
A Proof-system for the Safe Execution of Tasks
in Multi-Agent Systems

A. Ciampolini1, E. Lamma2, P. Mello1, and P. Torroni1

1 DEIS, Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy
{aciampolini,pmello,ptorroni}@deis.unibo.it

2 Dip. di Ingegneria, Università di Ferrara,
Via Saragat 2, 44100 Ferrara, Italy

elamma@ing.unife.it

Abstract. In this work, we propose an operational semantics based on
a proof system for the consistent execution of tasks in a constrained
multi-agent setting. The tasks represent services, and are associated with
abstract specifications that express conditions on such services. The con-
straints, contained in the body of the agents, may include – but are not
limited to – policies on provided services, and limitations about the use
and allocation of bounded resources. The contribution of this work is two-
fold. Firstly, a formalism and an operational semantics is introduced, to
express the way agents can coordinate their requests of services, and to
verify that they do not collide with each other’s conditions. Then, we
prove the soundness and completeness of such operational semantics to
be used to verify the correct execution of tasks.

1 Introduction

Multi-agent systems are generally conceived as societies of entities that are so-
ciable and autonomous, and exhibit both a reactive and a pro-active behaviour,
in that they should act in anticipation of future goals, while coping with the
(generally unpredictable) changes of a dynamic environment. While on the one
hand the agent metaphor is appealing and challenging, because of its ability
to reflect current computing reality and complex organizations, on the other
hand, if we want to actually implement such complex entities, we must tackle
all aspects of this scenario.

According to [1], ‘there are two major drawbacks associated with the very
essence of an agent-based approach: (1) the patterns and the outcomes of the
interaction are inherently unpredictable; and (2) predicting the behaviour of
the overall system based on its constituent components is extremely difficult
(sometimes impossible) because of the strong possibility of emerging behaviour.’

This could be a drawback in many cases. In fact, the need for making agents
‘predictable’, and – for most applications – as deterministic as possible, is indeed
in contrast with the concept itself of autonomy. Nonetheless, it is reasonable to

believe that societies (of agents) can only exist as long as the individuals’ au-
tonomy does not represent a threat for the other individuals, and for the society
in general. Therefore, the important counterpart of autonomy is represented by
private constraints and public laws, that can make the agents, if not predictable,
at least not colliding with each other needs and constraints.

In this paper, we tackle the problem of ensuring that the execution of tasks
in a constrained multi-agents setting is consistent with respect to its constraints.
We call safe this kind of execution. In the paper, the tasks represent services,
and are associated with abstract specifications that express conditions on such
services. The constraints, contained in the body of the agents, may include – but
are not limited to – policies on provided services, and limitations about the use
and allocation of bounded resources. The agent model presented in the paper
is abstracted from our previous work on abductive logic agent [2, 3], and it is
generalized in the paper.

We start by introducing a formalism and an operational semantics, to ex-
press the way agents can coordinate the requests of services, and to verify that
they do not collide with each other’s conditions, in dynamic, possibly adaptive
systems. To this purpose, we introduce some operators, that could be mapped,
in a concrete implementation, into part of a library of the language(s) used to
encode the agents in the system. The operators provided by such library could
be used to specify the need to obtain different services form diverse sources, in
a coordinated fashion. For example, let A0, A1, and A2 be agents in the system,
and s1 and s2 services, respectively provided by A1 and A2. It could be the case
that A0 needs both s1 from A1 and s2 from A2, but in a coordinated way, that
is, if either of the two cannot be provided, the other becomes useless. Moreover,
we can imagine that due to system policy regulations, the two services require
conflicting authorizations (e.g., there is a policy stating that an agent cannot be
provided both service s1 and s2). A0, as a client, could be unaware of any sys-
tem policies. Therefore, if we want the system to comply with such constraints,
we should give the agents an infrastructure to check the requests against any
possible integrity threat that could arise from the execution of their tasks.

