
Designing Web Services with Tropos

Diana Lau and John Mylopoulos

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada M5S 3G6

{dianalau, jm}@cs.toronto.edu

Abstract

 We propose a methodology for designing web

services. The methodology is founded on Tropos
[Perini01, Castro02], an agent-oriented software

development technique, and supports early and late

requirements analysis, as well as architectural and
detailed design. An online retailer example is used for

illustration of the proposed methodology. We also

compare the generated design with a sample design
presented in [BPT01].

1. Introduction

 Web services are self-contained, self-described,

modular applications that can be published, located and

invoked across the Internet. Web services are being

touted as the next revolution of the World Wide Web.

Not surprisingly, many organizations are jumping on the

web service bandwagon, committing people and

resources to their development. To a large extend, the

focus of this development has been the functionalities of

web services and their integration with existing software

systems. Unfortunately, such a focus only answers

“what” and “how” questions, but ignores the “why”

questions: Why is this service being offered? Why is it

designed the way it is? Whom is it intended to serve? Is

it offering the service in a way that is acceptable to all

members of its intended user group, or just some? The

objective of this paper is to fill in this gap by proposing

a design methodology for web services, adopted from

the Tropos project.

 Tropos [Perini01, Castro02] is an agent-oriented

software engineering methodology that spans early and

late requirements, as well as architectural and detailed

design. Tropos is founded on the concepts of actor, goal
and (actor) social dependency in the same sense that

UML is founded on the notions of object, class, method,

inheritance and the like. Until now, the focus of the

Tropos project has been the design of agent-oriented,

distributed, open, applications. Applications in

distributed systems are similar to web services.

However, once a web service is registered on the web,

the service provider has no control on how and where

the service would be used; therefore, more consideration

has to be taken into account, such as interoperability,

accessibility and customizability. The purpose of this

paper is to adopt the Tropos methodology to the design

of web services. An online retailer business scenario is

used as a case study for illustration purposes.

 The rest of the paper is organized as follows. Section

2 introduces terminology to be used extensively

throughout this paper, and describes the online retailer

case study. In Section 3, we illustrate how the

methodology is applied for the requirements and

architectural design phases, while Section 4 continues

the case study with later stages of the development

cycle. The last sections outline future work on a design

methodology for web services and summarize the

contributions of this research.

2. Preliminaries

Throughout this paper, we use terminology adopted

from Tropos. In particular:

Actor. An actor models a stakeholder for the new

system, or a component of the system itself. An actor

has strategic goals and intentions and can carry out

actions to fulfill them. An actor can be a physical,

social or software agent, a role or a position. An

agent can occupy a position, while a position covers

several roles [Perini01].

Goal. A goal represents an actor’s strategic interests.

There are hard and soft goals. Soft goals do not have

a clear-cut definition and/or criterion for deciding

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

whether they are satisfied or not, and often model

non-functional requirements.

Social Dependency. A social dependency is a

relationship between two actors where one actor, the

depender, depends on another actor, the dependee, to

deliver a dependum, by achieving a goal, executing a

plan, or delivering a resource [Perini01].

Capability. Capability represents the ability of an

actor to define, choose and execute a plan for the

fulfillment of a goal.

 We use an online retail store from the Business

Process Team [BPT01] to illustrate how to apply the

Tropos methodology. Our aim is to apply our proposal

to the original example, and compare our results with the

worksheet-based methodology used in [BPT01].

 The online retail store sells a range of products.

Customers can buy goods using a computer, a cell

phone, or a Personal Digital Assistant (PDA) through the

Internet. After an order is placed, the retailer contacts

the Credit Authority to validate customer credits. If the

credit is valid, the order will be confirmed, and the

retailer will then charge the customer through the Credit

Authority to the customer’s bank account.

 Once payment is processed, the retailer notifies the

Direct Supply Vendor (DSVendor) in order to provide

order and delivery information. The DSVendor collects

goods from its inventory, and ships them to the transport

center together with the delivery information.

Eventually, the transport center delivers the ordered

products to the customer. Upon completion of the

delivery, the center informs the retailer.

