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Abstract. This work presents a formal, logic-based approach to one-to-one agent
negotiation, in the context of goal achievement in systems of agents with limited
resource availability. The proposed solution is based on agent dialogues as a way,
e.g., to request resources and propose resource exchanges. It relies upon agents
agreeing solely upon a language for negotiation, while possibly adopting differ-
ent negotiation policies, each corresponding to an agent variety. Agent dialogues
can be connected within sequences, all aimed at achieving an individual agent’s
goal. Sets of sequences aim at allowing all agents in the system to achieve their
goals, and can be used, €.g., to solve the resource reallocation problem. We model
dialogues via logic-based dialogue constraints, and propose an execution model
to be adopted for the automatic generation of dialogues. We also propose an agent
dialogue cycle for the automatic generation of sequences of dialogues. Finally, we
identify some desirable properties of dialogues, dialogue sequences and sets of
such sequences, and prove/disprove these properties for concrete agent varieties.

1 Introduction

Negodtiation is one of the main research areas in multi-agent systems. In many cases
agents need to negotiate because they operate in environments with limited resource
availability. The area of negotiation is broad and applies to different scenarios [5]. For
example, one-to-many negotiation is used for auctions, where auctioneer and bidders
reach an agreement on the cost of the items on sale. Most research in the area of one-to-
many negotiation adopts a game-theoretic approach, with interesting resulis but under
the often unrealistic assumptions that the computational resources of agents are unlim-
ited and that their knowledge of the world is global and compleie. Another example
of negotiation is one-ro-one negotiation, used, for instance, for task reallocation [15]
and for resource reallocation [11], where the limited resources may be time, the com-
putational resources of agents, or physical resources needed to carry out some tasks.
Many approaches in the area of one-io-one negotiation are heuristic-based and, in spite
of their experimentally proven effectiveness, they do not easily Iend themselves o ex-
pressing theoretically provable properties. Other approaches present a good descriptive




model, but fail to provide an execution model that can help to forecast the behaviour of
any corresponding implemented system.

In this paper we tackle one-to-one negotiation between agents that share the same
language for negotiation but may adopt different negotiation policies. We approach the
problem in a logic-based manner that allows for proving properties such as correctness
and completeness. We also propose an execution model to be used in order to implement
the system. Although we concentrate on the specific problem of resource reallocation,
our approach is more general, as far as the representation of policies and the reasoning
that generates dialogues and their sequences, and could be extended to be applicable to
other negotiation domains.

The framework we propose is based on agent dialogues, as a way to request re-
sources, propose resource exchanges, suggest alternative resources, etc. We assume that
the agents are equipped with a planner that, given a goal, is able to produce a sequence
of actions to achieve it and an associated set of missing resources that are needed to
carry out the plan. A single dialogue is used to obtain a resource. We describe an agent
dialogue cycle that can be used to trigger a new dialogue after one is terminated, in or-
der to allow the agent to collect all the resources needed to achieve its goal. In this way,
the agents of a system produce sequences of dialogues, and in general sets of sequences
of dialogues (a sequence for each agent that needs to obtain any missing resources).

We study some properties of dialogues, sequences of dialogues, and sets of se-
quences of dialogues in an agent system. We define the properties of termination, cor-
rectness and completeness, and show whether they hold for some concrete agent vari-
eties we propose. Finally, we study how a heterogeneous system, i.e., a system com-
posed by a variety of agents, can be used to implement resource reallocation policies.
Note that we do not make any concrete assumption on the internal structure of agents,
except for requiring that they hold beliefs, goals, intentions and, possibly, resources.

2 Preliminaries
Capital and lower-case letters stand for variables and ground terms, respectively.

Definition 1 (Performative or dialogue move)

A performative or dialogue move is an instance of a schema tell(X,Y, Subject, T'),
where X is the utterer and Y is the receiver of the performative, and T is the time when
the performative is uttered. Subject is the content of the performative, expressed in
some given content language.

A concrete example of a performative is tell(a, b, request(give(nail)), 1), where
Subject is request(give(nail)). Intuitively, this performative represents a’s request
to b for a nail, at time 1. We will often refer to a performative simply as p(7T'), if we
want to emphasise the time of the performative, or p.

Definition 2 (Language for negotiation)
A language for negotiation L is a (possibly infinite) set of (possibly non ground) per-
formatives. For a given £, we define two (possibly infinite) subsets of performatives,



Z(L), F(L) C L, called respectively initial moves and final moves. Each final move is
either successful or unsuccessful.