In this work, we propose a dynamic mechanism to ensure the system consis-
tency, assuming that not all the hypotheses on the external world are necessarily
known a priori by the system programmer(s). In particular we propose a proto-
col that is able to guarantee that a request or set of requests is allowed only if
at execution time there is no constraint in the system that is violated.

Once a formalism is defined, we give such formalism an operational seman-
tics, in the form of inference rules, in a sequent-style notation. Inference rules
can be used as an abstract specification of an algorithm, that guarantees the
correct execution of multiple, possibly conflicting, tasks. In this work we prove
that, if the abstract machine underlying the agent code implements such oper-
ational semantics, all requests involving integrity constraints are allowed only
if no constraint in the system is violated. In doing that, each agent performs a
consistency check only within its own (private) set of constraints (as for instance,
in an abductive logic programming setting). That is, we ensure the consistency

of the constraints in the whole system, without each agent needing to disclose
its constraints to other agents.

The paper is structured as follows. In Section 2 we introduce the formalism
used to express the way agents can coordinate the requests of services. In Section
3 we give such formalism an operational semantics, and define a proof system to
check the consistency of service requests in a constrained multi-agent system. In
Section 4 we present the soundness and completeness results of the system with
respect with the safe execution of tasks. A brief discussion follows.

2 Formalism

In this section, we introduce the formalism expressing the way agents can coor-
dinate the requests of services, while verifying that they do not collide with each
other’s conditions. In doing this, we draw inspiration from a logic language for
constrained cooperative problem solving, LAILA [2], which is tailored to the par-
ticular setting of logic agents provided with hypothetical (abductive) reasoning
capabilities [3]. Here, we abstract away from the specific reasoning capabilities
and internal knowledge representation of the agents. We generalize the language
to cope with service requirements and constraints in general. The only assump-
tion that we make is that it is possible to describe the problem in question, in
terms of constraints and conditions on the services, possibly expressed in the
form of logic predicates.

Before we proceed with the syntax, we define what we intend by agent and
by agent system.
Definition 1 (Agent)
An agent is a triple < P, S, IC >, representing a program P written in a language
that allows the definition of functions, a set S of such functions called services,
and a set IC of integrity constraints.
The services s ∈ S are annotated with pairs < s, δ >, that represent the agent’s
denotation, as defined below. We do not make assumptions on the syntax of
the agent programs, services, and ICs, although we assume that the agents are
provided with a mechanism, that we call ‘local consistency check’, that is able
to determine if the constraints are violated. In the examples of this paper we
use a syntax for the ICs and a semantics for the (local) consistency check that
is derived from the abductive logic programming literature [4] (see footnote 1 in
Section 3).
Definition 2 (Agent denotation)
Let A be an agent, s a service and δ a set of conditions. We call denotation of
agent A (Den(A)) the following set:

Den(A)
def
= {< s, δ >: s is locally provided by A under the conditions δ and

δ ∪ IC{A} 2 ⊥} (where ⊥ stands for false). We assume that Den(A) is sound
and complete with respect to the notion of local computation.
Definition 3 (Agent system)
An agent system is represented as a finite set of atoms, each one standing of an
agent of the system.

2.1 Syntax

We give the syntax of the operators in BNF. Let V be the vocabulary of the
language used to write the agents’ program P . We add to its vocabulary the set
{ & , ; , > , ↓} of operators, where:
– ↓ is the local execution operator;
– > is the communication operator;
– & is the collaborative coordination operator;
– ; is the competitive coordination operator.