 An example of a Tropos model is shown in Figure 1.

Customer has a goal to own products and a soft goal to

get them at the lowest cost. On the other hand, Retailer
has a soft goal to maximize profit and depends on

Customer for the soft goal of having repeatable business.

Figure 1. Goal dependencies between Customer and Retailer

 Figure 2 shows how the “own products” goal can be

met through co-operation with Retailer. This goal can

be achieved by “get for free”, “buy from someone” or

“exchange with other goods”. The bottom of this goal

hierarchy lists the tasks that are necessary to satisfy

goals located higher up in the hierarchy. To demonstrate

this, Figure 3 exhibits that different payment methods

can be used, whereas Figure 4 illustrates alternatives for

submitting customer information.

Figure 2. Strategic Rationale Diagram for Customer to own products

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Figure 3. Payment alternatives

Figure 4. Alternatives of submitting customer information

3. Early Requirements Analysis

 During the requirements phase, stakeholders and

goals for the existing organizational setting are first

identified, and then the functional and non-functional

requirements of the system-to-be are defined.

Subsequently, the design stages focus on the system

specification, according to the requirements gathered

from earlier stages [Castro02].

 During early requirements analysis, the intentions of

the stakeholders are identified and analyzed [Perini01].

During this phase, the system-to-be is not represented or

discussed, yet. In particular, the phase includes steps as

follows.

Step 1: Identify stakeholders

 In this example, there are six stakeholders as follows:

- Customer, shops online through retailer system;

- Retailer, sells products;

- Direct supply vendor, supplies goods to Retailer;

- Transport Center, delivers goods to Customer;

- Credit Authority, who validates Customer’s

credits and charge them from the bank;

- Bank, supports withdrawal, deposit and transfer

of money between Customer and Retailer.

Step 2: Identify goals, other actors, and

dependencies

 Top-level stakeholder goals are identified, analyzed

and decomposed. When an actor needs another actor to

achieve a goal, a social dependency is established

between them. The output of this process is an actor

diagram.

Figure 5 is an actor diagram depicting stakeholders

and their interests. Specifically, Customer has a goal to

own products and soft goal to obtain products at the

lowest price. He depends on Retailer to receive good

customer service. Quality of customer service is a soft

goal. Conversely, Retailer has a goal dependency on

Customer for repeatable business, also wants to

maximize profit. Direct Supply Vendor has a soft goal

to maximize profit, depends on Retailer to offer

products, but also depends on Transport Center to ship

goods to Customer. Transport Center is associated with

a task (deliver goods) and a soft goal (maximize profit).

“Deliver goods” is a task in the sense that there is a

standard way of achieving it. On the other hand, Credit

Authority and Bank are less relevant actors. The former

is associated with “validate customers’ ability to pay”,

whereas the latter is associated with two soft goals,

which are secure transaction and maximize profit, and

the task “support basic banking transaction”.

Step 3: Conduct means-end analysis

During this step, goals are further decomposed and

positive/negative contributions among them are

specified [Perini01]. Tasks can also be decomposed into

simpler tasks as well. In the case study, we focus on

Figure 5. Actor diagram modeling the stakeholders of online retailer business model

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Customer, Retailer System and Direct Supply Vendor.

The output of this step is a goal (or, strategic rationale)

diagram for each stakeholder. For example, Figure 6

shows the strategic rationale diagram for “maximize

profit”.

 Figure 6. Strategic Rationale model for “maximize profit”

4. Late Requirements Analysis

 The system-to-be is introduced in this phase and

treated as a new actor with delegated hard and soft goals.

In the case study, Retailer System is introduced to fulfill

the “sell product” goal for Retailer.

 Figure 7 shows Retailer System and its

responsibilities. In particular, Retailer delegates “sell

product” to Retailer System. This goal can be achieved

in several ways, e.g., through self-service (amazon.com),

quotation (bmw.com), auction (eBay.com), and

salesperson (bmo.com for bank plan selector). These

sub-goals are then further decomposed into finer

goals/tasks. For example, “self serve” is decomposed

into “cataloguing” -- includes listing and searching

products -- and “handle order” -- includes dealing with

deliveries and payments. On the other hand, “charge

customer” is delegated to Credit Authority, since it needs

credit validation for Customer.

