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Abstract. This article summarises part of the work done during the first
two years of the SOCS project, with respect to the task of modelling in-
teraction amongst CL-based agents. It describes the SOCS social model:
an agent interaction specification and verification framework equipped
with a declarative and operational semantics, expressed in terms of ab-
duction. The operational counterpart of the proposed framework has
been implemented and integrated in SOCS-SI, a tool that can be used
for on-the-fly verification of agent compliance with respect to specified
protocols.

1 Introduction

Computees are Computational Logic-based entities interacting in the context
of global and open computing systems [1]. They are abstractions of the entities
that populate Global Computing (GC) environments [2]. These entities can form
complex organizations, that we call Societies Of ComputeeS (SOCS, for short)
[3]. The main objective of Global Computing, rephrased in terms of SOCS, is to
provide a solid scientific foundation for the design of societies of computees, and
to lay the groundwork for achieving effective principles for building and analyzing
such systems. Between January 2002 and March 2004, the project developed a
society formal model to satisfy the high-level objectives derived directly from
the GC vision of an open and changing environment.

In this context, by “open” environment we mean, following Hewitt’s work
[4] about information systems and then Artikis et al.’s [5] about computational
societies, an environment or society where the following properties hold:

(i) the behavior of members and their interactions are unpredictable (i.e., the
evolution of the society is non-deterministic);

(ii) the internal architecture of each member is neither publicly known nor ob-
servable (thus, members may have heterogeneous architectures);
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(iii) members of the society do not necessarily share common goals, desires or
intentions (i.e., each member may conflict with others when trying to reach
its own purposes).

This definition of openness is based on externally observable features within
the society. It caters for heterogeneous and possibly non-cooperative members.
Therefore, our model of society will not constrain the ways computees join or
leave a society, it will emphasize the presence of heterogeneous computees in the
same society, and it will assume that the internal structure of computees is not
guaranteed to be observable, or their social behaviour predictable.

The SOCS social model specifies a social knowledge which interprets and
gives a social meaning to the members’ social behavior. It supports the notion
of social goal, allowing for both goal-directed and non-goal-directed societies.

In our approach, we believe that the knowledge and technologies acquired so
far in the area of Computational Logic provide a solid ground to build upon. At
the society level, the role of Computational Logic is to provide both a declar-
ative and an operational semantics to interactions. The advantages of such an
approach are to be found:

(i) in the design and specification of societies of computees, based on a formalism
which is declarative and easily understandable by the user;

(ii) in the possibility to detect undesirable behavior, through on the fly control
of the system based on the computees’ observable behavior (communica-
tion exchanges) and dynamic conformance check of such behaviour with the
constraints posed by the society. Interestingly, as we will see, this can be
achieved by exploiting a suitable proof procedure which is the operational
counterpart of the mentioned formalism;

(iii) in the possibility to (formally) prove properties of protocols and societies.

Therefore, in our approach, we define the (semantics of) protocols and com-
munication languages as logic-based integrity constraints over social events (e.g.,
communicative acts), called Social Integrity Constraints (icS) [6].

The ideal “correct” behaviour of a society is modelled as expectations about
events. icS define the expectations stemming from a certain history of events and
possibly a set of goals. Expectations and icS are the formalism used to define the
“social semantics” of agent communication languages and interaction protocol:
a semantics which is verifiable without having any knowledge about the agents’
internals.

The syntax of icS and of the society in general are those of a suitably ex-
tended logic program. In fact, we define the “social knowledge” by assimilating it
to abductive logic programs [7], and we define a notion of expected social events,
by expressing them as abducible predicates, while using icS to constrain the “so-
cially admissible” communication patterns of computees (i.e., those who match
the expectations).

The society infrastructure is devoted to checking the compliance of the society
members’ behaviour, with respect to its expectations.
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The compliance check is based on a proof-procedure called SCIFF. SCIFF,
standing for “IFF, augmented with Constraints, for handling agent Societies”,
is an extension of the well known IFF abductive logic programming proof-
procedure, defined by Fung and Kowalski [8]. The SCIFF extends the IFF in
a number of directions: it provides both a richer syntax of abductive theories
(programs and integrity constraints), it caters for interactive event assimilation,
it supports fulfillment check and violation detection, and it embodies CLP-like
constraints [9] in the icS .

The SCIFF has been proven sound with respect to the declarative semantics
of the society model, in its ALP interpretation [10].