Such operators are part of expressions, possibly enclosed in the agent pro-
grams, where the local execution operator has a maximum priority, followed by
the communication operator; the competitive coordination operator has the min-
imum priority. As far as associativity, they are all left-associative. An expression
is defined as follows:

Expression ::= Formula ; Expression | Formula
Formula ::= SingleFormula & Formula |

SingleFormula
SingleFormula ::= Agent > SingleFormula |

↓ Service
Agent ::= A0 | A1 | . . . | An

We label the agents by A0 . . . An. Service, as introduces in Definition 1, is
a function call in the language that embeds the communication, competitive and
collaborative coordination operators; we will often label such services s0, s1, etc.
Services are associated with conditions. Conditions are grouped into sets that in
the operational semantics are usually labelled δ, δ′, δ1, etc. The communication
operator can also be used to issue requests to ‘local’ services involving some local
constraints, as it is shown by the following example.
Example 1. Let the following expression be enclosed in an agent program,
say A0:

A0 > ↓ s1 ; A1 > ↓ s2
It means that A0 must either perform a local service, s1, or ask agent A1 for
service s2. Should both service be available, possibly under different conditions,
the system will select non-deterministically only one of them.

Let us consider, now, the following expression, also embodied in agent A0’s
program, representing a collaborative request composed of two different sub-
requests, whose conditions must be coherent with one another:

A1 > ↓ s3 & A2 > ↓ s4

Agent A0 asks agent A1 for the service s3 and A2 to for the service s4; after
both A1 and A2 reply to A0 by giving each a set of conditions for the requested
service, the result is obtained by merging such sets of conditions in a unique
consistent set, with respect to the bunch of agents (A0, A1, and A2) dynami-
cally considered along the computation. Such set could be bigger than the union
of the parts, due to additional constraints that are fired in the cross checking
phase. �

3 Operational Semantics

We have so far described the operators’ syntax. In this section, we give them an
operational semantics, in the form of inference rules of a proof system. Such a
system can be used as an abstract specification of an algorithm that guarantees
the correct execution of multiple, possibly conflicting, tasks. The inference rules
could be implemented to extend the operating system or virtual machine that
supports the execution of agents.

For the sake of simplicity, the rules we define refer to the case of proposi-
tional expressions, not including variables, but they can be easily generalized. In
the following, U is the universe of agents, and A0, . . . , An denote agents in the
system, i.e., {A0, . . . , An} ⊂ U . The entailment symbol adopted is `B

δ , whose
superscript denotes the bunch B of agents involved in the computation, and
whose subscript the set of conditions δ, both of which are output parameters
of the derivation process. Given A`B

δ F , F is the formula to prove (a formula
is in general an expression), and A is the agent asking for its derivation. The
agent’s code embodies both the integrity constraints IC and the program P of
Definition 1: for the sake of simplicity, and with abuse of notation, we will write
the name of the agent instead of its code. Therefore, A`B

δ F means that the for-
mula F is proven within A’s code, producing as an output a set of hypotheses δ
and a bunch B. Finally, we will adopt the following notation for the consistency
derivation:

B
cons

` δ ∆

where ∆ is a set of conditions on a (set of) service(s),
cons

` denotes the “consis-
tency check” of the conjunction of all atoms in ∆, with respect to the integrity
constraints of all agents in bunch B; in particular, let S ⊆ {0, . . . , n}. Given a
bunch of agents B ⊆ {Ai|i ∈ S}, let ICi denote the set of integrity constraints

of agent Ai. The declarative semantics of B
cons

` δ ∆ is defined as follows:{
δ ∪ ICB 2 ⊥
∆ ⊆ δ

where ICB =
⋃

Aj∈B ICj . That is, δ satisfies1 all the integrity constraints of
agents in B. In Section 4, Lemma 1 formally proves the equivalence between the
operational notion of consistency in a bunch, and this declarative counterpart.
We achieve in that a separation among the agents knowledge bases, ensuring the
absence of conflicts between δ and each of their integrity constraints. Moreover,
we would like to notice that, while in describing the declarative semantics we refer
– for the sake of simplicity – to the union of the agents’ integrity constraints, the
actual implementation of the system does not require at all that the agents share
1 There are several notions of constraint satisfaction. The one adopted in this work

refers to a formalization of integrity constraints used in abductive logic programming
of the kind: ⊥ ← body, where body is a set of conditions. δ ∪ IC 2 ⊥ means that
∀ic ∈ IC, body(ic) * δ, i.e., δ does not make body(ic) true. We also rely on the
hypothesis, from now on, that ∀x ∈ ic,∀ic ∈ IC, x is a condition.

any knowledge in that respect (see the consistency check operational semantics
further on for details). Knowledge bases and therefore integrity constraints are
kept separate, as we would expect in a multi-agent setting.

