
Comput Math Organiz Theor (2006) 12:205–225

DOI 10.1007/s10588-006-9544-8

Mapping deontic operators to abductive expectations

Marco Alberti · Marco Gavanelli · Evelina Lamma ·
Paola Mello · Giovanni Sartor · Paolo Torroni

C© Springer Science + Business Media, LLC 2006

Abstract Deontic concepts and operators have been widely used in several fields
where representation of norms is needed, including legal reasoning and normative
multi-agent systems.

The EU-funded SOCS project has provided a language to specify the agent in-
teraction in open multi-agent systems. The language is equipped with a declarative
semantics based on abductive logic programming, and an operational semantics con-
sisting of a (sound and complete) abductive proof procedure. In the SOCS framework,
the specification is used directly as a program for the verification procedure.

In this paper, we propose a mapping of the usual deontic operators (obligations, pro-
hibition, permission) to language entities, called expectations, available in the SOCS
social framework. Although expectations and deontic operators can be quite differ-
ent from a philosophical viewpoint, we support our mapping by showing a similarity

M. Alberti . M. Gavanelli . E. Lamma
ENDIF, Università di Ferrara—Via Saragat, 1-44100 Ferrara, Italy
e-mail: malberti@ing.unife.it

M. Gavanelli
e-mail: mgavanelli@ing.unife.it

E. Lamma
e-mail: elamma@ing.unife.it

P. Mello . P. Torroni
DEIS, Università di Bologna—Viale Risorgimento, 2-40136 Bologna, Italy
e-mail: pmello@deis.unibo.it

P. Torroni
e-mail: ptorroni@deis.unibo.it

G. Sartor
CIRSFID, Università di Bologna—Via Galliera, 2-40100 Bologna, Italy
e-mail: sartor@cirfid.unibo.it

Springer

206 M. Alberti, M. Gavanelli et al.

between the abductive semantics for expectations and the Kripke semantics that can
be given to deontic operators.

The main purpose of this work is to make the computational machinery from the
SOCS social framework available for the specification and verification of systems by
means of deontic operators.

Keywords Normative systems . Deontic logic . Abduction . Semantics

1. Introduction

In the context of multiagent systems (MAS) the concepts of norms, commitments and
social relations have been widely studied (Conte, Falcone and Sartor 1999). Further-
more, a lot of research has been devoted in proposing architectures for developing
agents with social awareness (see, for instance, Castelfranchi et al., 1999), and sev-
eral approaches to agent society modeling have applied a normative and institutional
approach (e.g., Dignum et al., 2002a,b; Dignum, Meyer and Weigand, 2002c; Esteva,
de la Cruz and Sierra, 2002; Noriega and Sierra, 2002).

Deontic logic (see Wright, 1951) has appeared a powerful reasoning tool for such
approaches. In fact, it provides a simple formalism for explicitly and formally defining
norms and dealing with their possible violations (see, for instance, van der Torre, 2003).
It represents norms, obligations, prohibitions and permissions, and enables one to deal
with predicates like “p ought to be done”, “p is forbidden to be done”, “p is permitted
to be done”.

In the context of the UE IST Programme, a whole research project, ALFEBIITE
(1999) has been focused on the formalization of an open society of agents using Deontic
Logic. In particular, the ALFEBIITE approach (presented, for instance, by Artikis,
Pitt and Sergot, 2002) consists of a theoretical framework for providing executable
specifications of particular kinds of multi-agent systems, called open computational
societies, and presents a formal framework for specifying, animating and ultimately
reasoning about and verifying the properties of systems where the behavior of the
members and their interactions cannot be predicted in advance.

Another EU IST Project, SOCS (2002), has proposed a logic based approach to
MAS from a different point of view, i.e., one especially oriented toward computational
aspects: one of the main purposes of the social framework proposed by the project was
to provide a computational framework to be directly used for automatic verification
of properties, such as compliance to interaction protocols. The SOCS social model
represents social rules in an abductive logic framework, where abducibles express
expectations (positive and negative) on the behavior of members of the society; the
semantics of the framework is based on abduction (Alberti et al., 2003). Operationally,
the application of the abductive integrity constraints by an abductive proof procedure,
called SCIFF (Alberti et al., 2005b), adjusts the set of social expectations as the social
infrastructure acquires new knowledge from the environment in terms of happened
social events. SCIFF has been proven sound and complete with respect to the declar-
ative semantics, and has been implemented and integrated in a software component
for the verification of open multi-agent systems (Alberti et al., 2006).

Springer

Mapping deontic operators to abductive expectations 207

The subject of this work is a mapping of the commonly considered deontic operators
(obligation, prohibition, permission) to the abductive expectations provided by the
SOCS social framework: for example, an obligation can be mapped to a positive
expectation (i.e., an event that is expected to happen). While this mapping can be hard
to argument from a philosophical point of view, we support the mapping by showing a
similarity between the Kripke semantics that has been given to deontic operators and
the abductive semantics of expectations.

With this mapping, a sistem specified in the language of the SOCS framework
can be understood with a deontic meaning. The purpose of this work is to make the
computational machinery provided by the SOCS social framework available for the
verification of systems (deontically) specified in such language.

In Section 2, we briefly recall the the SOCS social framework and deontic operators;
in Section 3, we show the mapping of deontic operators to abductive expectations. In
Section 4 we discuss some related work, and in Section 5 we conclude the paper.

2. Background

In this section, we briefly recall the aspects of the SOCS social framework and of
deontic operators that are more relevant to the subject of the paper.

2.1. The SOCS social framework

The SOCS social framework (Alberti et al., 2005a) is aimed at the specification and
verification of agent interaction in open agent societies.1 Since in open societies no as-
sumption can be made on the internal structure or attitude of the agents, the framework
abstracts away from the individual agents (although the SOCS project also provides a
model for individual agents, see for example Bracciali et al. (2005), and its extension
to support normative agents recently proposed by Sadri et al. (2005)), and it rather
constrains the observable agent behaviour.