The SCIFF has been implemented and integrated into a Java-Prolog-CHR
based tool, named SOCS-SI (SOCS Social Infrastructure [11]). This implemen-
tation can be used to verify that agents comply to a Social Integrity Constraints-
based specification. The intended use of SOCS-SI is in combination with agent
platforms, such as PROSOCS [12], for on-the-fly verification of compliance to
protocols. In SOCS-SI, SCIFF is part of an integrated environment, provided
with interface modules to allow for such a combination, and with a graphical user
interface to observe the actual behaviour of the society members with respect to
their expected behaviour, and to detect possible deviations.

The main innovative contribution of the SOCS social model, under a Global
Computing perspective, resides in the foundational aspects of the SOCS society
model and in its direct link with its implementation, SOCS-SI.

The present work is meant to survey the activity undergone within the first
two years of the SOCS project, with respect to the society infrastructure, and
in the context of Global Computing. For a more detailed description of specific
aspects, the reader can refer to the articles cited in the bibliography.

The paper is structured as follows. In Section 2, we present the formal model
for societies, and its declarative semantics. Section 3 presents the SCIFF proof
procedure. Its implementation, and the overall tool SOCS-SI is described in
Section 4. We discuss related work in Section 5, and we conclude and outline
future work in Section 6.

2 SOCS social model

The SOCS model describes the knowledge about society in a declarative way.
Such knowledge is mainly composed of two parts: a static part, defining the
society organizational and “normative” elements, and a dynamic part, describing
the “socially relevant” events, that have so far occurred. In most of our examples,
events will be communicative acts, in line with most work done on software
agents. However, this is not necessarily the case. Depending on the context in
which this model is instantiated, socially relevant events could indeed be physical
actions or transactions, such as electronic payments. In addition to these two
categories of knowledge, information about social goals is also maintained.

In our model, the society is time by time aware of social events that dy-
namically happen in the social environment (happened events). The “normative
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elements” are encoded in what we call icS , as we will show below. Based on the
available history of events, on its specification of icS and its goals, the society
can define what the “expected social events” are and what the social events that
are expected not to happen. The expected events, from a normative perspec-
tive, reflect the “ideal” behaviour of the computees. We call these events social
expectations.

2.1 Representation of the society knowledge.

The knowledge in a society S is given by the following components:

– a (static) Social Organization Knowledge Base, denoted SOKB;
– a (static) set of Social Integrity Constraints (ICS), denoted ICS ; and
– a set of Goals of the society, denoted by G.

In the following, the terms Atom and Literal have the usual Logic Program-
ming meaning [13].

A society may evolve, as new events happen, giving rise to sequence of society
instances, each one characterised by the previous knowledge components and, in
addition, a (dynamic) Social Environment Knowledge Base, denoted SEKB.

In particular, SEKB is composed of:

– Happened events: atoms indicated with functor H;
– Expectations: events that should (but might not) happen (atoms indicated

with functor E), and events that should not (but might indeed) happen
(atoms indicated with functor EN).

In our context, “happened” events are not all the events that have actually
happened, but only those observable from the outside of agents, and relevant
to the society. The collection of such events is the history, HAP, of a society
instance. Events are represented as ground atoms

H(Event [,Time]).

Expectations can be

E(Event [,Time]) EN(Event [,Time])

for, respectively, positive and negative expectations. E is a positive expectation
about an event (the society expects the event to happen) and EN is a negative
expectation, (the society expects the event not to happen3). Explicit negation
(¬) can be applied to expectations.

The arguments of expectation atoms can be non-ground terms. Intuitively,
if an E(X) atom is in the set of expectations generated by the society, E(X) ∈
EXP, “E” indicates a wish about an event H(Y ) ∈ HAP which unifies with it:

3 EN is a shorthand for E not.
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X/Y . One such event will be enough to fulfill the expectation: thus, variables in
an E atom are always existentially quantified.

For instance, in an auction context such as the one exemplified in [14], the
following atom:

E(tell(Auctioneer,Bidders, openauction(Item,Dialogue)), Topen)

could stand for an expectation about a communicative act tell made by a com-
putee (Auctioneer), addressed to a (group of) computees (Bidders), with sub-
ject openauction(Item,Dialogue), at a time Topen.

The following scope rules and quantifications are adopted:

– variables in E atoms are always existentially quantified with scope the entire
set of expectations

– the other variables, that occur only in EN atoms are universally quantified
(the scope of universally quantified variables is not important, as ∀X.p(X)∧
q(X) is logically equivalent to ∀X.p(X) ∧ ∀Y.q(Y )).