We also define a concept of ‘local consistency’, and adopt the following no-
tation: A

l−cons
 δ ∆, where ∆ is a set of conditions. By ‘local consistency’ we

mean that ∆ is consistent with agent A’s integrity constraints, IC, returning a
(possibly enlarged) set of conditions δ:{

δ ∪ IC 2 ⊥
∆ ⊆ δ

Beside understanding the role that integrity constraints play to ensure the cor-
rect behaviour of a system, as briefly exemplified above, it is also important to
understand the consequences that it brings to extend the concept of consistency
to the multi-agent case. The main point is that while the union of two given
sets of hypotheses (conditions) could be enough to ensure the consistency of two
separate sets of integrity constraints, it may become insufficient if we want to
ensure the consistency of the union of the integrity constraints, as it is shown
by the following example.
Example 2. Let us consider two different sets of constraints, IC1 = {← a, c}
and IC2 = {← b, not c}, a, b and c being possible conditions on a service. If we
check the consistency of the set of hypotheses {a, b} against either of IC1 and
IC2 separately, we obtain no inconsistency. In fact, as a result of such a check we
could obtain (assuming for instance that we are adopting a proof-procedure such
as that defined in [5]) two separate sets of conditions: {a, b, not c} and {a, b, c}.
But, if we join the constraints in a unique set IC3 = IC1 ∪ IC2, it is understood
that {a, b} cannot be the case, since we would have both c and its negation in the
(enlarged) set of hypotheses that includes a and b. Therefore, it is not enough to
check {a, b} against, say, IC1, and then {a, b} again against the other constraint
IC2, but we need instead a different mechanism to verify the consistency of an
enlarged set of hypotheses {a, b, not c} resulting from the first check, against the
other constraint IC2, thus detecting the inconsistency. �
For this reason, in a distributed setting such as that of multi-agents, the individ-
uals must communicate to each other the possible sources of inconsistency, like
it was c in Example 2. The sets of conditions may therefore grow bigger while
the consistency check is made, and the enlarged set of conditions checked for
consistency again by all the involved agents, until fixpoint is reached.

Let us describe now the operational behavior of the system, by giving, in a
sequent-style notation, the inference rules of the operators. The communication
operator is used to request a service to an agent, which could possibly be the
requester itself.
Definition 4 (Communication formula)

Y `B
δ1

F ∧ B ∪X
cons

` δ δ1

X `B∪X
δ Y > F

where X and Y may either be two distinct agents, or the same one, X, Y ∈
{A0, ..., An}. F is a single formula that contains properly combined service re-

quests. If F is simply a local execution such as ↓ s, X asks Y to locally perform
the service s. In general, however, F may include several nested communication
formulas, involving several agents possibly enclosing some private integrity con-
straints. Therefore, the communication formula Y > F used by X to ask Y to
perform the services F requires a consistency check within the bunch composed
by X and by those agents that participated in F . Clearly, this bunch will at
least include X and Y . This makes the communication operator more than just
a simple call to another agent’s knowledge base and reasoning module: the an-
swer possibly returned back from Y to X is put in the form of a set of conditions,
δ1, and needs to be agreed upon and possibly modified (enlarged) by the whole
bunch of agents, through a consistency step.

There could be the case that an agent requires a service that can be per-
formed in several ways, but it does not really matter which one is selected for
execution. This is why we introduce the competitive operator, that introduces a
degree of non-determinism, since in the expression f ; F there is no precedence
relationship between the two operands, f and F .
Definition 5 (Competitive formula)

A `B
δ f

A `B
δ f ;F

A `B
δ F

A `B
δ f ;F

where A is an agent, A ∈ {A0, ..., An}, f is a formula, F is an expression and
B is a bunch of agents, B ⊆ {A0, ..., An}. The competitive formula results in a
non-deterministic choice of one inference rule between the two listed above.