For the specification, we proposed a language based on abductive logic program-
ming (Kakas, Kowalski and Toni, 1993), equipped with an abductive declarative se-
mantics. The language is not exclusively tailored on specification of agent behaviour
(see, for example, Alberti et al., 2005b): however, its main application so far have
been the specification of social semantics of agent communication (see, for exam-
ple, Alberti et al., 2003) and the specification of agent interaction protocols (see, for
example, Alberti et al., 2003c).

The verification of compliance (i.e., a check whether the agents are behaving ac-
cordingly to the specification) is brought about by means of the operational semantics
of the language, consisting of the SCIFF abductive proof procedure (Alberti et al.,
2005b). The proof procedure has been proven sound and complete with respect to the
declarative semantics. Thanks to the logic programming approach of the framework,
the specification of the system is also used as a program for its verification. SCIFF has
been integrated in a software component for the verification of compliance to agent
interaction protocols (Alberti et al., 2006).

1For a definition of openness, see Artikis, Pitt and Sergot (2002) and Hewitt (1991).

Springer

208 M. Alberti, M. Gavanelli et al.

In this section, we briefly recall the abductive language used in the SOCS social
framework, and its declarative semantics. For a detailed description, the reader can
refer to Alberti et al. (2003).

2.1.1. Language

The SOCS language is aimed to:

1. describe the actual and desired agent behaviour;
2. specify the desired agent behaviour.

Description. In the following, we describe the intuitive meaning of the entities (events
and expectations) used to describe the agent behaviour. Their formal semantics is given
in Section 2.1.2.

The description of the actual agent behaviour is contained in a history HAP, i.e., a
set of events. Events are represented as ground atoms of the form

H(Event[, Time]),

where the Event argument is a ground term representing a description of the happened
event, and the (optional) Time argument is an integer number representing the time at
which the event happened.

For example, the following event

H(tell(alice, bob, query ref(phone number), dialog id), 10) (1)

could represent the fact that alice asked bob his phone number with a query ref mes-
sage, in the context identified by the constant dialog id, at time 10.

Expectations are of the form

E(Event[, Time]) EN(Event[, Time])

for, respectively, positive and negative expectations. E is a positive expectation about
an event (the event is expected to happen) and EN is a negative expectation (the
event is expected not to happen). Explicit negation (¬) can be applied to expectations.
Differently from events, expectations can contain variables.

For example, the atom

E(tell(bob, alice, inform(phone number, Answer), dialog id), Ti) (2)

could represent an expectation for bob to inform alice that the value for the piece
of information identified by phone number is Answer, in the context identified by
dialog id, at time T i .

Specification. A social specification S is composed of two parts:� a social knowledge base KBs ;� a set ICsof social integrity constraints.

Springer

Mapping deontic operators to abductive expectations 209

The Social Knowledge Base is a logic program, extended in that the body of the
clauses can contain expectation literals. Intuitively, the social knowledge base can be
used to express declarative knowledge about the agent society, ranging from simple
information such as the value of time parameters, to complex organisational knowledge
such as that regarding roles.

Specification 2.1 Social Knowledge Base for the query ref social specification

qr deadline(10).

For example, Spec. 2.1 shows a simple example of a social knowledge base, which
defines the qr deadline/1 predicate by means of one fact.

Social Integrity Constraints (also ICs, for short, in the following) are implications
that, operationally, are used as forward rules by the SCIFF proof procedure (Alberti
et al., 2005b). Declaratively, their main use is to specify that is some set of events
happens, then one of several other sets of events is expected to happen, or not to
happen.

Specification 2.2 Integrity Constraints for the query ref social specification.

H(tell(A, B, query ref(Info), D), T) ∧
qr deadline(TD)

→ E(tell(B, A, inform(Info, Answer), D), T1) ∧
T1 < T + TD

∨ E(tell(B, A, refuse(Info), D), T1) ∧
T1 < T + TD

H(tell(A, B, inform(Info, Answer), D), Ti)

→ EN(tell(A, B, refuse(Info), D), Tr)

Spec. 2.1.1 shows the ICs for the query ref social specification.
Intuitively, the first IC means that if agent A sends to agent B a query ref message,

then B is expected to reply with either an inform or a refuse message by TD time units
later, where TD is defined in the Social Knowledge Base by the qt deadline predicate
(with the example in Spec. 2.1, the value of TD would be 10).

The second IC means that, if an agent sends an inform message, then it is expected
not to send a refuse message at any time.

2.1.2. Declarative semantics

The semantics of a social specification in the SOCS social framework is of abductive
type.

Springer

210 M. Alberti, M. Gavanelli et al.

The following definition identifies a particular instance of a society, given by a
social specification and a history of events.

Definition 2.1. Given a social specification S = 〈KBS, ICS〉 and a history HAP, SHAP

represents the pair 〈S, HAP〉, called the HAP-instance of S.

The following definition implements explicit negation (Apt and Bol, 1994) for expec-
tation atoms.

Definition 2.2. A set EXP of expectations is ¬-consistent if and only if for each
(ground) term p:

{E(p), ¬E(p)} �⊆ EXP and {EN(p), ¬EN(p)} �⊆ EXP. (3)

The following definition prevents the same event from being both expected to happen
and expected not to happen.

Definition 2.3. A set EXP of expectations is E-consistent if and only if for each
(ground) term p:

{E(p), EN(p)} �⊆ EXP (4)

The following definition establishes a link between the actual and the expected agent
behaviour, by requiring positive expectations to be matched by events, and negative
expectations not to be matched by events.

Definition 2.4. Given a history HAP, a set EXP of expectations is HAP-fulfilled if
and only if

Comp(HAP ∪ EXP) ∪ CET ∪ {∀p E(p) → H(p), EN(p) → not H(p)} �|= false

(5)

where Comp represents the completion of a theory (Kunen, 1987), and CET is Clark’s
equational theory (Clark, 1978).

Otherwise, EXP is HAP-violated.

When HAP is apparent from the context, we will often omit mentioning it.
The following definition requires consistence of the set of expectations, with respect

to an instance of the social specification.