The SOKB defines structure and properties of the society, namely: goals,
roles, and common knowledge and capabilities. SOKB can change from time
to time. However, this knowledge can be seen as static since it describes the
organization of a society which changes more slowly than the way the SEKB
does. The SOKB is a logic program, consisting of clauses

Clause ::= Atom ← Body
Body ::= ExtLiteral [ ∧ ExtLiteral ]⋆

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T ]) | [¬]EN(Event [, T ])

(1)

In a clause, the variables are quantified as follows:

– Universally, if they occur only in literals with functor EN (and possibly
constraints), with scope the body;

– Otherwise universally, with scope the entire Clause.

We call definite the predicates for which there exists a definition; i.e., a predicate
whose name occurs in at least the head of a clause.

The following is a sample clause:

sold(Item) ←
E(tell(Auctioneer,Bidders, openauction(Item,Dialogue)), Topen)

(2)

It says that one way to fulfill the goal: “to have a certain item sold,” could
be to have some computee acting as an auctioneer and telling a set of possible
bidders that an auction is open for the item.

The goal G of the society has the same syntax as the Body of a clause in the
SOKB, and the variables are quantified accordingly.
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As an example, we can consider a society with the goal of selling items. In
order to sell an item, the society might expect some computee to embody the
role of auctioneer. The goal of the society could be

← sold(nail)

and the society might have, in the SOKB, a rule such as Eq. 2. Indeed, there
could be more clauses specifying other ways of achieving the same goal, like ex-
pecting some computee to advertise a sale on some public channel, or generating
an expectation about a request of that item by some potential customer agent.
The protocol of the auction (i.e., the way the auctioneer and the bidders are
expected to interact, and in particular, to interact in a socially meaningful way)
can be then specified by means of icS .

Social Integrity Constraints are in the form of implications. We report here,
for better readability, the characterizing part of their syntax:

icS ::= χ → φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]⋆

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [ ∨ HeadDisjunct ]⋆|⊥

HeadDisjunct ::= Expectation [ ∧ (Expectation|Constraint)]⋆

Expectation ::= [¬]E(Event [, T ]) | [¬]EN(Event [, T ])
HEvent ::= [¬]H(Event [, T ])

(3)

Given an icS χ → φ, χ is called the body (or the condition) and φ is called the
head (or the conclusion).

The rules of scope and quantification are as follows:

1. Any variable in an icS must occur in at least an Event or in an Expectation.
2. The variables that occur both in the body and in the head are quantified

universally with scope the entire icS .
3. The variables that occur only in the head (and must occur in at least one

Expectation, by rule 1)
(a) if they occur in literals E or ¬E are quantified existentially and have as

scope the disjunct they belong to;
(b) otherwise they are quantified universally.

4. The variables that occur only in the body are quantified inside the body as
follows:
(a) if they occur only in conjunctions of ¬H, EN, ¬EN or Constraints are

quantified universally;
(b) otherwise are quantified existentially.

5. The order of the quantifiers is indeed meaningful. In our syntax, the quan-
tifier ∀ cannot be followed by ∃.

The following icS models one of the auction rules, stating that each time a
bidding event happens, the auctioneer should have sent before an openauction
event (to all bidders).

H(current time, Tc),H(tell(S,R, bid(Item,P ), Anumber), Tbid), Tbid < Tc

→ E(tell(R,Bidders, openauction(Item,Anumber)), Topen), Topen ≤ Tc
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2.2 ALP Interpretation of the Society

SOCS social model has been interpreted in terms of Abductive Logic Program-
ming [7], and an abductive semantics has been proposed for it [15]. Abduction
has been widely recognised as a powerful mechanism for hypothetical reasoning
in the presence of incomplete knowledge [16,17,18,19]. Incomplete knowledge
is handled by labeling some pieces of information as abducibles, i.e., possible
hypotheses which can be assumed, provided that they are consistent with the
current knowledge base. More formally, given a theory T and a formula G, the
goal of abduction is to find a (possibly minimal) set of atoms ∆ which together
with T “entails” G, with respect to some notion of “entailment” that the lan-
guage of T is equipped with.

