
Modal Logics, ECA rules and Transaction Logics – also illustrate the duality
between seeing evolution as a rule-driven process, and describing it declaratively
via constraints: Modal Logics are primarily used for describing structures via
their constraints and reasoning about them. The semantics of ECA rules is
targeted to generate such a structure (or even more, to generate one possible
path and proceed along it, moving and forgetting from one state to the next).
Transaction Logic can be interpreted as both ways: reasoning about possible
paths, and, as Transaction Logic Programming, running an evolving system.
Moreover, temporal logics etc. allow also to reason about systems of ECA rules
(correctness, termination etc.).

Evolution and Reactivity for the Web 161

5 Evolution and Reactivity on the Web

The previous two sections have introduced the abstract concepts and some sam-
ple formalisms for handling evolution and reactivity. In this section, we present
the current basis and prerequisites for extending and applying these concepts to
the Web and to the Semantic Web. The high-level concepts like Kripke struc-
tures, modal logics, rules, ECA rules, event algebras with event detection mech-
anisms, and transactions apply with slight adaptations to the Semantic Web.
They have to be instantiated for this environment: What are the actions and
events in this setting? What syntactical and semantical frameworks are used for
the high-level concepts?

In today’s Web environment, XML (as a format for storing and exchanging
data), RDF (as an abstract data model for states), OWL (as an additional
framework for state theories), and communication issues (Web Services, SOAP,
WSDL) provide the natural underlying concepts.

5.1 States and Nodes in the Semantic Web

In the Semantic Web as a network of autonomous nodes, there is not a single
“state”, but the notion of “current state” has to deal with different data models,
incompleteness, and inconsistency (which is dealt with in another chapter of this
volume on querying). Thus, every node has its own current view of the global
state. The same holds for events: only events that are somehow known to the
node can be considered.

The knowledge of a node in the Semantic Web is represented in RDF, RDFS,
and/or OWL. OWL provides a model theory, thus, instead of first-order struc-
tures and first-order logic used in classical approaches, Kripke structures and
logics for OWL are a prospective basis.

In the Semantic Web, the state of a node in this setting consists of the
common notion of “state wrt. an application”, and additionally derivation rules
and behavioral rules. In a wider sense also the state of event detection algorithms
belongs of the state of a node. Preferably, all this is expressed in RDF/OWL;
larger internal databases are actually stored in plain XML, but mapped to an
RDF/OWL ontology.

Thus, actions have to be able to change this state: XML updates, RDF up-
dates, ontology updates, and service calls.

5.2 Existing Languages for Updates

XML Updates. There are several proposals for languages that provide up-
date capabilities for XML data. Usually, update languages are designed as an
extension of a query language with update capabilities. At least, an addressing
mechanism for selecting parts of XML documents that are to be modified is
needed.

XML:DB’s XUpdate. XUpdate [64] is an update language developed by the
XML:DB group, its latest language specification was released in late 2000 as

162 J.J. Alferes and W. May

a working draft. Note that, at that time, the query languages XPath, XQL,
and XML-QL and the transformation language XSLT were already defined, but
XQuery did not yet exist. Thus, also the name “XUpdate” is not related to
XQuery. Similar to XSLT, XUpdate is written in XML syntax and makes use
of XPath [62] expressions for selecting nodes to be processed afterwards. Sim-
ple atomic update operations to XML documents are possible with XUpdate.
Several XML database systems implement this language, e.g. eXist [21].

XQuery Update extensions. A proposal to extend XQuery [63] with update capa-
bilities is presented in [59]. XQuery is extended with a FOR ... LET ... WHERE
... UPDATE ... structure. The UPDATE part contains specifications of update
operations (i.e. delete, insert, rename, replace) that are to be executed in se-
quence. For ordered XML documents, two insertion operations are considered:
insertion before a child element, and insertion after a child element. Using a
nested FOR...WHERE clause in the UPDATE part, one might specify an iterative
execution of updates for nodes selected by an XPath expression. Moreover, by
nesting update operations, updates can be expressed at multiple levels within an
XML structure. Update operations very similar to those described in [59] have
been specified and implemented in [39], extended e.g. by means to specify condi-
tional updates. The solution has been incorporated into Software AG’s Tamino1

product.