The following is a possible concrete language for negotiation:
Ly ={ (1) tell(X, Y, request(give(Resource)), T)
(2) tell(X,Y, accept(Move), T)
(3) tell(X, Y, refuse(Move), T)
(4) tell(X,Y, challenge(Move), T)
(5) tell(X, Y, justify (M ove, Support), T)
(6) tell(X, Y, promise(give( Resource), give(Resource’)), T) }
where (4) is used by X to ask Y a reason (justification) for a past Mowve, (5) is used by
X to justify to Y a past Move by means of a Support, (6) is used by X to propose a
deal: X will give Resource' to Y if Y will give Resource to X (see Sadri et al. [14]
for a more detailed description). The initial and final moves are:
T(Lq) ={tell(X,Y, request(give( Resource)), T)}
F(Ly)={ [successful moves:]
tell( X, Y, accept(request(give(Resource))), T),
tell(X,Y, accept(promise(give( Resource), give(Resource’))), T),
[unsuccessful moves:]
tell(X,Y, refuse(request(give(Resource))), T),
tell( X, Y, refuse(promise(give( Resource), give(Resource'))), T) }.
As in this paper we are interested in negotiation for the exchange of resources, we will
assume that there always exists a request move in the (initial moves of any) language
for negotiation.

Definition 3 (Agent system)
An agent system is a finite set A, where each x € A is a ground term, representing the
name of an agent, equipped with a knowledge base K(x).

We will assume that, in an agent system, the agents share a common language for ne-
gotiation as well as a common content language.

In this paper, we presume a logic language for the knowledge base of agents, but
make only three assumptions on the syntax of this language. In particular, we assume
that it contains notions of literal, complement of sentences, conjunction of sentences,
true and false, and that such language is equipped with a notion of entailment, such
that, for every ground literal in the language, either the literal or its complement is en-
tailed from the set of sentences that represent the knowledge of agents, and such that
no literal and its complement are entailed at the same time. We also make concreie as-
sumptions on the syntax of a component of the knowledge base, consisting of “dialogue
constraints” (described in Section 3).

As far as the content of the knowledge base, we will assume that it describes, in
addition to the dialogue constraints,

— domain-specific as well as domain-independent beliefs that the agent can use o
generate plans for its goal, such as the knowledge describing preconditions and
effects of actions. We will not make any assumptions on how such plans are gen-




erated; in particular, they could be obtained from a planner, either within the agent
or external to it, or be extracted from a given library of plans, which is part of the
knowledge of the agent;

- information about the resources available to the agent;

- information about the dialogues in which the agent has taken part;

— information on the selected infention, consisting of the given goal, a plan for the
given goal, as well as the set of resources already available to the agent and the set
of missing resources, both required for the plan to be executable.

Note that we assume that each agent is equipped with a single (possibly conjunctive)
goal. For the sake of simplicity, we will also assume that this goal docs not change
during the dialogucs. Such assumption could be relaxed, and our framework cxtended,
for example by letting the agents’ modify their goals after they have been achieved, or
proven impossible to achieve, in accordance with the Rao and Georgeff’s BDI theory
[12] that requires goals to be believed feasible.

The purpose of negotiation is for the agent to obtain the missing resources, while
retaining the available ones that are necessary for the plan in its current intention.

We do not make any assumptions on how the plan within an intention is obtained.
However, we assume that the intention is such that the plan it contains allows the goal
to be achieved, with respect to the knowledge base of the agent. We also assume that
the missing resources in the intention and those available to the agent, as given by the
knowledge base, have no intersection, and that the available resources in the intention
are contained in the resources available to the agent, as given by the knowledge base.

In the sequel, we will refer to the knowledge base, intention and goal of an agent
x as K(z), Z(x) and G(z), respectively, or simply as K, Z and G, respectively, if clear
from the context.

As an example, for some agent z € A, the knowledge base K(x) might contain
beliefs such as (0 stands for the initial time)

have(picture, 0), have(hammer,0), have(screwdriver, 0);
the goal G () might be hung(picture), and the intention Z(z) might be

{ goal({hung(picture)}),

plan({obtain(nail), hit(nail), hang(picture)},0),

available({hamumer, picture},0),

missing({nail},0) }.
This example is inspired by Parsons et al. [11]. There, two agents need to hang some
objects (a picture the one, a mirror the other). Each agent could either use a hammer and
a nail or a screw and a screwdriver, but neither agent owns both resources, hence the
need for negotiation. The agent’s knowledge is time-siamped as it might change over
time, e.g., by acquisition/loss of resources. Moreover, as we will see in the remainder of
the paper, the intention might also change as a result of negotiation, when resources are
exchanged. For instance, after two agents, negotiating with the language £, agree on a
promise, both agents’ knowledge bases will be different, since they will have different
resources, and possibly different plans. Finally, note that we assume that actions within
plans are implicitly temporally ordered (Ieft-to-right). For simplicity, we do not address
the 1ssue of the time of actions and goals in this paper. For a more concrete description
of the knowledge base of agents see [14].




In this paper, we will assume that (any ground instance of) the literal have(R,T)
holds (namely it is entailed by K(x), for the given agent z) if the agent has the resource
R at the time T of interest, and (ground instances of) the literal need(R, T') holds if the
agent’s intention identifies R as avazlable.

