
Specification and Verification of Agent Interaction
Protocols in a Logic-based System

Marco Alberti
DI,Università di Ferrara

Via Saragat,1
44100 Ferrara (Italy)

malberti@ing.unife.it

Davide Daolio
DI,Università di Ferrara

Via Saragat,1
44100 Ferrara (Italy)

Paolo Torroni
DEIS, Università di Bologna

Via del Risorgimento, 2
40136, Bologna (Italy)

ptorroni@deis.unibo.it

ABSTRACT
In multiagent systems, agent interaction is ruled by means
of interaction protocols. Compliance to protocols can be
hardwired in agent programs; however, this requires that
only “certified” agents interact. In open societies, com-
posed of autonomous and heterogeneous agents whose inter-
nal structure is, in general, not accessible, interaction pro-
tocols should be specified in terms of the agent observable
behaviour, and compliance should be verified by an external
entity.

In this paper, we propose a Java-Prolog-CHR system for
verification of compliance of agents’ behaviour to protocols
specified in a logic-based formalism (Social Integrity Con-
straints). We also present the application of the formalism
and the system to the specification and verification of the
FIPA Contract-Net protocol.

Keywords
Agents, Verification, Computational Logic

1. INTRODUCTION
In multiagent systems, agent interaction is usually subject

to some kind of interaction protocols, which agents should
respect when interacting. This raises the obvious problem of
verifying that agents actually respect interaction protocols.

It is possible to design agents so that they will “spon-
taneously” comply to protocols, and, if possible, formally
verify that at design time. For instance, in [6], Endriss et
al. propose an approach where protocols are “imported”
into individual agents’ policies.

However, this approach is not viable in open1 agent soci-
eties, where interacting agents are autonomous and hetero-
geneous and, in general, their internal structure cannot be

1We intend openness in societies of agents as Artikis, Pitt
and Sergot [5], where agents can be heterogeneous and pos-
sibly non-cooperative.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2003 ACM-1-58113-812-1/03/04...$5.00

accessed. In this case, agents should be checked for com-
pliance to interaction protocols based on their observable
behaviour, by a trusted external entity.

In previous work [4, 3], we proposed a computational
logic-based formalism (based upon Social Integrity Constraints)
to specify interaction protocols. Social Integrity Constraints
are meant to constrain the agent observable behaviour rather
than agents’ internal (mental) state or policies. In other
words, this approach does not restrict an agent’s access to
societies based on its internal structure; regardless of its poli-
cies, any agent can successfully interact in a society ruled
by Social Integrity Constraints, as long as its behaviour is
compliant.

For the purposes of this work, we modified Social Integrity
Constraints, in order to tackle the expressive needs of practi-
cal applications and to allow a more efficient implementation
of compliance verification procedures.

The paper is structured as follows.
In Sect. 2, we introduce the version of Social Integrity

Constraints used in this work, giving their syntax and an
informal explanation of their semantics.

In Sect. 3 we propose an implementation of the FIPA
Contract Net protocol [1] by means of Social Integrity Con-
straints.

We then present, in Sect. 4, a system for the verification
of compliance to Social Integrity Constraints that has been
implemented by using SICStus Prolog [2] and its Constraint
Handling Rules [9] library.

Discussion of related work and conclusions follow.

2. SOCIAL INTEGRITY CONSTRAINTS
In this section, we explain the concepts that we use to

represent an agent’s actual behaviour (events) and desired
behaviour (expectations); we then explain how Social In-
tegrity Constraints (also SICs, for short, in the following)
express which expectations are generated as consequence of
events.

Events and expectations.In our framework, the agent be-
haviour is represented by means of events.

Events are of the form H(Description,Time), where De-
scription is a term (as intended in logic programming, see
[12]) representing the event that has happened, and Time is
an integer number representing the time at which the event
has happened.