The third operator that we define is the collaborative coordination operator.
It is used to indicate that two services are both required, and must be consistent
with each other. From the inference rule below, we see that the collaborative
coordination requires a consistency step involving all agents that contribute to
provide the service.
Definition 6 (Collaborative formula)

A `B′

δ′ f ∧ A `B′′

δ′′ F ∧ B′ ∪B′′
cons

` δ δ′ ∪ δ′′

A `B′∪B′′
δ f&F

where A is an agent, A ∈ {A0, ..., An}, f is a formula, F is an expression
and B, B′ and B′′ are three possibly distinct bunches of agents, B,B′, B′′ ⊆
{A0, ..., An}.

Finally, we describe the semantics of the consistency check through the fol-
lowing inference rules:
Definition 7 (Consistency check)

∀Ai ∈ B Ai
l−cons
 δi

δ ∧ δ ⊂
⋃

Aj∈B δj ∧ B
cons

` δ′
⋃

Ai∈B δi

B
cons

` δ′ δ

∀Ai ∈ B Ai
l−cons
 δ δ

B
cons

` δ δ

where Ai, Aj are agents, Ai, Aj ∈ {A0, ..., An}, h is a literal, G is an expression
and B is a bunch of agents, B ⊆ {A0, ..., An}.

Therefore, the consistency check of δ is first performed individually by every
single agent via an abductive derivation, which could result in an enlargement
of δ (in particular, this happens if exists a δi such that δ ⊂ δi). In case no agent
raises new hypotheses, i.e., for all Ai ∈ B, δ ≡ δi, then δ ⊂

⋃
Aj∈B δj is not true

any more, fixpoint is reached, and the consistency check terminates; otherwise
the union of the δi has to be checked again within the bunch.
Definition 8 (Local computation formula)

local computation(A, s, δ′) ∧ A
l−cons
 δ δ′

A `{A}
δ ↓ s

where A is an agent, A ∈ {A0, ..., An}, s is a service, and {A} is the bunch
composed by the only agent A. local computation is a relation evaluated by
agent A, that returns the conditions δ′ associated with a certain service s, that A
is asked to execute. δ′ must be checked for consistency with the other constraints
of A, which could result in an enlargement of δ′ leading to a δ ⊇ δ′. The local
computation formula, characterized by the ↓ operator, is intended not as an
actual execution of a service, but rather as a preliminary step that anticipates
the execution of a service.

Finally, we can introduce the definition of a successful top-down derivation.
Definition 9 (Successful top-down derivation)
Let A be an agent and F an expression that possibly describes the request for
a service. A successful top-down derivation for F in A, which returns a set of
conditions δ and the bunch of agents B dynamically involved in the service, can
be traced in terms of a (finite) tree such that:

– The root node is labeled by A `B
δ F ;

– The internal nodes are derived by using, backwards, the inference rules de-
fined above;

– All the leaves are labeled by the empty formula, or represent a successful
local computation.

For instance, we have seen how a collaborative formula A `B
δ f & F develops

into three branches (sub-trees), one for proving f, another one for F and a last
one for the consistency check. Similarly, the communication formula produces
two sub-trees, while the down reflection and the competitive formulas produce
only one branch, and so on.