Definition 2.5. Given a social specification S = 〈KBs, ICs〉, and an instance SHAP of
S, a set EXP of expectations is SHAP-consistent if and only if

Comp(KBs ∪ HAP ∪ EXP) ∪ CET |= ICs (6)

Springer

Mapping deontic operators to abductive expectations 211

The following definition supports goal-directed social specifications: it requires the
instance of the specification to entail a goal, while being consistent with respect to the
previous definitions.

Definition 2.6. Given a social specification S = 〈KBs, ICs〉 and an instance SHAP of
S, a goal G is achieved in SHAP if there exists a ¬-consistent, E-consistent, SHAP-
consistent and HAP-fulfilled set EXP of expectations such that

Comp(KBs ∪ EXP) ∪ CET |= G (7)

In this case, we write SHAP �EXP G and we say that HAP is compliant to S with
respect to G.

In the remainder of this article, when we simply say that a history HAP is compliant
to a social specification S, we will mean that HAP is compliant to S with respect
to the goal true. This is usually the case when the specification is used to express an
interaction protocol, with no particular social goal. We say that a history HAP violates
a specification S to mean that HAP is not compliant to S.

The following definition identifies ill-defined social specifications, i.e., those for
which there is no compliant history, which are obviously undesirable from an agent
society designer viewpoint.

Definition 2.7. Given a goal G, a social specification S is well-defined with respect to
G iff there exists at least one history that is compliant to S w.r.t. G, i.e., iff:

∃HAP ∃EXPSHAP �EXP G (8)

When we simply say that a social specification S is well defined, we will mean that S
is well defined with respect to the goal true.

Example 2.8. The query ref social specificationS = 〈KBs, ICs〉, where KBs is defined
in Spec. 2.1, and ICs is defined in Spec. 2.2, is well defined. For instance, the history

{H(tell(alice, bob, query ref(phone number), dialog id), 10),
(9)

H(tell(bob, alice, inform(phone number, 5551234), dialog id), 12)}

is compliant to S.

One important observation to make at this point is that the semantics of our frame-
work is based on an “all-or-nothing” concept of compliance: a history is either com-
pliant to a specification, or it is not. Currently, we do not support contrary-to-duty
obligations (Prakken and Sergot, 1996), exceptions, or any other kind of variable-
degree compliance. We further discuss this issue, also considering related work, in
Section 4.

Springer

212 M. Alberti, M. Gavanelli et al.

2.2. Deontic operators

The birth of modern Deontic Logic can be traced back to the ’50s (Wright, 1951). In
the following, we only address the logical properties that are most useful in modeling
legal reasoning, and norms, and refrain from addressing the logical background which
provides a foundation for those properties.

Deontic Logic enables to address the issue of explicitly and formally defining norms
and dealing with their possible violation. It represents norms, obligations, prohibitions
and permissions, and enables one to deal with predicates like “p ought to be done”,
“p is forbidden to be done”, “p is permitted to be done”.

Being obligatory, being forbidden and being permitted are indeed the three fun-
damental deontic statuses of an action, upon which one can build more articulate
normative conceptions. For details, refer to Sartor (2004), Chapter 15 in particular.
Obligations. To say that an action is obligatory is to say that the action is due, has
to be held, must be performed, is mandatory or compulsory. Obligations are usually
represented by formulas as:

Obl A

where A is any (positive or negative) action description, and Obl is the deontic operator
for obligation to be read as “it is obligatory that”.

Elementary obligations can be distinguished between:� elementary positive obligations, which concern positive elementary actions (e.g.,
“It is mandatory that John answers me”);� elementary negative obligations, which concern negative elementary actions (e.g.,
“It is mandatory that John does not smoke”);

Prohibitions. The idea of obligation is paralleled with the idea of prohibition. Being
forbidden or prohibited is the status of an action that should not be performed. In
common language, and legal language as well, prohibitive propositions are expressed
in various ways. For example, one may express the same idea by saying “It is forbidden
that John smokes”, “John must not smoke”, “There is a prohibition that John smokes”,
and so on.

Prohibitions are usually represented by formulas as:

Forb A

where A is any (positive or negative) action description, and Forb is the deontic
operator for prohibition to be read as “it is forbidden that”.

The notions of obligation and prohibition are logically connected, as explained
in the following. Most approaches to Deontic Logic agree in assuming that, for any
action A, the prohibition of A is equivalent to the obligation of omitting A:

Forb A = Obl (NON A) (10)

Springer

Mapping deontic operators to abductive expectations 213

Permissions. The third basic deontic status, besides obligations and prohibitions, is
permission. Permissive propositions are expressed in many different ways in natural
language. To express permissions in a uniform way, Deontic Logic uses the operator
Perm. Permissions are usually represented by formulas as:

Perm A

where A is any (positive or negative) action description, and Perm is the deontic
operator for permission to be read as “it is permitted that”.

2.2.1. Relationships between operators

The three basic deontic notions of obligation, prohibition and permission are logically
connected. First of all, intuitively, when one believes that an action is obligatory, then
one can conclude that the same action is permitted.

Obl A entails Perm A (11)

Since A’s obligatoriness entails A’s permittedness, Obl A is incompatible with the
fact that A is not permitted:

Obl A incompatible NON Perm A (12)

The connection between the obligatoriness of A and the permittedness of A is repli-
cated in the connection between the forbiddenness of A and the permittedness on A’s
omission: an action being forbidden entails permission to omit it, i.e.:

Forb A entails Perm NON A (13)

A being forbidden entails that the omission of A is permitted. Thus, there is a contra-
diction between an action being forbidden and the omission of that action not being
permitted.

Forb A incompatible NON Perm (NON A) (14)

All the logical relations between deontic notions that we have just described are
summarized in Fig. 1. The schema shows that there is an opposition between being
obliged and being prohibited: if an action A is obligatory, then its performance is
permitted, which contradicts that A is forbidden.