For example, H(request(ai, aj , give(10$), d1), 7) represents
the fact that agent ai requested agent aj to give 10$, in the

context of interaction d1 (dialogue identifier) at time 7.
All happened events form the history of a society. Given

the history of a society at a given time, some events will have
to happen in order for interaction protocols to be satisfied:
we represent such events by means of expectations, which
can be positive or negative. Positive expectations are of the
form E(Description,Time) and represent an event that is
expected to happen (typically, an action that an agent is
expected to take). Negative expectations are of the form
EN(Description,Time) and represent an event that is ex-
pected not to happen.

Expectations may (and, typically, will) contain variables,
to reflect the fact that the expected event is not fully speci-
fied; however, CLP [10] constraints can be imposed on vari-
ables to restrict their domain.

For instance,

E(accept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15 (1)

represents the expectation for agent ak to accept giving agent
aj an amount M of money, in the context of interaction d2

(dialogue identifier) at time Ta; CLP constraints say that
M is expected to be greater or equal than 10$, and Ta to be
lesser or equal than 15.

Since we impose no restrictions on the Description term of
an expectation, expectations can regard any kind of event
that can be expressed by a Prolog-like term. However, it
should be noticed here that expectations regard only point-
time events; thus it is not possible, in our framework, to
express explicitly that some proposition is expected to be
true in a given time interval, as in other frameworks [11, 8].

Since we make no assumptions about agents’ internal struc-
ture or policies, their behaviour may satisfy expectations, or
not. We represent these two cases by means of the notions
of fulfillment and violation. We say that an event matches
an expectation if and only if:

• their contents unify (à la Prolog);

• CLP constraints on variables (if any) are satisfied.

A positive expectation matched by an event is fulfilled ; a
negative expectation matched by an event is violated.

For instance, event H(accept(ak, aj , give(20), d2), 15) ful-
fills expectation (1); the same event would, instead, violate a
negative expectations with the same content and CLP con-
straints.

At the end of the history of a society (i.e., when it is
assumed that no more events can happen), all positive ex-
pectations that are not fulfilled are violated, and all negative
expectations that are not violated are fulfilled.

Social Integrity Constraints.The way expectations should
be generated, given a partial history of a society, is specified
by means of Social Integrity Constraints. SICs, as presented
here, are a modified version of those introduced in [3]: we
discuss and motivate the modifications here introduced in
Sect. 5.

In Table 1, the BNF syntax of SICs is given. Term is a
term as intended in logic programming [12], P is an inte-
ger number and T is a variable symbol or integer number.
CList is a conjunction of CLP constraints on variables.

SICs are a kind of forward rules, stating what expectations
should be generated on the basis of happened events. By
means of SICs, it is possible to express that conjunctions

SIC::=χ → φ
χ::=EventLiteral [∧ EventLiteral]∗ [:CList]
φ::=PriorityLevel [⇒ PriorityLevel]∗

PriorityLevel::=HeadDisjunct [∨ HeadDisjunct]∗, P
EventLiteral::=H(Term,T)

HeadDisjunct::=Expectation [∧ Expectation]∗ [:CList]
Expectation::=E(Term,T) | EN(Term,T)

Table 1: BNF syntax of Social Integrity Constraints

of expectations (HeadDisjuncts in Table 1) are alternative,
and to assign a priority, represented by an integer number,
to each list of alternatives (PriorityLevels in Table 1).

For instance, the following SIC:

H(e0, T0) ∧H(e1, T1) : T0 < T1

→ E(e2, T2) : T2 < T1 ∨EN(e3, T3) : T3 < T0, 1

⇒ E(e4, T4) : T4 < T0, 2

(2)

means that, if e0 happens before e1:

• preferably, e2 should have happened before e1 or e3

should not have happened before e0,

• or, with lower priority, e4 should have happened before
e0.

Intuitively, a SIC means that, when a set of events match-
ing its body happens, then at least one of the priority levels
in its conclusion should be satisfied (the higher priority, the
better). In this case, we say that the SIC is fulfilled ; other-
wise, it is violated. While priorities have no effect upon the
declarative semantics of SICS (with respect to fulfillment or
violation), they can be used by the compuational entity rep-
resenting the society to guide the agent behaviour towards a
preferred state. For instance, a society which can communi-
cate expectations to agents can choose a set of expectations
which, if fulfilled, satisfies the highest priority level. This
aspect is not addressed in this work.

