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The Semantic Web vision looks toward a universal medium for data exchange. This

vision has motivated significant research in classifying, packaging, and semanti-

cally enriching information to support data automation, integration, and reuse across vari-

ous applications. A large share of current research on these topics addresses new logics for

concept description and knowledge representation;
new languages for defining ontologies, taxonomies,
and behavior; and new cooperation models, inter-
change formats, and open standards. If these efforts
succeed, Web pages will eventually include descrip-
tions of their content that can leverage Semantic Web
applications and foster their growth. Search engines
will be able to respond to semantic queries, and Web
services will reason from semantically rich informa-
tion and act accordingly.

We believe the reasoning enabled by machine-
understandable, semantically rich information is
essential to the Semantic Web vision. Our work
focuses on making this reasoning more visible to
potential users by using dialogues for service inter-
action. As currently understood, interaction among
Semantic Web services is essentially a point-to-point
service request followed by a server response. We
don’t propose modifying the way Web services inter-
act. Instead, we suggest using argumentation tech-
nology to drive the interaction at a higher level, where
human users can perceive message exchanges and
service-request sequences as high-level dialogues that
they can understand better than current modalities. 

In this article, we define ArgSCIFF, a prototype
operational argumentation framework to support dia-
logic argument exchange between Semantic Web
services. ArgSCIFF is based on the SCIFF abductive-
logic programming (ALP) framework.1 (SCIFF is an

abbreviation for “IFF with constraints for agent soci-
eties,” referring to the “if and only if” proof proce-
dure developed by Tze Ho Fung and Robert Kowal-
ski.2) In ArgSCIFF, an intelligent agent can interact
with a Web service and reason from the interaction
result. The reasoning semantics is an argumentation
semantics that views the interaction as a dialogue.
The dialogue lets two parties exchange arguments
and attack, challenge, and justify them on the basis
of their knowledge. This format has the potential to
overcome a well-known barrier to human users’
adoption of IT solutions because it permits interac-
tion that includes justified answers that can be rea-
soned about and rebutted.

Semantic Web interaction
We begin with a scenario to use as a running

example of a Semantic Web interaction and a gen-
eral discussion of how argumentation can support it.

A scenario: Scientists, 
departments, and trips

In our scenario, Sarah is a Computer Science
Department research scientist who often travels to con-
ferences. Before traveling, CSD researchers must have
formal approval for their trip. To this end, they send
CSD a request. CSD checks its rules and regulations
and answers accordingly. The CSD regulations are
often cryptic and subject to change. CSD researchers
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often have obsolete information about administration regulations and lit-
tle interest in them generally. However, they must abide by them. How
can we help this situation?

Solution 1. CSD publishes all regulations and relevant forms on its
Web site. Every time Sarah needs to travel, she reads the most recent
regulations, downloads the relevant forms from the Web, does the nec-
essary paperwork, and delivers the filled-in forms to CSD administra-
tion. She solves any problems by direct interaction with the adminis-
tration staff.

This solution has many drawbacks. Employees don’t necessarily
want to keep up-to-date with new regulations, nor is it their job to do
so. Furthermore, technology is helping provide information in this
solution, but it isn’t helping use it properly. All the paperwork and
interaction with the administration are still there and represent poten-
tial sources of mistakes and misunderstandings. Moreover, the require-
ment for direct interaction to solve problems means Sarah has to coor-
dinate her time with administration office
hours. Solving problems can become a
lengthy and frustrating process on both sides.

Solution 2. The administration feeds all
department regulations into a server, which
publishes them on the CSD Web site using a
semantically rich, machine-understandable,
Web-friendly format. Sarah has a PDA, which
runs an intelligent agent that can automati-
cally download information from the CSD
Web service, parse it, and reason from it.
Whenever Sarah needs to travel, she queries
her PDA to know if her trip is approved.

This solution solves some of solution 1’s
problems. When Sarah needs to obtain a
CSD service, she doesn’t have to read the
department’s regulations but can instead let her PDA do the job on
her behalf. Sarah interacts with her PDA by simply assigning goals
to it—for example, “attend conference.” Because the rules are pub-
lished in a machine-understandable format and a semantically rich
language, the intelligent PDA agent can understand their meaning,
reason from them, and determine whether Sarah’s goal can be accom-
plished given the current regulations. Her PDA can access the CSD
Web service even when she’s away, so this is an “anywhere-anytime”
solution that eliminates interaction problems due to misunderstand-
ings and limited office hours.

However, this solution presents a serious drawback: the exchange
between Sarah and CSD has lost its interactive, dialogical character.
Why is this a problem? Consider solution 1 again. If Sarah’s request
is rejected, Sarah can interact with the administration staff and find
out why. Solution 2 doesn’t permit this interaction. Indeed, a well-
known barrier to human adoption of IT solutions is that IT tends to
provide definitional answers rather than informed justifications that
users could argue with and, possibly, eventually understand and
accept. Even an elegant and efficient solution such as this one, based
on a Semantic Web service, would hardly prevent Sarah from going
and talking directly to the administration to challenge every nega-
tive answer her PDA obtains.

Solution 3. The CSD’s service and Sarah’s PDA agent interact by

exchanging arguments in a dialogical fashion. Sarah’s PDA not only
posts requests to the CSD service and obtains replies but also rea-
sons from such replies. When the replies are negative, the agent chal-
lenges them and tries to understand ways to obtain alternative, pos-
itive replies. If necessary, the agent can provide fresh information
that could inhibit some regulations and activate others.

This solution combines the benefits of the previous two. It dele-
gates most of the reasoning and interaction to the machine by rely-
ing on Semantic Web service technology, and it gives Sarah and CSD
understandable, justified answers and decisions. The whole process
is a machine-supported, collaborative problem-solving activity rather
than a flat client-server, query-answer interaction.

Reasoning and argumentation
Reasoning occurs at different levels. For example, Loredana Laera

and her colleagues propose an argumentation framework for reaching
agreements over ontology alignments.3 Agreement over ontologies

and, more generally, over service descriptions
and semantics is one part of Semantic Web
service interactions. Another part is the high-
level reasoning that supports message ex-
changes among services. To the best of our
knowledge, the only research addressing the
latter is in the context of argumentation-based
dialogues for multiagent systems. In the mul-
tiagent literature, we typically find rich inter-
action protocols aimed at supporting per-
suasion, negotiation, and so on, as well as
dedicated architectural components, such as
commitment stores. We can nevertheless con-
sider Semantic Web services as a concrete
instantiation of multiagent systems, in which
the type of messages exchanged is generally
restricted to request-response patterns.

Argumentation is a natural way of conceptualizing nonmonotonic
reasoning, appropriately reflecting its defeasible nature. The Seman-
tic Web is a source of defeasible knowledge: it’s open by nature and
subject to inconsistencies deriving from multiple sources and incom-
pleteness. So, the Semantic Web appears to be an extremely suitable
domain for applying argumentation theories, especially when the ser-
vices interact with each other on the basis of different and possibly
inconsistent knowledge.

Interaction can occur to request services and to coordinate and
exchange information. In the Semantic Web, such information will
also include rules and logical constructs. The exchange requires suit-
able reasoning tools that can consider logical constructs as first-class
entities and suitable interaction models that can provide the means
to exchange rules, implications, conclusions, assumptions, and so
on. Argumentation theories suit this task perfectly at both the rea-
soning and the interaction levels.

Abductive-logic programming
Our research builds on Phan Minh Dung’s work on the acceptabil-

ity of arguments.4 SCIFF is both an ALP language and a proof proce-
dure for generating grounded sets of arguments starting from a knowl-
edge base.1 Using the SCIFF ALP framework to construct arguments,
we can map the arguments onto ALP abducibles—that is, unknown
facts that SCIFF can hypothesize and reason about as if they were true.
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Using SCIFF to construct arguments has some important advan-
tages. SCIFF programs consist of rules, definitions, known facts, and
events that can occur dynamically. Such elements can contain vari-
ables, quantified in various ways and possibly subject to constraints
and quantifier restrictions. It’s therefore an expressive language. To
the best of our knowledge, most existing frameworks implementing
argumentation are propositional and presume static knowledge. With
SCIFF, however, you can use terms to encode data structures whose size
isn’t known a priori. You can also represent events in a parametric way
(“Employee X has been authorized by Y at time T”) and reason from
such parameters.

Moreover, SCIFF distinguishes between events that are known to
have happened and events that are expected either to happen or not
to happen. All these elements together make it easy to represent inter-
action protocols,1 norms and regulations,5 Web service specifica-
tions,6 and situations such as those we described in our scenario.
Expected events represent future actions (Sarah traveling), whereas
happened events represent facts that can become known to Web ser-
vices as a dialogue develops (for example, when Sarah notifies CSD
that she holds a trip authorization from the CSD head, the CSD
knowledge increases by one fact).

We have developed ArgSCIFF as an integrated suite of extensions
and tools developed on top of SCIFF. The extensions address Web ser-
vice discovery and contracting,6 and the tools address formal verifi-
cation—both a priori (for example, abductive-logic Web service spec-
ification and verification) and at runtime (for example, monitoring
interaction-protocol execution). So, after an argumentation-based
dialogue leads to an agreement (“Sarah can travel and is entitled to
ask for reimbursement”), ArgSCIFF and the SCIFF procedure can eas-
ily verify that the actual behavior of the parties involved conforms to
such an agreement. 

All material, including tools, is available from the SCIFF Web site,
http://lia.deis.unibo.it/sciff.

ArgSCIFF: Extending 
the Semantic Web architecture

We can view the Semantic Web as a lay-
ered architecture. At the bottom are standards
for unique resource identification, text encod-
ing, message and resource descriptions, and
ontologies. On the top layer, the Semantic
Web emerges as a trusted convergence point
of core technologies based on semantic des-
criptions, security technologies, logical mod-
els, and automated reasoning procedures. The
central layers mediate between the bottom
(ontology) layer and the top (logic and proof)
layers. This is where reasoning about Seman-
tic Web resources takes place. 

Machine-to-machine interaction over the
network occurs via Semantic Web services.
Web services are an instance of the service-
oriented-computing paradigm. They are state-
less servers, implemented by software agents,
interacting with each other through simple
request-response message exchanges. Service
providers use WSDL to specify Web service
descriptions—specifically, XML descriptions
of the service’s methods and the concrete net-

work protocols and message formats needed to access them. 
The World Wide Web Consortium has a recommendation that sup-

ports semantic descriptions of Web services (http://w3.org/2002/ws/
sawsdl). Such descriptions could take the form of rules. More specif-
ically, the Semantic Web Services Language is a general-purpose lan-
guage to formally characterize service concepts and descriptions. Its
sponsors have submitted SWSL to the W3C for consideration as a rec-
ommendation (http://w3.org/Submission/SWSF). SWSL contains sev-
eral sublanguages, including SWSL-Rules, which is based on
RuleML-serialized logic programming and aims to support the use
of the service ontology in reasoning and execution environments.

Figure 1 shows the ArgSCIFF architecture as an extension of the
Web service architecture. On the left side of the figure is an agent, s,
which could be the intelligent agent running on Sarah’s PDA. On the
right side, we have a Semantic Web service, d, which could be the
CSD’s Web service. s and d interact with each other using Semantic
Web technologies. From the Semantic Web’s ontology layer down-
ward, s and d will adopt some agreed-upon standard. In the current
prototype, they exchange SOAP messages, which can contain SCIFF

rules. Messages are passed using an Internet transfer protocol such
as HTTP. s and d will adopt some common domain-related ontology,
such as one provided by the CSD for inquiries about regulations. At
the logic level, s and d use knowledge expressed by SCIFF programs.
At the proof level, they use the ArgSCIFF proof procedure to evaluate
queries and replies, according to the abductive semantics we define
in the next section.

The exchanged messages follow a simple request-reply protocol,
but at a high level, we can view the way d interacts with s as a dia-
logue, in which s argues for its case against d. From d’s standpoint,
no dialogue occurs. d simply provides two methods: request and chal-
lenge. The two different views of the ongoing interaction neverthe-
less generate a decoupling, and this decoupling makes it possible to
marry stateless Web services with argumentation dialogues.
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Figure 1. The ArgSCIFF architecture extends the Semantic Web service architecture with
argumentation technology implemented through request and challenge methods. The
ArgSCIFF argumentation protocol is asymmetric: the requester agent sees a dialogue,
and the provider agent sees service requests.



SCIFF abductive semantics
“Argument” is a semantically overloaded term.7 We’ll define it for-

mally later, but in the general context of argumentation frameworks,
we use “argument” and “argumentation” in the sense that Dung uses
them in his seminal work.4 Specifically, an argument is an abstract
entity whose role is solely determined by its relation to other argu-
ments. We pay no special attention to an argument’s internal struc-
ture. An argumentation framework is defined as a pair AF = �AR,
attacks�, where AR is a set of arguments and attacks is a binary rela-
tion on AR—that is, attacks � AR � AR. Related to this notion of
attacks is that of defense: an argument can defend itself from an attack-
ing argument by having a set S of arguments that attack the attacking
argument in turn. Accordingly, S supports the first argument.

Dung gives a model-theoretic semantics to abstract argumentation
frameworks via the notion of admissibility. In particular, an AF’s
admissible models are sets of arguments that don’t attack each other
and can defend each other from attacks originating from the outside.
We can map Dung’s AF onto the SCIFF ALP framework and show that
the sets of arguments SCIFF produces are admissible in Dung’s sense.

The SCIFF ALP proof procedure
ALP is a computational paradigm aimed at introducing hypothet-

ical reasoning in the context of logic programming.8 A logic program
P is a collection of clauses with an associated notion of entailment
indicated by |=. In ALP, the abductive reasoner can assume some
predicates—namely, abducibles, belonging to a special set A—to
be true, if need be. To prevent unconstrained hypothesis-making,
ALP programs typically contain expressions that must be true at all
times, called integrity constraints (IC). IC indicates a set of such ICs,
whereas ic indicates a singleton integrity constraint (an ic in SCIFF is
an implication written as Body � Head). An abductive-logic pro-
gram is the triplet �P, A, IC �, with an associated notion of abduc-
tive entailment.

SCIFF provides the reference-logic framework for ArgSCIFF. A dis-
tinguishing feature of SCIFF is its notion of expectations about events.
Events are denoted as H atoms. Expectations are abducibles denoted
as E(X) (positive expectations) and EN(X) (negative expectations),
where E(X)/EN(X) stands for “X is expected/expected not to hap-
pen.” For example, we can express the expectation that Sarah won’t
attend a conference by the atom EN(action(attend(sarah, conf))).
Variables in events, expectations, and other atoms can be subject to
constraint-logic programming (CLP) constraints and quantifier
restrictions (intuitively, quantifier restrictions are constraints on uni-
versally quantified variables). The following example IC

not H(tell(csd, X, authorization)) � EN(action(attend(X, C)))    (1)

means, “If an (individual) X does not hold authorization from csd, X
is expected not to attend (any conference) C.” We use the functor tell
to represent communicative actions, and the functor action to repre-
sent all other actions. 

In equation 1, failure to hold authorization is mapped onto a nega-
tive H literal. In the SCIFF language, H denotes events or facts that can
become known in a dynamic fashion, and it supports SCIFF’s ability to
reason about them.

Two fundamental SCIFF concepts are hypothesis consistency and
goal entailment, where a goal G reflects a logic-programming con-
junction of literals and possibly constraints.

DEFINITION 1. A set of hypotheses � is consistent if and only if �
(ground atom) p, p � � � not p � � and � (ground term) t, E(t) � �
� EN(t) � �.

Definition 2 summarizes SCIFF’s abductive semantics. It’s based on
Kenneth Kunen’s 3-valued completion semantics;9 as such, it relies
on Clark’s Equality Theory (CET).

DEFINITION 2. A SCIFF ALP S = �P, A, IC � entails a goal G (written
S|= �G), if and only if 	 � ⊆ A such that � is consistent and

where Comp stands for completion, Tx is the constraints theory, and
HAP is the set of known events.

To exemplify, consider the following ALP:

(2)

The abductive program �P, A, IC � entails the goal p by a set � =
{E(t), E(s), E(r)}. 

SCIFF operates by considering G together with IC and by calcu-
lating a frontier as a disjunction of formula conjunctions. Each step
in this process uses one of the inference rules defined in the SCIFF

framework.1 Given the frontier, a selection function can pick one
among the equally true disjuncts at any step; we call this selection an
abductive answer to G. When no inference rule applies (termina-
tion), if there exists one disjunct that isn’t false, then SCIFF succeeds
and the frontier contains at least one abductive answer (�) to G. 

To exemplify, let’s consider the following IC, which could belong
to Sarah:

H(tell(csd, sarah, deny(E(action(A))))) �
EN(action(A))


 challenge(csd, EN(action(A)))

Let its head elements be abducible predicates, and let HAP contain 

H(tell(csd, sarah, deny(E(action(attend(conf))))))

The frontier will then eventually contain at least two disjuncts:

• �1, holding EN(action(attend(conf))), and 
• �2, holding challenge(csd, EN(action(attend(conf)))).

The intuitive reading is that once CSD has told Sarah that it denies
her request to attend the conference, the world can evolve in two pos-
sible ways: �1, by which Sarah accepts that she can’t attend the con-
ference (and possibly tries to satisfy her goal in other ways), or �2,
by which she challenges CSD’s denial of authorization.

ArgSCIFF argumentation
Following the work of Antonis Kakas and Francesca Toni,10

ArgSCIFF maps arguments to abducibles. In particular, arguments can
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be generic abducibles or expectations. As we noted earlier, expecta-
tions about events are particularly suited to representing actions,
which leads to smooth modeling of regulations and norms.5 So, as
definition 3 specifies, ArgSCIFF lets the involved parties consider
actions and other normative elements as arguments that they can pro-
pose and the system can reason about.

DEFINITION 3. An Argument is a literal p or not p of an abducible pred-
icate p, where p could be any element of A, including expectations in
the form E(t)/EN(t), where t is a term.

From now on, if not explicitly stated otherwise, we’ll refer to an
arbitrary but fixed instance S = �P, A, IC� of a SCIFF program. We
also use the terms “hypotheses” and “arguments” interchangeably.

We can now recast Dung’s notion of attacks as a binary relation so
that it fits the ALP semantics of the SCIFF framework.

DEFINITION 4. A set of arguments A attacks
another set � if and only if at least one of the
following expressions is true:

S |= A not p, for some p � �,
S |= A E(t), for some EN(t) � �, or
S |= A EN(t), for some E(t) � �.

In the example of equation 2, A = {E(t),
E(s), E(r)} attacks �1 = {EN(s)} and �2 =
{not p}.

We can prove that ArgSCIFF has the prop-
erties that Kakas and Toni considered fun-
damental of an attacking relation:10

• No set of arguments attacks the empty set
of arguments �. 

• attacks is monotonic—that is, for all (consistent) A, A� , �, and ��
⊆ A, if A attacks �, then 
(i)  if A ⊆ A� then A� attacks �, and 
(ii)  if � ⊆ �� then A attacks �� .

• attacks is compact—that is, � A, � ⊆ A, if A attacks � then there
exists a finite A� ⊆ A such that A� attacks �.

The notion of attacks in definition 4 is symmetric, which makes
ArgSCIFF a symmetric argumentation framework. Moreover, attacks
is irreflexive and, in all nontrivial cases, nonempty. This leads to the
agreement of several semantics and makes ArgSCIFF a coherent,
grounded framework.11 However, we’ll focus on the admissible sets
semantics, which suffices for our purposes here.

For a set of arguments A such that S |= A p for some p, it follows from
SCIFF’s declarative semantics that A is consistent and that if a set of argu-
ments � is attacked by A, A � � isn’t consistent in the SCIFF sense.

In the following definition, we extend Dung’s abstract argumen-
tation framework:4

DEFINITION 5. A set � of arguments is said to be conflict-free if there
are no sets of arguments A and B ⊆ � such that A attacks B.

For example, the set � = {E(t), E(s), E(r), EN(s)} isn’t conflict-
free because it contains A = {E(s)} and B = {EN(s)} and A attacks B.

It follows from definition 5 that all consistent argument sets in the
SCIFF sense are conflict-free and therefore that all arguments A such
that S| = Ap are conflict-free.

Finally, we define admissible sets of arguments according to the
work of Dung4 and Kakas and Toni.10

DEFINITION 6. A (conflict-free) set of arguments � is admissible if and
only if for all sets of arguments A, if A attacks �, then � attacks A \ �.

Dung’s Fundamental Lemma,4 together with the fact that the empty
set is always admissible, implies that all arguments A such that S| =

Ap are admissible sets of arguments for S. This result determines an
ArgSCIFF semantics based on admissible sets. In other words, Web
services using ArgSCIFF will produce requests and responses that con-
tain only consistent argument sets and that can therefore defend each
other against attacks of external defeaters.

Dung defines preferred extensions as maximal sets of admissible
sets of arguments,4 but we focus here instead
on admissible sets of arguments. In fact, as
Kakas and Toni stress,10 because every admis-
sible set of arguments is contained in some
preferred extension, determining that a given
query holds with respect to the semantics of
admissible sets is sufficient for determining
that the query holds with respect to the pre-
ferred extension and partial stable-model
semantics.

The attacks relation can apply to all argu-
ments, including elements of an IC’s body.
For example, if we consider ic = Body �
Head and p � Body, then not p represents an
attack to ic’s body. The reasoning Web ser-
vice agent can use such an attack to inhibit ic.
This corresponds to the concept of undercut,

which appears in the argumentation literature. We can now show how
ArgSCIFF implements this feature for use inside dialogues.

ArgSCIFF proof theory
ArgSCIFF’s proof-theoretic semantics is based on the SCIFF proof

procedure.2 The SCIFF procedure is a rewriting system that transforms
one node into other nodes and, starting from an initial node, defines
a proof tree. A node can be either the special node false or a node
defined by the tuple 

T � �R, CS, PSIC, HAP, �� (3)

where R is the resolvent—that is, a conjunction of literals; CS is the
constraint store, containing CLP constraints and quantifier restric-
tions; PSIC is a set of implications; HAP is the history of happened
events, represented by a set of events; and � is the set of hypotheses
generated by SCIFF (corresponding to a set of arguments in ArgSCIFF).

If one element of the tuple is false, then the tuple is the special
node false, without successors. A derivation D is a sequence of nodes
T0 � T1� … � Tn–1 � Tn.

Given a goal G, a set of integrity constraints IC, and an initial his-
tory HAPi, the first node is T0 � �{G}, �, IC, HAPi, � �. We obtain
the other nodes by applying transitions until no further transition can
be applied.
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DEFINITION 7. Given an initial history HAPi, a SCIFF program S = �P,
A, IC � and a set HAPf ⊇ HAPi, there exists a successful derivation
for a goal G if and only if the proof tree with root node T0 has at least
one leaf node ��, CS, PSIC, HAPf, ��, where CS is consistent. In
such a case, we write 

The transitions are based on those of Fung and Kowalski’s IFF
proof procedure,2 enlarged with those of CLP and with specific tran-
sitions accommodating the concepts of dynamically growing history
and consistency of the set of expectations. The transition inference
rules are

• Unfolding: Substitutes an atom p with its definitions in P:

If p occurs in R, this rule generates n new nodes. If p occurs in
the body of an ic � p � B � H, then it generates one node with
n ICs:

• Propagation: If a literal p � � and ici � p1 � B � H, generates a
new node with the additional ic � (p = p1) � B � H.

• Splitting: Distributes conjunctions and disjunctions so that the final
formula takes a sum-of-products form.

• Case analysis: If ici � (X = t) � B � H, generates two nodes: one
with X = t and ici � B � H, and the other with X  t and ici substi-
tuted with true.

• Factoring: If p1, p2 � �, generates two nodes: one with p1 = p2 and
the other with p1  p2. 

• Rewrite rules for equality: Uses CET inference rules to perform
unification (thus p(t1, …, tn) = p(s1, …, sn) is replaced by

).
• Logical simplifications: Simplify a formula through equivalences

such as A � false � false, [A � true] � A, ….

Additional, SCIFF-specific inference rules are

• Happening: Adds a new happened event H(t) to the set HAP. 
• Closure: Assumes that no more events can happen (sets a closure

flag to true). Used to reason under the Closed World Assumption.
• Nonhappening. If ICi � not H(X) � B � H, and closure = true, per-

forms constructive negation to derive that for each possible
instance of H(X) that doesn’t unify with any HAP element, B �
H holds.

• Consistency. If {E(X), EN(Y)} ⊆ � (or {p(X), not p(Y)} ⊆ �),
imposes X  Y. 

• CLP: Performs CLP reasoning. 

Figure 2 presents a (simplified) derivation tree for the equation 2
example.

ArgSCIFF extends SCIFF in two ways. First, it introduces a notion of
attacks that plays a counterpart to the admissible-sets semantics intro-
duced earlier. Second, it accommodates the acquisition of and rea-
soning on new knowledge (happened events or integrity constraints
received from the counterpart). In particular, new ICs could be part
of the content of a justify message, by which an agent maintains that
it can’t accept a request because of a specific IC.

Reasoning upon ICs taken from the outside is accommodated by
a new transition:

• Deny Body. Upon receipt of an argument of the type ic = [Body �
Head], transition Deny Body attacks it by inserting in the resolvent
R a literal L such that {L} attacks (in the sense of definition 4) Body.

Essentially, in ArgSCIFF, an agent tries to attack the incoming argu-
ments that it can’t accept. So, if these arguments are based on ICs, the
agent tries to undercut the implication by attacking its preconditions.

ArgSCIFF implementation
We developed a prototype ArgSCIFF implementation using a suite

of logic-programming and Semantic-Web technologies. These in-
cluded SICStus Prolog and constraint-handling rules for implement-
ing the transitions, RuleML 0.9 as a mark-up language for exchang-
ing rules such as those in IC, and Axis2 to realize Web services. A
Web form user interface enables calls to CSD’s Web services.

We followed the SCIFF operational semantics to implement Arg-
SCIFF. All exchanged messages are of the kind

H(tell(Sender, Receiver, Content))

in which Content can be any term, including expectations or rules.
Messages are communicated through the activation of a goal:
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〈p, ∅, {�(t ) → �� (s) ∨ � (r )}, ∅,∅〉

Unfolding
〈∅, ∅, {�(t ) → ��(s) ∨ � (r)}, ∅, {� (t ), � (s )}〉

Propagation

〈∅, ∅, {t = t → �� (s ) ∨ � (r )}, ∅, {� (t ), � (s)}〉

   Case analysis t = t                  Case analysis t ≠ t
〈�� (s ) ∨ � (r), ∅, ∅, ∅, {� (t ), � (s)}〉                                      

Splitting                                     Splitting
〈∅, ∅, ∅, ∅, {� (t ), �(s ), �� (s)}〉      〈∅, ∅, ∅, ∅, {� (t ), � (s), � (r )}〉

 
Consistency

                                                

Fail

Fail

Figure 2. Derivation tree for the goal p in the example 
of equation 2.



sendMessage(Receiver, Content)

which schedules a message for delivery. sendMessage is abducible.
The implementation doesn’t actually deliver the message until the
derivation procedure terminates because the set of expectations in
intermediate nodes could be inconsistent. Only after the derivation
terminates are sendMessage abducibles selected from the frontier to
generate corresponding messages and package them for delivery.

Attacks and undercuts
Two facts encode the attacks relations of definition 4:

attacks(E(X), EN(X)) (4)

and 

attacks(EN(X), E(X)) (5)

We specialize the notion of attack further
to events. For instance, a rule whose precon-
dition contains a not H literal applies only if
such an event doesn’t happen. Such a rule’s
consequences are then undercut by a possi-
ble matching event happening. Hence, the
parties could attack each other’s arguments
by event generation. Operationally,

attacks(not H(tell(sarah, X, Content)),
sendMessage(sarah, X, Content)) (6)

defines Sarah’s “active” attack against an ar-
gument of type not H. The attack is precisely
the message being sent.

Finally, undercuts are implemented by the
definition

attacks(Body � Head, Literal) �
member(Atom, Body) � attacks(Atom, Literal)

(7)

Argumentation protocol
Figure 1 depicts the ArgSCIFF argumentation protocol. It’s asym-

metric because it involves entities of different natures. Services (on
the right side of figure 1) are stateless, reactive entities that simply
reply to known requests. In particular, services can agree to or deny
a requesting agent’s request and can give justifications in response to
challenges.

Requesting agents (on the left side of figure 1) are proactive enti-
ties that engage in dialogues to achieve a goal. They can request ser-
vices and challenge denials. The dialogue protocol’s implementa-
tion relies on two kinds of knowledge:

• a domain-independent knowledge that encodes the argumentation
protocol and is the same for both parties, and

• specific, private knowledge, which distinguishes one party from the
other.

Here, we show the domain-independent knowledge base in relation
to the argumentation protocol’s messages.

Request. When a peer receives a request message, it will try to accept
it—that is, it will abduce the expectation carried by the message. This
might succeed or it might generate a failure—for example, because
of a clash with other expectations. In the case of success, the peer
will agree; in the case of failure, it will deny the argument and send
an attacking argument.

H(tell(X, Y, request(E(action(A))))) �
E(action(A)) � sendMessage(X, agree(E(action(A))))

� sendMessage(X, deny(E(action(A)), reason(EN(action(A)))))
(8)

H(tell(X, Y, request(EN(action(A))))) �
EN(action(A)) � sendMessage(X, agree(EN(action(A))))

� sendMessage(X, deny(EN(action(A)), reason(E(action(A)))))
(9)

We can use preferential reasoning to select
between agree and deny by giving higher
preference to accepting expectations than to
avoiding them. In the current implementa-
tion, we’ve realized a built-in, primitive, pref-
erential-reasoning strategy by simply apply-
ing a left-to-right selection rule in the
search-space exploration.

Deny. In the case of denial, a requesting
agent will try to accept the denial by
abducing the attacking expectation. It
might then iterate by sending a different
request. However, if no alternative way to
achieve its goal exists, the agent will try to
challenge the attacking peer’s expecta-
tion—that is, it will ask the peer why its

request wasn’t satisfied:

H(tell(Service, Agent, deny(E(action(A)), reason(EN(action(A))))))
� EN(action(A)) 

� sendMessage(Service, challenge(EN(action(A)))) (10)

H(tell(Service, Agent, deny(EN(action(A)), reason(E(action(A)))))) 
� E(action(A))

� sendMessage(Service, challenge(E(action(A)))) (11)

Challenge. The reply to a challenge is an agent or service X’s set
of rules that can generate an attacking argument. In this way, the
other peer (Y) can reason on new, previously unknown rules and
possibly attack the arguments that X puts forward. An IC imple-
ments this mechanism:

H(tell(X, Y, challenge(Argument))) �
replyChallenge(Y, X, Argument)

where replyChallenge filters out and groups together all relevant
rules—for example, a selection of those used by X’s reasoning engine
(SCIFF) to generate Argument—and sends them packaged in a justify
message.
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Justify. A justify message contains a rule that explains how the
agent or service produced the challenged argument. An agent
receiving a justify message will try to undercut the argument:

H (tell(X, Y, justify(Argument))) �
attacks(Argument, AttackingArgument)

� sendMessage(X, request(AttackingArgument))

The attacks predicate is defined in a knowledge base (equations
4–7). It relies on the semantics of attacks and will try to prove that
the AttackingArgument is true. In other words, it will try to find an
admissible set containing the AttackingArgument. If it does, it sends
a corresponding message to the other party in the form of a new
request.

Sarah versus CSD reloaded
We now show Sarah’s and CSD’s specific knowledge and demon-

strate how we implemented the running
example.

Besides the general knowledge base and
ICs used to implement the argumentation
framework, Sarah also has a goal G—
namely, attending the conference conf:

G � E(action(attend(sarah, conf)))

Moreover, she knows that whenever she
wants to attend a conference, she must send
a request to the administration’s authoriza-
tion service:

E(action(attend(sarah, conf))) �
sendMessage(csd,
request(E(action(attend(sarah, conf)))))

The CSD administration service has the following rule:

not H(tell(X, csd, authorization)) � EN(action(attend(X, C))) (12)

which means that no member of the department can attend any con-
ference, unless authorized.

Sarah tries to satisfy her goal and abduces E(action(attend(sarah,
conf))). She sends this argument to CSD in a request message. CSD
tries to accept Sarah’s argument but finds that it clashes with the argu-
ment stated in equation 12. It therefore doesn’t accept the argument
and sends a term

deny(E(action(attend(sarah, conf))), reason(EN(attend(sarah, conf))))

to Sarah (see equation 8). Sarah, on her side, tries to accept the depart-
ment’s argument, but it clashes with her goal. Her only choice is to
attack the argument. Using the rule in equation 10, she challenges
the department to explain why it denied her request. The department
replies by selecting the appropriate rules from the knowledge base via
the replyChallenge predicate and communicating them to Sarah via
a justify message. In particular, CSD sends Sarah the rule in equa-
tion 12. 

Now Sarah knows why the department didn’t accept her argument

and tries to undercut the received rule by negating its preconditions.
Equation 12’s only precondition is a missing authorization, not
H(tell(X, csd, authorization)), and Sarah knows (by the rule in equa-
tion 6) that she can provide the authorization and thus attack the
ground for CSD’s argument.

Sarah queries the CSD service again, providing the authorization
together with her goal:

H(tell(sarah, csd, authorization)), E(action(attend(sarah, conf)))

Once CSD knows that Sarah has an authorization, it no longer gen-
erates an argument against her request. Instead, according to the
SCIFF semantics, it generates an argument containing a quantifier
restriction:

�X  sarah EN(action(attend(X, C)))

meaning that no one except Sarah can attend
a conference. Because this argument doesn’t
clash with Sarah’s goal, CSD agrees with her
request.

Besides identifying an important role
for argumentation in the Semantic

Web, the work we report here advances the
state of the art by casting the semantic and
operational foundations for the ArgSCIFF

architecture. This architecture provides a
solid base for future implementations to sup-
port argumentation-based interaction among
Web services. 

The prototype system implementation is
currently undergoing testing. Our first simulations, which ran in a
controlled environment inside our department, show that a dialogi-
cal interface facilitates users’ acceptance of applied regulations
because they can better understand them. Future work includes exten-
sive empirical system evaluation and experimentation, study of the
proof procedure’s computational complexity, identification of tractable
problem classes, and a deeper investigation of combining argumen-
tation technology and ALP.
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