Similarly, if an action A is forbidden, then its omission is permitted, which contra-
dicts that A is obligatory.

It is instead compatible that both an action A is permitted and its omission NON A
also is permitted. In such a case, A would be neither obligatory nor permitted, but
facultative.

The deontic qualifications “obligatory” and “forbidden” are complete, in the sense
that they determine the deontic status of both the action they are concerned with, and

Springer

214 M. Alberti, M. Gavanelli et al.

Fig. 1 The first deontic square

the complement of that action. In fact, on the basis of the equivalence:

Obl φ = Forb NON φ

we get the following two equivalences, the first concerning the case where φ is a
positive action A, the second concerning the case where φ is the omissive action
NON A (double negations get canceled):

Obl A = Forb NON A (15)

Obl NON A = Forb A (16)

Of course, believing that an action is permitted amounts to believing that it is not
forbidden:

Perm A = NON Forb A (17)

This means that not being permitted amounts to being forbidden (just negate both
formulas, and cancel double negations):

NON Perm A = Forb A (18)

From this follows that an action being permitted contradicts that action being prohib-
ited:

Perm A incompatible Forb A (19)

Similarly, believing that an action is obligatory amounts to excluding that its omission
is permitted:

Obl A = NON Perm NON A (20)

Correspondingly, the obligatoriness of an action (entailing the permission to perform
it) contradicts the permissiveness of its omission:

Obl A incompatible Perm NON A (21)

The formulas we have just being considering are summarized in the second square of
deontic notions, in Fig. 2.

Springer

Mapping deontic operators to abductive expectations 215

Fig. 2 The second deontic
square

2.2.2. Kripke semantics for deontic operators

In the following, we recall the well known Kripke semantics for deontic operators.

Definition 2.9. Let P be a given set of propositional symbols.
A frame F is a pair 〈W, R〉 where W is a set of identifiers and R ⊆ W × W .
A model M is pair 〈F, V 〉, where F= 〈W, R〉 is a frame and V : W → 2P .

Definition 2.10. Let M = 〈〈W, R〉, V 〉 and w ∈ W .
M, w |= Obl(A) iff ∀w′(〈w, w′〉 ∈ R → A ∈ V (w)).

In other words, an action is obligatory in a world if it is true in all the worlds
accessible from it. The semantics of the other operators (prohibition, permission) is
derived by that of the obligation operator:

Definition 2.11.� M, w |= Forb(A) iff M, w |= Obl(NON A)� M, w |= Perm(A) iff M, w �|= Obl(NON A)

3. Mapping deontic operators to expectations

In this section, we propose and support intuitively and formally a mapping from deontic
operators (obligation, permission, prohibition) to the expectations of the SOCS social
framework.

3.1. The mapping

We propose the mapping shown in Table 1.

Table 1 Deontic notions as
expectations Operator Abducibile

Forb A EN(A)

Obl A E(A)

Perm A ¬EN(A)

Perm NON A ¬E(A)

Springer

216 M. Alberti, M. Gavanelli et al.

The first line of the table proposes a correspondence between the notion of prohi-
bition (which requires an action not to be performed) and ours of negative expectation
(which requires an event not to belong to the history).

In fact, the correspondence is more apparent looking at Definition 2.4, which re-
quires, for a set of expectation to be fulfilled, the absence, in the history of events,
of any event matching a negative expectation. This definition resembles closely the
reduction of the prohibition operator proposed by Meyer (1988), where “it is forbid-
den to perform (an action) α in (a state) σ iff one performs α in σ one gets into
trouble” (in that paper, “trouble” means an “undesirable state of affairs”; which is a
good description of our state of violation).

Reasoning in a similar way, it is possible to notice a correspondence between the
notion of obligation (which requires an action to be performed) and ours of positive
expectation (which requires an event to belong to the history), as shown in the second
line in Table 1.

Moreover, since a negative expectation EN(A) has to be read as it is expected not
A (i.e., it is a shorthand for E(not A)), its (explicit) negation, ¬EN(A), corresponds
to permission of A. Finally, due to the logical relations among obligation, prohibition
and permission discussed in Section 2.2, the fourth line of Table 1 shows how to map
permission of a negative action.

3.2. The semantic link between abductive and Kripke semantics

In the following, we further support our proposed mapping by showing a link between
the abductive semantics of expectations in the SOCS framework (see Section 2.1.2)
and the Kripke semantics of deontic operators (see Section 2.2.2).

In order to show the link, we first give some more definition related to the SOCS
framework, which correspond to concepts in the Kripke semantics.

Our corresponding of a world w is a history HAP, which represents some state of
affairs. The corresponding of an accessible world can thus be defined as a superset of
HAP which is compliant to the social specification.

Definition 3.1. Given a social specification S, a history HAP′ is a S-compliant exten-
sion of a history HAP iff HAP′ ⊇ HAP and HAP′ is compliant to S.

We also single out those histories which have at least a compliant extension (cor-
responding to worlds which have at least one accessible world).

Definition 3.2. Given a social specification S, a history HAP is potentially compliant
to S if it has a S-compliant extension.

The following definition represents the entailment of an expectation by a social
specification.

Definition 3.3. An instance SHAP of a social specification S requires an expectation
E iff for all EXP that are SHAP-consistent E ∈ EXP.

Springer

Mapping deontic operators to abductive expectations 217

Table 2 Deontic and
expectation concepts Deontic Expectation

Model Social specification

World History

Accessible world Compliant extension

(deontic) entailment requires

The following theorem is easily proven:

Theorem 3.4. Let a history HAP be potentially compliant to a social specification S.
Then (SHAP requires E(p) (resp. EN(p))) →(H(p) is in all (resp. in no) S-compliant
extensions of HAP).

Proof: Let HAP′ be a compliant extension of HAP. By Definition 2.6, there exists a
SHAP′–consistent and HAP′-fulfilled set EXP of expectations. By Definition 3.3, E(p)
(resp. EN(p)) is in all SHAP-consistent sets of expectations, and thus also in EXP; but
EXP is HAP′-fulfilled, and thus H(p) ∈ (resp. �∈) HAP′. �

Applying to Theorem 3.2 the substitutions shown in Table 2, we have one of the
two implications of Definition 2.10 (the only-if).

