
The Web, as we know it, is a collec-
tion of human-readable pages that
are virtually unintelligible to com-

puter programs. While the Web emerged
as a global repository of digitized infor-
mation, this very information is, by and
large, unavailable for automatic compu-
tation. Two parallel efforts have emerged
in recent years that could overcome this
paradox: the Semantic Web1 is providing
tools for explicit markup of Web content,
and Web services could create a network
in which programs act as independent
agents that produce and consume infor-
mation, enabling automated business
transactions.

Ideally, these two efforts should sup-
port each other. The Semantic Web will
help create a repository of computer-
readable data, and Web services will pro-
vide the tools for automatically using that
data. Somewhat surprisingly, however,
there have been few points of contact

between them to date. Semantic Web
research focuses mostly on markup lan-
guages for annotating Web pages and on
the inferential power needed to derive
consequences from the annotated pages
— essentially transforming the Web into
a knowledge base. Web services efforts
concentrate on interoperability standards
and protocols for performing business-to-
business (B2B) transactions.

In our work at Carnegie Mellon, we
focus on research that attempts to bridge
the gap. We adopt the vision of Web ser-
vices as autonomous goal-directed agents
that select other agents to interact with
and that flexibly negotiate their interac-
tion models, acting variously in
client–server and peer-to-peer modes. The
resulting Web services, which we call
autonomous Semantic Web services, use
ontologies and semantically annotated
Web pages to automate the fulfillment of
tasks and transactions. In particular, these
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provides a mechanism that begins to bridge the gap between

the Web services infrastructure and the Semantic Web.



services use the Semantic Web to support capabil-
ity-based discovery and interoperation at runtime.

A first step toward this vision is to develop for-
mal languages and inference mechanisms for rep-
resenting and reasoning with core Web service
concepts. The DARPA Agent Markup Language for
Services (DAML-S)2 is the first attempt to define
such a language. This article describes DAML-S
and some example computational models that
show how it can be viewed as the first step in
bridging the gap between the Semantic Web and
proposed industry standards for Web services.

The Semantic Web 
for Web Services
One objective behind the Semantic Web is to pro-
vide languages for expressing the content of Web
pages and making that information accessible to
agents and computer programs. More precisely, the
Semantic Web is based on a set of languages such
as the Resource Description Framework (RDF),
DAML+OIL, and the more recent Web Ontology
Language (OWL), which can be used to annotate
Web content. These languages have well-defined
semantics and inferential procedures that let
agents draw inferences from the languages’ state-
ments. Using the semantic markup for the US
National Oceanic and Atmospheric Administra-
tion’s page reporting Pittsburgh’s weather condi-
tions, for example, an agent could learn that the
current condition is heavy snow. The agent might
further learn from the Pittsburgh school board
site’s semantic markup that all schools are closed
on days of heavy snow. Combining the two pieces
of information, the agent could infer that Pitts-
burgh schools are closed today.

The Semantic Web’s second element is a set of
ontologies that provide conceptual models for
interpreting the information provided. An ontol-
ogy of weather might contain concepts such as
temperature, snowy, cloudy, and sunny, for
example, and relationships between the terms.

The Semantic Web vision is about transforming
the Web into an Internet-wide knowledge-repre-
sentation system in which ontologies provide the
conceptual framework for interpreting the infor-
mation provided by Web pages. To produce the
types of inferences we’ve described, the Semantic
Web requires computational processes and agents
that can interpret semantic content and derive
consequences from the information they collect.

The Semantic Web also supports a more distrib-
uted computational model in which a requester
transacts with multiple Web services, solving prob-

lems through collaboration and negotiation. With-
in this scheme, ontologies not only define a shared
conceptualization for interpreting semantic markup
of Web sites, but also provide a shared vocabulary
that lets services across the Web use the same ter-
minology to interpret each other’s messages.

Ultimately, the Semantic Web will provide the
basic mechanisms for extracting information from
Web pages and the basic knowledge that Web ser-
vices will use in all transactions. In addition to
knowledge, however, Web services need an infra-
structure that facilitates reliable communication —
registries to locate other services, reputation ser-
vices, guarantees of secure and private transac-
tions, and so on. Such an infrastructure falls out-
side the current view of the Semantic Web’s scope.

