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Abstract. In this paper, we present a framework for agent negotiation
based on abductive logic programming. The framework is based on an
existing architecture for logic-based agents, and extends it by accommo-
dating dialogues for negotiation. As an application of negotiating agents,
we propose a resource-exchanging problem. The innovative contribution
of this work is in the definition of an operational model, including an
agent cycle and dialogue cycle, and in the results that apply in the gen-
eral case of abductive agents and in the specific case of a class of agent
systems.

1 Introduction

In multi-agents systems, agents may need to interact in order to exchange re-
sources, when the resources they own are not enough to achieve their goals prior
to exchange. If each agent has global visibility of the other agents’ resources and
intentions, a “global” plan can be generated by a single individual. However, a
global plan cannot be possibly generated if there is no such visibility or if the
design of the system is based on agent autonomy. Also, the autonomous agent
behaviour and the consequent dynamic evolution of the system could make any
such plan obsolete before completion. In there comes negotiation.

The focus of this work is the knowledge and the reasoning that is required
to build negotiation dialogues between agents, in order to exchange resources
that help achieve the agents’ objectives. We express such knowledge in a declar-
ative way, as logic programs and integrity constraints, as in abductive logic pro-
gramming [1], with the dialogue moves treated as abducibles/hypotheses, and
dialogue/negotiation policies treated as integrity constraints.

We propose an operational model, based on the abductive reasoning mecha-
nism and on an agent cycle, and show that it can be used to generate (negotia-
tion) dialogues. The framework extends an agent architecture initially proposed
in [2], to enable dialogue generation. The agent architecture in [2] relies upon ex-
ecuting the IFF abductive proof-procedure defined in [3] as the reasoning engine
of the agent. We identify the inadequacy of the IFF procedure for our domain



of application, and adopt the procedure in [4] instead. This paper represents in
many respects a progress from previous related work [5, 6]. It provides a better
formalization of the framework for negotiation, by defining an agent cycle that
accommodates dialogues as a result of the agent reasoning. This improvement is
necessary to prove some strong results about the general negotiation framework.
The paper also defines two classes of agents (N-agents and N+-agents), that im-
plement the behaviour of self-interested resource-bounded agents and that are
provably able to solve a resource reallocation problem.

The paper is organized as follows: in Section 2 we review and revise the
dialogue framework of [6, 5], in Section 3 we augment this framework with new
concepts to characterise the state of negotiating agents and specify a concrete
variety of negotiating agents, referred to as self-interested agents, in Section 4
we define the abductive framework, abductive agents and concrete instances of
abductive agents referred to as N-agents and N+-agents, and in Section 5 we
present the formal results. Section 6 concludes.

2 Background: Knowledge and Dialogues for Negotiation

Agents negotiate using a shared language, consisting of possible utterances, or
dialogue moves, defined as follows:1

Definition 1. A dialogue move (between X and Y ) is an instance of a schema
tell(X, Y,Subject, D, T ), where X is the utterer and Y is the receiver of the
dialogue move, X 6= Y , D is the identifier of the dialogue to which the move
belongs, and T is the time when the move is uttered. Subject is the content of
the move, expressed in some given content language.

Note that the identifier of a dialogue uniquely determines the dialogue that
includes the dialogue move. Note also that this component of a dialogue move
is new and was not present in the definition in [5].

A concrete example of a dialogue move is tell(a, b, request(give(nail)), d, 1),
where Subject is request(give(nail)). Intuitively, this utterance expresses a’s
request to b at time 1 for a nail, in the course of a dialogue identified by d.
Definition 2. A language for negotiation L is a (possibly infinite) set of (possi-
bly non ground) dialogue moves. For a given L, we define two (possibly infinite)
subsets of moves, I(L), F(L) ⊆ L, called respectively initial moves and final
moves. Each final move is either successful or unsuccessful.

A simple example of language for negotiation is (N stands for negotiation):
LN = { tell(X, Y, request(give(Resource)), D, T ),

tell(X, Y,accept(request(give(Resource))), D, T )

tell(X, Y, refuse(request(give(Resource))), D, T ) }
The initial and final moves are:
I(LN ) = {tell(X, Y, request(give(Resource)), D, T )}
F(LN ) = { [succ. moves:] tell(X, Y,accept(request(give(Resource))), D, T )

[unsucc. moves:] tell(X, Y, refuse(request(give(Resource))), D, T )}

1 Terms starting with capital/lower-case letters stand for variables/ground terms, resp.



In this example all moves are either initial or final, although this is not always
the case (see [6]). We sometimes represent a dialogue move in abbreviated form as
p(D,T ) or simply as p, if the discussion is independent of the missing parameters.
Definition 3. An agent system consists of: a language for negotiation L; and
a finite set A, with at least two elements, where each X ∈ A is a ground term,
representing the name of an agent, and each agent is equipped at each time T
with a knowledge base KX,T .

In the sequel, we will sometimes drop X and/or T , if clear from the context.
We assume that the knowledge base of each agent is represented in some

logic-based language equipped with a notion of entailment `. For simplicity, we
assume that agents share the logic-based language and ` (but not the knowledge
bases necessarily). In Section 4, we will adopt abductive logic programming [1]
as the logic-based language used to model the knowledge base of agents.

The knowledge base KX,T of agent X at time T consists of (1) domain-
dependent beliefs about the world, such as the information about the agent sys-
tem, e.g., agents({a, b, c}); (2) domain-independent beliefs, used to regulate the
negotiation dialogues, e.g. see IC.1− IC.3 later in this section, and to represent
changes in the agent’s own state, such as its ownership of resources, e.g. see
D.1 − D.4 later in this section; (3) information about the resources the agent
owns before the dialogues start, e.g., have(picture, 0), with 0 the initial time; (4)
the agent’s goal, e.g., goal(hung(picture)); (5) the agent’s intention, represented
as plan(P,Req), i.e., the plan P that the agent intends to carry out in order to
achieve its goal, associated with the set of resources Req that are required to
carry it out, e.g., plan(〈hit(nail), hang(picture)〉, {picture, nail, hammer}); and
finally, (6) the past (time-stamped) utterances, e.g. tell(a, b, request(give(nail)),
d, 1), tell(b, a,accept(request(give(nail))), d, 3).

It is worth noting that the goal and the intention are not time-stamped. In
fact, we assume that plans in intentions are given initially and do not change.
The only part of KX,T that changes over time is the the set of past utterances
(6), as this part grows monotonically during the course of dialogues.

The following definitions of have and need for agent a ∈ A (similarly for the
other agents in A) may be part of the domain-independent beliefs (2) in Ka:

(D.1) have(R, T )← have(R, 0) ∧ 0 < T ∧ ¬[gave away(R, T1), 0 < T1 ≤ T ]
have(R, T )← obtained(R, T1) ∧ T1 < T

∧ ¬[gave away(R, T2), T1 < T2 ≤ T ]
(D.2) obtained(R, T )← tell(X, a, accept(request(give(R))), D, T )
(D.3) gave away(R, T )← tell(a, X, accept(request(give(R))), D, T )
(D.4) need(R, T )← have(R, T ) ∧ plan(P, Req) ∧R ∈ Req

Note that we assume that resources are considered not to be owned if they
have been “promised” to another agent, i.e., as a consequence of the acceptance
of another agent’s request, even if the actual delivery has not yet been carried
out. Indeed, here we are not concerned with the execution of a plan, and we
assume that agents will obtain the resources they have been promised by the
time the plan needs to be executed.



For a given agent X ∈ A, where A is an agent system equipped with a
language for negotiation L, we define the sets Lin

X , of all dialogue move schemata
of which X is the receiver, and Lout

X , of all dialogue move schemata of which X
is the utterer. Then, negotiation policies can be specified by sets of dialogue
constraints, defined as follows:
Definition 4. Given an agent system A, equipped with a language for ne-
gotiation L, and an agent X ∈ A, a dialogue constraint for X is a (possibly
non-ground) if-then rule p(D,T ) ∧ C ⇒ [∃ T ′(p̂(D,T ′) ∧ T < T ′)], where
– p(D,T ) ∈ Lin

X and p̂(D,T ′) ∈ Lout
X ,

– the utterer of p(D,T ) is the receiver of p̂(D,T ′), and the receiver of p(D,T )
is the utterer of p̂(D,T ′),

– C is a conjunction of literals in the language of the knowledge base of X, 2

– any variables not explicitly quantified are implicitly universally quantified
over the constraint.

The move p(D,T ) is referred to as the trigger, p̂(D,T ′) as the next move and C
as the condition of the dialogue constraint.

Intuitively, the dialogue constraints of an agent X express X’s negotia-
tion policies. The intuitive meaning of a dialogue constraint p(D,T ) ∧ C ⇒
[∃ T ′(p̂(D,T ′) ∧ T < T ′)] of agent X is as follows: if at time T in a dia-
logue D some other agent Y utters p(D,T ) = tell(Y, X, Subject, D, T ), then
the corresponding instance of the dialogue constraint is triggered and, if the
condition C is entailed by KX,T ′ , then the constraint fires and X will utter
p̂(D,T ′) = tell(X, Y, Subject′, D, T ′), at a later time T ′ that is available for ut-
terances. The instantiation of T ′ is left to the agent cycle, and can be performed
as explained in section 4.

A negotiation policy can be seen as a set of properties that must be satisfied at
all times, by enforcing (uttering) the conclusion of the constraints that represent
them, whenever they fire. In this sense, constraints behave like active rules in
databases and integrity constraints in abductive logic programming. In Section 4,
we will adopt the negotiation policy N consisting of the following three dialogue
constraints (a is the name of the agent which has N in its knowledge base),
which are part of the domain-independent beliefs (2) in Ka:

(IC.1) tell(X, a, request(give(R)), D, T ) ∧ have(R, T ) ∧ ¬need(R, T )
⇒ ∃ T ′(tell(a, X,accept(request(give(R))), D, T ′) ∧ T < T ′)

(IC.2) tell(X, a, request(give(R)), D, T ) ∧ have(R, T ) ∧ need(R, T )
⇒ ∃ T ′(tell(a, X, refuse(request(give(R))), D, T ′) ∧ T < T ′)

(IC.3) tell(X, a, request(give(R)), D, T ) ∧ ¬have(R, T )
⇒ ∃ T ′(tell(a, X, refuse(request(give(R))), D, T ′) ∧ T < T ′)

Definition 5. Given an agent system A equipped with L, a dialogue between
two agents X and Y in A is a set of ground dialogue moves in L, {p0, p1, p2, . . .},
such that, for a given set of time lapses 0 ≤ t0 < t1 < t2 < . . .:
1. ∀ i ≥ 0, pi is uttered at time ti;

2 Note that C in general might depend on several time points, possibly but not nec-
essarily including T ; thus, we do not indicate explicitly any time variable for C.



2. ∀ i ≥ 0, if pi is uttered by agent X (viz. Y ), then pi+1 (if any) is uttered by
agent Y (viz. X);

3. ∀ i > 0, pi can be uttered by agent U ∈ {X, Y } only if there exists a
(grounded) dialogue constraint pi−1 ∧ C ⇒ [pi ∧ ti−1 < ti] ∈ KU

such that KU,ti ∧ pi−1 ` C;
4. there is an identifier D such that, ∀ i ≥ 0, the dialogue identifier of pi is D;
5. ∀t, ti−1 < t < ti, ∀i > 0 s.t. pi and pi−1 belong to the dialogue, there exist

no utterances with either X or Y being either the receiver or the utterer.
A dialogue {p0, p1, . . . pm}, m ≥ 0, is terminated if pm is a ground final move,

namely pm is a ground instance of an utterance in F(L).
By condition 1, a dialogue is in fact a sequence of moves. By condition 2,

agents alternate utterances in a dialogue. By condition 3, dialogues are gen-
erated by the dialogue constraints, together with the given knowledge base to
determine whether the constraints fire. In condition 3, t represents the time at
which the incoming utterance is recorded by the receiving agent. By condition 4,
the dialogue moves of a dialogue share the same dialogue identifier. By condition
5, dialogues are atomic and interleaved, where by atomicity we mean that each
agent is involved in at most one dialogue at each time and by interleaving we
mean that dialogue moves must alternate between the two agents within the
dialogue. Conditions 4 and 5 are new and were not present in the definition
of dialogues in [5]. The purpose of these new conditions is to avoid having to
deal with multiple negotiation dialogues involving the same agent at the same
time. To accommodate such concurrent dialogues we need to extend our set of
subjects in the dialogue moves and to provide some form of concurrency control
mechanisms, both of which are beyond the scope of this paper.

In Section 4 we propose a concrete agent framework that can produce di-
alogues, according to the above definition. In this paper we are interested in
dialogues starting with the request of a resource R, defined as follows.
Definition 6. Given an agent system A equipped with L, a request dialogue
with respect to a resource R of an agent X ∈ A is a dialogue {p0, p1, p2, . . .}
between X and some other agent Y ∈ A such that, for some T ≥ 0,
– p0 = tell(X, Y, request(give(R)), D, T ), and
– KX,T ` plan(P,Req) ∧R ∈ Req ∧ ¬have(R, T ).

In the sequel, unless otherwise stated, by dialogue we mean request dialogue.
In order to obtain all the resources missing in a plan, a single dialogue might

not be enough, in general, and a sequence of dialogues might be needed for
an agent to obtain all the required resources. In order to produce sequences of
dialogues, agents may run a dialogue cycle, having the following properties P:

1. no agent is asked twice for the same resource within the dialogue sequence;
2. if a resource is not obtained from one agent, then it is asked from some other

agent, if any;
3. if a resource is not obtained after asking all agents, then the agent dialogue

cycle terminates with failure.
The idea behind 3 is that the agent will not carry on asking for the other

resources, since, at least one resource in the current intention cannot be obtained,



the plan in the intention will not be executable. After the cycle, if successful in
obtaining all the resources, the agent can execute the plan in its intention. One
dialogue cycle with these properties is defined in [5]. In Section 4 we give a
concrete implementation of an agent dialogue cycle with these properties.

Within our dialogue framework we can specify properties of the knowledge
of agents and, as we will see in Section 4, of the behaviours of agents.

The following definitions give two useful properties of the knowledge of agents
(KB stands for “knowledge base”) paving the way towards building agents pro-
ducing one and only one move in response to any non-final move of other agents.
Definition 7. An agent KB KX is deterministic iff for each incoming dialogue
move p(D,T ) which is a ground instance of a schema in Lin

X , there exists at most
one dialogue constraint in KX which is triggered by p(D,T ) and which fires.
Definition 8. An agent KB KX is exhaustive iff for each dialogue move p(D,T )
which is a ground instance of a schema in Lin

X r F(L), there exists at least one
dialogue constraint that is triggered by p(D,T ) and which fires.

3 Specification of Agents’ States

We can characterise the state of the agents in terms of their need and ownership
of resources. To this end, let us consider an agent X with an intention IX . Let
R(IX) be the set of resources required to carry out the plan in IX (namely, if
IX=plan(P,Req), then R(IX)=Req). Also, let RX,T be the set of resources X
owns at time T . Then, for any resource R, we define the following predicates a,
m, n, i, standing for available, missing, needed, and indifferent, respectively:
– a(R, T ): X has R and does not need it ( R ∈ RX,T ∧R /∈ R(IX) )
– m(R, T ): X does not have R but needs it ( R /∈ RX,T ∧R ∈ R(IX) )
– n(R, T ): X does have R and does need it ( R ∈ RX,T ∧R ∈ R(IX) )
– i(R, T ): X does not have R and does not need it ( R /∈ RX,T ∧R /∈ R(IX) )

Assuming a formal definition of “have” and “need” in KX,T , e.g. D.1−D.4
in section 2, the above a, m, n, i can be formally defined as follows:
– KX,T ` a(R, T ) iff KX,T ` have(R, T ) ∧ KX,T ` ¬need(R, T )
– KX,T `m(R, T ) iff KX,T ` ¬have(R, T ) ∧ KX,T ` plan(P, Req) ∧ R ∈ Req
– KX,T ` n(R, T ) iff KX,T ` need(R, T ) ∧ KX,T ` have(R, T )
– KX,T ` i(R, T ) iff KX,T ` ¬have(R, T ) ∧ KX,T ` ¬need(R, T )

In the sequel, unless otherwise specified, we will not assume any specific
definition of “have” and “need”, but we will assume that, for any agent X, time
T and resource R, either KX,T ` have(R, T ) or KX,T ` ¬have(R, T ) and either
KX,T ` need(R, T ) or KX,T ` ¬need(R, T ).

State transitions, as a result of dialogues, can be characterised in terms of a,
m, n, i.

In general, after a terminated request dialogue D between X and Y , initiated
by X with respect to a resource R and an intention IX , X might have been
successful or not in obtaining the resource R from Y : Let us suppose that D
started at time T and terminated at time T1, and let T ′ > T1. If D is successful,
the knowledge bases of X and Y change as follows:
KX,T `m(R, T ) and KX,T ′ ` n(R, T ′)



KY,T ` a(R, T ) and KY,T ′ ` i(R, T ′).

If D has been unsuccessful, then neither agents’ knowledge about resources
changes, and X might decide to engage in a new dialogue to obtain R from a
different agent.

While dialogues can be characterised by the initial and final states of the
knowledge of the participants, negotiation policies can be characterised by the
possible dialogues (with consequent changes in states) that they generate:
Definition 9. An agent X is called self-interested if, for all request dialogues
D, with respect to a resource R, between agents X and Y starting at time T
and terminating at time T1, and for any time T ′ such that T < T1 < T ′:

– if KX,T ` a(R, T ) then either KX,T ′ ` a(R, T ′) or KX,T ′ ` i(R, T ′);
– if KX,T `m(R, T ) then either KX,T ′ `m(R, T ′) or KX,T ′ ` n(R, T ′);
– if KX,T ` n(R, T ) then KX,T ′ ` n(R, T ′);
– if KX,T ` i(R, T ) then either KX,T ′ ` i(R, T ′) or KX,T ′ ` a(R, T ′);

– for all R̂ ∈ R(IX), R̂ 6= R, then
if KX,T ` a(R̂, T ) then either KX,T ′ ` a(R̂, T ′) or KX,T ′ ` i(R̂, T ′),

if KX,T `m(R̂, T ) then either KX,T ′ `m(R̂, T ′) or KX,T ′ ` n(R̂, T ′),

if KX,T ` n(R̂, T ) then KX,T ′ ` n(R̂, T ′);

if KX,T ` i(R̂, T ) then either KX,T ′ ` i(R̂, T ′) or KX,T ′ ` a(R̂, T ′).

Note that the main characteristic of self-interested agents is that they never
give away resources they need.

4 An Operational Model for the Agent Reasoning and
Dialogue Cycle

We give an operational model of the negotiation framework, consisting of an
abductive logic program [1] for K, an abductive proof-procedure for agent rea-
soning, and an agent cycle for interleaving reasoning with observing and acting.

An abductive logic program is a triple 〈T,Ab, IC〉, where T is a logic program,
namely a set of if-rules of the form H ← C, where H is an atom and C is
a conjunction of literals, and every variable is universally quantified from the
outside; IC is a set of integrity constraints, namely if-then-rules of the form
C ⇒ H, where C is a conjunction of literals and H is an atom, and every
variable is universally quantified from the outside; Ab is a set of ground atoms,
whose predicates, that we call “abducibles”, occur in T or IC, but not in the
head H of any if-rule. The knowledge K of an agent can be represented as an
abductive logic program as follows. Ground dialogue moves are represented as
abducibles. Dialogue constraints are represented as integrity constraints. 3 The
rest of the knowledge K of agents is split between the logic program and the
integrity constraints.
3 Note that dialogue constraints do not conform to the syntax of integrity constraints,

but they can be written so that they do. A dialogue constraint p(D, T ) ∧ C ⇒
[∃ T ′(p̂(D, T ′) ∧ T < T ′)] can be rewritten as p(D, T ) ∧ C ⇒ q(D, T ) together with
an if-rule q(D, T ) ← p̂(D, T ′) ∧ T < T ′ in the logic program component of the
abductive logic program representing K.



To cycle at time T ,

(i) [observe] observe any input at time T , and put it in input;

(i.1) [filter observations] if input = ∅, then go to (iv);
(i.2) [filter observations] if ongoing=D, D 6= nil and either @ p ∈ input

such that p = tell(X, a, Subject, D, T ) or not waiting, then go to (iv);

(ii) [record input] if ongoing=D then record an input b ∈ input such that b =
tell(X, a, Subject, D, T ); otherwise, if ongoing=nil (reply to a new dialogue
D′): record an input p ∈ input (say, p = tell(X, a, Subject, D′, T )), and set
ongoing=D’ to true;

(ii.1) [update dialogue status] if p is a final move then set ongoing=nil,
otherwise set waiting to false;

(iii) [think] resume ST by propagating the inputs, if any;
(iv) [think] continue applying ST, for a total of r units of time;

(iv.1) [filter actions] if there does not exist an atomic action which can be
executed at time T ′ = T + r, or if waiting, then go to step (vii);

(iv.2) [filter actions] if ongoing=D and D 6= nil and there does not exist
an atomic action tell(a, X, Subject, D, T ) which can be executed at time
T ′ = T + r, then go to step (vii);

(v) [select action] if ongoing=D and D 6= nil then select an atomic ac-
tion tell(a, X, Subject, D, T ′′) that is an abducible computed by ST which
can be executed at time T ′ = T + r and instantiate T ′′ to T ′; other-
wise, if ongoing=nil (start a new dialogue D′): select an atomic action
tell(a, X, Subject, D′, T ′′) that is an abducible computed by ST which can
be executed at time T ′ = T + r, instantiate T ′′ to T ′ and set ongoing=D’;

(v.1) [update dialogue status] if the selected action is a final move then set
ongoing=nil, otherwise set waiting to true;

(vi) [act] execute the selected action at time T ′ and record the result;
(vii) [cycle] cycle at time T ′ + 1.

Fig. 1. Extended agent cycle for an agent a

We use the proof-procedure of [4], henceforth called ST, which is a modifi-
cation of the IFF proof-procedure [3]. The IFF procedure forms the reasoning
engine of the agents of the architecture of [2] that we adopt and modify, as we
will explain later. IFF and ST share inference rules that allow backward reason-
ing with the logic programs and forward reasoning, modus ponens-like, with the
integrity constraints. IFF proved inadequate for the purpose of producing dia-
logues as defined in section 2, in that it fails to produce the triggering and firing
(production/active rule) behaviour of dialogue constraints that we describe in
Section 2. This is due to the definition of negation rewriting in [3], that replaces
an if-then-rule [¬A⇒ B] with the disjunction A ∨ B. To illustrate the problem,
consider a dialogue (integrity) constraint requested resource∧have resource⇒
accept request, where have resource is defined as have initially∧¬gave away.
Given requested resource and have initially, the constraint would be rewritten
by IFF as gave away ∨ accept request. The second disjunct could be selected,



and the request accepted, even in the case the resource has already been given
away.

ST modifies IFF in the handling of negation in if-then-rules. The modification
involves replacing an if-then-rule ¬A⇒ B with the disjunction [provable(A)] ∨
[(A⇒ false) ∧B], which results in achieving a “negation as failure” behaviour
for the negations in if-then-rules, more appropriate for the production/active
rule behaviour required. For a detailed description of ST see [4].

In the architecture of [2], each agent, henceforth referred to as KS-agent,
is an abductive logic program. The abducibles are actions to be executed as
well as observations to be performed. In our case, actions are dialogue moves
uttered by the agent, and observations are dialogue moves uttered by other
agents. The behaviour of KS-agents is regulated by an observe-think-act cycle.
The cycle starts at time T by observing and recording any observations from
the environment. Then, the proof procedure is applied for r units of time. The
amount of resources r available in the “think” phase is predefined. Forward
reasoning is applied first, in order to allow for an appropriate reaction to the
observations. Then, an action is selected and executed, in the “act” phase, taking
care of recording the result.

We modify the agent cycle of [2] to enforce atomicity and interleaving of
dialogues, as discusses in Section 2. The modified cycle for an agent a is in Figure
1. This is a modification of the original KS agent cycle in that filtering/updating
steps are added, according to the state of the dialogue, for what concerns both
the recording of an incoming dialogue move and the possible uttering of an
outgoing move. It is worth noticing that such modifications are independent of
the thinking part of the agent, namely the application of the proof-procedure.
Also, in our cycle we make the simplifying assumption that time is only consumed
by the application of the proof procedure, and not by the decisions about whether
or not to process observations and whether or not to execute an action.

In order to enforce the properties of atomicity and interleaving, we use the
following data structures:
– an input buffer, input, that contains all the observed predicates (namely the

incoming dialogue moves) that have not yet been recorded by the agent;
– a flag ongoing, that either contains the identifier of the ongoing dialogue,

or the constant nil, i.e., a new identifier that is not any dialogue identifier.
Initially, ongoing is set to nil;

– a flag waiting/0, initially false, that is true if the agent is expecting a dialogue
move from another agent within an ongoing dialogue.

Note that a move p with dialogue identifier D, observed during step i of the
cycle is recorded (in step ii) only if the agent is not already involved in another
dialogue, or if there is an ongoing dialogue D and p is a move of D. Also, the
agent can utter a move p only if there is no ongoing dialogue (p is the first
utterance of a new dialogue), or there is an ongoing dialogue D, and p is part of
it.

In order for agents to generate sequences of dialogues with the properties
P given in Section 2, the dialogue cycle of the agents may be specified by the
following abductive logic program:



(D.5) get all(M)←M = ∅
get all(M)← R ∈M ∧ get(R) ∧R′ = M \ {R} ∧ get all(R′)

(D.6) get(R)← agents(A) ∧ ask agents(A, R)
(D.7) ask agents(A, R)← X ∈ A ∧tell(a, X, request(give(R)), d(a, X, R, T ), T ) ∧

A′ = A \ {X} ∧ process(X, A′, R, d(a, X, R, T ), T )
(D.8) process(X, A, R, D, T )← tell(X, a, accept(request(give(R))), D, T ′)

process(X, A, R, D, T ) ← tell(X, a, refuse(request(give(R))), D, T ′) ∧
ask agents(A, R)

(D.9) to be asked(M)← plan( , Req) ∧missing(Req, ∅, M)
(D.10) missing(Set, Acc, Out)← Set = ∅ ∧Out = Acc

missing(R ∪ Set, Acc, Out)← have(R, 0) ∧missing(Set, Acc, Out)
missing(R∪Set, Acc, Out)← ¬have(R, 0)∧missing(Set, Acc∪{R}, Out)

(D.11) X ∈ Y ← Y = [X|X ′]

(IC.4) to be asked(M)⇒ get all(M)
(IC.5) ask for(A, R) ∧A = ∅ ⇒ ⊥

The two integrity constraints are used to start the negotiation process (IC.4)
from the missing resources of the agent’s plan, and to determine failure (IC.5)
once the agent has failed to get a specific resource after asking all the agents
in the system (but itself). Note that definition D.7 performs the allocation of
a unique dialogue identifier to a newly started dialogue. This identifier is a
function(d) of the agent starting the dialogue, the receiver of the request, the
requested resource and the time of the utterance. Note also that definition D.11
assumes a list-like implementation of sets.

5 Formal Results

We define the following agent types and give some formal results.
Definition 10. An abductive agent X is exhaustive and deterministic if X
produces one and only one ground move, in response to any non-final move of
other agents of which X is the receiver.
Definition 11. An abductive agent is an agent whose knowledge base K is an
abductive logic program, with, in particular, the dialogue moves in the negoti-
ation language L of the agent represented as abducibles in the abductive logic
program, the dialogue constraints in K represented as integrity constraints in the
abductive logic program, equipped with the ST abductive proof-procedure as its
reasoning engine with the entailment K is equipped with provided by provability
in ST, and with the extended agent cycle.
An N -agent is a particular instance of an abductive agent whose logic program
consists of definitions D.1-D.4, appropriate definition for a, m, n, i, and integrity
constraints IC.1-IC.3.
An N+-agent is an N -agent whose knowledge is extended by the dialogue cycle
given by D.5-D.11 and IC.4-IC.5.
Theorem 1 If X is an N -agent, then KX is exhaustive and deterministic.
Theorem 2 N -agents are self-interested agents.



Theorem 3 If X is an abductive agent and KX is exhaustive and deterministic
then X is exhaustive and deterministic.
Corollary 1. N -agents are exhaustive and deterministic.
Theorem 4 N+-agents are self-interested agents.
Theorem 5 If X is an N+-agent, then KX is exhaustive and deterministic.
Corollary 2. N+-agents are exhaustive and deterministic.
We prove that the framework described in Section 4 is capable of generating di-
alogues, provided that the agents in the system are exhaustive and deterministic
with respect to the negotiation language. In fact, if an agent X is exhaustive and
deterministic, then X will produce exactly one reply to a (non final) move made
by the other agent. If both agents involved in a dialogue are exhaustive and de-
terministic, then exactly one agent is guaranteed to produce only one dialogue
move, after a dialogue is initiated by either agent, until a final move is made,
thus producing a dialogue that conforms to the definition given in Section 2.
Theorem 6 (production of dialogues) Let X and Y be two agents sharing a
language L for negotiation. Suppose X and Y are both deterministic and ex-
haustive. Let S = {p1, p2, . . . , pn} be the sequence of all utterances between X
and Y (i.e., for each pi the utterer is either X or Y and the receiver is either
X or Y ) such that the pi all share the same identifier D. Then S is a dialogue
according to Definition 5.

6 Conclusions

We have presented a framework for agent dialogue and negotiation based on
abductive reasoning. In order to provide an operational model for the framework,
we introduced a modified version of the agent cycle of [2], with respect to the
proof-procedure introduced in [4], rather than the IFF that [2] chooses to adopt.
Our model is able to produce sequences of negotiation dialogues that conform
to the given definition.

Following other related work on agent dialogue, we defined dialogue in a two-
agents setting. It is possible to extend it to accommodate multi-part negotiation
schemes, e.g. by means of auction-like interaction patterns, but this goes beyond
the scope of this paper. Some work done in this direction is that of [7]. Among
the current approaches to negotiation via dialogue, our work is to the best of
our knowledge the only one that is based on abductive logic programming. An
approach to agent communication and negotiation that makes use of abduction
is proposed in [8], where the authors use deduction to derive information from
a received message, and abduction to obtain proposals in reply to requests. In
our framework, abduction is used not only to formulate replies to requests, but
it is the main form of agent reasoning. This allows us to prove Theorem 6.

Kraus et al. [9], Amgoud et al. [10] and Parsons et al. [11] are some of
the argumentation-based approaches proposed to agent negotiation. In general,
such approaches, focused on argumentation and persuasion, lead to different
results from ours, being somewhat more descriptive, and not aiming to determine
specific properties of the policy regulations.



The innovative contribution of our work is in the definition of the operational
model, including the proposed agent cycle and dialogue cycle, and in the results
that apply in the general case of abductive agents and in the specific case of N -
systems. We consider this to be an important achievement, because it provides
a high-level specification of a system that is directly implementable, and that
guarantees certain properties to hold. On the other hand, since we prose a
complete approach to a complex problem such as resource reallocation, a weak
point of this work could be its scalability, if we want to apply it to the case,
for instance, of agents that can can dynamically modify their plans. To cope
with huge search spaces, we believe that we could profitably build on the formal
results of our work and apply incomplete search methods like those based on
metaheuristics. Some work has already been done towards the combination of
the two approaches [12]. In the future, we aim at extending our framework to
cope with exchange of uncountable resources, or of resources that may have a
different “meaning” for autonomous reasoning agents, such as information.
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