XChange. XChange [11] is a declarative language for specifying evolution of data
on the (Semantic) Web. XChange builds upon Xcerpt [10, 12], a declarative query
and transformation language for the (Semantic) Web. The XChange update
language uses rules to specify intensional updates, i.e. a description of updates
in terms of queries.

RDF Updates. Basically, languages for RDF updates are built in the same
way as for XML and SQL updates by extending a query language. There is not
yet a definitive decision about an RDF query+update language.

5.3 Atomic Events in the Semantic Web

In the context of the (Semantic) Web, the global handling of events must also be
investigated. In addition to local events, there are remote and “global” events.
Similar to the classical case, there are (local) data level events and rules, and
(local, remote, and global) application-level ones. The notion of composite events
is then defined as usual.

Local Events. Local events are comparable with those discussed before for the
classical case: temporal events, receipts of messages, local data level events and
local application level events. Data level events are e.g. updates of underlying
XML or RDF repositories (we discuss the concrete syntax and semantics later).

1 http://www.tamino.com

Evolution and Reactivity for the Web 163

Application-level events in the Semantic Web are also described or translatable
to RDF (a special case are e.g. SOAP calls).

Remote Events. As illustrated above, detection of, and reaction upon, remote
events is an important feature for the Semantic Web. An event detection engine
must also be able to detect/discover remote events that are not explicitly com-
municated. This is especially the case when working with complex events (see
below). It can be done by using remote event bases (when the location of an
event is known, and it is known that it is traced in an event base), or by regu-
larly polling remote data (e.g. fuel prices at my favorite petrol station, or stock
courses). In this case, again, publish/subscribe systems or continuous-query ser-
vices can be applied (especially, when they maintain a history).

For concrete atomic events, it must also be distinguished between the event
itself (carrying application-specific information), and its metadata, like the type
of event (update, temporal event, receipt of message, . . .), time of occurrence,
the time of detection/receipt (e.g., to refuse it, when it had been received too
late) and the event origin or its generator (if applicable; e.g. in terms of its URI).

Implicit Events. Most of the events can be expressed alternatively as detection
of updates of a given database (communicated via publish/subscribe systems),
or by queries but, especially in the Semantic Web, a declarative specification
from the point of view of an application-level event is intended. The reduction
of the detection to an actual update is then left to the semantic component.

Example 8 (Events). Consider the situation when Oracle bought the Retek
company on 22.3.2005; 11.25 $ per share, 631 million Dollar total. Firstly, this
is an application-level real world event. It is noted by the (Semantic) Web e.g.
as a (local, low-level) database event at New York Stock Exchange as a database
update at 09:00 h AST.

Stock tickers and agents will immediately be informed by push propagation.
An agent in Europe receives a message (raising a local incoming message event)
sent at 9:01h AST, received at 14:02h MET, coming from NYSE (trustable),
with RDF body, containing the above facts. Analyzing the message body, the
agent detects the application level event that Oracle bought Retek together with
the detailed financial facts.

Possible other events that are “detected” in turn by this agent that is probably
running investment rules are e.g., that “Oracle bought some company”, “an IT
company has been bought”, “SAP did not succeed in buying Retek”, etc., possibly
contributing to the detection of composite events.

The original message is also posted to a “Semantic Web Newspaper” service,
where smaller clients poll messages e.g. in the evening. For such a client, the in-
coming event consists e.g. of the information that “at 20:32 PST, I became aware
that at 9:00 AST, ...”. It can now process the pure facts (that probably explain
why the oracle stocks raised/fell during the day), or incorporate the awareness
time, e.g., when processing a rule “if I become aware of a large acquisition less
than 3 hours after the fact, do something ...”.

164 J.J. Alferes and W. May

5.4 ECA Rules in the Semantic Web

There are several abstraction levels on which active rules can be defined:

– programming language level: triggers as built-in constructs of a given database
model, like SQL triggers. Usually they are implemented inside the database.
This level can e.g. directly be based on the DOM Level 2/3 Events [17] or on
the triggers of relational storage of RDF data.