Current Web 
Services Infrastructure
Researchers and developers have already proposed
many definitions for Web services. Simply put,
they are programs that interoperate on the Web.
The success of e-commerce in the late ’90s and the
recent plethora of interoperability standards pro-
posed for Web-based business transactions have
generated significant interest in automating pro-
gram interactions for B2B e-commerce. These
efforts have created a vision of a Web of dynami-
cally interoperating nodes rather than static pages.
This is the vision that Web services try to realize.

Basic Standards
The Web services infrastructure will provide the
basic standards that let Web services interact. The
diagram in Figure 1 shows how some popular
proposed standards could fit together. The unify-
ing factor is XML, as shown by the left column,
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Figure 1. Web services infrastructure. The current
infrastructure uses XML to describe multiple
layers of abstraction from the transport
mechanism. These include message description
(SOAP), a mapping from messages to operations
performed by the Web service (WSDL), abstract
process representation (BPEL4WS and WSCI), and
discovery (UDDI).
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which cuts across all layers. The two most popular
proposed standards are SOAP3 and the Web Ser-
vices Description Language (WSDL).4 SOAP
defines a format for passing messages between
Web services, and WSDL describes each service’s
interface — how to contact it (through RPC or
asynchronous messaging, for example) and how
to serialize the information exchanged. SOAP and
WSDL describe the atomic components of Web
services’ interaction. More recent proposed stan-
dards, such as the Web Service Choreography
Interface (WSCI)5 and Business Process Execution
Language for Web Services (BPEL4WS),6 provide
mechanisms for describing how multiple Web Ser-
vices can be assembled to participate in shared
business processes.

To facilitate service discovery, Web services reg-
istries are an important part of the Semantic Web
infrastructure. The emerging standard for Web ser-
vices registries — Universal Description, Discovery,
and Integration (UDDI) — provides a set of pub-
lishing, browsing, and inquiry functionalities for
extracting information from a given registry. Using
UDDI registries, developers can find Web services
that they want to use.

UDDI descriptions include a host of useful
information, such as the Web service provider and
the binding (including the transport protocol port)
that lets a requester invoke the service. In addi-
tion, Web service descriptions in UDDI can refer
to TModels — unbounded attribute sets that can
be associated with Web services — which can rep-
resent any type of information about a given ser-
vice. TModels can specify a Web service WSDL
description’s location, for example, or a Web ser-
vice’s classification within a taxonomy, such as
the United Nations Standard Products and Ser-
vices Code.

Need for Autonomy
One overarching characteristic of the Web services
infrastructure is its lack of semantic information.
It relies exclusively on XML for interoperation, but
that guarantees only syntactic interoperability.
Expressing message content in XML lets Web ser-
vices parse each other’s messages, but it does not
facilitate semantic “understanding” of the mes-
sages’ contents.

Consider the WSDL fragment in Figure 2, for
example, which describes a stock-reporting Web
service. The service performs only one operation,
GetTradePrice, which requires one input, 
GetTradePriceInput (of type string), and pro-
duces an output GetTradePriceOutput (of type
float). This description specifies the syntactic type
for the data transferred, but not what data it
expects. We do not know, for example, whether the
Web service expects a company name or a ticker
symbol as input; similarly, we do not know
whether the output will be the latest quote, the
stock’s beta value, or the 12-week average.

Industry’s current proposals for the Web services
infrastructure require programmers to reach
explicit agreement on both the way their Web ser-
vices interact and the format of the messages they
exchange. Programmers must hard-code these
interactions, as well as the way the services should
interpret the messages. Programmers are also
responsible for modifying their Web services when
something changes in the interaction patterns or
when something breaks. Ultimately, the growing
Web services infrastructure facilitates the specifi-
cation of agreements between programmers, but
the fact that it does not support automatic Web
service reconfiguration creates an infrastructure
that is inherently brittle, inflexible, and inevitably
expensive to maintain.

To overcome this brittleness, we need to increase
Web services’ autonomy by letting them reconfig-
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Figure 2. Example WSDL description. This service performs the
operation GetTradePrice, described by the input message
GetTradePriceInput (string) and the output message
GetTradePriceOutput (float). Much remains unknown,
however, regarding the information to be encoded in the string and
how to interpret the output float.