In the sequel, given any intention Z,

goal(G) € T will stand for “G is the goal in 7’

plan(P,T) € T will stand for *P is the plan in Z, time-stamped with time 7~
missing(Rs,T) € 7 will stand for ‘Rs are the resources needed to make the plan
in 7 executable but currently missing, time-stamped with time 77
available(Rs,T) € T will stand for ‘ Rs are the resources needed to make the plan
in 7 executable and currently available, time-stamped with time 77,

We will omit the time T if clear from the context.

3 Dialogues

For a given agent x € A, where A is equipped with £, we define the sets

- L™(z), of all performative schemata of which z is the receiver, but not the utterer;
- L°¥(z), of all performative schemata of which z is the utterer, but not the receiver.

Note that we do not allow for agents to utter performatives to themselves. In the sequel,
we will often omit z, if clear from the context, and simply write £ and £°%.
Negotiation policies can be specified by sets of dialogue constraints:

Definition 4 (Dialogue constraint)

Given an agent system A, equipped with a language for negotiation £, and an agent
x € A, adialogue constraint for x is a (possibly non-ground) if-then rule of the form:
p(TYAC = p(T + 1), where

- p(T) € £(x) and p(T + 1) € L (x),

— the utterer of p(7T') is the receiver of H(T + 1), and the receiver of p(T') is the utterer
of p(T + 1),

- C is a conjunction of literals in the language of the knowledge base of x. !

Any variables in a dialogue constraint are implicitly universally quantified from the out-
side. The performative p(T') is referred to as the trigger, p(T + 1) as the next move and
C as the condition of the dialogue constraint.

Intuitively, the dialogue constraints of an agent x express policies between z and any
other agent. The intuitive meaning of a dialogue constraint p(T) A C = p(T + 1) of
agent x is as follows: if at a certain time 7 in a dialogue some other agent y utters a per-
formative p(T"), then the corresponding instance of the dialogue constraint is triggered

! Note that C in general might depend on several time points, possibly but not necessarily in-
cluding T'; therefore we will not indicate explicitly any time variable for it.



and, if the condition C is entailed by the knowledge base of , then z will utter p(7T + 1),
with y as receiver, at the next time T + 1. This behaviour of dialogue constraints can
be achieved by employing an automatic abductive proof procedure such as Fung and
Kowalski’s IFF [4] within an observe-think-act agent cycle [8], as discussed in [14].
The procedure implements a concrete concept of entailment with respect to knowledge
bases expressed in abductive logic programming terms [7]. The execution of the proof
procedure within the agent cycle allows agents to produce dialogue moves immediately
after a dialogue constraint is fired.

The use of an abductive proof procedure, equipped with an operational semantics
and theoretical results, has several advantages, beside the availability of an execution
model. In particular, the proofs of the theorems stated later in the paper are implicitly
grounded on the property of correctness, which holds for the IFF proof-procedure.

An example of a dialogue constraint allowing an agent x to accept a request is:

tell(Y, z, request(give(R)),T) A [have(R,T) A not need(R,T)]

= tell(z,Y, accept(request(give(R))), T + 1)
where the trigger is tell(Y, z, request(give(R)), T), the condition is within square
brackets and the next move is tell(xz, Y, accept(request(give(R))), T + 1).

This is a simple example, but in general ¢’ might contain other dialogue performa-
tives, uttered in the past by other agents, within the same dialogue or other dialogues.
For instance, one could decide to accept a request only if another agent made a certain
move in the past.

We will refer to the set of dialogue constraints associated with an agent z € A as
S(x), and we will call it the agent program of z. We will often omit x if it is clear from
the context or unimportant. As already mentioned in Section 2, the agent program of an
agent is part of its knowledge base K.

Note that different agents might be equipped with diflerent agent programs.

Definition 5 (Dialogue)
A dialogue between two agents x and y is a set of ground performatives, {po, p1, D2, . . . }.
such that, for some given ¢ > 0:

1. Vi >0, p; is uttered at time ¢ + ¢;

2. Vi > 0,if p; is uttered by agent x (resp. y), then p; 1 (if any) is uttered by agent y
(resp. x);

3. Vi > 0, p; can be uttered by agent « € {z,y} only if there exists a (grounded)
dialogue constraint p;_y A C = p; € S(a) such that K(«) A p;—; entails C.

A dialogue {pg, p1, - .. Pm > m > 0, is terminated if p,, is a ground final move, namely
Pm is a ground instance of a performative in F(£).

By condition 1, a dialogue is in fact a sequence of performatives. By condition 2, agents
alternate utterances in a dialogue. By condition 3, dialogues are generated by the dia-
logue constraints, together with the given knowledge base to determine whether the
condition of triggered dialogue constraints is entailed.