– logical level – XML. Here ECA rules consist of distinguished event-condition-
action parts that are also marked up in XML/RuleML; one of the results of
the research in I5 (jointly with I1) should be an ECA-ML language.
This requires a definition of atomic update events on XML data; probably
on the same level and granularity as updates in XUpdate located by XSL
patterns or by using an update language like XChange.

– semantic level: RDF. Here, several aspects can (also independently) be lifted
from XML:
• use XML-ECA rules on underlying RDF/OWL data,
• use RDF/OWL descriptions of events, conditions, and actions in the XML-

ECA framework,
• use an RDF/OWL ontology even on the rule level. (Conversely, rules in

this ontology can themselves use event/condition/action parts in XML,
and even data in XML).

Updates and Actions. There are different ways how to express the actions to
be taken.

– Explicit updates: In this case the action is an explicit update statement e.g.
described in XUpdate, XQuery+Updates, XChange, or in an RDF Update
language. This requires knowledge of the underlying schema.

– Explicit actions: In this case by calling a procedure/method (SOAP),
– Semantic/Intensional: This requires the declarative specification of what has

to be changed, using an RDF/OWL ontology of changes (to RDF data).

5.5 Trigger-Like Local ECA Rules

Trigger-like local ECA rules have to react directly on the changes of the database,
which is assumed to be in XML or RDF format. While triggers in relational
databases/SQL were only able to react on changes of a given tuple or an attribute
of a tuple, the XML and RDF models call for more expressive event specifications
according to the (tree or graph) structure.

XML. Work on triggers for XQuery has e.g. been described in [7] with Active
XQuery and in [3], emulating the trigger definition and execution model of
the SQL3 standard that specifies a syntax and execution model for ECA rules
in relational databases. Active XQuery uses the same syntax and switches as
SQL’s CREATE TRIGGER.

Evolution and Reactivity for the Web 165

The following proposal has been developed in [2]: For modifications of an
XML tree, the following atomic events could be considered:

– ON DELETE OF xsl-pattern: if a node matching the xsl-pattern is deleted,
– ON INSERT OF xsl-pattern: if a node matching the xsl-pattern is inserted,
– ON MODIFICATION OF xsl-pattern: if anything in the subtree is modified,
– ON UPDATE OF xsl-pattern: the value (text or attribute) of a node matching

the xsl-pattern is modified,
– ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node

matching the xsl-pattern,
– ON INSERT [IMMEDIATELY] BEFORE|AFTER xsl-pattern: if a node is inserted

(immediately) before or after a node matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the complete node to which the event
happened, additionally INSERTED AS, DELETED AS referencing the inserted or
deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be
specified for each trigger; the following granularities are proposed here:

– FOR EACH STATEMENT (as in SQL),
– FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at

most once (cumulative, if the node is actually concerned by several matching
events) per transaction,

– FOR EACH MODIFICATION: each individual modification (possibly for some
nodes in the xsl-pattern more than one) triggers the rule.

For data-dependent information propagation, mainly FOR EACH NODE and FOR
EACH MODIFICATION are adequate.

The implementation of such triggers in XML repositories is probably to be
based on the DOM Level 2/3 Events [17].

RDF. RDF triples, describing properties/values of a resource are much more
similar to SQL. In contrast to XML, there is no assignment of data with subtrees
(which makes it impossible to express “deep” modifications in a simple event;
such things have then to be expressed in the condition part). A proposal can e.g.
be found in [49]. The following proposal has been developed in [2]:

– ON DELETE OF property [OF class],
– ON INSERT OF property [OF class],
– ON UPDATE OF property [OF class].

If a property is removed from/added to/updated of a resource of a given class,
then the event is raised.

166 J.J. Alferes and W. May

Additionally,

– ON CREATE OF class is raised if a new resource of a given class is created.

Probably, also metadata changes have to be detected:

– ON NEW CLASS is raised if a new class is introduced,
– ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally:

to a specified class) is introduced.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the original/new value of the property,
RESOURCE AS ... and PROPERTY AS ... refer to the modified resource and the
property (as URIs), respective.
Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.