<types> ... </types>

<message name=”GetTradePriceInput”>
<part name=”request”

type=”xsd:string”/>
</message>
<message name=”GetTradePriceOutput”>
<part name=”response”  

type=”xsd:float”/>
</message>

<portType name=”StockQuotePortType”>
<operation name=”GetTradePrice”>
<input message=”GetTradePriceInput”/>
<outputmessage=”GetTradePriceOutput”/>
</operation>

</portType>

<binding> ... </binding>

<service> ... </service>



ure their interaction patterns. Any increase in
autonomy will let Web services react to changes
while minimizing programmers’ direct intervention.

The lack of explicit semantics prevents Web
services from acting autonomously by under-
standing each other’s messages and what tasks
each service performs. In addition, current Web
service proposals fail to enable semantic repre-
sentations of business relations, contracts, and
business rules in a machine-understandable way.
Enriching the Web services infrastructure with
semantics will let Web services

• explicitly express and reason about business
relations and rules;

• represent and reason about the task a Web ser-
vice performs (selling books or verifying credit
cards, for example), thus enabling automated
service discovery based on explicit advertise-
ments and descriptions of service functionality;

• represent and reason about message ordering;
• understand the meaning of exchanged messages;
• represent and reason about preconditions for

using services and the effects of invoking
them; and

• combine Web services to achieve more com-
plex services.

The Semantic Web has the potential to provide
the Web services infrastructure with the infor-
mation it needs through formal languages and
ontologies for reasoning about service descrip-
tions, message content, business rules, and rela-
tionships between ontologies.

DAML-S
As both a language and an ontology for describ-
ing Web services, DAML-S attempts to close the
gap between the Semantic Web and Web services.
As an ontology, it uses DAML+OIL-based con-
structs to define the concept of a Web service; as a
language, DAML-S supports the description of spe-
cific Web services that users or other services can
discover and invoke using standards such as WSDL
and SOAP. DAML-S uses semantic annotations and
ontologies to relate each Web service’s description
to a description of its operational domain. For
example, a DAML-S description of a stock-report-
ing service might specify the data it reports, its
delay versus the market, and the cost of using the
service. The Web service’s clients might use
DAML+OIL to determine what kind of data the ser-
vice reports, how to contact it, and so on.

Figure 3 shows DAML-S’s structure and how it

relates to other components of the Web services
infrastructure. A DAML-S Web service is specified
by four descriptions:

• the service profile, 
• the process model, 
• the service grounding, and
• a DAML-S service description that connects the

other three.

Furthermore, DAML-S supports the use of WSDL
to specify Web service interfaces, SOAP to describe
the messaging layer, and some transport protocol
to connect two Web services. At the messaging and
transport levels, DAML-S is thus consistent with
the rest of the proposed Web services standards.

The service profile provides a high-level view of
a given Web service. It is the DAML-S analog to
the Web service representation that UDDI provides
in the Web services infrastructure, although the
two have some sharp differences as well as simi-
larities. Some information, such as a Web service’s
provider, is present in both descriptions, but the
service profile supports properties such as the rep-
resentation of capabilities — the tasks the service
performs — that UDDI does not support. On the
other hand, UDDI describes the ports the Web ser-
vice uses, whereas DAML-S relegates this infor-
mation to other modules of the description, such
as the grounding (described below).

The process model specifies the tasks a Web ser-
vice performs, the order in which it performs them,
and the consequences of each. A client can use the
process model to derive the service’s choreography,
or message-exchange pattern, by figuring out what
inputs it expects, when it expects them, what out-
puts it reports, and when. The process model’s role
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discovery layers and a grounding to map Web
services descriptions to message-transport
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is similar to emerging standards such as BPEL4WS
and WSCI, but focuses more on the effects of exe-
cuting a service’s different components.

The service grounding binds the abstract descrip-
tion of a Web service’s information exchanges —
defined in terms of inputs and outputs in the process
model — with an explicit WSDL operation, and
through WSDL to SOAP messages and transport-
layer information. 

DAML-S’s reliance on DAML+OIL, as well as
WSDL and SOAP, shows how proposed Web services
standards can be enriched with semantic informa-
tion. DAML-S adds formal content representations
and reasoning about interactions and capabilities to
Web service specifications. Therefore, DAML-S-
enabled Web services use UDDI, WSDL, and SOAP
to discover other services and interact with them,
and they use DAML-S to integrate these interactions
in their own problem solving.

Managing Web 
Services with DAML-S
Now that we have a theoretical framework that
relates DAML-S, the Semantic Web, and the Web
services infrastructure, we need a computational
model that transforms theory into concrete
Semantic Web services. We have implemented
tools for Semantic Web service discovery and
invocation making use of DAML-S and comple-
menting current Web services systems. Here we
describe the DAML-S/UDDI Matchmaker and the
architecture of a DAML-S-empowered Web service.

DAML-S-Enabled Service Discovery
The DAML-S service profile relies on ontologies

to specify what type of information the Web ser-
vice reports and what effects its execution pro-
duces. At discovery time, a Web service generates
a request that contains a profile for the ideal ser-
vice it wants to interact with. The discovery
process selects a Web service provider’s profile
that matches the request.

Although DAML-S profiles and UDDI Web-ser-
vice descriptions contain different information,
they share the goal of facilitating Web-service dis-
covery. The combination could thus provide rich
representations for Web services.7 Using UDDI’s
TModels to encode DAML-S capability descrip-
tions, we can reconcile the differences between the
two. Once we have the capabilities encoded, we
can add a new module to UDDI: the matching
engine performs inferences based on DAML+OIL
logics and effectively adds capability matches to
UDDI.8 The result is the DAML-S/UDDI Match-
maker for Web services, shown in Figure 4.

The Matchmaker receives Web-service adver-
tisements, information inquiries, and requests for
capabilities through the communication module,
which implements a simple inquiry-and-publish
API. The communication module then sends the
advertisements and inquiries to UDDI through the
DAML-S/UDDI translator, which transforms
DAML-S encoded advertisements into UDDI format.
The communication module directs requests for
capabilities to the DAML-S matching engine, which
selects those Web services whose advertised capa-
bilities match the request. The matching is compli-
cated by the fact that providers and requesters have
different views on Web-service functionality. Thus,
the matching engine can’t base the selection on
strings or keywords. Rather, it must match seman-
tic descriptions of capabilities to access the deeper
meaning of the advertisements and requests.

Consider, for example, a service provider adver-
tising that it sells pet food, and a requester look-
ing to buy dog food. A UDDI-style registry would
be unable to match the request because keyword
matching is not powerful enough to identify the
relationship between pet food and dog food.
Instead, DAML-S profiles let service providers
express concepts that are explicitly related via
ontologies. In this case, the provider could speci-
fy that dog is a type of pet, and the DAML-S
matching engine could recognize a semantic
match between the request and the advertisement.

The DAML-S matching algorithm accommo-
dates the differences between an advertisement
and a request by producing flexible matches — rec-
ognizing degrees of similarity — on the basis of
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Figure 4. DAML-S/UDDI Matchmaker architecture. Web services
advertise or request through the communication module using
DAML-S. Advertisements are stored in the UDDI registry, and
requests are sent to the DAML-S matching engine.



available ontologies. Basically, the matching
engine attempts to verify whether the requested
outputs are a subset of those generated by the
advertisement, and whether the advertisement’s
inputs subsume those of the request. When these
conditions are satisfied, the advertised service gen-
erates the outputs that the requester expects and
the requester can provide all the inputs the Web
service expects. The degree of satisfaction between
these two rules determines the degree of match
between provider and requester.

Figure 5 shows the internal architecture of the
DAML-S matching engine, which establishes the
degree of match between requests and advertise-
ments. It relies on two data stores: the advertise-
ment database stores the Web services’ capabili-
ties, and the ontologies database stores ontologies
that have been downloaded from the Web. The
matching engine draws advertisements from the
advertisement database and uses a DAML+OIL
reasoner to verify the relationship between con-
cepts in the ontologies database.

The DAML-S/UDDI Matchmaker’s architecture
combines the two approaches: it uses UDDI to
store advertisements and retrieve information
about Web services, and it exploits DAML-S to
represent and match capabilities.

Using DAML-S to Manage Interactions
The discovery process produces the Web services
that provide a given capability. The next problem
is to invoke those Web Services to solve a prob-
lem or answer a question. Semantic Web services
can use the DAML-S process model and ground-
ing to manage their interactions with other Web
services. The diagram in Figure 6 shows a DAML-
S-based Web service’s architecture. The architec-
ture’s core is represented by the three components
in the center column: 

• the Web service invocation, 
• the DAML parser, and 
• the DAML-S virtual machine (VM).

The Web service invocation module is responsi-
ble for contacting other services and receiving
messages from them. Such transactions might be
based on SOAP messaging, HTTP, or any other
mode of communication described by the service
provider’s WSDL specification.