Intuitively, a dialogue should begin with an initial move, according to the given
language for negotiation. The kind of dialogue that is relevant to our purposes is that




started with a request for a resource R. Such a dialogue will be initiated by an agent z
whose intention 7 contains R in its set of missing resources.

Definition 6 (Request dialogue)
A request dialogue with respect to a resource R and an intention 7 of agent = is a
dialogue {po, p1,p2,. ..} between x and some agent y € A such that

- po = tell(x,y,request(give(R)), t),
— mussing(Rs,t) € T and
- R € Rs,

for some t > (0.

In general, after a terminated request dialogue d with respect to a resource R and an
intention 7 of some agent x, the agent might have been successful or not in obtaining the
resource R. If it has been successful, then its intention changes so that R is not missing
anymore, and the agent will engage in new dialogues to obtain the remaining missing
resources, if any, in the intention. If d has been unsuccessful, then the agent’s intention
does not change, and the agent might decide to engage in a dialogue to obtain K from a
different agent. In both cases, the plan in the intention does not change. We also allow
a third possibility, of a successful termination with a change of intention possibly (and
typically) involving a change of plan. This could happen, for example, if during the
dialogue the other agent persuaded the requesting agent to modify its plan, with the
promise of a dilferent resource deal. In the sequel, we will assume that a terminated
request dialogue, for a given resource R and intention I, returns an intention T'.

Definition 7 (Types of terminated request dialogues)

Let 7 be the intention of some agent a, and R be a missing resource in Z. Let d be a
terminated resource dialogue with respect to R and Z, and 7’ be the intention resulting
from d. Then, if missing(Rs), plan(P) € T and missing(Rs'), plan(P') € T":

1) dis successful if P' = P, Rs' = Rs ~ {R};
1) d is conditionally or c-successful if Rs' # Rs and Rs' # Rs \ {R};
141) d is unsuccessful it 7' = T,

Note that, in the case of c-successful dialogues, typically, but not always, the agent’s
plan will change (P' # P).

In [14], we impose that terminated request dialogues return inientions whose missing
resources are no more than those in the original intention, in order to ensure the termi-
nation of the negotiation process of an agent, achieved by dialogue sequences. Here, we
generalise this property to that of “‘convergence’:

Definition 8 (Convergence)
An agent x € A is convergent iff, for every terminated request dialogue of z, with



respect to some resource I and some intention Z, the cost of the returned intention Z’
is not higher than the cost of 7.

The cost of an intention can be defined as the number of missing resources in the
intention.

4 Properties of Agent Programs

In this section we consider an individual agent z € A, equipped with a language for
negotiation £ and an agent program S that, for the purposes of this section, we assume
to be grounded.

An agent program should ideally guarantee that the agent’s dialogues terminate,
and that the agent is able to produce one and only one move at a time, in finite time,
in response to any non-final move of other agents. In this section, we show how some
such desirable properties can be ensured. We discuss the ‘termination’ property in an
earlier paper [14] and in a companion paper [18].

Given a grounded agent program S and a ground performative p, we define the set

S(p) of conditions associated with p:

S(p) ;2 {C'| thereexists (p A C = p) € S}.

Definition 9 (Determinism)

An agent x € A is deterministic iff, for each performative p(t) which is a ground
instance of a schema in £", there exists at most one performative p(¢ + 1) which is a
ground instance of a schema in £°% such that p(t) A C = p(t + 1) € S and K A p(¢)
entails C.

Namely, an agent is deterministic if for every given performative, at most one of the
dialogue constraints triggered by it actually fires, in that it produces a next move.
Determinism can be guaranteed for “non-overlapping” agent programs:

Definition 10 (Non-overlapping agent program)
Sis non-overlapping iff for each performative p which is a ground instance of a schema
in £, foreach C,C’ € S(p) suchthat C # C’, then C A C' = false.

Namely, an agent program is non-overlapping if, for any given incoming dialogue move,
there do not exist any two triggered dialogue constraints firing at the same time.
Theorem 1 If the (grounded) agent program of x is non-overlapping, then x is deter-
Proof (Sketch): for each incoming performative there exists at most one triggered dia-
logue constraint whose conditions are true, thus K only entails at most the condition of
one constraint. m

In order for a dialogue not to end before a final move is reached, it is important that
an agent be “exhaustive™



Definition 11 (Exhaustiveness)

An agent x € A is exhaustive iff, for each performative p(¢) which is a ground instance
of a schema in L™ . F(L), there exists at least one performative $(t + 1) which is a
ground instance of a schema in £°% such that p({) AC = p(t +1) € S and K A p(t)
entails C'.

Namely, an agent is exhaustive if, for every given performative, at least one of the
dialogue constraints triggered by it actually fires, in that it produces a next move.
Exhaustiveness can be guaranteed for “covering” agent programs:

Definition 12 (Covering agent program)
Let £(S) be the set of all (not necessarily ground) performatives p(T') that are triggers

in dialogue constraints:

L(S) = {p(T)| thereexists p(T) A C = p(T +1) € S}. (Obviously, L(S) C L")

Then, S # § is covering iff for every performative p which is a ground instance of a
schema in £, \/ o 5, C = true and L(S) = L N F(L).