5. Architectural Design

 This phase defines the system’s global architecture in

terms of subsystems (actors) interconnected through data

and control flows (dependencies) [Perini01].

Figure 7. Goal diagram for the Retailer System actor

Step 1: Create extended actor diagram

 The actors introduced in this step are all system

actors, representing subsystems or components of the

system-to-be. The resulting architecture is shown in

Figure 8.

Figure 8. Actor diagram for the new online retailer system

architecture

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

 The architecture consists of four main subsystems:

Customer Relationship Management System, Product

Management System, Web Server, and Order Status

System. These are responsible for handling customer

information, products, online shopping and orders,

respectively. Within Product Management System, there

are Product Catalog and Product Offering systems,

which supports inventory control and product offerings.

 Consequently, an extended actor diagram is produced

to demonstrate how each subsystem fits in a big picture.

According to Figure 9, Customer, Transport Center,

Direct Supply Vendor and Credit Authority are external

users of the retailer system.

Step 2: Identify actors’ capabilities

 This step identifies the capabilities needed by system

actors in order to fulfill their assigned goals and plans

[Castro02]. Capabilities are identified by analyzing

actor models obtained in previous steps. Each

dependency relationship requires one or more

capabilities triggered by external events. In the retailer

system goal diagram, we have modeled all possible ways

of satisfying top-level goals. From these we generate a

list of capabilities that are necessary in order to achieve

the top-level goal.

 Table 1 shows the capabilities of some subsystems.

The middle column “N” is used to name the capabilities

in numbers. These numbers will be used in the next step

when assigning capabilities to agents.

Step 3 Assign capabilities to agents

 After identifying actor capabilities, a set of agent

types is defined, and each of them is assigned one or

more capabilities [Castro02]. Table 2 shows the agent

types and their capabilities. The agent Web Server

possesses the capabilities required for Customer

Interface System and External Interface System, as

defined in the previous steps.

Table 1. Actors’ capabilities

Actors N Capabilities

1 get customer profile

2 create customer profile

3 update customer profile

4 record customer order

5 remove customer order

Customer

Relationship

Management

6 retrieve order history

13 accept/refuse product offering via email

 14

accept/refuse product offering via

electronic form

15

receive product offering notifications via

email

16

receive product offering notifications via

electronic form

Product

Offering

System

17

receive product offering notifications via

fax

Table 2. Agent types and their capabilities

Agent Capabilities

Inventory Control System 1, 2, 3, 4, 5, 6

Product Management

System

13, 14, 15, 16, 17, 18, 19, 20, 21,

22, 23

6. Later Stages

 One can now derive the Retailer System architecture,

agent types and their capability list from the output of

the phases outlines in previous sections. To continue

with the rest of the development cycle, it is suggested

that the Agent-based Unified Modeling Language

(AUML) notation be used when adding details to all

Figure 9. Extended actor diagram with respect to the Retailer System

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

architectural components in the detailed design phase.

The Capabilities Diagram models capabilities from the

point of view of a specific agent. Since such diagrams

model each event as a transition, a UML activity

diagram is suitable in order to describe such events. On

the other hand, UML sequence diagrams are

recommended for modeling communications between

agents. Since our design is the same as the one

mentioned in [BPT01], it is not necessary to repeat the

details in this paper.

 At the end of the design process, open standards can

be used for the implementation of the web services.

These are the Web Services Definition Language

(WSDL) [WSDL] for describing a web service, Simple

Object Access Protocol (SOAP) [SOAP] for

representing remote procedure calls/response, and

Universal Description, Discovery Integration (UDDI)

[UDDI] for describing and discovering web services.