Upon receiving a message, the Web service
invocation module extracts the payload and sends
it to the DAML parser, which downloads
DAML+OIL ontologies and DAML-S descriptions

of other services from the Internet. The parser then
transforms fragments of the ontologies into pred-
icates that the DAML inference engine can use.

The DAML-S VM is the center of our imple-
mentation. It uses the ontologies and DAML-S
specifications passed to it by the parser and invo-
cation module to make sense of the messages it
receives, and to decide what kind of information to
send next. The VM uses a set of rules that imple-
ment the semantics of the DAML-S process model
and grounding. It uses the grounding to transform
the abstract information exchanges described by
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the process model into concrete message content
that it passes to the Web service invocation mod-
ule, which generates the actual response messages
and sends them to other Web services.

The right-hand column in Figure 6 shows the
Web service’s main body: the service module. In a
financial consulting Web service, this module
might contain software that performs financial cal-
culations or suggests stocks to buy. In the figure, it
is displayed as a “black box” because DAML-S does
not make any explicit assumptions about the ser-
vice. Rather, the goal is to facilitate autonomous
interaction between Web services.

The service module is responsible for many of
the decisions that the Web service makes while
using DAML-S. For example, a financial-consult-
ing Web service might need to interact with a
stock-quote service or financial-news services,
sending them requests and information. It would
then use the information it received to solve some
problem. The service also decides what to subcon-
tract to other Web services, and which potential
providers’ capability descriptions to submit to the
DAML-S/UDDI Matchmaker.

Test Application
We tested our architecture by developing a set of
Web services that collaborate to organize a trip to
a meeting of the DAML Principal Investigators.
Figure 7 shows the resulting system’s organization.

In our scenario, the user asks the Retsina cal-
endar agent9 to make travel arrangements to the
meeting. The calendar agent contacts the DAML-

PI meeting Web service to learn the meeting’s
dates and location. It then uses MS Outlook to
verify that there are no schedule conflicts for the
user. Finally, the agent books flight, car, and hotel
from different Web services using their DAML-S
descriptions.

In this application, the calendar agent is the ser-
vice module, as shown in the generic DAML-S Web
service in Figure 6. We expanded the Retsina
agent’s functionalities by adding a planning com-
ponent based on HITaP,10 a hierarchical planner
that interleaves planning and execution. During
the planning phase, the calendar agent attempts to
construct a plan that satisfies the goal of bringing
the user to the meeting. When it cannot satisfy one
of the preconditions, the calendar agent first
queries the DAML-S/UDDI Matchmaker to find a
Web service that can fulfill it, and then queries the
agent located. The calendar agent then downloads
the DAML-S Web service’s description and exe-
cutes the process model using the DAML-S VM.
Finally, it extracts the information contained in the
messages exchanged with the Web services and
constructs a travel schedule, which it saves in the
user’s Outlook calendar.

Conclusion
DAML-S is not just an academic concept. We can
use it to automatically control interactions between
Web services, thus leading the way toward auto-
nomous Semantic Web services. The work present-
ed here shows the need for widespread ontologies
to provide an inference framework that lets Web
services resolve discrepancies and mismatches
between the knowledge they’re using.

By lowering the boundaries for automatic inter-
operation, ontology-based languages for describ-
ing Web services have enormous potential for
business on the Web. Ontology-based languages
let Web services adapt to changes in message con-
tent or interaction protocol. As our prototype
application shows, they also provide the basis for
creating on-demand services.

DAML-S provides a first step toward achieving
this goal, but a lot of work remains to be done. It
is unclear whether DAML-S provides all the infor-
mation that is needed to represent Web services, for
example. More importantly, it is also unclear how
to fill the gap between DAML-S and the current
Web services infrastructure. Some work in this
direction has been done — the DAML-S grounding
and the mapping from DAML-S to UDDI, for exam-
ple — but we do not yet know whether there is a
“low hanging fruit” that could provide great and
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Figure 7. Test application architecture. The calendar agent uses the
DAML-PI meeting Web service and the user’s MS Outlook calendar
to organize a trip.

Airline service Car rental service

DAML-S/UDDI
Matchmaker

MS Outlook Calendar agent

S un Mon Tue Wed Thu F ri S a t
1 2 3 4 5 6

7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

September

PI meeting
Web service



practical gains for the Web Services infrastructure
with minimal use of semantic information.
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