The opposite, in general, does not hold in our framework. For example, consider a
specification consisting of the following integrity constraint:

H(p) → EN(q)

The event H(p) is in no compliant extension of the history {H(q)}. However, EN(p)
is not required by the social specification.

While it is possible to devise a restriction of the language which would make
the reverse implication valid (social specifications composed only of disjunctions of
conjunctions of expectations being possibly the simplest example), the purpose of
Theorem 3.4 is to show a link between the two semantics, rather than to establish a
complete equivalence.

A notable difference, from the representation point of view, is that in SOCS social
integrity constraints can only express disjunctions of expectations, such that E(A) ∨
E(B) (which expresses that at least one of the two between A and B events is expected).
In Deontic Logic, instead, one usually expresses the obligatoriness of disjunctions, i.e.,
Obl(A ∨ B). In Kripke semantics, however, this is not equivalent to state Obl(A) ∨
Obl(B).2

Applying the mapping, the two integrity constraints in Spec. 2.2 can be read as
follows:

1. if A requests some piece of information from B, B is either obliged to provide it
by some deadline, or to refuse it, by some deadline;

2 The two possible worlds (A ∧ NON B) and (NON A ∧ B) satisfy Obl(A ∨ B), but not Obl(A) ∨ Obl(B).

Springer

218 M. Alberti, M. Gavanelli et al.

2. if A provides some piece of information to B, then it is forbidden for A to refuse
the same piece of information to B, at any time.

3.3. Logical relations among deontic operators as abductive integrity constraints

Let us first consider the relations summarized in the second square of deontic notions,
in Fig. 2. By adopting the mapping summarized in Table 1, the equivalence relations
straightforwardly arise from the uniform treatment of symbols NON, ¬ and not , and
from their idempotency.

The incompatibility relations summarized in Fig. 2 emerge between the notion of
obligation and prohibition (horizontal arc), and, respectively, between obligation and
permission of opposite, and prohibition and non permission of opposite (diagonal arcs).
By adopting the mapping summarized in Table 1, the first incompatibility is captured
by the SOCS abductive semantics into the notion of E-consistency (Definition 2.3),
i.e., by requiring that, for each A, the addition to the expectation set of the integrity
constraint:

E(A), EN(A) → f alse

does not lead to inconsistency.
The latter two incompatibilities (corresponding to diagonal arcs in Table 1) are

captured, instead, by the notion of ¬-consistency (Definition 2.2), i.e., by requiring
that, for each A, the addition to the expectation set of the integrity constraints:

E(A), ¬E(A) → f alse

and

EN(A), ¬EN(A) → f alse

does not lead to inconsistency.
The notions of E-consistency and ¬-consistency (and associated integrity con-

straints) also correspond to incompatibility relations in the first square of deontic
notions, in Fig. 1.

Furthermore, the two entailment relations occurring in the first square can be cap-
tured by considering additional integrity constraints (possibly added to the set ICS),
relating positive and negative expectations as follows:

E(A) → ¬EN(A)

and

EN(A) → ¬E(A)

In practice, these two constraints, when added to ICS and therefore considered in ICS-
consistency, enforce the set of expectations to be “completed”, i.e., for each positive
expectation E(A) the explicit negation of its negative counterpart, ¬EN(A) had to be

Springer

Mapping deontic operators to abductive expectations 219

included in the expectation set (in order to get its admissibility), and for each negative
expectation EN(A) the explicit negation of its positive counterpart, ¬E(A) had to be
included as well.

Finally, a notion of regimentation can be considered too, by enforcing obligatory
actions to happen and prohibited actions not to happen. This can be easily obtained by
adding to the ICS the following two integrity constraints, mapping positive/negative
expectations into positive/negative events:

E(A) → H(A)

and

EN(A) → ¬H(A)

Notice that these two conditions correspond to the (meta) integrity constraints required
for fulfillment of expectation sets (see Definition 2.4). The adopted notion of fulfillment
in the declarative semantics, however, just tests that these two constraints are not
violated (by adopting the consistency view discussed by Fung and Kowalski, 1997),
whereas if we add them to the set ICS , the ICS-consistency test (by adopting the
theoremhood view, also discussed by Fung and Kowalski, 1997) would exploit them
to also make events happen or not in the social environment.

4. Related work

The reduction of deontic concepts such as obligations and prohibitions has been the
subject of several past works: notably, by Anderson (1958) (according to which, in-
formally, A is obligatory iff its absence produces a state of violation) and by Meyer
(1988) (where, informally, an action A is prohibited iff its being performed produces a
state of violation). These two reductions strongly resemble our definition of fulfillment
(Definition 2.4), which requires positive (resp. negative) expectations to have (resp.
not to have) a corresponding event.

Ryu and Lee (1993) provide a first-order framework of deontic reasoning that can
model and compute social regulations and norms. They employ defeasible reasoning
in order to represent and manage counterfactual implications. In their framework,
deontic operators are represented as first order terms; a specification is given as a set
of strict and defeasible clauses. The operational semantics of their language consists of
a SLD resolution-based computation process. The main purpose of our work is similar
to that of Ryu and Lee’s work: to give a computational method for systems specified by
means of deontic operators. The works are also similar in the representation of deontic
operators (as first order terms) and in the representation of the relationships among
operators, such as incompatibility between obligation and prohibition (by means of
rules). However, our work based on abduction, rather than on defeasible logic.

Several papers discuss “sub-ideal” situations, i.e., how to manage situations in
which some of the norms are not respected.