The expectations in SIC (2) regard events that should
have (or have not) happened before the time of the event
that raises them: we call this kind of expectations back-
ward. Expectations that regard events that are expected to
happen (or not to happen) after the event that raises them
are named forward.

We restrict the possible SICs by requiring that they con-
tain only either backward expectations or forward expecta-
tions: in the first case, we will call the SIC backward, in the
second case forward. We discuss this restriction in Sect. 5.

3. EXAMPLE: FIPA CONTRACT-NET
In this section, we present an implementation of FIPA

Contract Net protocol [1] by means of SICs.

3.1 FIPA-CN protocol flow
FIPA-CN is a protocol based on FIPA-ACL [7] defined

for regulating transactions between entities using negotia-
tion. The protocol flow, represented as an AUML [13] di-
agram in Fig. 1, starts with an Initiator which issues a
request for a resource (cfp2) to other Participants. The Par-
ticipants can reply proposing a price for satisfying the re-

2cfp stands for Call For Proposals.

Figure 1: FIPA-Contract-Net Interaction Protocol
(AUML Diagram)

quest (propose), or refusing (refuse). The Initiator must ac-
cept (accept-proposal) or reject (reject-proposal) the received
proposals. A Participant whose proposal has been accepted
must, by a given deadline, inform the Initiator of having
provided for the resource (with an inform-done or a more
informative inform-result) or of having failed to provide for
the resource (failure).

3.2 Definition by Social Integrity Constraints
The whole set of SICs used to define FIPA-CN is com-

posed of 14 backward SICs and 3 forward SICs. The choice
of SICs seems satisfactory, although it is not the only pos-
sible one. We are currently investigating a general mapping
of AUML protocol diagrams to SICs, so as to allow for an
automatic translation.

In the SICs in the remainder of this section, I will rep-
resent the initiator, P a participant, R the resource, Q the
price, D the dialogue identifier, S the explanation of a result,
and T (possibly with subscripts) the time. The integer num-
ber representing the priority is not necessary because each
SIC only has one priority level, and has thus been omitted
for ease of reading.

Backward SICs.Backward SICs are used to express that
an action is only allowed if some other actions have (or have
not) been performed before.

SICs (3) and (4) state that propose and refuse are only
allowed in reply to a cfp.

H(tell(P, I, propose(R, Q), D), T) →
E(tell(I, P, cfp(R), D), T1) : T1 < T

(3)

H(tell(P, I, refuse(R), D), T) →
E(tell(I, P, cfp(R), D), T1) : T1 < T

(4)

SICs (5) and (6) express mutual exclusiveness between propose
and refuse.

H(tell(P, I, propose(R, Q), D), T) →
EN(tell(P, I, refuse(R), D), T1) : T1 ≤ T

(5)

H(tell(P, I, refuse(R), D), T) →
EN(tell(P, I, propose(R, Q), D), T1) : T1 ≤ T

(6)

SICs (7) and (8) state that accept-proposal and reject-proposal
are only allowed in reply to a propose.

H(tell(I, P, accept-proposal(R, Q), D), T) →
E(tell(P, I, propose(R, Q), D), T1) : T1 < T

(7)

H(tell(I, P, reject-proposal(R, Q), D), T) →
E(tell(P, I, propose(R, Q), D), T1) : T1 < T

(8)

SICs (9) and (10) express mutual exclusiveness between
accept-proposal and reject-proposal.

H(tell(I, P, accept-proposal(R, Q), D), T) →
EN(tell(I, P, reject-proposal(R, Q), D), T1) : T1 ≤ T

(9)

H(tell(I, P, reject-proposal(R, Q), D), T) →
EN(tell(I, P, accept-proposal(R, Q), D), T1) : T1 ≤ T

(10)

SICs (11), (12) and (13) say that inform-done, inform-result
and failure are only allowed in reply to an accept-proposal.