 By using the capabilities assigned to each agent, one

can identify the data types and activities that are

involved in achieving system goal. Since we are

interested in designing web services, XML Schema

(XSD) and WSDL are used to describe relevant data

types and activities. Figure 10 shows the Customer

complex type defined in terms of an XML Schema.

<complexType name="Customer">

 <all>

 <element name="address" nillable="true"

type="string"/>

 <element name="lastName" nillable="true"

type="string"/>

 <element name="email" nillable="true"

type="string"/>

 <element name="firstName" nillable="true"

type="string"/>

 <element name="customerID"

nillable="true" type="string"/>

 </all>

</complexType>

Figure 10. XML Schema for Customer

 To give more details, we focus on the Customer

Relation Management subsystem. It is responsible for

creating, deleting and updating customer profile, as well

as updating order history. Each capability is considered

as a WSDL operation embedded in a port type for an

agent. This is demonstrated in Figure 11.

<message name="getCustomerProfileRequest"/>

<message name="getCustomerProfileResponse">

 <part name="result" type="xsd1:Customer"/>

</message>

<message name="addOrderToOrderHistoryRequest">

 <part name="order" type="xsd2:Order"/>

</message>

<message name="addOrderToOrderHistoryResponse">

<part name="result" type="xsd:boolean"/>

</message>

...

<portType name="CRM">

 <operation name="getCustomerProfile">

 <input

message="tns:getCustomerProfileRequest"

name="getCustomerProfileRequest"/>

 <output

message="tns:getCustomerProfileResponse"

name="getCustomerProfileResponse"/>

 </operation>

 <operation name="addOrderToOrderHistory"

parameterOrder="order">

 <input

message="tns:addOrderToOrderHistoryRequest"

name="addOrderToOrderHistoryRequest"/>

 <output

message="tns:addOrderToOrderHistoryResponse"

name="addOrderToOrderHistoryResponse"/>

 </operation>

...

</portType>

Figure 11. Web service definition for Customer Relationship

Management system

7. Discussion

 Combinations of leaf goal nodes in an actor diagram

constitute alternatives for achieving root goals. We are

going to use the eight use cases [BPT01] to compare the

solutions generated from our methodology and the

worksheet-based methodology presented in [BPT01].

 In the “firm sales order” business process use case,

the worksheet-based method requires customers to

complete all personal identity data, select products to

purchase, and then accept the terms of sales. On the

other hand, our technique supports several alternatives

for providing customer and order information.

According to Figure 13, customer information can be

obtained from a customer submitting this information

with every purchase, or by maintaining a customer

profile for repeat customers. Moreover, products to be

purchased can be specified in three ways: select products

without knowledge of previous purchases, purchase

same products as in the last order, or edit the last order.

Taking all these combinations into account, our design

offers six alternatives for use case.

 In the “customer credit payment” use case, Credit

Authority makes a credit charge against the customer’s

account, and then reports to Retailer about the status of

the charge. It is assumed that credit card is the only way

to pay the bill. Nonetheless, our analysis in Figure 13

shows that debit cards and gift certificates are alternative

forms of payment.

 The result for the “customer credit inquiry” use case

is the same for both methods, since this task is delegated

to Credit Authority in our design. Both methods

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

generate the same results for the “purchase order” and

“inventory management” use cases as well. The

“present invoice” is the same in both techniques too,

because this “update delivery status” task is delegated to

DSVendor as shown in Figure 12. The “ship goods” use

case is not comparable since our retailer system does not

involve communication between the DSVendor and

Transport Center. Finally, in the “sales product

notification” use case, a product specification request is

sent to Retailer. The description in [BPT01] does not

specify how the request is sent; however, it can be sent

via email or some electronic form in our method.

 Comparing our design with the one shown in

[BPT01], we find that our design is comparable but

more generic, and therefore more customizable.

Alternatives for achieving each goal are determined and

analyzed during means-end analysis. As a result, web

services designed with the Tropos methodology take into

account all possibilities for satisfying root goals of major

stakeholders. On the other hand, the processes described

in [BPT01] only consider one solution for satisfying

root-level goals.