For instance, van der Torre and Tan (1999) show the relation between diagnostic
reasoning and deontic logic, importing the principle of parsimony from diagnostic

Springer

220 M. Alberti, M. Gavanelli et al.

reasoning into their deontic system, in the form of a requirement to minimize the
number of violations. In particular, given the specification of a normative system (as
a set of formulae which tell when a norm is violated) and a state of affairs, they
define a minimal (with respect to inclusion) set of norms such that the violation of
those norms is consistent with the specification and the state of affairs. The SOCS
social framework, currently, only distinguishes between empty and non-empty sets
of violations, and does not define minimal sets. However, it would be possible to do
so by taking the minimal, with respect to inclusions, among the sets of expectations
which are consistent with a social specification and a history, but possibly not fulfilled
by the history. This will probably be our approach when we tackle the management
of violations (by means of sanctions and recovery procedures) in future work.

Prakken and Sergot (1996) propose a solution to the problem and paradoxes stem-
ming from earlier logical representations of contrary-to-duty obligations, i.e., obliga-
tions that become active when other obligations are violated. They do so by introducing
a new operator OB(A), meaning that A is obligatory given the sub-ideal context B.
The semantics of this operator is of Kripke type, but it differs to the standard modal
logic because of the accessibility relation: in that work, the accessible worlds are the
best alternatives, given the truth of B. In the “main stream” of our research, we do
not support contrary-to-duty obligations. However, we proposed a modified version
of our framework (Alberti et al., 2004a), which provides a simplified language and
does support alternative obligations at different levels of priority; a further step could
be to integrate priority levels in the main SOCS social framework.

Boella, van der Torre and Leendert (2003) discuss how a normative system can be
seen as a normative agent, equipped with mental attitudes, about which other agents
can reason, choosing either to fulfill their obligations, or to face the possible sanctions.
Conceptually, the social infrastructure in the SOCS model could be viewed as an agent,
whose knowledge base is the society specification, whose mental attitude is a set of
expectations, and whose reasoning process is the SCIFF proof procedure.

Broersen et al. (2004) investigate the deontic logic of deadlines by introducing an
operator O(ρ ≤ δ), which means, intuitively, that the action ρ ought to be brought
about before (or at the same time) another event δ happens. They model time by means
of the CTL temporal logic. We can express a similar concept by means of an integrity
constraints H(δ, Tδ) → E(ρ, Tρ) ∧ Tρ ≤ Tδ , which says that, if δ has happened, than
ρ is expected to have happened before (or at the same time).

The SOCS social framework can capture, in a computational setting, the concept
of (conditional) obligation with deadline presented by Dignum et al. (2002a), with
an explicit mapping of time. Dignum et al. write: Oa(r<d|p) to state that if the
precondition p becomes valid, the obligation becomes active. The obligation expresses
the fact that a is expected to bring about the truth of r before a certain condition d
holds.

For instance, if we have:

p = H(tell(S, a, request(G), D), T)
r = H(tell(a, S, answer (G), D), T ′), T ′ > T
d = T ′ > T + 2

Springer

Mapping deontic operators to abductive expectations 221

we can map Oa(r<d|p) into a IC:

H(tell(S, a, request(G), D), T) →
E(tell(a, S, answer (G), D), T ′), T ′ > T, T ′ ≤ T + 2.

Among the organizational models, Dignum et al. (2002a, 2002b) and Dignum,
Meyer and Weigand (2002c) exploit Deontic Logic to specify the society norms and
rules. Their model is based on a framework which consists of three interrelated models:
organizational, social and interaction. The organizational model defines the coordi-
nation and normative elements and describes the expected behavior of the society. Its
components are roles, constraints, interaction rules, and communicative and ontology
framework. The social model specifies the contracts that make explicit the commit-
ments regulating the enactment of roles by individual agents. Finally, the interaction
model describes the possible interactions between agents by specifying contracts in
terms of description of agreements, rules, conditions and sanctions.

Deontic operators have been used not only at the social level, but also at the agent
level. Notably, in IMPACT (Arisha et al., 1999; Eiter, Subrahmanian and Pick, 1999),
agent programs may be used to specify what an agent is obliged to do, what an agent
may do, and what an agent cannot do on the basis of deontic operators of Permis-
sion, Obligation and Prohibition (whose semantics does not rely on a Deontic Logic
semantics). In this respect, the IMPACT and SOCS social models have similarities
even if their purpose and expressivity are different. The main difference is that the
goal of agent programs in IMPACT is to express and determine by its application the
behavior of a single agent, whereas the SOCS social model goal is to express rules of
interaction and norms, that instead cannot really determine and constrain the behavior
of the single agents participating to a society, since agents are autonomous.

5. Conclusions and future work

In this paper, we propose a mapping of the usual deontic operators (obligation, prohibi-
tions, permission) to a particular kind of abducible predicates (expectations) introduced
in the SOCS social framework. We support the mapping by showing the similarity of
the concepts at an intuitive and at a formal level.

The mapping makes it possible to exploit the operational counterpart of the SOCS
social framework, the SCIFF abductive proof procedure, to verify the compliance of
agent behaviour to a specification given in terms of deontic operators.

Future work will be devoted to the actual implementation of deontic specifications
using our framework. This may require an application of our language to more so-
phisticated social and normative models (such as the one recently proposed by López
y López et al. (2005)), and possibly a reconsideration some of the aspects of the
language, especially in order to support exceptions and contrary to duty obligations.

Acknowledgments This work has been supported by the European Commission within the SOCS project
(IST-2001-32530), funded within the Global Computing Programme and by the MIUR COFIN 2003 projects
La Gestione e la negoziazione automatica dei diritti sulle opere dell’ingegno digitali: aspetti giuridici e
informatici and Sviluppo e verifica di sistemi multiagente basati sulla logica.