H(tell(P, I, inform-done(R), D), T) →
E(tell(I, P, accept-proposal(R, Q), D), T1) : T1 < T

(11)

H(tell(P, I, inform-result(R, S), D), T) →
E(tell(I, P, accept-proposal(R, Q), D), T1) : T1 < T

(12)

H(tell(P, I, failure(R), D), T) →
E(tell(I, P, accept-proposal(R, Q), D), T1) : T1 < T

(13)

SICs (14), (15) and (16) express mutual exclusiveness be-
tween inform-done, inform-result and failure.

H(tell(P, I, inform-done(R), D), T) →
EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧
EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(14)

H(tell(P, I, inform-result(R, S), D), T) →
EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧
EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T

(15)

H(tell(P, I, failure(R), D), T) →
EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T ∧
EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(16)

Forward SICs.SIC (17) says that, after receiving a cfp, a
Participant is expected to issue a propose or a refuse by 200
clock ticks.

H(tell(I, P, cfp(R), D), T) →
E(tell(P, I, propose(R, Q), D), T1) : T1 < T + 200∨
E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(17)

SIC (18) states that the Initiator is expected to reply to a
propose with an accept-proposal or a reject-proposal by 200
clock ticks.

H(tell(P, I, propose(R, Q), D), T) →
E(tell(I, P, accept-proposal(R, Q), D), T1) : T1 < T + 200∨
E(tell(I, P, reject-proposal(R, Q), D), T2) : T2 < T + 200

(18)

SIC (19) states that a Participant is expected to reply to an
accept-proposal with an inform-done, an inform-result or a
failure by 200 clock ticks.

H(tell(I, P, accept-proposal(R, Q), D), T) →
E(tell(P, I, inform-done(R), D), T1) : T1 < T + 200∨
E(tell(P, I, inform-result(R, S), D), T2) : T2 < T + 200∨
E(tell(P, I, failure(R), D), T2) : T2 < T + 200

(19)

It can be noticed that, in all the three cases, backward SICs
make the alternative expectations mutually exclusive.

4. VERIFICATION SYSTEM
In this section, we describe a prototypical system that has

been developed to verify the compliance of the agent be-
haviour to interaction protocols specified by means of SICs.

The system checks for compliance by accomplishing two
main tasks:

1. Activates a SIC when the history of the society con-
tains events that make its condition true;

2. Decide whether activated SICs are fulfilled or violated.

The system is designed to work during the evolution of the
society, so it will only have, at each instant, a partial history
available, and it must take into account that new events may
happen in the future. For instance, let us consider again the
sample expectation in Sect. 2, that we report here for ease
of reading:

E(accept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15
Let us suppose that, at time 12, no event fulfilling it has

happened. Yet, it is not correct to state that the expectation
is violated, because an event fulfilling it could still happen
at time 13, 14 or 15. Instead, at time 16, if no event fulfill-
ing the expectation has happened, then the expectation is
actually violated, because the CLP constraint on the time
variable has become unsatisfiable.

More generally, it may not be possible to state whether a
SIC is fulfilled or violated as soon as it is activated; thus,
we identify three possible states for an activated SIC:

• fulfilled, if the SIC is fulfilled;

• violated, if the SIC is violated;

• wait, if the SIC is still neither fulfilled nor violated.

The initial state for an activated SIC is wait; happening
events will eventually change its state to fulfilled or violated.

For backward SICs, the transition from a wait state to a
fulfilled or violated state is immediate, because expectations
in a backward SIC regard events that should have (or have
not) happened in the past and, thus, they can be immedi-
ately checked for fulfillment.

Type Verified Expired State
E yes fulfilled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes fulfilled

Table 2: State of an expectation

4.1 Runtime identification of the state of a SIC
In the following, we explain how the state of a SIC is

determined during the computation.
The activation of a SIC causes the creation of an instance

of its head (organized in priority levels, each being a disjunc-
tion of conjunction of expectations, as explained in Sect. 2).
Afterwards, it is defined the state of each single expectation,
then the state of the priority levels, and finally the state of
the SIC.

State of an expectation.An expectation is verified if there
exists, in the history of the society, an event matching it.
The state of a verified positive expectation is fulfilled ; the
state of a verified negative expectation is violated (see Sect.
2).

An expectation is expired if CLP constraints over its time
variable cannot be satisfied (typically, if these constraints
represent an expired deadline). The state of an expectation
which is expired and not verified is violated if the expectation
is positive and fulfilled if the expectation is negative; the
state of an expectation which is not expired and not verified
is wait.

Table 2 summarises all these cases.

State of a conjunction of expectations.A priority level is
a disjunction of conjunctions of expectations.

The state of a conjunction of expectations is defined by
the first of the following rules that applies:

1. if the state of at least one expectation in the conjunc-
tion is violated, then the state of the conjunction is
violated ;

2. if the state of all expectations in the conjunction is
fulfilled, the state of the conjunction is fulfilled ;

3. otherwise, the state is wait.

State of a priority level.The state of a priority level is
defined by the first of the following rules that applies:

1. if the state of at least one of the disjuncts is fulfilled,
then the state of the priority level is fulfilled ;

2. if the state of all of the disjuncts is violated, then the
state of the priority level is violated ;

3. otherwise, the state is wait.

State of a SIC.If all the priority levels of a SIC are vio-
lated, then the SIC is violated ; otherwise,the state (fulfilled
or wait) of the highest non-violated priority level of the SIC
defines the state of the SIC.

4.2 Verification of Compliance
As shown in Sect. 3.2 for the FIPA Contract-Net protocol,

backward SICs can express that actions are only allowed if
some events have (or have not) happened before; since their
state can be immediately resolved to fulfilled or violated,
backward SICs can be used to verify that an event is allowed
as soon as it happens.

In the design of our system, the choice has been made to
deactivate (i.e., to not consider in the history) events that
are not allowed. However, the system captures the violation:
in a richer social model, we can imagine some authority to
react to the violation.

The set of forward SICs associated with a legal action is
then used to generate expectations about the future events
in the society (i.e., the heads of associated forward SICs will
be checked for fulfillment).

In order to verify the fulfillment of SICs, we have defined
two different phases: the Event Driven phase and the Clock
Driven phase.

Event Driven phase.The Event Driven phase is activated
each time a new event happens.

The system activates all backward SICs associated with
the event; if all of these are fulfilled, then the event is marked
as “legal” and added to the history of the interaction. If
some of the backward SICs are violated, then the event is
marked as “illegal”, and it is not recorded in the history of
the society.

If the event is legal, the system processes the new updated
history activating the forward SICs associated with the new
event. Forward (activated) SICs define the expected future
behaviour of the society, and they will be checked for fulfill-
ment.

Clock Driven phase.The Clock Driven phase is activated
at each clock tick (i.e., whenever the current time in the so-
ciety is updated). The system processes the set of activated
forward SICs identifying the state of each one. If the state of
a SIC is fulfilled, the SIC is removed from the list of pending
SICs. If the state of a SIC is violated, the SIC is removed
but a violation is raised. If the state is wait, the SIC is kept
as pending until next Clock Driven phase. It is important to
notice that the time associated to events and the clock-time
given in the Clock Driven phase must be coherent: in this
work, we assume that time is unique inside a society, and
that it is kept in a centralized timer.

4.3 Implementation
The verification system has been implemented by using

SICStus Prolog [2], and, in particular, its Constraint Han-
dling Rules library.

Constraint Handling Rules [9] (CHR for brevity hereafter)
are essentially a committed-choice language consisting of
guarded rules that rewrite constraints in a store into sim-
pler ones until they are solved. CHR define both simpli-
fication (replacing constraints by simpler constraints while
preserving logical equivalence) and propagation (adding new,
logically redundant but computationally useful, constraints)
over user-defined constraints.

The main intended use for CHR is to write constraint
solvers, or to extend existing ones. However, although ours
is not a classic constraint programming setting, the com-
putational model of CHR presents features that make it a

useful tool for the verification of compliance to SICs.

4.3.1 Activation of SICs.
Constraint Handling Rules have been used to realize the

activation system of backward and forward SICs.
Each event happened in the system is represented by the

CHR constraint h/2, where the arguments are a Prolog ground
term representing the happened event and an integer num-
ber representing the time.

Positive (resp. negative) expectations are represented by
the Prolog term e (resp. en). Its arguments are: a Prolog
term describing the event expected to happen (resp. not to
happen), the time (typically non ground), and a list of CLP
constraints over the variables in the description.

A PriorityLevel (see Table 1) is represented by the Prolog
term pr, whose arguments are the list of alternative Head-
Disjuncts of the priority level and the integer number rep-
resenting the priority (the lower the number, the higher the
priority). Priority levels generated by a SIC are collected as
the list argument of a plist term.

The argument of the CHR constraint le/1 is the list of
all activated plists (one for each activated SIC).

Each SIC is represented by a simpagation CHR. In gen-
eral, simpagation rules have the form

H1, . . . , Hl\Hl+1, . . . , Hi ⇔ G1, . . . , Gj |B1, . . . , Bk (20)

where l > 0, i > l, j ≥ 0, k ≥ 0 and where the multi-
head H1, . . . , Hi is a nonempty sequence of CHR constraints,
the guard G1, . . . , Gj is a sequence of built-in constraints,
and the body B1, . . . , Bk is a sequence of built-in and CHR
constraints. Operationally, when the constraints in the head
are in the constraint store and the guard is true, H1, . . . , Hl

remain in the store, and Hl+1, . . . , Hi are substituted by
B1, . . . , Bk.

For instance, the following CHR represents sample SIC
(2):

h(event0,T0), h(event1,T1) \ le(LExp) <=> T0<T1 &

append(LExp,

[plist([

pr([

and([e(event2,T2,[min(T2,T1)])]),

and([en(event3,T3,[min(T3,T0)])])

],1),

pr([

and([e(event4,T4,[min(T4,T0)])])

],2)

],id1)], LExp1)

| le(LExp1).

If event0 and event1 have happened, the two CHR con-
straints h(event0,T) and h(event1,T1) will be present in
the constraint store; if the guard T<T1 is true, then the rule
is activated. The store (the LExp list) of the heads of acti-
vated SICs is updated appending a new plist(), which con-
tains the list of priority levels (two in this example) in the
head of the SIC. The CHR constraint le/1, which contained
the old LExp before the activation of the rule, is removed by
simpagation and replaced by the same constraint with the
new list LExp1 as argument.

It should be noticed that two different symbols are used
to represent the CLP constraint <: < if the constraint is
between the times of two happened events3, and min if it is
3In this case, the times are certainly ground and the Prolog

between the times of two expectations.
It can be noticed that the translation of a SIC into a

simpagation CHR is rather straightforward, thus making it
easy to implement new protocols.

As further examples, we report the translations into CHRs
of backward SIC (3) and forward SIC (17):

h(tell(P,I,propose(R,Q),D),T) \

le(LExp) <=>

true &

append(LExp,

[plist([

pr([

and([

e(tell(I,P,cfp(R),D),T1,[min(T1,T)])

])

],1)

])], LExp1) | le(LExp1).

h(tell(I,P,cfp(R),D),T) \

le(LEv,LExp) <=>

Td is T+200 &

append(LExp,

[plist([

pr([

and([

e(tell(P,I,propose(R,Q),D),T1,[min(T1,Td)])

]),

and([

e(tell(P,I,refuse(R),D),T2,[min(T2,Td)])

])

],1)

])],

LExp1) | le(LExp1).

4.3.2 Identification of the state of SICs.
The identification of the state of a SIC is coded in stan-

dard Prolog. The system performs all the steps described in
Sect. 4.1. The system analyses all the plists stored in the
system according to the definition and behaviour of Event
Driven phase and Clock Driven phase (see Sect. 4.2).