4 Soundness and Completeness

In this section, we prove the soundness and completeness properties of the proof
system, which guarantees the safe execution of tasks. To this purpose, we start by
introducing two basic properties we rely upon, Properties 1 and 2, and concerning

the soundness and completeness of local consistency derivations. We assume that
they hold for all the local consistency computations.2

Property 1 (Soundness of the local consistency derivation)
Given an agent Ai and a set of conditions δ,

Ai
l−cons
 δi δ ⇒ δi ∪ ICi 2 ⊥

where ICi represents the integrity Ai’s constraints. This means that, if there
exists a local consistency derivation for δ in Ai that returns a set of conditions
δi, then δi is consistent with the integrity constraints ICi of Ai itself.
Property 2 (Completeness of the local consistency derivation)
Given an agent Ai and a set of conditions δ,

∀δ : δ ∪ ICi 2 ⊥ ⇒ ∃δi : Ai
l−cons
 δi

δ ∧ δi ⊇ δ

where ICi represents the integrity Ai’s constraints. This means that, if a set
of conditions δ is consistent with the integrity constraints of an agent Ai, then
there exists a local consistency computation for δ in Ai itself, which possibly adds
some new conditions to δ, returning δi ⊇ δ. For instance, the proof-procedure of
[5] is such that an initial set δ of conditions (abducible predicates) gets enlarged
to falsify all the bodies of constraints that contain some predicates that are also
contained in δ (see Example 2).

In the following, we prove two lemmas about the soundness and completeness
of the consistency check in a bunch of agents of Definition 7, that we will use to
prove Theorem 1 and 2 below.
Lemma 1 (Soundness of the consistency check) Given a bunch of agents B and
a set of conditions δ,

B
cons

` δ′ δ ⇒ δ′ ∪ ICB 2 ⊥ ∧ δ′ ⊇ δ

where ICB represents the union of the ICs of all the agents in B.
Proof The proof is given by separately proving the two conjuncts in the right
hand side of the implication. In particular, we prove inductively that δ′ ⊇ δ. If

B
cons

` δ′ δ is 1-length computation, then by the second inference rule in Def. 7,

δ′ = δ. If B
cons

` δ′ δ is n-length, we assume the lemma holds for n-1. Then, by the
first inference rule in Def. 7, δ′ ⊇

⋃
Ai∈B δi. Since δ ⊂

⋃
Ai∈B δi, then follows:

δ′ ⊃ δ.
We prove inductively that δ′∪ICB 2 ⊥. For one-length computation, B

cons

` δ δ is
equivalent to ∀Ai ∈ B Ai

l−cons
 δ δ by the second inference rule in Def. 7. By the

soundness of the local consistency derivation (Prop. 1) follows that ∀Ai ∈ B, δ∪
ICi 2 ⊥. For an n-length computation, B

cons

` δ′ δ by the first inference rule of

Def. 7 is equivalent to ∀Ai ∈ B,Ai
l−cons
 δi

δ ∧ δ ⊂
⋃

Aj∈B δj ∧B
cons

` δ′
⋃

Ai∈B δi.

2 Although our system does not rely upon a logic system, there exist in literature some
proof procedures that implement a local consistency derivation, such as [5, 6], some
of which are proved correct and complete.

By the inductive hypothesis, B
cons

` δ′
⋃

Ai∈B δi implies δ′ ∪ ICB 2 ⊥.

It is worth stressing that, when proving B
cons

` δ δ ≡ ∀Ai ∈ B Ai
l−cons
 δ δ,

we refer to the case in which the local consistency derivation does not affect
δ. In particular, with respect to Example 2, if we use [5], which indeed affects
δ, neither {a, b, c} is consistent with IC1 nor {a, b, not c} is consistent with
IC2, and of course both are inconsistent with {IC1, IC2}. If we use a weaker
notion of consistency, instead, {a, b} could be consistent with both IC1, IC2 and
{IC1, IC2}.
Lemma 2 (Completeness of the consistency check) Given a bunch of agents B,

∀δ′ : δ′ ∪ ICB 2 ⊥ ⇒ ∃δ ⊇ δ′ : B
cons

` δ δ′

Proof δ′ ∪ ICB 2 ⊥ implies ∀ic ∈ ICB : δ′ ∪ ic 2 ⊥. This implies, by Prop. 2,
that ∀Ai ∈ B ∀ici ∈ ICi∃δi : Ai

l−cons
 δi δ′ ∧ δi ⊇ δ′. By induction on the length

of the computation, for a 1-length computation, by the second inference rule of
Def. 7, the statement is trivially proven. For an n-length computation, by the
first inference rule of Def. 7, and by the inductive hypothesis the statement is
proven as well.