 Apart from the use cases mentioned above, soft goals,

such as maximize profits and buy products at the lowest

price, are not considered in the worksheet-based

technique. Our design includes an analysis of these

goals and even converts some into hard goals and tasks

that are executable by Retailer System. This is a bonus

offered by our proposed methodology. Taking the

Customer’s soft goal of buying products at the lowest

price as an example, it can be achieved by two hard

goals: promotion and proof availability, as illustrated in

Figure 13. The system-to-be can then be designed to

show the competitor’s price in the product catalog and

offer discount for large quantity purchase. It can also

remind the Retailer to select products on sale

periodically.

 Besides, the Tropos methodology satisfies two

fundamental design principles for services: coupling and

cohesion [Papaz02]. During the requirements phase,

top-level goals are identified, analyzed and then refined

into subgoals and tasks. Each goal and task is evaluated

independently. Therefore, each group of activities is

loosely-coupled with respect to other activity groups. In

terms of cohesion, events in each web service produced

by Tropos are functionally cohesive, since they all

contribute to a specific goal or task. The design in

[BPT01] satisfies these criteria as well. However, it only

accommodates one way of completing each required

task, and alternative ways are ignored.

8. Conclusions

 The paper has proposed Tropos as a design

methodology for web services. The proposal was

illustrated with an online retailer case study adopted

from the literature. The key idea of the methodology is

that software services are designed by starting from

stakeholder goals, and by analyzing these goals in order

to define the space of alternative solutions. The web

service design generated from this process, is expected

to accommodate as many of those solutions as possible,

thereby rendering the design more generic and usable by

a broader class of applications.

 For future work, we plan to extend Tropos so that it is

tailored specifically to web service design. After all,

Tropos does not support mechanisms for making

software platform-, language-, and implementation-

independent. We also propose to develop mechanisms

that lead to software designs that accommodate a variety

of users, including ones who lack skills, e.g., blind users,

or users with motor control problems. In addition, we

propose to study design techniques that address

problems of unreliable communication and

unpredictable loads [Bosw01].

 A key concept in the design of web services is that of

a business process [Papaz02]. Hence, we’d like to

explore the integration of Tropos with the open standard

business process language, Business Process Execution

Language (BPEL), to describe how tasks work together

to achieve a goal, instead of using Agent Interaction and

Capability diagrams.

9. References

[BPT01] Business Process Team, Business Process

Analysis Worksheets & Guidelines v1.0.

Appendix C.

[Bosw01] Bosworth, A., “Developing Web Services”,

Data Engineering, 2001. Proceedings. 17th

International Conference on, 2-6 April 2001.

[Castro02] Castro, J., Kolp, M., Mylopoulos, J.,

“Towards requirements-driven information

systems engineering: the Tropos project”,

Information Systems Journal, 2002.

[Kirda01] Kirda, E.; Jazayeri, M.; Kerer, C.; Schranz,

M.; “Experiences in Engineering Flexible

Web Services”, Multimedia, IEEE, Volume:

8 Issue:1, Jan-March 2001
[Papaz02] Mike P. Papazoglou, Jian Yang, “Design

Methodology for Web Services and Business

Processes”, Proceedings of the 3rd VLDB-
TES Workshop, August, Hong Kong, Lecture

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Notes in Computer Science Vol. 2444,

Springer, 2002.

[Perini01] A. Perini, P. Bresciani, F. Giunchiglia, P.

Giorgini, J. Mylopoulos, “A Knowledge

Level Software Engineering Methodology for

Agent Oriented Programming”, Proceedings
of the Fifth International Conference on

Autonomous Agents, Montreal, Canada, May

2001.

[WSDL] “Web Service Definition Language (WSDL)

1.1”, http://www.w3.org/TR/WSDL

[SOAP] “Simple Object Access Protocol (SOAP)

1.1”, http://www.w3.org/TR/SOAP

[UDDI] “Universal Description, Discovery,

Integration”, http://www.uddi.org

10. Appendix

Figure 12. Goal diagram for Vendor

Figure 13. Goal diagram for Customer

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

	footer1:

