
Agent Planning, Negotiation and Control of Operation
Antonis C. Kakas1, Paolo Torroni2 and Neophytos Demetriou1

Abstract. This paper presents a framework that integrates three as-
pects of agency:planning, for proactive behaviour,negotiation, for
social behaviour and resource achievement, andcontrol of operation,
for reconciling rationality with reactivity. Agents are designed and
programmed in a computational logic-based language where these
aspects are accommodated in a declarative and modular way. We
show how this framework can be applied to agent problems requiring
negotiation and resource achievement and present some of its formal
properties. The framework can be implemented based on a commu-
nication platform for agent interaction and on well-established logic
programming technologies for agent reasoning.

1 Introduction

Agents often need to collaborate (operate jointly) with other agents
in order to achieve their goals. This need for collaboration presents a
challenging problem of synthesizing together several different agent
tasks, such asplanning - including the task of recognizing if and
when a collaboration is needed,negotiationwith other agents for
their needs andexecutionof plans. Within this synthesis agents also
need to take important decisions as to which plan to select in order to
achieve their goals, which agents to choose to negotiate with and how
to negotiate given the agent’s own characteristics and any protocols
that they are meant to comply with.

Many logic-based agent frameworks have been proposed to ex-
press agent reasoning [10], dialogue and negotiation [1, 15], plan-
ning and integration with data sources [2], focussing on a particular
aspect of the picture at a time . We present a fully-fledged framework
for designing agents that can operate jointly in problem solving. This
framework is based on aBDI-like model of agency [14]: the KGP
model developed in the SOCS project [9], where an agent is sepa-
rated into modular components expressed in the high-level declar-
ative language of Computational Logic. We extend it by allowing
preference policies in any knowledge component of the agent and
conditional plans in its planning capability, and by supporting ne-
gotiation between agents with a variety of individual behaviours, e.g.
cooperative or not. We study how planning, negotiation and temporal
reasoning about changes in the world can be synthesized together to
set up and carry out collaborative operations of agents. This modular
synthesis facilitates the application to a wide class of problems, and it
allows adaptability of behaviour to changing conditions, e.g. relative
roles of agents, in an open and dynamically changing environment.

A key element for this is the fact that in the design of an agent its
overall control of operation and its various components containpri-
vate preference policiesthat shape the various decisions of the agent
at different levels, e.g decisions of which plan to use, which agents

1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
email: antonis@cs.ucy.ac.cy, k2pts@cytanet.com.cy

2 DEIS, Universit̀a di Bologna, Bologna, Italy email: paolo.torroni@unibo.it

to collaborate with, which way to reply to requests. We illustrate this
flexibility of the approach by giving an example of an agent’s private
policy for the decision of how to carry out a negotiation conversation
and show how agents can hold a negotiation dialogue, using such
policies, guaranteeing various formal properties of this operation. A
prototypical implementation of the framework exists [17], with ap-
plication to example problems proposed in the literature [13, 4].

2 Agent Problem Solving with Collaboration
We will adopt aBDI-like model of agency [14], where an agent has
Knowledge, Goals andPlans for these goals. Its knowledge,KB,
consists of severalmodularcomponents of separate concerns. Such
components areKBPlan, KBTR andKBNeg for planning, temporal
reasoning and negotiation respectively. The language of representa-
tion and computation is that ofComputational Logic(CL) [12, 11]
and in particular, Abductive Logic Programming (ALP) [7] together
with Logic Programming with Priorities (LPP) [10, 3].

The agent has a state,S = 〈KB0, Goals, P lan〉, where:
• KB0 is a logic program holding facts about actions that have oc-

curred and observations of fluent properties in the world;
• Goals consists of goals of the formholds(L, T) expressing the

desire that “a fluent literalL is true at timeT ”;
• Plan is a (conditional) plan forGoals givenKB0 expressing the

current intentions of the agent about how to satisfy its goals.
Abductive reasoning in ALP is used as the basis for planning and

other tasks that may require reasoning with incomplete information.
Reasoning with priorities in LPP gives a form of preference reason-
ing that affects the decision making of an agent. Any component of
the knowledge base can contain apreference policythat gives in a
declarative way a selection mechanism sensitive to the current condi-
tions of operation, e.g., inKBPlan which plan to choose, or inKBNeg

which agent to choose to negotiate with.
The operation of an agent is regulated via a declarativecycle the-

ory, also expressing in LPP as a preference policy of internal state
transitions. This policy determines the next state transition as a pre-
ferred transition according to some general behaviour characteristics
expressed by the cycle theory. Cycle theories thus allow for the flex-
ibility to capture at a high level different profiles of behaviour for the
agents, e.g. cooperative or non-cooperative etc.

2.1 Planning and Temporal Reasoning
Given a (set of) goal(s), an agent is able to generate a number of al-
ternative plans to achieve them, using the Abductive Event Calculus
(AEC) [6, 16] as its basis for planning. In fact, the agent needs to per-
form conditional planningin view of the open environment in which
it operates. In the AEC, a conditional planP for a goalG is a triple
P = 〈∆, C,O〉, where∆ is a set of timed actions,C a set of timed
conditions on a particular set of fluents, andO a partial order on the
times of actions and conditions. This is required to satisfy

TAEC ∪ C ∪ ∆ |= G and TAEC ∪ C ∪ ∆ |= IAEC

whereTAEC contains the general theory of AEC and the current
KB0, and IAEC are its integrity constraints.TAEC also contains
the agent-depended knowledge, mainly as a set ofinit(iates) and
term(inates)clauses, expressing the agents particular capabilities to
perform actions in order to initiate or terminate properties. For ex-
ample, an agent could use the clause:init(play(CD), T, music), to
plan the action “play(CD)” and reach the goal “(listen to)music”.

The conditions inC are on particular fluents representing proper-
ties that agents cannot bring about by their own actions alone. An
example is the fluentpromise(from(Peer), Res), representing the
property that agentPeerhas promised to give away the resourcesRes.
These conditions link planning and negotiation together, as follows.
To perform an action an agent will typically need touseresources. In
planning, this is modelled as a fluent conditionuseof(Res)to mean
that resourcesReshave beenallocated. In the simple example above,
the feasibility of the effect of “play(CD)” relies on the possibility
to allocate two resources: a working CD player and a CD. This then
is expressed by the following rule:

init(playMusic, T, music) ←
holds(use of(workingCDP), T), holds(use of(CD), T).

The general theory of allocating resources is captured by the fol-
lowing (domain independent) rules as part of the AEC theory,TAEC .

init(get(from(Peer), Res), T, available(Res)).
precond(get(from(Peer), Res), promise(from(Peer), Res)).
precond(get(from(Peer), Res), asked(Peer, Res)).
init(tell(Peer, msg(from(self), req(Res))), T, asked(Peer, Res)).
init(use(Res), T, use of(Res)).
term(use(Res), T, available(Res)).
precond(use(Res), available(Res)).
Hence, if an agent needs the use of a resourceRes, it can arrange

in its plan to makeResavailable bygetting it from some other agent.
The preconditions of this require that it must ask the agent and that
it must have a promise forRes. For the first it will add in its plan
a tell(Peer, msg(from(self), req(Res))) communication action to
request this. The promise precondition is added in the conditionsC
of the plan. The request action when executed will start (as we will
see below) a negotiation with thePeerthat may or may not lead to the
required promise. If it does then the agent will be able to execute the
get action and acquire its need, otherwise the plan is not feasible. We
do not model here the actual delivery of resources, and we assume
that agents abide by their promises.

Promises are generated by successful negotiations dialogues. One
way to capture this in theTAEC theory is the following:

init(tell(self, msg(from(Peer), terms(Needs, Terms))), T,

cond promise(to(self), terms(Needs, Terms))).
wherecondpromise(to(Peer),terms(Needs, Terms)) means that the
agent promisesNeeds, provided that the other agent promisesTerms
in exchange. A conditional promise and an unconditional promise
of the Termslink together, to give an unconditional promise of the
request. This is captured by the rules:

init(tell(Peer, msg(from(self), yes(Needs, Terms))), T,

promise(to(Peer), Terms)) ←
holds at(cond promise(to(self), terms(Needs, Terms), T).

init(tell(Peer, msg(from(self), yes(Needs, Terms))), T,

promise(from(Peer), Needs)) ←
holds at(cond promise(to(self), terms(Needs, Terms), T).

We will assume that all needs in a plan are collected together and
compared with the agent’s initially available needs to compute its
additional needs. These can then be requested together at the start of
the plan, in an initial step,P R, working under the simplified assump-

tions that agents negotiate for all their needs together, before starting
to execute the plan, in order to ensure its feasibility.

2.2 Agent Negotiation Policies
An agent has severalprivatepreference policies modularly separated
in its knowledge base components. We present here, as an example,
an agent’sNegotiation Conversationpolicy that it uses to choose its
responses during a negotiation conversation. We will see below how
this is integrated with a global negotiation protocol and how these are
captured within the operation preference policy of the cycle theory
of the agent.

The Negotiation Conversation policy is expressed by a theory,
KBNC , of rules and priorities on rules within the extended logic
programming framework ofLPwNF [8, 10]. This framework is
equipped with an argumentation-based notion of preference entail-
ment, that we refer to as|=pr. Intuitively, given a theoryT , T |=pr

L means that the literal,L, is a conclusion of a sub-theory ofT which
is “preferred”, w.r.t. the strength of the rules given by the priorities
specified inT , over any sub-theory ofT that derives a conclusion
incompatible withL. Lack of space does not allows us to give more
details and we will concentrate only to illustrate the flexibility af-
forded by the framework. A simple policy is as follows:

“You can reject requests. You can accept a request if you can
currently satisfy it. Prefer to get terms (your current needs) in
exchange of accepting a request. Similarly, terms offered in ex-
change of satisfying a request can be rejected or accepted if
they can be currently satisfied.”

We will consider a 2-agent setting, where messages are received by
an agentAg in the formmsg(from(Ag′), Content) and then added
to Ag’s KB0. Then this policy can be represented with rules of the
following form, where we have simplified several issues, such as re-
sponse time, which are out of the main scope of this paper:
rterms(Peer, terms(Needs, Terms)) :

msg(to(Peer), terms(Needs, Terms)) ←
msg(from(Peer), req(Needs)), current satisfiable(Needs),
current terms(Terms).

This rule (hererterms(Peer, terms(Needs, Terms)) is a parame-
terized term that names the rule) provides an argument for the agent
to accept a request forNeeds, when these can be currently satis-
fied. This acceptance is under someTermswhich are drawn from
the needs of the agent in its current plan. IfTermsis empty,rterms

means unconditional acceptance. Similarly, we have a rule, named
rreject(Peer, Request), for arguments to reject a request.

Beside these rules providing arguments to either reject or accept
a request, the policy also contains priority rules that shape a prefer-
ence policy for the agent. For example, the preference to accept with
Termsover rejecting is captured by:
Rterms|reject(Peer, Needs, Terms) :
rterms(Peer, terms(Needs, Terms)) > rreject(Peer, req(Needs)).
whereRule1 > Rule2 is a special binary predicate in the repre-
sentation language that expresses a priority over any two rules of the
given theory named by the termsRule1, Rule2.

This rule applies even in the case where theTermsare empty. But
accepting a request with empty terms has no personal gain and so an
agent may prefer to reject a request in such a case:
Rreject|terms(Peer, Needs, ∅) :
rreject(Peer, req(Needs)) > rterms(Peer, terms(Needs, ∅)).

We can then distinguish two types of agents:cooperativeandnon-
cooperative, by assigning different priority among these two priority
rules. Hence including in the theory thehigher orderpriority rule

Ccoop(Peer, Needs, ∅) :
Rterms|reject(Peer, Needs, ∅) > Rreject|terms(Peer, Needs, ∅).
gives acooperativepolicy whereas for anon-cooperativepolicy we
will include a ruleCnon−coop stating opposite priorities.

Given such a policy theory,KBNC , and a current message,
msg(from(Peer), Content), the construction of a response mes-
sage,msg(to(Peer), Reply), is given by:
KBNC ∪ {msg(from(Peer), Req)} |=pr msg(to(Peer), Reply)
where|=pr is the argumentation-based preference entailment that de-
rives from the theory a conclusion with the strongest argument. For
example, in the above policies given a current message of request for
someNeedsthat are satisfiable, we have arguments both for accept-
ing with terms and for rejecting. But, whenTermsare not empty, the
strongest is that of accepting, due to the priority ruleRterms|reject.
Instead, if the current terms are empty, then the other priority rule
Rreject|terms also applies and so the argument of rejecting is equally
strong. The strongest argument is then decided by which one of the
higher-order rules (Ccoop or Cnon−coop) is in the theory.

The modular distinction of the two policies of cooperation and
non-cooperation simply in terms of the addition of an extra rule,
Ccoop, orCnon−coop, respectively, shows theflexibility of the frame-
work. This can be further illustrated by considering how a policy can
be sensitive to the context of any particular negotiation, allowing the
same agent to be cooperative in some cases and non-cooperative in
other cases. For example, if we want an agent to be cooperative only
when a request comes from a colleague we can we exploit the fact
that priority rules can beconditionalto capture this via the rule:
Ccoop(Peer, Needs, ∅) :
Rterms|reject(Peer, Needs, ∅) > Rreject|terms(Peer, Needs, ∅) ←

colleague(Peer).
We could have more elaborated policies, accommodating for ex-

ample dynamic events such as authorizations. We would then replace
in the above rule the conditioncolleague with authority which be-
comes true dynamically when the society instructs so.

2.3 Control of Operation
The operation of our agents is regulated by their cycle theories ex-
pressing preference policies which encode declaratively different be-
haviour characteristics in the operation of the agents. For agents in
this paper it will suffice to consider only a specific cycle theory,
which can be compiled into a fixed cycle of operation. Informally,
this cycle goes through the steps: (a) observe and assimilate infor-
mation from the external environment; (b) decide on goals according
to your privategoal decisionpreference policy; (c) plan and choose
plans according to a privateplan selectionpreference policy; (d) ne-
gotiate for needs (resources) required by plans; (e1) if negotiation
is successful then acquire the promised needs (and deliver promised
terms); (e2) if negotiation is unsuccessful then choose a new plan and
return to (d); (f) execute plans and return to (a).

In a social environment, like e.g. a institution, the negotiation
between agents is typically required to conform to some protocol,
through which the society requires a certain type of behaviour from
the agents. In general, a society protocol can be reflected into a pref-
erence policy that is modularly integrated as a subpart of the cycle
policy of each agent (for fully compliant agents). Then restricting our
attention mainly on the negotiation, the main preferences in the op-
erational behaviour of the agents, captured by their cycle theory, are:
(i) prefer to negotiate before starting to execute (e.g. consume re-
sources) your plans –collaborative/work jointly behaviour(ii) pre-
fer to change plan when asked to do so by another agent even when
your current plan is feasible, –philagentic behaviour(iii) prefer to

stay with the plan that you had when another agent opened a negotia-
tion dialogue and prefer to continue an open dialogue rather than start
a new one –coherent behaviour(iv) prefer to acquire needs only af-
ter promises have been agreed for these –consistent behaviour.

We will consider only a simple example of a society negotiation
protocol as depicted in Fig. 1 as a finite state machine.S1 is an initial
state,S2 is a successful final state andS3, S5, andS6 are unsuccess-
ful final states. A single line arc shows an exchange of a message
between the two agents while a double line arc shows a negotiation
conversation between the agents, where several message exchanges
may occur. The protocol on the right side of Fig. 1 is part of the

Figure 1. Protocol

protocol synthetically depicted on the left side by double line arcs.
Herex, the initiator, asks a set ofNeedsas specified in the initial part
P R of its currently selected planP in order to make this feasible.
At stateS2, the negotiation conversation finishes successfully (byx

accepting the terms ofy) and hence both current plans ofx andy

are feasible. At stateS3, the negotiation conversation finishes byx

refusingy’s terms. Hencex’s plan is feasible, buty’s is not. Agenty
will next choose a (new) plan and start a new dialogue askingx for
its needs, following the same protocol with exchanged roles.

Another possibility is, fromS1, to notify that there are no more
plans left (nmp): thus, at stateS4, agenty deletes its current plan
- asx cannot make any of its plans feasible under this - and picks
a new plan notifyingx of this by an “ack” message (reachingS5).
This thus encodes an extreme cooperative orphilagenticbehaviour,
by the agents operating under this protocol. Alternatively, at state
S4, y realizes that its has no more new plans and causes the overall
negotiation process to terminate with failure (S6).

We now present acycle of operationfor anextremely cooperative
(or philagentic) behaviour, of an agentAg, that is compiled from
a cycle theory with preferences given above and that encompasses
this society protocol. HereS denotes the set of plans for a given set
of goals, initially empty, that the agent has currently deleted from
consideration.OD(Ag) or OD(Ag, Π) denotes the current negotia-
tion dialogue opened by an initial request by the agentAg whereΠ
denotes the set of plans thatAg has tried so far within this dialogue.

1. Goal Introduction (GI): Decide top-level goalsGs.

2. Plan Introduction (PI): Choose a planP for Gs s.t.P 6∈ S. If
OD(Ag, Π), an additional condition is:P 6∈ Π.

3. Negotiation Dialogue (ND):

3.0 - If receive “fail”: Terminate with failure. Return to step 1.
3.1 - If no (new)P exists andOD(Ag): Send “nmp” message,

wait for OD(Ag) to be closed and return to 3.
3.2 - If no (new)P exists and notOD(Ag): Terminate with

failure. Send “fail”. Return to step 1.
3.3 - If received “nmp” and P exists: Delete planP , i.e. addP

to S. Send “ack” message closingOD(Ag′). Return to 2.
3.4 - If received “nmp” and no P exists: Terminate with fail-

ure. Send “fail”. Return to step 1.

3.5 - If P exists andOD(Ag, Π): ReplaceΠ with Π ∪ {P}.
StartNegotiation Conversation NN(P) for theNeeds(possibly
empty) in the planP .

3.6 - If P exists and no dialogue is open:Either open new di-
alogue OD(Ag, {P}), and start Negotiation Conversation
NN(P): for theNeeds(possibly empty) in the planP , or wait
until OD(Ag′) is opened byAg′ 6= Ag, and startNegotia-
tion Conversation NT(P): to negotiate withTermsequal to the
Needs(possibly empty) that it has in the planP .

4.1 - If NN or NT succeeds Action Execution (AE(Needs)):
Agent Ag gets its Needsand gives theTerms that it has
promised. Dialogue closes.

4.2 - If OD(Ag) and NN ends withmsg(from(Ag′), no(Needs,
Terms)): Go to step 2 withOD(Ag) open to try another plan.

4.3 - If OD(Ag) and NN ends withmsg(from(Ag), no(Needs,
Terms)): Close dialogueOD(Ag). Return to 3.6.2.

5. Action Execution AE(P): Execute planP . Return to 1.

In the above negotiation dialogue the agents engage in two types
of negotiation conversations: Negotiation for Needs, NNand Ne-
gotiation for Terms, NT. NN refers to the conversation of an agent
Ag that makes an initial request forNeeds; NT to the reply to such
a request, when the agent negotiates for terms in return. They de-
pend on the agents’ current plansP and on their private negotia-
tion policies,KBNeg. In fact, the agents will decide how to pro-
ceed in the conversation, based on theirKBNeg and preference
reasoning|=pr, as presented in 2.2. They terminate successfully
iff either of the agents sends amsg(to(Peer), yes(Needs, Terms))
message.NN opened byAg ends in failure either whenAg re-
ceivesmsg(from(Ag′), no(Needs)) or when it sends the message
msg(from(Ag), no(Terms)). NT fails immediately withNN.

We note that depending on the negotiation policy, e.g. cooperative
or non-cooperative, we can obtain different behaviours in the these
conversations. Thus different ways to use the negotiation protocol are
possible by a simple modular change of this private policy.

3 Formal Results
Let Px(Gs) be the set of alternative plans, generated by agentx to
achieveGs. We call aplanP ∈ Px(Gs) feasibleif x initially has all
the resources to carry it out or ifx has been promised those missing
(Needs). We call agoal G of an agentx feasibleif there exists a
feasible planP ∈ Px(Gs). Finally, we call aKGP-agentan agent
using the negotiation policies defined in Sec. 2.2 and cycle operations
described in Sec. 2.3.

We are now able to state some properties about the system. We will
focus on 2-agent situations such that there exists a possible choice of
plans forx andy and a reallocation of resources which makes such
plans feasible (solvability assumption).
Proposition 1 Let us consider twoKGP-agents, engaged in a ne-
gotiation dialogue. Then, the dialogue will comply with the protocol
described in Sec. 2.3.
This result follows by the agent policies and control theory.
Theorem 2 Given twoKGP-agents and a possible exchange of re-
sources that makes their goals feasible (solvability assumption):
(i) if both agents are cooperative, there exists a negotiation dialogue
achieving such an exchange;(ii) if one agent is cooperative and one
is non-cooperative, there exists a negotiation dialogue achieving an
exchange that fulfills the plan of the non-cooperative agent.
This result holds because a cooperative agent is willing to give away
a resource for nothing in exchange, and the philagentic agent cycle of

operation implements an exhaustive search in the space of solutions
of a resource reallocation problem. We do not say anything instead
in case the two agents are both non-cooperative: in fact, if a non-
cooperative agent does not have any needs, he will reject all incoming
requests, and this may result in failing to find a suitable resource
allocation for both agents.
Corollary 3 Given two cooperativeKGP-agents, under the
solvability assumption, there exists an operation of the two agents
that successfully executes their plans.
In fact, by Theor. 2 there exists a negotiation dialogue which achieves
an exchange of resources that makes both agents’ goals feasible, and
the control of operation described in Sec. 2.3 allows to find a combi-
nation of choices of plans which allows for such a dialogue, and to
produce the dialogue itself.
Theorem 4 Given twoKGP-agents, under thesolvability assump-
tion, then the agents will execute their plans successfully (in an ideal
external world).
This result follows from Cor. 3. In fact, as specified by the cycle of
Sect. 2.3,KGP-agentsdo not consume their resources until a dia-
logue has successfully terminated, thus preventing agents from fol-
lowing a plan which consumes resources needed to the other agent,
while they could follow instead some alternative plan which accom-
modates both agents’ needs.

We conclude this section with a remark. While negotiation for
terms may not be essential in ideal worlds of collaboration, it is in-
deed natural in open environments, where requests could be refused
e.g. by non-cooperative agents. Therefore, while we focussed onre-
sults about agents following a specific behaviour, such as coopera-
tive and philagentic, we provide a framework which is indeed open
to heterogeneity, and to more general profiles of agents where their
inclination to collaborate could depend on roles and context.

4 Agent problem solving Behaviour
In this section we briefly demonstrate the application of our frame-
work to an example problem proposed in [13]. The example can be
summarised as follows:3 John has the goal to listen to music and Pe-
ter the goals of returning his books to the library and have beer. John
has $10, a CD, and a broken CD player. He is able to play music and
return books to the library at no cost. Peter has $15. To get the beer
he needs $25. He is able to return the books, by paying $10 for the
taxi. He is also able to repair broken CD Players (whereas John does
not have this capability himself).

Agents are unaware of each other’s capabilities. They only know
which of their (sub)goals can be requested to other agents. Such
requestable goals are:workingCDP for John, booksreturned for
Peter, and the resourcemoney for either agent. The individual
expertise (capabilities) of each agent is captured simply by adding
domain specific knowledge in their respectiveTAEC . For instance:
KBJohn: init(play(CD), T, music) ←

holds(use of(workingCDP), T), holds(use of(CD), T).
init(return(Books), T, books returned(Books))

KBPeter: init(return(Books), T, books returned(Books)) ←
holds(use of(money, 10), T).
init(repairCDP, T, working CDP).

Heremoney is a cumulative resource and inuse of(money, Q)
the number,Q, indicates its quantity.

The agents start their operation (asynchronously), following their
cooperative cycle of operation as in section 2.3, by deciding, accord-
ing to their goal decision policy, their top-level goals of:music for

3 In [4] this example is worked out in detail.

John andbeer, books returned for Peter. They then generate the
following conditional plans for these goals, where again we have as-
sumed that their plan selection preference policy picks these plans
given the current conditions:

PJohn = {request(workingCDP, T0), get(workingCDP, T1)}
∪ {use(my cd, T2), use(workingCDP, T2), play(my cd, T3)}

PPeter = {request((money, 20), T ′
0), get((money, 20), T ′

1)}
∪ {use((money, 10), T ′

2), return(my books, T ′
2),

use((money, 25), T ′
3), buyBeer(T ′

3)}

which are conditional onholds(promise(workingCDP), T1) and
holds(promise((money, 20)), T ′

1), respectively, whereT0 <

T1 < T2 < T3, T
′
0 < T ′

1 < T ′
2 andT ′

1 < T ′
3.

At this stage one of the agents starts a negotiation dia-
logue for the needs in its plan. Suppose that John executes the
action tell(peter, msg(from(john), req(workingCDP)), request-
ing the needworkingCDP. Peter accepts, asking forTerms =
{(money, 20)} which in turn John refuses as it does not have
them available. John has no other plan and thus it notifies Peter
via a “nmp” message. Peter, conforming to the cooperative proto-
col, deletes its plan, and finds a new plan which explicitly requests
books returned, along with $10 for the goal ofbeer. They will then
continue the negotiation and irrespective of who makes the first re-
quest they will now agree, as their needs can be satisfied by each
other. Once the agents then have promises from each other for their
Needs, they can proceed to acquiring them (get action) and finally
executing the remainder of their plans to satisfy their goals.

5 Discussion
In this paper, we presented a logic-based framework that synthesizes
in a modular way three aspects of agency: planning, negotiation, and
control of operation. The main advantages of our approach are in
the use of a declarative formalism, in its modularity and openness to
extension, and in its computational realizability.

In [1], Amgoud et al. present a framework where argumentation
is used to support agent dialogues. The authors focus on the use of
argumentation for agent negotiation, rather than on the overall opera-
tional agent framework. Building on [1], Sadri et al. [15] propose an
operational framework for automated negotiation processes based on
abductive logic programming, and start investigating some properties
of the framework. In the cited work and its following extensions, the
authors focus on the ability of agents to produce dialogues, on pro-
tocol compliance, and on ability to solve resource reallocation prob-
lems, achieving results which are comparable with ours. However,
their architecture, focussing on the reasoning needed to produce dia-
logues, is independent of other agent capabilities, such as planning.
Moreover, differently from [15], our use of preference reasoning al-
lows for a modular agent programming.

IMPACT is an agent platform mainly developed at the University
of Maryland [2], where the authors use a deontic formalism to guide
the agent deliberation process, by calculating a “deontically consis-
tent” stable model [5]. Despite the common formal ground, based
on logic programming, our approaches are very different: IMPACT
agents can be seen as wrappers that can “agentify” other components
such as heterogenous data sources and planners. In this work instead
we present a modular though unified architecture, aimed at program-
ming agents in a flexible and declarative way, and at being able to
prove properties about their behaviour.

Finally, the example presented in Sect. 4 was first proposed by
Küngas and Matskin [13], to show agent cooperative problem solving
achieved by use of linear logic and partial deduction. Our work dif-

fers from [13] in several aspects, includingautonomy, as the amount
of information shared by agents is tuned by the policies, and agents
are not necessarily cooperative,planning capabilities, modularityof
knowledge representation, and finally the ability to reason on dy-
namic and contextual information.

Our framework is able to accommodate several variations and ex-
tensions of agent distributed problem solving. These include prob-
lems where the agents are heterogeneous, e.g., where some agents
are cooperative and some are not. Similarly, we can accommodate is-
sues that relate to adapting the negotiation to different circumstances,
e.g., the type of requested need or the relative roles of the agents in-
volved, by exploiting the added flexibility of the private agent poli-
cies. We conclude by discussing some weak points of our approach
so far. We made the simplifying assumptions that agents negotiate for
all their needs together and in advance. In more realistic scenarios,
agents might need to interleave plan execution with the negotiation of
needs (which still can be dealt with by conditional planning). Also,
in general there are more than two agents involved in a resource re-
allocation scenario. In the future, besides addressing these technical
limitations, we would like to use our prototypical implementation to
perform an extensive testing on a number of scenarios, also to deter-
mine to which extent this negotiation methodology scales up.

ACKNOWLEDGEMENTS

This work was supported by the European Commission FET Global
Computing Initiative within the SOCS project (IST-2001-32530),
and by the MIUR COFIN 2003 projectSviluppo e verifica di sistemi
multiagente basati sulla logica.

REFERENCES
[1] L. Amgoud, S. Parsons, and N. Maudet, ‘Arguments, dialogueand ne-

gotiation’, inProc. ECAI, IOS Press, (2000).
[2] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian, T. Eiter, and

S. Kraus, ‘IMPACT: a Platform for Collaborating Agents’,IEEE Intel-
ligent Systems, 14(2), 64–72, (1999).

[3] G. Brewka, ‘Well founded semantics for extended logic programs with
dynamic preferences’,JAIR, 4, 19–36, (1996).

[4] N. Demetriou, A. C. Kakas, and P. Torroni. Further examplesof the
functioning of computees, Discussion Note, SOCS Consortium,(2003).

[5] T. Eiter, V. S. Subrahmanian, and T. J. Rodgers, ‘Heterogeneous active
agents, I: Semantics’,AIJ, 108(1/2), 179-255, (2000).

[6] K. Eshghi, ‘Abductive planning with the event calculus’, in Proc. ICLP.
MIT Press, (1988).

[7] A. C. Kakas, R. A. Kowalski, and F. Toni, ‘Abductive LogicProgram-
ming’, Journal of Logic and Computation, 2(6), 719–770, (1993).

[8] A. C. Kakas, P. Mancarella, and P. M. Dung, ‘The acceptability seman-
tics for logic programs’, inProc. ICLP, pp. 504–519, (1994).

[9] A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni, ‘The KGP
Model of Agency’, in this volume.

[10] A. C. Kakas and P. Moraı̈tis, ‘Argumentation based decision making for
autonomous agents’, inProc.AAMAS, pp. 883–890. ACM, (2003).

[11] A. C. Kakas and F. Sadri,Computational Logic: Logic Programming
and Beyond, LNAI 2407and2408, Springer, (2002).

[12] R. A. Kowalski, ‘Problems and promises of computational logic’, in
Proc. Symp. on Comp. Logic, pp. 1–36. Springer, (1990).

[13] P. Küngas and M. Matskin, ‘Linear logic, partial deduction and cooper-
ative problem solving’, inProc. DALT, LNAI 2990, Springer, (2004).

[14] A. S. Rao and M. P. Georgeff, ‘Modeling rational agents within a BDI-
architecture’, inProc. (KR&R), pp. 473–484. MKP, (1991).

[15] F. Sadri, F. Toni, and P. Torroni, ‘Logic agents, dialogues and negotia-
tion: an abductive approach’, inProc. AISB, (2001).

[16] M. Shanahan, ‘Solving the frame problem: a mathematical investiga-
tion of the common sense law of inertia’. MIT Press, (1997).

[17] K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Brac-
ciali. ‘PROSOCS: a platform for programming software agents in com-
putational logic.’ InProc. AT2AI-4/EMCSR Session M, (2004).