Namely, an agent program is covering if, for any given incoming dialogue move that is
not a final move, there exists at least one triggered dialogue constraint which actually
fires.

Theorem 2 If the (grounded) agent program of z is covering, then z is exhaustive.
Proof (Sketch): for each incoming performative there exists at least one dialogue con-
straint which is triggered and whose condition is true, thus X entails the condition of at
least one constraint. m

If an agent is exhaustive and deterministic, then at each step of the dialogue the agent
will produce exactly one reply to a (non final) move made by the other agent. If both
agents involved in a dialogue are exhaustive and deterministic, then at each step ex-
actly one agent is guaranteed to produce only one dialogue move, unless a final move
is made. > The IFF proof procedure and the agent cycle have features that allow us
to produce dialogues as defined earlier, given agent programs that are exhaustive and
deterministic.

5 Agent Varieties: Concrete Examples of Agent Programs

In this section we show some concrete agent programs and we discuss which properties
hold for them and which ones do not. All the examples refer to a given agent a, equipped
with a language for negotiation Lo = Z(L2) U F(L2), where:

- I(Ly) ={ tell(X, Y, request(give( Resource)), T) };
- F(L2) ={tell(X,Y,accept(Move), T), tell(X,Y, refuse(Move), T) }.

2 Note that we use fransaction, rather than real, time, i.e., we assume that there is no time-point
between two consecutive dialogue moves in a dialogue.



Agent program PO

tell(X, a, request(give(R)),T) A have(R,T)

= tell(a, X, accept(request(give(R))), T + 1)

tell(X, a,request(give(R)),T) A need(R,T)

= tell(a, X, refuse(request(give(R))),T + 1)
This program is neither deterministic nor exhaustive. In fact, if @ has and needs the
resource that is requested at time 7', the program allows to return two answers at time
T + 1, namely both accept and re fuse, while if a does not have R, then the program
will not be able to return any answer at time 7' + 1.

Agent program P1

tell(X, a, request(give(R)),T) A have(R,T)

= tell(a, X, accept(request(give(R))), T + 1)

tell(X, a,request(give(R)),T) A not have(R,T)

= tell(a, X, refuse(request(give(R))),T + 1)
An agent programmed with P1 simply gives away the requested resource if it has it, no
matter whether it needs it or not. This program is exhaustive and deterministic.

Agent program P2

tell(X, a, request(give(R)),T) A have(R,T) A not need(R,T)
= tell(a, X, accept(request(give(R))),T + 1)

tell(X, a, request(give(R)),T) A not have(R,T)

= tell(a, X, refuse(request(give(R))), T + 1)

tell(X, a, request(give(R)),T) A need(R,T)

= tell(a, X, refuse(request(give(R))), T + 1)

An agent programmed with P2 gives away the requested resource only if it has it and it
does not need it. This program is exhaustive and deterministic.

6 Dialogue Sequences

In this section we model the negotiation process of an agent by means of “sequences
of (request) dialogues” with respect to an intention, I, of a given agent x. The request
dialogues aim at obtaining all the missing resources in 7. We assume that all dialogues
between x and any other agents are atomic, i.e., it is not possible for = to be engaged in
two different dialogues at the same time.

In order to start a request dialogue with respect to an intention I, the set of missing
resources of 7 must be non-empty, i.e., missing(Rs) € I, Rs # (.

Intuitively, given a goal G such that goal(G) € I, missing(Rs) € I and plan(p) €
I, a sequence of dialogues with respect to I aims at decreasing the cost of I, either by
obtaining one by one all the missing resources and making p executable, or by finding
an alternative plan (and thus an alternative intention) which can be made executable.
Indeed, after each dialogue, the intention might change. We associatie with a dialogue
sequence dy, ds, . . ., d,, the corresponding sequence of intentions I; = I, I5,..., I, 11.
In general, after a request dialogue d;,7 < n, with respect to an intention /; and a




resource R, is terminated, the agent will have an intention I; . All such intentions
have the same goal, but possibly different plans and missing/available resources.

Definition 13 (Sequence of dialogues)

A sequence of dialogues s(I) with respect to an intention I of an agent z with goal(G) €

Iis anordered set {dy,ds, ... ,d,, ...}, associated with a sequence of intentions I, I,
<o Iy, ... such that

- forall T < ¢, d; is a request dialogue between = and some other agent (not nec-
essarily the same for all i), with respect to a resource R; such that B, € Rs;,
missing(Rs;) € I;, I; 1s the intention of agent z, goal(G) € I;, and I, is the
intention after dialogue d;;

-5L =1

We are interested in dialogue sequences that terminate:

Definition 14 (Termination of a dialogue sequence)

A sequence of dialogues {d;,ds,...,d,} with respect to an initial intention I of an
agent « and associated with the sequence of intentions I+, I5, ..., I,11 is terminated
iff there exists no possible request dialogue with respect to I, that « can start.