An Abductive Logic Program (ALP, for short) [7] is a triple 〈KB,A, IC〉
where KB is a logic program, (i.e., a set of clauses), A is a set of predicates that
are not defined in KB and that are called abducibles, IC is a set of formulae
called Integrity Constraints. An abductive explanation for a goal G is a set ∆ ⊆ A
such that KB ∪ ∆ |= G and KB ∪ ∆ |= IC, for some notion of entailment |=.

In our social model, the idea is to exploit abduction for defining expected
behaviour of the computees inhabiting the society, and an abductive proof pro-
cedure such as the SCIFF to dynamically generate the expectations and perform
the compliance check. By “compliance check” we mean the procedure of checking
that the icS are not violated, together with the function of detecting fulfillment
and violation of expectations.

Before we give the declarative semantics of the SOCS social model, we for-
malise better the notions of instance of a society, and closure of an instance of
a society.

Definition 1. An instance SHAP of a society S is represented as an ALP, i.e.,
a triple 〈P, E , ICS〉 where:

– P is the SOKB of S together with the history of happened events HAP;
– E is the set of abducible predicates, namely E, EN, ¬E, ¬EN;
– ICS are the social integrity constraints of S.

The set HAP characterises the instance of a society, and represents the set
of observable and relevant events for the society which have already happened.
Note that we assume that such events are always ground.

A society instance is closed, when its characterizing history has been closed
under the Closed World Assumption (CWA), i.e., when no further event might
occur. In the following, we indicate a closed history by means of an overline:
HAP.

2.3 Declarative semantics

We give semantics to a society instance by defining those sets of expectations
which, together with the society’s knowledge base and the happened events,
imply an instance of the goal—if any—and satisfy the integrity constraints.
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In our definition of integrity constraint satisfaction we will rely upon a notion
of entailment in a three-valued logic, being it more general and capable of dealing
with both open and closed society instances. Therefore, in the following, the
symbol |= has to be interpreted as a notion of entailment in a three-valued
setting [20].

Throughout this section, as usual when defining declarative semantics, we
always consider the ground version of social knowledge base and integrity con-
straints, we do not consider CLP-like constraints. Moreover, we omit the time
argument in events and expectations.

We first introduce the concept of ICS-consistent set of social expectations4.
Intuitively, given a society instance, an ICS-consistent set of social expectations
is a set of expectations about social events that are compatible with P (i.e., the
SOKB and the set HAP), and with ICS .

Definition 2. (ICS-consistency) Given a (closed/open) society instance SHAP,
an ICS-consistent set of social expectations EXP is a set of expectations such
that:

SOKB ∪ HAP ∪ EXP |= ICS (4)

(Notice that for closed instances HAP has to be read HAP).

In definition 2 (and in the following definitions 5, 6, 7 and 8), for open
instances we refer to a three-valued completion where only the history of events
has not been completed. Therefore, for open instances,

SOKB ∪ HAP ∪ EXP |= ICS

is a shorthand for:

Comp(SOKB ∪ EXP) ∪ HAP ∪ CET |= ICS

where Comp() is three-valued completion [20] and CET is Clark’s equational
theory.

For closed instances, instead,

SOKB ∪ HAP ∪ EXP |= ICS

is a shorthand for:

Comp(SOKB ∪ EXP ∪ HAP) ∪ CET |= ICS

since also the (closed) history of events needs to be completed.
ICS-consistent sets of expectations can be self-contradictory (e.g., both E(p)

and ¬E(p) may belong to a ICS-consistent set). In particular, among the ICS-
consistent sets of expectations, we are interested in those which are also consis-
tent from the viewpoint of our intended use of expectations, i.e., in relation to

4 With abuse of terminology, we call this notion ICS-consistency though it corresponds
to the theoremhood view rather than to the consistency view defined in [8].
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the semantics of interactions. We will say that a set EXP is E-consistent if it
does not contain both a positive and a negative expectation of the same event,
and that it is ¬-consistent if it does not contain both an expectation and its
explicit negation:

Definition 3. (E-consistency) A set of social expectations EXP is E-consistent
if and only if for each (ground) term p:

{E(p),EN(p)} 6⊆ EXP

Definition 4. (¬-consistency) A set of social expectations EXP is ¬-consistent
if and only if for each (ground) term p:

{E(p),¬E(p)} 6⊆ EXP and {EN(p),¬EN(p)} 6⊆ EXP.

Given a closed (respectively, open) society instance, a set of expectations is
called closed (resp. open) admissible if and only if it satisfies Definitions 2, 3 and
4, i.e., if it is ICS-, E- and ¬-consistent.