5.6 Local and Global ECA Rules

While “triggers” are restricted, programming-language concepts, general ECA
rules provide an abstract concept using an own language. Especially in our set-
ting, they are usually separated from the database. Thus, they do not react on
“physical” events in the database, but on logical events (that nevertheless are
actually raised by events in a database).

Local ECA Rules. Local ECA rules are more general than triggers. They still
react on local events only, but they use an own event language that is based on
a set of atomic events (that are not necessarily simple update operations) and
that usually also allows for composite events. Their event detection mechanism
is not necessarily located in the database. Detection of atomic logical events can
be based on

– database triggers that generate events that are visible/detectable outside the
database, or

– they have to poll the database regularly if such an event occurred.

Global ECA Rules. Global ECA rules have to be used if a composite event
consists of subevents at different locations (or if the source of an event is not
able to process local rules). When considering global rules in the Web and in the
Semantic Web, the local ECA concept has to be extended stepwise:

– “distributed” variants of the above local ECA rules, with events that explic-
itly mention a database/node where the event is located (e.g., “change of
xpath-expr at url”),

– rules that react on events in a set of known databases (e.g., “when a new
researcher is added at one of the participants nodes” (which itself is a dynamic
set)),

– high-level rules of an application, that are not based on schema knowledge
of individual databases, often even not explicitly on a given database (e.g.,

Evolution and Reactivity for the Web 167

“when a publication p becomes known that deals with ...”). Here, Seman-
tic Web reasoning comes heavily into play even for detecting atomic events
“somewhere in the Web”. Such rules will probably be used in the “Travel
Planning Scenario”.

Requirements. The target of development and definition of languages for (ECA)
rules, events, and actions in the Semantic Web should be a semantic approach,
i.e., based on an (extendible) ontology for rules, events, and actions that also
allows for reasoning about these concepts.

6 A Framework Proposal, Conclusions and Further
Issues

Languages. For developing an ECA proposal for the Semantic Web, several
languages with well-defined interfaces are needed. In [2], a preliminary framework
for expressing ECA rules for the Semantic Web has been proposed.

ECA rules are marked up in the language that we will probably call ECA-
ML (XML), or even formulated more abstractly in RDF, using an OWL ECA
ontology. In general, the rules use sublanguages for describing events (metadata,
including a contents part that contains the actual event), according to an event
ontology (EventML), conditions (allowing to embed XQuery), and (trans)actions
(embedding SOAP for service calls as atomic actions). A language for actual
messages (XML, to be exchanged) is also needed.

An important principle here is to provide a framework that covers the con-
cepts described above, not specific languages – there are multiple possible event,
condition (query), and (trans)action languages. Thus, we propose a metamodel
with a (basic) set of languages embedded in a modular concept of languages:

Rule Language. The rule language ECA-ML (namespace eca), provides rule el-
ements with event, condition, and action subelements. These in turn contain
subelements of event, condition, and action markup languages. The concrete
language can be indicated as a language attribute (e.g., as a commonly known
name, or as a URI where further information can be found).

Example 9. Consider the Rewerse Personalized Portal scenario as described
in [2]. The scenario consists of participants’ nodes, working group nodes, and a
central project node.

The following rule propagates the change of a person’s phone number from
a participant’s node to the information server of a working group. It reacts on
a change of a phone number in the local database. If the person whose number
changes, belongs to the working group (checked by an XPath query against the
WG’s database), the change is propagated to a remote server (by an explicit
XQuery+Update statement against the WG’s database):

168 J.J. Alferes and W. May

<eca:rule>
<variable name="WGUrl">http://...</variable>
<eca:event>

<evt:atomic>
<change-of select="person//phone">
<variable name="phone" select="."/>
<variable name="person" select="$phone/ancestor::person"/>

</change-of>
</evt:atomic>

</eca:event>
<eca:condition language="XPath">

$WGUrl//person[matches(name,$person/name)]
</eca:condition>
<eca:action language="XQuery+Updates">

update $WGUrl
set //person[matches(name,$person/name)]/phone := $phone

</eca:action>
</eca:rule>

Event Language. The proposal contains a simple event language that allows to
express terms in an event algebra. The basis are atomic events that can again be
given in several languages. The generic approach proposes an XSL-style language
for detecting changes in the local database (syntactic XML sugar to the trigger
events in Section 5.5). The event language comprises constructs like <seq>, <disj>,
<conj>, <forany> and <forall> with <variable> subelements, <cumulative> with
appropriate switches, etc.