In the following, we state the soundness theorem for our proof system. The
theorem states that, for any successful top-down derivation, under the assump-
tion of soundness of the local consistency derivations (Prop. 1), the computed
conditions satisfy all the integrity constraints of the bunch of agents dynamically
involved in the service in question. This implements in a sense the introduced
notion of safe execution.
Theorem 1 (Soundness) Let A be an agent and F an expression that possibly
describes the request for a service. If there exists a successful top-down derivation
for F in A, which returns a set of conditions δ and a bunch of agents B, then the
computed set δ is consistent with the integrity constraints of bunch B. Formally:

A `B
δ F ⇒ δ ∪ ICB 2 ⊥

Proof The proof is given by induction on the length of the derivation. For a 1-
length derivation, F has the form ↓ s, where s is a service. By Def. 8, A `{A}

δ ↓ s,
which implies that there exists in A a local computation for s returning δ′ and
A

l−cons
 δ δ′. By Prop. 1, it follows that δ ∪ IC{A} 2 ⊥.

For any n-length computation, we consider several cases:
(i) F is in the form Y > f . Then, A `B∪{A}

δ f by Def. 4 implies Y `B
δ′ f and

B ∪ {A}
cons

` δ δ′. By the inductive hypothesis, δ′ ∪ ICB 2 ⊥, and by Lemma 1,
δ ∪ ICB∪{A} 2 ⊥ and δ ⊇ δ′. Then, it follows that δ′ ∪ ICB∪{A} 2 ⊥.
(ii) When F is in the form f ;F ′, the statement is trivially proven.
(iii) F is in the form f&F ′. Then, A `B′∪B′′

δ by Def. 6 implies A `B′

δ′ f ∧ A `B′′

δ′′

F ′ ∧ B′ ∪ B′′
cons

` δ δ′ ∪ δ′′. The first two conjuncts imply, by the inductive
hypothesis, δ′ ∪ ICB′ 2 ⊥ ∧ δ′′ ∪ ICB′′ 2 ⊥. The third conjunct implies, by

Lemma 1, δ ∪ ICB′∪B′′ 2 ⊥ ∧ δ ⊇ δ′ ∪ δ′′

In the rest of the section, we also state a completeness theorem for a subset
of the possible expressions occurring in a top-level request. The completeness
theorem ensures that, if a set of conditions δ can be found, satisfying the integrity
constraints of a bunch of agents, and it belongs to the meaning of some agent,
as defined below, then there exists an expression F and a successful top-down
derivation for F in A leading to the bunch B of agents, and to conditions δ.
Theorem 2 (Completeness) Let B be a bunch of n agents, s a service and δ a
set of conditions.
∀B = {A1, . . . , An},∀ < s, δ >∈ Den(Ai), Ai ∈ B : δ ∪ ICB 2 ⊥ ⇒ ∃F,A ∈ B :
A `B

δ̂
F ∧ δ̂ ⊇ δ where F is an expression occurring in a top-level request.

Proof The proof is given in the case of a communication formula F expressed
in the form: F = A1i > A2i > . . . > Aki > Ai >↓ s, where k ≥ n − 2, and
{Aji : j = i..k} ∪ {A} ∪ {Ai} = B.
By Def. 2, being < s, δ >∈ Den(Ai), it follows that (i) local computation(Ai, s, δ)∧
δ ∪ ICAi 2 ⊥. By Prop. 2, it follows that (ii) ∃δ ⊇ δ′ such that A

l−cons
 δ′ δ.

Therefore, by Def. 8, (i), and (ii), it follows that (iii) Ai `{Ai}
δ′ ↓ s, δ′ ⊇ δ.

Now, being δ ∪ ICB 2 ⊥, by Lemma 2 it follows that B
cons

` δ′′ δ, δ′′ ⊇ δ. Now,

by Lemma 1, δ′′ ∪ ICB 2 ⊥, and, again by Lemma 2, B
cons

` δ̃ δ′′. From Def.

7 it is possible to prove that δ′ ⊆ δ′′. Therefore, {Ai} ∪ {Aki}
cons

` δ′′′ δ′. From

this, Def. 4 and (iii), it follows that {Ai, Aki}
cons

` δ′′′ Ai >↓ s, and δ′′′ ⊇ δ′.
Now, by iteratively applying Def. 4, we can prove that ∃δ̂ : A `B

δ̂
A1i > A2i >

. . . > Aki > Ai >↓ s ∧ δ̂ ⊇ δ
In a similar way it is possible to give the proofs referring to other kinds of
formula.

5 Conclusion

In this work, we tackled the problem of ‘safe’ task execution in multi-agent sys-
tems. The tasks are services that agents can request / provide, to other agents.
The feasibility of such services may be constrained by “policies”, i.e., integrity
constraints embodied in the agents themselves. We defined a formalism to ex-
press the combination of service requests, and an operational semantics as a
proof system that can be used to extend an operating system or virtual machine
supporting the agents’ execution, to ensure a safe task execution. We presented
two results, with respect to the semantics. The first one is a soundness result,
which implements the notion of safe execution, ensuring that no constraint is
violated by a service request which is possibly composed of several services,
asked to several agents. In other words, if the operational semantics allows the
execution of a certain service, then it is safe to execute it. The second one is a
completeness result, which states that if such service could be safely executed,
then its execution is allowed by the operational semantics. This result has been

proven for a particular service composition pattern, but it is possible to extend
the proof for other more general patterns.

In related work, a considerable effort has been dedicated towards character-
izing agents as logical systems, providing several operational semantics to the
logical specifications of agent programming languages [7–9]. Nevertheless, to the
best of our knowledge, our work is among the few ones that give a sound and
complete semantics to a formalism that allows to express the agents’ execution,
in a way that is independent of the notion of consistency adopted and that at the
same time ensures that the system’s constraints are not violated. In that, this
paper represents a progress from our previous work, which presumes a system
of logic based agents and is tailored to the case of abductively reasoning agents.

In the future, we intend to study and formalise the relationship between
composition operators of knowledge bases and programs of different agents, and
their corresponding operational conunterpart, given as proof systems for the
multi-agent case. We also intend to provide a concrete implementation of the
operators here introduced, and write a library that extends a virtual machine.

Acknowledgements

We would like to thank the anonymous referees for their precious comments.
This work was supported by the SOCS project, funded by the CEC, contract
IST-2001-32530.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277–296

2. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: LAILA: A language for coordi-
nating abductive reasoning among logic agents. Computer Languages 27 (2002)

3. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and com-
petition in ALIAS: a logic framework for agents that negotiate. In: Computational
Logic and Multi-Agency. Special Issue of the Annals of Mathematics and Artificial
Intelligence, Baltzer Science Pub. (to appear)

4. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming.
Handbook of Logic in AI and Logic Programming 5 (1998) 235–324

5. Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduction.
In: Proc. 9th ECAI, Pitman Pub. (1990)

6. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming (1997)

7. Lesprance, Y., Levesque, H.J., Lin, F., Marcu, D., Reiter, R., Scherl, R.B.: Founda-
tions of a logical approach to agent programming. In: Intelligent Agents II – Proc.
ATAL’95. LNCS, Springer-Verlag (1996)

8. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Agents Breaking Away, Proc. MAAMAW’97. LNCS 1038, Springer (1996) 42–55

9. Hindriks, K., Boer, F.D., van der Hoek, W., Meyer, J.J.: Formal semantics for an
abstract agent programming language. In: Intelligent Agents IV, Proc. ATAL’97.
LNCS 1365, Springer-Verlag (1998) 215–229