Termination could occur for two reasons: either there are no missing resources in I, 1
or z could not obtain all the resources in I,,; but “decided” to give up the intention
without forming a new one for the time being. Accordingly, we can assess the success
of dialogue sequences:

Definition 15 (Success of a dialogue sequence)

A terminated sequence of dialogues {d;, ds, .. ., d,} with respect to an initial intention
I of an agent z and associated with a sequence of intentions I, I5, ..., I,y is success-
ful if I, 11 has an empty set of missing resources; it is unsuccessful otherwise.

In the remainder of this section we will discuss how dialogue sequences can be gen-
erated by agents, by an “agent dialogue cycle” which repeatedly generates individual
dialogues until a terminated sequence is produced. We will call ST and ST, respec-
tively, the sequence of dialogues and intentions, produced within the dialogue cycle:

Definition 16 (Agent dialogue cycle)
Given an initial intention I of agent x, containing a set of missing resources Rs, the
agent dialogue cycle is the following:

1. set SD = and STto{I};
2. uniil Rs = () repeat

(a) select aresource R € Rs and update Rs to Rs — {R};
(b) until a successful or c-successful dialogue d is found, between x and some
other agent, repeat



i. selectan agenty € A — {«} such that there does not exist in SD a request
dialogue between x and y with respect to R,
ii. if such y does not exist, then failure and restore Rs to Rs U {R};
iti. construct a request dialogue d between z and y with respect to R and 1,
returning an intention I';
(¢) adddto SD and I' to SI;
(d) update I to I" and Rs to Rs’ such that missing(Rs’) € I';
3. success.

Note that the above agent dialogue cycle does not allow for the plan in an intention
to change unless the change is achieved by an individual dialogue between z and the
chosen y.

Note also that the above agent dialogue cycle has the following properties:

— no agent is asked twice for the same resource within the dialogue sequence;

— if a resource is not obtained from one agent, then it is asked from some other agent,
if any;

— if a resource is not obtained after asking all agents, then the agent dialogue cycle
terminates with failure.

The idea behind the third property is that the agent will not carry on asking for
the other resources, since, as at least one resource in the current intention cannot be
obtained, the intention will not possibly be executable.

Theorem 3 Given an agent x € A, if 2’s agent dialogue cycle returns success then
there exists a successful dialogue sequence with respect to the initial intention I of z.
Proof (Sketch): The dialogue sequence S D, associated with the sequence of intentions
S1, as generated by the agent dialogue cycle at step 2(c¢) during the last execution of
the loop at step 2, is a success[ul dialogue sequence. m

If the agent x € A is convergent, then all dialogues of a sequence with respect to an
intention I of z will result in a non-increased cost of x’s intention. Thus, we can set an
upper bound to the number of dialogues in a sequence initiated by z:

Theorem 4 Given an agent = with intention 7, and a successful dialogue sequence s(I)
generated by x’s dialogue cycle, if x is convergent, then the number of dialogues in s(7)
is bounded by m - |Rs|, where missing(Rs) € I and |A \ {z}| = m, A being the set
of agents in the system.

Proof (Sketch): | Rs| can never increase, since « is convergent. In the worst case, z will
have to request each resource R € Rs to all the other m agents of the system, thus gen-
erating m dialogues with respect to each resource. The cardinality of the set of missing
resources decreases by only one unit afier each successful dialogue. m

7 Using Dialogue Sequences for Resource Reallocation

In this section, we study the use of multiple sequences of dialogues for the solution of
the well-known and widely studied resource reallocation problem [2, 16]. The problem
can be rephrased in our system as follows.



Definition 17 (Resource reallocation problem — r.r.p.)
Given an agent system A, with each agent z € A equipped with a knowledge base K(z)
and an intention Z(z),

— the rrp. for an agent & € A is the problem of finding a knowledge base K/ (), and
an intention Z'(z) (for the same goal as Z(z)) such that missing(d) € 7'(z).

— the rrp. for the agent system A is the problem of solving the r.r.p. for every agent
in A.

A rrp. is solved if the required (sets of) knowledge base(s) and intention(s) is (are)
found.

The new knowledge bases will differ from the old ones in the resources available to the
agents and in the intentions. Typically, agents need to acquire new resources from other
agents so that their intentions have no missing resources. In our framework, agents can
obtain the new resources by means of dialogue sequences.