Condition Language. For condition languages, we propose to use existing lan-
guages like XPath, XQuery, RDQL, Xcerpt etc.

Action Language. The proposal contains a simple action language that allows to
express composite actions. The basis are atomic actions that can again be given
in several languages (e.g., XUpdate, XQuery+Update, XChange, or SOAP calls).
The action language comprises constructs like <seq>, <conj>, <if test=“...”> and
<while test=“...”> with appropriate switches, and <forall> with <variable> subele-
ments, providing similar constructs as for CCS process specifications.

Implementation Issues. The modular design of the languages must be mirrored
in a modular design of the architecture. For providing composability, the modules
must adhere to standardized interfaces. The overall architecture must provide
addressing and coupling mechanisms for addressing modules and services that
implement concrete languages over the Web.

Conclusion. Research in Evolution and Reactivity for the Semantic Web re-
quires a profound knowledge of existing concepts, logics, and formal methods in

Evolution and Reactivity for the Web 169

the areas of (active and distributed) databases, software engineering, and Web
technology such as semistructured data and communication mechanisms.

Further Issues. Due to the restricted space (and time), a lot of issues has not
been discussed here: evolution at the level of RDF/OWL, evolution of rules of
knowledge bases and behavioral rules, evolution in communities of peers, and
super-peers and concepts from agent and multi-agent systems.

References

1. J. J. Alferes, J. Bailey, M. Berndtsson, F. Bry, J. Dietrich, A. Kozlenkov, W. May,
P. L. Pătrânjan, A. Pinto, M. Schroeder, and G. Wagner. State-of-the-art on
evolution and reactivity. Technical Report IST506779/Lisbon/I5-D1/D/PU/a1,
REWERSE, September 2004.

2. J. J. Alferes, M. Berndtsson, F. Bry, M. Eckert, N. Henze, W. May, P. L. Pătrânjan,
and M. Schroeder. Use-cases on evolution. Technical Report IST506779/Lisbon/I5-
D2/D/PU/a1, REWERSE, September 2004.

3. James Bailey, Alexandra Poulovassilis, and Peter T. Wood. An event-condition-
action language for XML. In Int. WWW Conference, 2002.

4. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, obser-
vations and hypotheses. Journal of Logic Programming, 31(1–3):201–243, April–
June 1997.

5. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. In
8th Annual ACM Symp. on Principles of Programming Languages, 1981.

6. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 1(37):77–121, 1985.

7. Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active
XQuery. In Intl. Conference on Data Engineering (ICDE), pages 403–418, San
Jose, California, 2002.

8. A. J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133(2):205–265, 1994.

9. A. J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In ICDT’95: Advances in Logic-Based Languages, 1995.

10. François Bry and Sebastian Schaffert. Towards a declarative query and transfor-
mation language for XML and semistructured data: Simulation unification. In Intl.
Conf. on Logic Programming (ICLP), number 2401 in LNCS, pages 255–270, 2002.

11. François Bry, Paula Lavinia Pătrânjan, and Sebastian Schaffert. Xcerpt and
XChange: Deductive Languages for Data Retrieval and Evolution on the Web.
In Proc. of Workshop on Semantic Web Services and Dynamic Networks, Ulm,
Germany, (22nd – 24th September 2004). GI, 2004.

12. François Bry and Sebastian Schaffert. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proc. of Extreme Markup Languages 2004, Montreal,
Quebec, Canada, (2nd – 6th August 2004), 2004.

13. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts and detection. In Proceedings of the 20th
VLDB, pages 606–617, 1994.

14. Jianjun Chen, David J. deWitt, Feng Tian, and Yuang Wang. NiagaraCQ: A
scalable continuous query system for internet databases. In ACM Intl. Conference
on Management of Data (SIGMOD), pages 379–390, 2000.

170 J.J. Alferes and W. May

15. Jan Chomicki. Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS), 20(2):149–
186, 1995.

16. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. of the IBM Workshop on Logics of
Programs, number 131 in Lecture Notes in Computer Science, 1981.