Springer

222 M. Alberti, M. Gavanelli et al.

References

Alberti M, Gavanelli M, Lamma E, Mello P, Torroni P (2003a) An abductive interpretation for open
societies. In: Cappelli A, Turini F (eds) AI*IA 2003: Advances in artificial intelligence, Proceedings
of the 8th Congress of the Italian association for artificial intelligence, Pisa (Lecture Notes in Artificial
Intelligence), vol. 2829. Springer-Verlag, pp 287–299

Alberti M, Ciampolini A, Gavanelli M, Lamma E, Mello P, Torroni, P (2003b) A social ACL semantics by
deontic constraints. In: Mar̆ík V, Müller J, Pĕchouc̆ek M (eds) Multi-agent systems and applications III.
Proceedings of the 3rd international central and eastern european conference on multi-agent systems,
CEEMAS 2003. (Lecture Notes in Artificial Intelligence), vol. 2691. Springer-Verlag, Prague, Czech
Republic: pp 204–213

Alberti M, Gavanelli M, Lamma E, Mello P, Torroni, P (2003c) Specification and verification of agent
interactions using social integrity constraints. Electr Notes Theor Comp Sci 85(2)

Alberti M, Daolio D, Gavanelli M, Lamma E, Mello P, Torroni P (2004a) Specification and verification
of agent interaction protocols in a logic-based system. In: Haddad H M, Omicini A, Wainwright R L
(eds) Proceedings of the 19th Annual ACM Symposium on Applied Computing (SAC 2004). Special
Track on Agents, Interactions, Mobility, and Systems (AIMS). ACM Press, Nicosia, Cyprus pp 72–
78

Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P (2005a) The SOCS computational
logic approach for the specification and verification of agent societies. In: Priami C, Quaglia P (eds)
Global Computing: IST/FET International Workshop, GC 2004 Rovereto, Italy, March 9–12, 2004
Revised Selected Papers. (Lecture Notes in Artificial Intelligence), vol. 3267. Springer-Verlag, pp 324–
339

Alberti M, Gavanelli M, Lamma E, Mello P, Torroni P (2005b) The SCIFF abductive proof procedure. In
Bandini S, Manzoni S (eds) Proceedings of the 9th National Congress on Artificial Intelligence, AI*IA
2005. (Lecture Notes in Artificial Intelligence) vol. 3673. Springer-Verlag, Milan, Italy, pp 135–147

Alberti M, Chesani F, Gavanelli M, Lamma E, Mello P, Torroni P (2006) Compliance verification of agent
interaction: a logic-based tool. Applied Artificial Intelligence 20(2–4):133–157

ALFEBIITE (1999) ALFEBIITE: A logical framework for ethical behaviour between infohabitants
in the information trading economy of the universal information ecosystem. IST-1999-10298.
http://www.iis.ee.ic.ac.uk/ alfebiite/ab-home.htm

Anderson A (1958) A reduction of deontic logic to alethic modal logic. Mind 67:100–103
Apt KR, Bol RN (1994) Logic programming and negation: A survey. J Logic Progr 19/20:9–71
Arisha KA, Ozcan F, Ross R, Subrahmanian VS, Eiter T, Kraus S (1999) IMPACT: A platform for

collaborating agents. IEEE Intell Syst 14(2):64–72
Artikis A, Pitt J, Sergot M (2002) Animated specifications of computational societies. In: Castelfranchi C,

Lewis Johnson W (eds) Proceedings of the first international joint conference on autonomous agents
and multiagent systems (AAMAS-2002), Part III. ACM Press Bologna, Italy pp 1053–1061

Boella G, van der Torre, L WN (2003) Attributing mental attitudes to normative systems. In: Rosenschein
JS, Sandholm T, Wooldridge M, Yokoo M (eds) Proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2003). ACM Press Melbourne,
Victoria pp 942–943

Boella G, van der Torre L, Verhagen H (eds) (2005) Proceedings of the symposium on normative multi
agent-systems. University of Hertfordshire, Hatfield, UK

Bracciali A, Demetriou N, Endriss U, Kakas A, Lu W, Mancarella P, Sadri F, Stathis K, Toni F, Terreni
G (2005) The KGP model of agency: Computational model and prototype implementation. In: Priami
C, Quaglia P (eds) Global computing: IST/FET international workshop, GC 2004 Rovereto, Italy,
March 9-12, 2004 Revised Selected Papers (Lecture Notes in Artificial Intelligence), vol. 3267.
Springer-Verlag, pp 340–367

Broersen J, Dignum F, Dignum V, Meyer J-J Ch (2004) Designing a deontic logic of deadlines. In:
Lomuscio A, Nute D (eds) DEON (Lecture Notes in Computer Science), vol. 3065. Springer, pp 43–56

Castelfranchi C, Dignum F, Jonker CM, Treur J (1999) Deliberative normative agents: Principles and
architecture. In: Jennings NR, Lespérance Y (eds) Intelligent agents VI, Agent theories, architectures,
and languages, 6th International Workshop, ATAL ’99, Orlando, Florida, USA, Proceedings. (Lecture
Notes in Computer Science), no. 1757. Springer-Verlag, pp 364–378

Clark KL (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and data bases. Plenum Press,
pp 293–322

Conte R, Falcone R, Sartor G (1999) Special issue on agents and norms. Art Intell Law 1(7)

Springer

Mapping deontic operators to abductive expectations 223

Dignum V, Meyer JJ, Dignum F, Weigand H (2002a) Formal specification of interaction in agent societies.
In: Proceedings of the second goddard workshop on formal approaches to agent-based systems
(FAABS), Maryland

Dignum V, Meyer JJ, Weigand H, Dignum F (2002b) An organizational-oriented model for agent societies.
In: Proceedings of International Workshop on Regulated Agent-Based Social Systems: Theories and
Applications. AAMAS’02, Bologna

Dignum V, Meyer JJ, Weigand H (2002c) Towards an organizational model for agent societies using
contracts. In: Castelfranchi C, Lewis Johnson W (eds) Proceedings of the first international joint
conference on autonomous agents and multiagent systems (AAMAS-2002), Part II. Bologna, Italy:
ACM Press, pp 694–695

Eiter T, Subrahmanian VS, Pick G (1999) Heterogeneous active agents, I: Semantics. Art Intell
108(1–2):179–255

Esteva M, de la Cruz D, Sierra C (2002) ISLANDER: An electronic institutions editor. In: Castelfranchi
C, Lewis Johnson W (eds) Proceedings of the first international joint conference on autonomous
agents and multiagent systems (AAMAS-2002), Part III. ACM Press, Bologna, Italy pp 1045–
1052