4.3.3 Interface to the verification system.
In order to use the system in concrete case studies, a Java

package (using the Jasper library of SICStus Prolog [2]) has
been implemented. This package has been developed to be
used as a Java wrapper for the verification system.

The UML diagram of the system is represented in Fig.
2. To use the system the user must create an object his-
toryGenerator giving as parameter a (compiled) Prolog file
containing the protocol definition expressed by SICs. The
Java system implements the Event Driven phase receiving
messages from the interface eventRecorderListener and the
Clock Driven phase receiving platform clock from timerLis-
tener interface. The rest of the system implements the Java-
Prolog interface.

5. DISCUSSION AND RELATED WORK
The syntax of Social Integrity Constraints proposed in

this paper is a modified version of that proposed in [3] and
in [4]. The modifications have been made in order to tackle
both expressiveness and implementation issues. Specifically:

predefined predicate can be applied to them.

historyGeneratorListener
Interface

Class
historyGenerator

Interface
expectationsEngineListener

Interface
timerInterface

Class
expectationsEngine

Interface
messageDispatchListener

Interface
timerListener

Class
messageDispatcher

Interface
eventRecorderInterface

Interface
eventRecorderListener

Figure 2: UML diagram

• we added priority levels to SICs (see Sect. 2). This
allows for a more flexible specification of protocols, en-
abling the protocol designer to devise alternative pro-
tocol flows while being able to specify a preferred one;

• we imposed the restriction of having only either back-
ward or forward expectation in a SIC (see Sect. 2):
this prevents the protocol designer from writing such
SICs as

H(a, Ta)

→E(b, Tb) : Tb < Ta, 1

⇒E(c, Tc) : Tc ≤ Ta + τ, 2

(21)

which might be useful to express that an event that
does not fulfill a backward expectation can, with lower
priority, be “recovered” in the future. However, in the
practical cases that we have considered so far, SICs as
(21) have not been necessary.

In [5], Artikis et al. present a theoretical framework for pro-
viding executable specifications of particular kinds of multi-
agent systems, called open computational societies, and they
present a formal framework for specifying and animating
systems where the behaviour of the members and their in-
teractions cannot be predicted in advance, and for reason-
ing about and verifying the properties of such systems. A
noteworthy difference with [5] is that we do not explicitly
represent the institutional power of the members and the
concept of valid action. Permitted are all social events that
do not determine a violation, i.e., all events that are not
explicitly forbidden are allowed.

In [14], Yolum and Singh apply a variant of Event Cal-
culus [11] to commitment-based protocol specification. The
semantics of messages (i.e., their effect on commitments) is
described by a set of operations whose semantics, in turn, is
described by predicates on events and fluents; in addition,
commitments can evolve, independently of communicative
acts, in relation to events and fluents as prescribed by a set
of postulates. Such a way of specifying protocols is more flex-
ible than traditional approaches based on action sequences
in that it prescribes no initial and final states or transitions
explicitly, but it only restricts the agent interaction in that,
at the end of a protocol run, no commitment must be pend-
ing; agents with reasoning capabilities can themselves plan
an execution path suitable for their purposes (which, in that
work, is implemented by an abductive event calculus plan-
ner). Our notion of expectation is more general than that
of commitment found in [14] or in other commitment-based
works, such as [8]: it represents the necessity of a (past or fu-
ture) event, and is not bound to have a debtor or a creditor,
or to be brought about by an agent.

6. CONCLUSIONS
In this paper, we presented a Java-Prolog-CHR based sys-

tem for the online verification of compliance of agent inter-
action to protocols.

The implemented system has been tested on different types
of protocols: FIPA Contract-Net (described in this paper),
the Dining Philosophers Problem and connection establish-
ment in the TCP protocol.

The specification at a social level of interaction protocols
constrains the agent observable behaviour rather than their
internal state or structure, thus allowing for interaction in
open societies. The specification is grounded on computa-
tional logic-based Social Integrity Constraints.

The verification system, implemented in Prolog and CHR,
can be used as a module in a Java-based system, thanks to
the Java-Prolog interface of SICStus Prolog. The modular
structure of the system makes it (hopefully) easy to adapt
it to new applications.