17. Document object model (DOM). http://www.w3.org/DOM/, 1998.

18. Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. A
Logic Programming Approach to Knowledge-State Planning: Semantics and Com-
plexity. ACM Transactions on Computational Logic, 5(2):206–263, 2004.

19. Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Axel Polleres. Declarative
planning and knowledge representation in an action language. In Ioannis Vlahavas
and Dimitris Vrakas, editors, Intelligent Techniques for Planning. Idea Group, Inc.,
2004.

20. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time strikes
back. In 12th Annual ACM Symp. on Principles of Programming Languages, 1985.

21. eXist: an Open Source Native XML Database. http://exist-db.org/.

22. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fair-
ness. In ACM Symposium on Principles of Programming Languages, pages 163–173,
1980.

23. Dov Gabbay. The declarative past, and imperative future: Executable temporal
logic for interactive systems. In B. Banieqbal, B. Barringer, and A. Pnueli, editors,
Temporal Logic in Specification, number 398 in Lecture Notes in Computer Science,
pages 409–448. Springer, 1989.

24. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

25. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Arti-
ficial Intelligence, 2(3-4):193–210, 1998.

26. E. Giunchiglia, G. Kartha, and V. Lifschitz. Representing actions: Indeterminacy
and ramifications. Artificial Intelligence, 95:409–443, 1997.

27. E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing ac-
tions in logic programs and default theories: a situation calculus approach. Journal
of Logic Programming, 31:245–298, 1997.

28. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49–104, 2004.

29. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

30. Y. Gurevich. Logic and the challenge of computer science. In Current Trends in
Theoretical Computer Science, pages 1–57. Computer Science Press, 1988.

31. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and Validation Methods, pages 9–36. Oxford University Press, 1995.

32. D. Harel. First-Order Dynamic Logic. Number 68 in Lecture Notes in Computer
Science. Springer, 1979.

33. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic, Volume II - Extensions of Classical Logic, pages 497–604.
Reidel Publishing Company, 1984.

34. D. Harel, D. Kozen, and R. Parikh. Process Logic: Expressiveness, decidability,
completeness. Journal of Computer and System Sciences, 25(2):144–170, 1982.

35. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Evolution and Reactivity for the Web 171

36. David B. Kemp, Kotagiri Ramamohanarao, and Peter J. Stuckey. ELS Programs
and the Efficient Evaluation of Non-Stratified Programs by Transformation to ELS.
In Tok Wang Ling, Alberto O. Mendelzon, and Laurent Vieille, editors, Intl. Con-
ference on Deductive and Object-Oriented Databases (DOOD), number 1013 in
Lecture Notes in Computer Science, pages 91–108, Singapore, 1995. Springer.

37. L. Lamport. ’sometimes’ is sometimes ’not never’. In 7th Annual ACM Symp. on
Principles of Programming Languages, 1980.

38. Georg Lausen, Bertram Ludäscher, and Wolfgang May. On logical foundations of
active databases. In Jan Chomicki and Gunter Saake, editors, Logics for Databases
and Information Systems, chapter 12, pages 389–422. Kluwer Academic Publishers,
1998.

39. Patrick Lehti. Design and Implementation of a Data Manipulation Processor for
an XML Query Language (diploma thesis), August 2001. Technische Universität
Darmstadt.

40. H.J. Levesque, R. Reiter, Y. Lesprance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59–83,
1997.

41. J. Lobo, R. Bhatia, and S.Naqvi. A policy description language. In National
Conference on Artificial Intelligence (AAAI), 1999.

42. Wolfgang May, José Júlio Alferes, and François Bry. Towards generic query, up-
date, and event languages for the Semantic Web. In Principles and Practice of
Semantic Web Reasoning (PPSWR), number 3208 in Lecture Notes in Computer
Science, pages 19–33. Springer, 2004.

43. John McCarthy. Formalizing Common Sense. Ablex, Norwood, 1990.

44. John McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4, 1969.

45. R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267–310, 1983.

46. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

47. R. Milner. Operational and algebraic semantics of concurrent processes. In
J. v. Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: For-
mal Models and Semantics, chapter 19, pages 1201–1242. Elsevier, 1990.

48. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 1(100):1–77, 1992.

49. George Papamarkos, Alexandra Poulovassilis, and Peter T. Wood. Event-
condition-action rule languages for the semantic web. In Workshop on Semantic
Web and Databases (SWDB’03), 2003.

50. E. Pednault. Exploring the middle ground between STRIPS and the Situation
Calculus. In Proc. of the 1st International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), pages 324–332. Morgan Kaufmann
Publishers Inc., 1989.

51. G. Plotkin. A structured approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

52. V. R. Pratt. Semantical considerations on Floyd-Hoare Logic. In 17.th IEEE Symp.
on Foundations of Computer Science, pages 109–121, 1976.

53. R. Reiter. Proving properties of states in the situation calculus. Artificial Intelli-
gence, 64(2):337–351, 1993.

54. E. Sandewall. Features and Fluents: A Systematic Approach to the Representation
of Knowledge about Dynamical Systems. Oxford University Press, 1994.

172 J.J. Alferes and W. May

55. Munindar P. Singh. Semantical considerations on workflows: An algebra for in-
tertask dependencies. In Intl. Workshop on Database Programming Languages,
electronic Workshops in Computing, Gubbio, Italy, 1995. Springer.

56. A. Prasad Sistla and Ouri Wolfson. Temporal Conditions and Integrity Constraints
in Active Database Systems. In Proceedings ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 1995), pages 269–280, 1995.

57. T. Son and C. Baral. Formalizing sensing actions - a transition function based
approach. Artificial Intelligence, 125(1-2):19–91, 2001.

58. C. Stirling. Temporal logics for CCS. In Linear Time, Branching Time and Par-
tial Order in Logics and Models of Concurrency, number 354 in Lecture Notes in
Computer Science, pages 660–672. Springer, 1989.

59. Igor Tatarinov, Zachary G. Ives, Alon Halevy, and Daniel Weld. Updating XML. In
ACM Intl. Conference on Management of Data (SIGMOD), pages 133–154, 2001.

60. Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr, and Jussi Mylly-
maki. Implementing a scalable XML publish/subscribe system using relational
database systems. In ACM Intl. Conference on Management of Data (SIGMOD),
2004.

61. J. van Benthem and J. Bergstra. Logic of transition systems. Journal of Logic,
Language, and Information, 3:247–283, 1995.

62. World Wide Web Consortium, http://www.w3.org/TR/xpath. XML Path Lan-
guage (XPath), Nov 1999.

63. World Wide Web Consortium, http://www.w3.org/TR/xquery/. XQuery: A
Query Language for XML, Feb 2001.

64. XML:DB Initiative, http://xmldb-org.sourceforge.net/. XUpdate - XML Update
Language, September 2000.

65. Carlo Zaniolo. A unified semantics for active and deductive databases. In N. W.
Paton and M. W. Williams, editors, Proceedings of the 1st International Workshop
on Rules in Database Systems, Workshops in Computing, pages 271–287. Springer-
Verlag, 1994. ISBN 3-540-19846-6.

	Introduction
	Concepts in Evolution and Reactivity in the Web
	Local and Global Reactivity and Evolution
	Event-Condition-Action (Reactive) Rules for Evolution
	Communication Structure and Propagation of Knowledge

	Foundations of Evolution and Reactivity
	Models of Dynamics and Temporal Structures
	Temporal Logics
	Logics for Labeled Transition Systems and Path Structures
	Actions, Transactions, and Processes
	Event Languages and Event Algebras
	Combining Static and Dynamic Aspects

	Rule-Based Languages for Evolution and Reactivity
	Action Languages
	Event-Condition-Action Rules in Databases
	Transaction Logic
	Transactional Requirements

	Evolution and Reactivity on the Web
	States and Nodes in the Semantic Web
	Existing Languages for Updates
	Atomic Events in the Semantic Web
	ECA Rules in the Semantic Web
	Trigger-Like Local ECA Rules
	Local and Global ECA Rules

	A Framework Proposal, Conclusions and Further Issues
	References