Fung TH, Kowalski RA (1997) The IFF proof procedure for abductive logic programming. J Logic Progr
33(2): 151–165

Hewitt C (1991) Open information systems semantics for distributed art intell. Art Intell 47(1–3):79–
106

Kakas AC, Kowalski RA, Toni F (1993) Abductive logic programming. J Logic Comput 2(6):719–
770

Kunen K (1987) Negation in logic progr J Logic Progr vol. 4, pp 289–308
López y López, Fabiola, Luck, Michael, d’Inverno, Mark (2005) A normative framework for agent-based

systems. In: Boella et al., (2005)
Meyer JJ Ch (1988) A different approach to deontic logic: Deontic logic viewed as a variant of dynamic

logic. Notre Dame J. Form Logic 29(1):109–136
Noriega P, Sierra C (2002) Institutions in perspective: An extended abstract. In: 6th International Workshop

CIA-2002 on Cooperative Information Agents (Lecture Notes in Artificial Intelligence), vol. 2446.
Springer-Verlag

Prakken H, Sergot M (1996) Contrary-to-duty obligations. Studia Logica 57(1):91–115
Ryu Young U, Lee Ronald M (1993) Defeasible deontic reasoning: A logic programming model. In: Meyer

J-J Ch, Wieringa RJ (eds) Deontic logic in computer science: normative system specification. John
Wiley & Sons Ltd, pp 225–241

Sadri F, Stathis K, Toni F (2005) Normative KGP agents: A preliminary report. In: Boella et al. (2005)
Sartor G (2004) Legal reasoning. Treatise, vol. 5. Kluwer Dordrecht
SOCS (2002) Societies of computeeS (SOCS): A computational logic model for the description, analysis

and verification of global and open societies of heterogeneous computees. IST-2001-32530. Home
Page: http://lia.deis.unibo.it/Research/SOCS/

van der Torre L (2003) Contextual deontic logic: Normative agents, violations and independence. Ann
Math Art Intell 37(1):33–63

van der Torre LWN, Tan Y-H (1999) Diagnosis and decision making in normative reasoning. Artif. Intell.
Law 7(1):51–67

Wright GH (1951) Deontic logic. Mind 60:1–15

Marco Alberti received his laurea degree in Electronic Engineering in 2001 and his

Ph.D. in Information Engineering in 2005 from the University of Ferrara, Italy. His re-

search interests include constraint logic programming and abductive logic programming,

applied in particular to the specification and verification of multi-agent systems. He has

been involved as a research assistants in national and European research projects. He

currently has a post-doc position in the Department of Engineering at the University of

Ferrara.

Springer

224 M. Alberti, M. Gavanelli et al.

Marco Gavanelli is currently assistant professor in the Department of Engineering at the

University of Ferrara, Italy. He graduated in Computer Science Engineering in 1998 at the

University of Bologna, Italy. He got his Ph.D. in 2002 at Ferrara University. His research

interest include Artificial Intelligence, Constraint Logic Programming, Multi-criteria Op-

timisation, Abductive Logic Programming, Multi-Agent Systems. He is a member of ALP

(the Association for Logic Programming) and AI*IA (the Italian Association for Artificial

Intelligence). He has organised workshops, and is author of more than 30 publications

between journals and conference proceedings.

Evelina Lamma received her degree in Electronic Engineering from University of

Bologna, Italy, in 1985 and her Ph.D. degree in Computer Science in 1990. Currently

she is Full Professor at the Faculty of Engineering of the University of Ferrara where she

teaches Artificial Intelligence and Foundations of Computer Science. Her research activity

focuses around:

– programming languages (logic languages, modular and object-oriented programming);

– artificial intelligence;

– knowledge representation;

– intelligent agents and multi-agent systems;

– machine learning.

Her research has covered implementation, application and theoretical aspects. She took

part to several national and international research projects. She was responsible of the

research group at the Dipartimento di Ingegneria of the University of Ferrara in the UE ITS-

2001-32530 Project (named SOCS), in the the context of the UE V Framework Programme

- Global Computing Action.

Paola Mello received her degree in Electronic Engineering from the University of Bologna,

Italy, in 1982, and her Ph.D. degree in Computer Science in 1989. Since 1994 she has been

Full Professor. She is enrolled, at present, at the Faculty of Engineering of the Univer-

sity of Bologna (Italy), where she teaches Artificial Intelligence. Her research activity

focuses on programming languages, with particular reference to logic languages and their

extensions, artificial intelligence, knowledge representation, expert systems with particu-

lar emphasis on medical applications, and multi-agent systems. Her research has covered

implementation, application and theoretical aspects and is presented in several national

and international publications. She took part to several national and international research

projects in the context of computational logic.

Giovanni Sartor is Marie-Curie professor of Legal informatics and Legal Theory at the

European University Institute of Florence and professor of Computer and Law at the Uni-

versity of Bologna (on leave), after obtaining a PhD at the European University Institute

(Florence), working at the Court of Justice of the European Union (Luxembourg), being

a researcher at the Italian National Council of Research (ITTIG, Florence), and holding

the chair in Jurisprudence at Queen’s University of Belfast (where he now is honorary

professor). He is co-editor of the Artificial Intelligence and Law Journal and has pub-

lished widely in legal philosophy, computational logic, legislation technique, and computer

law.

Springer

Mapping deontic operators to abductive expectations 225

Paolo Torroni is Assistant Professor in computing at the Faculty of Engineering of the

University of Bologna, Italy. He obtained a PhD in Computer Science and Electronic

Engineering in 2002, with a dissertation on logic-based agent reasoning and interaction. His

research interests mainly focus on computational logic and multi-agent systems research,

including logic programming, abductive and hypothetical reasoning, agent interaction,

dialogue, negotiation, and argumentation. He is in the steering committee of the CLIMA

and DALT international workshops and of the Italian logic programming interest group

GULP.

Springer