In future work, we intend to address the notification of
expectations to agents, so as to let the computational entity
representing the society guide agent behaviour to a preferred
state (as expressed by priorities).

7. ACKNOWLEDGMENTS
This work is partially funded by the Information Society

Technologies programme of the European Commission un-
der the IST-2001-32530 project.

We thank the anonymous reviewers for their useful com-
ments.

8. ADDITIONAL AUTHORS
Additional authors: Marco Gavanelli (DI, Università di

Ferrara, email: mgavanelli@ing.unife.it), Evelina Lamma
(DI, Università di Ferrara, email: elamma@ing.unife.it),
Paola Mello (DEIS, Università di Bologna, email: pmello@

deis.unibo.it)

9. REFERENCES
[1] FIPA Contract Net Interaction Protocol. Technical

report, Foundation for Intelligent Physical Agents,
2002. Available at http://www.fipa.org.

[2] SICStus Prolog 3.9.0 Manual. February 2002.

[3] M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma,
P. Mello, and P. Torroni. A social acl semantics by
deontic constraints. In V.Marik, J.Muller, and
M.Pechoucek, editors, Proceedings of the 3rd
International/Central and Eastern European
Conference on Multi-Agent Systems, number 2691 in
Lecture Notes in Artificial Intelligence, pages 204–213,
Prague, Czech Republic, June 2003. Springer Verlag.

[4] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Specification and verification of agent
interactions using social integrity constraints. In
W. van der Hoek, A. Lomuscio, E. de Vink, and
M. Wooldridge, editors, Proceedings of the Workshop
on Logic and Communication in Multi-Agent Systems
(LCMAS), Eindhoven, the Netherlands, June 29 2003.

[5] A. Artikis, J. Pitt, and M. Sergot. Animated
specifications of computational societies. In
C. Castelfranchi and W. Lewis Johnson, editors,
Proceedings of the First Joint Conference on
Autonomous Agents and Multi Agent Systems, pages
1053–1061, Bologna, Italy, 2002. ACM.

[6] U. Endriss, N. Maudet, F. Sadri, and F. Toni.
Protocol conformance for logic-based agents. In
G. Gottlob and T. Walsh, editors, Proceedings of the
18th International Joint Conference on Artificial
Intelligence (IJCAI-2003), pages 679–684. Morgan
Kaufmann Publishers, August 2003.

[7] FIPA Communicative Act Library Specification.
Experimental specification XC00037H, Foundation for
Intelligent Physical Agents, Aug. 2001. Published on
August 10th, 2001, available for download from the
FIPA website: http://www.fipa.org.

[8] N. Fornara and M. Colombetti. Operational
specification of a commitment-based agent
communication language. In C. Castelfranchi and
W. Lewis Johnson, editors, Proceedings of the First
Joint Conference on Autonomous Agents and Multi
Agent Systems, pages 535–542, Bologna, Italy,
July 15–19 2002.

[9] T. Frühwirth. Theory and practice of constraint
handling rules. Journal of Logic Programming,
37(1-3):95–138, Oct. 1998.

[10] J. Jaffar and M. Maher. Constraint logic
programming: a survey. Journal of Logic
Programming, 19-20:503–582, 1994.

[11] R. A. Kowalski and M. Sergot. A logic-based calculus
of events. New Generation Computing, 4(1):67–95,
1986.

[12] J. W. Lloyd. Foundations of Logic Programming.
Springer Verlag, 2nd extended edition, 1987.

[13] J. Muller and J. Odell. Agent UML: A formalism for
specifying multiagent interaction. Agent-Oriented
Software Engineering, pages 91–103, 2001.

[14] P. Yolum and M. Singh. Flexible protocol specification
and execution: applying event calculus planning using
commitments. In C. Castelfranchi and W. Lewis
Johnson, editors, Proceedings of the First Joint
Conference on Autonomous Agents and Multi Agent
Systems, pages 527–534, Bologna, Italy, 2002.