Note that, the knowledge and intention of an agent x might change not only as a
result of dialogues which have been initiated by x, but also as a result of dialogues
initiated by other agents, but engaging x. Indeed, in such more ‘passive’ dialogues,
might agree to give away a resource that it needs. This ‘double change’ of knowledge
and intentions (of both agents involved in a dialogue) plays a role when agents need
to engage in multiple concurrent dialogue sequences in order to achieve their goal. *
In the remainder of this section, we will assume generalised notions of (terminated)
dialogue, modifying the intentions of both agents engaged in it, and dialogue sequence,
modilying the intentions of all agents involved in all dialogues in it. Then, the notion
of convergence can be generalised as well, so that the cost of both agents’ intentions
returned by a dialogue is not increased, with respect to the cost of the agents’ initial
intentions. Note that convergent agents, in this generalised sense, correspond to self-
interested individual rational agents as proposed in the literature (see Sandholm [15]).

We consider two properties of agents:

— correctness: if the dialogue cycle of some agent z returns success, then the r.r.p of
x is solved, and, if the dialogue cycle of every agent in A returns success, then the
r.r.p. of the agent system is solved;

— completeness: if there exists a solution to the r.r.p of an agent system, then the
dialogue cycle of every agent in A returns success, producing such a solution.

The proof of correctness for a single agent is straightforward, by definition of successful
dialogue sequence. In the case of an agent system, instead, correciness as given above
can be proven only for convergent agents.

Theorem 5 (Correctness of the agent dialogue cycle with respect to the r.r.p.) Let A be
the agent system, with the agent programs of all the agents in 4 being convergent. If

3 Note that this is not in contrast with the assumption that agents engage in at most one dialogue
at a time. As we assume that dialogues are atomic, there will always be at most one dialogue
taking place at any time.



all agent dialogue cycles of all agents in A return success then the r.r.p. for the agent
system is solved.

Proof (Sketch): Since all agent programs are convergent, there will never occur a di-
alogue after which, and as a consequence of which, either of the two agents involved
has more missing resources in its intention than it had before. Therefore, having m suc-
cessful dialogue sequences, one for each agent in A, is in the worst case equivalent to
having m independent dialogue sequences, after each of which the relevant agent will
have solved its r.r.p., thus solving the r.r.p. of A. m

In order to address completeness we need to deal with the issue of how intentions
change, which is beyond the scope of this paper. But to illustrate the problem, con-
sider the following example. Let A = {a, b, c} be an agent system, with knowledge
bases containing:

a:R(a)=0,Z(a) = { plan({p(a)}), missing({r>}), available(d), goal({g(a)})}
b:R(b) = {ra},Z(b) = { plan({p(b)}), missing({rs}), available({r>}), goal({g(b)})}
c:R(c) = {ra,ra},Z(c) = { plan({p(c)}), missing(f), available({rs}), goal({g(c)})}
where R (x) stands for the resources available to agent z, as described within z’s knowl-
edge base. Let us assume that there exists an alternative plan p'(b) for b’s goal g(b),
and therefore an alternative intention, Z'(b): Z'(h) = { plan({p'(b)}), missing({rs}),
available(), goal({g(b)})} Itis easy to see that there exists a possible resource real-
location that makes all goals achievable (r» to a, 74 to b and 73 to ¢), but in order to be
found by negotiation, b must be able to change its intention to Z'(b).

We consider a weak notion of completeness, whereby agents have, as their own
initial intentions, the intentions whose plan does not need to be changed by negotiation.

Definition 18 (Weak completeness)

Let A be an agent system consisting of n agents. Let R(A) be the union of all resources
held by all agents in A, and R(Z(A4)) be the union of ail resources needed to make ail
agents’ initial intentions Z(A4) executable.

A is weakly complete if, given that R(Z(A)) C R(A), then there exist n success-
ful dialogue sequences, one for each agent in A, such that the intentions Z'(A4) returned
by the sequences have the same plans as Z(A) and all have an empty set of missing
resources.

Theorem 6 (weak completeness with respect to P1 + P2) Let A be an agent system
consisting of n agents. Then, if the agent program of every agent in A is either P1 or
P2, then 4 is weakly complete.

Proof (Sketch): The sub-system composed by the agents programmed with P2 is weakly
complete, therefore the agents programmed with P2 will obtain all missing resources,
either from the agents programmed with P1 or from the ones programmed with P2. The
agents programmed with P1 will obiain the missing resources either from the agents
programmed with P2 that have such resources and do not need them, or by the agents
programmed with P1, which represent also a weakly complete sub-system. m

Thus, we have shown that the r.r.p. can be solved within our approach, by diverse agents,




equipped with different agent programs, negotiating with one another. Note that such
diversity can be used to implement a concept of priority between agents. Indeed, agents
programmed with P2 always retain all resources they need, whereas agents programmed
with P1 give them away, if asked. Thus, P2-agents have a higher priority than P1-agents,
with respect to the allocation of resources.

8§ Conclusions

This paper focused on one-to-one agent negotiation for achieving goals in a system
with limited resources. The solution proposcd is bascd on agent dialogucs, as a way
of requesting resourcces, proposing resource cxchanges, and suggesting alternative re-
sources. The negotiation framework presented is a general one for representing policies
and generating dialogues. The resource reallocation problem is one possible application
of this framework. This framework could be deployed to tackle other problems, e.g. to
deal with dialogues starting with an offer or an advertisement rather than a request.

We assume that the agents are provided with a planner that, given a goal, is able to
produce a sequence of actions to achieve it and an associated set of missing resources
that are needed to carry out the actions. The framework proposed is independent of the
planner, the specific application domain, the agent programs that regulate the dialogues,
and even the language that agents use to communicate.

In the domain of resource reallocation, a single dialogue is used to obtain a resource.
Our approach is logic based, and, in particular, the agents involved in a dialogue can
use an abductive proof procedure to reason about their current beliefs and intentions,
and produce a dialogue move. An agent dialogue cycle is used produce sequences of
dialogues, and in general sets of sequences of dialogues in order [or the agent Lo collect
all the resources it needs to achieve its goal.

The logic-based approach allows us to define and prove some interesting properties
of dialogues, sequences of dialogues, and sets of sequences of dialogues in an agent
system. In particular, the adoption of an abductive proof procedure for which termina-
tion, correctness and completeness results hold, allows us to extend such general results
to the specific case of a problem defined and addressed in the paper, the resource re-
allocation problem. We show various agent programs that can be used to tackle such
a problem, and discuss to what extent the properties of termination, correctness and
completeness, as defined in this paper, hold for them.

Introduction and surveys of automated negotiation can be found in [13] and [9, 6],
respectively. An approach to negotiation via dialogue, that makes use of an argumen-
tation system, is that of Sycara [17], and more recently Kraus et al. [10], where the
authors adopt a modal lTogic approach and focus on the mental states of agents that
move towards an agreement and encourage cooperation. The authors’ formalisation of
dialogues makes use of rules that, similarly to our dialogne constraints, are triggered
when a performative is received, and may lead to another dialogue move under certain
conditions, within an agent cycle. The execution is interiwined with the dialogue, al-
lowing the agents to express threats, promises of rewards, etc. and to maintain a mental
model of the other partners. Such an approach, focused on persuasion, leads to differ-




ent results from ours, being somewhat more descriptive, and not aiming to determine
specific properties of the negotiation policy.

Argumentation-based approaches to agent negotiation, that are in a way more gen-
eral and less operational than ours, but are still very relevant, are those of Amgoud et
al. [1] and Parsons et al. [11], from which we inherited the nail-and-hammer example.

Zlotkin and Rosenschein [19] adopt a game theory approach to the study of auto-
mated negotiation. However, their work — as most others that are game theory-based
— considers agents that are not cooperative, and focuses on conflict resolution rather
than collaboration. One of the interesting issues they address is the disclosure of private
information. Our work is somcwhat orthogonal, aiming at obtaining the resources the
agents nced, without taking into account the problems that could arise from disclosing
private information. We agree that this is very important, especially in contexts such as
e-commerce and virtual enterprises.

The use of negotiation to tackle the resource reallocation problem is not a new idea;
among other contributions we cite that by Faratin [3], Sandholm [15], and Sathi and Fox
[16]. Most of them study the problem adopting a game-theoretic approach and prove
results that we consider orthogonal to ours.

This paper contributes to a number of issues. The introduction of a logic-based
framework for negotiation allows us to prove properties that we can use to forecast the
behaviour of a system of agents with no need for simulation and experimental results.
The paper suggests an execution model that relies on the observe-think-act agent cycle
of Kowalski and Sadri [8], and on the adoption of the IFF abductive prool procedure of
Fung and Kowalski [4]. In this way, the implementation of the system, at least as far as
a prototype, is straightforward, and does not require much more than writing high-level
dialogue rules of the kind presented in the paper. This work extends our previous work
[14] by dealing with dialogue sequences, discussing the application of the framework
to a general resource reallocation problem, and proposing varieties of agents that can
tackle such a problem.

There are a number of open issues. So far we assumed that agents do not change
their goals. A natural extension would be to take into account the possibility of modi-
fying goals as a consequence of an unsuccessful dialogue sequence, in accordance with
the BDI theory that requires goals to be believed feasible.

Negotiation of sets of resources, rather that single items, is another interesting prob-
lem, as is the use of broadcast or multi-cast primitives as in electronic auctions.

It would also be interesting to study different cost functions for intentions, and to
see what their impact is on the dialogues and on the dialogue properties. Currently, in
moving from one intention to another, as a consequence of a deal (the acceptance of
a promzse), an agent can choose a plan that turns out not to be feasible, because of
the Tack of resources in the sysiem. A more sophisticated cost function than the one
proposed in the paper could result in the agent ensuring that all the resources for a new
plan exist somewhere in the system, before agreeing to a deal.
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