Definition 5. (Fulfillment) Given a (closed/open) society instance SHAP, a
set of social expectations EXP is fulfilled if and only if for all (ground) terms
p:

HAP ∪ EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} 6² ⊥ (5)

Notice that Definition 5 requires, for a closed instance of a society, that each
positive expectation in EXP has a corresponding happened event in HAP,
and each negative expectation in EXP has no corresponding happened event.
This requirement is weaker for open instances, where a set EXP is not fulfilled
only when a negative expectation occurs in the set, but the corresponding event
happened (i.e., the implication EN(p) → ¬H(p) is false).

Symmetrically, we define violation:

Definition 6. (Violation) Given a (closed/open) society instance SHAP, a set
of social expectations EXP is violated if and only if there exists a (ground) term
p such that:

HAP ∪ EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} ² ⊥ (6)

Finally, we give the notion of goal achievability and achievement.

Definition 7. Goal achievability Given an open instance of a society, SHAP,
and a ground goal G, we say that G is achievable (and we write SHAP≈EXPG)
iff there exists an (open) admissible and fulfilled set of social expectations EXP,
such that:

SOKB ∪ HAP ∪ EXP ² G (7)

(which, as explained earlier, is a shorthand for Comp(SOKB∪EXP)∪HAP∪
CET |= G).
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Definition 8. Goal achievement Given a closed instance of a society, S
HAP

,
and a ground goal G, we say that G is achieved (and we write S

HAP
²EXP G)

iff there exists a (closed) admissible and fulfilled set of social expectations EXP,
such that:

SOKB ∪ HAP ∪ EXP ² G (8)

(i.e., Comp(SOKB ∪ HAP ∪ EXP) ∪ CET |= G).

3 Operational framework

The SCIFF proof procedure is inspired to the IFF proof procedure [8]. As the
IFF, it is based on a transition system, that rewrites a formula into another,
until no more rewriting transitions can be applied (quiescence). Each of the
transitions generates one or more children from a node. As an extension of the
IFF, the SCIFF also has to deal with (i) universally quantified variables in
abducibles (ii) dynamically incoming events (iii) consistency, fulfillment and
violations (iv) CLP-like constraints.

Each node of the proof procedure is represented by the tuple

T ≡ 〈R,CS, PSIC,PEXP,HAP,FULF,VIOL〉

where

– R is a conjunction (that replaces the Resolvent in SLD resolution); initially
set to the goal G, the conjuncts can be atoms or disjunctions (of conjunctions
of atoms)

– CS is the constraint store (as in Constraint Logic Programming [9])
– PSIC is a set of implications, representing partially solved social integrity

constraints
– PEXP is the set of pending expectations
– HAP is the history of happened events
– FULF is a set of fulfilled expectations
– VIOL is a set of violated expectations

Initial Node and Success A derivation D is a sequence of nodes T0 →
T1 → . . . → Tn−1 → Tn. Given a goal G, a set of integrity constraints ICS ,
and an initial history HAPi (that is typically empty) the first node is: T0 ≡
〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 i.e., the conjunction R is initially the query (R0 =
{G}) and the partially solved integrity constraints PSIC is the whole set of social
integrity constraints (PSIC0 = ICS). The other nodes Tj , j > 0, are obtained by
applying one of the transitions of the proof procedure, until no further transition
can be applied (we call this last condition quiescence).

Let us now give the definition of successful derivation, both in the case of an
open society instance (where new events may be added to the history further
on) and of a closed society instance.
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Definition 9. Given an initial history HAPi that evolves toward a final history
HAPf (with HAPf ⊇ HAPi), and an open society instance SHAPi , there
exists an open successful derivation for a goal G iff the proof tree with root node

〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉

has at least one leaf node

〈∅, CS, PSIC,PEXP,HAPf ,FULF, ∅〉

where CS is consistent (i.e., there exists a ground variable assignment such that
all the constraints are satisfied).

Analogously, there exists a closed successful derivation iff the proof tree has
at least one leaf node

〈∅, CS, PSIC,PEXP,HAPf ,FULF, ∅〉

where CS is consistent, and PEXP contains only negative literals ¬E and ¬EN.

From each non-failure leaf node N , answers can be extracted in a very sim-
ilar way to the IFF proof procedure. Answers of the SCIFF proof procedure,
called expectation answers, are composed of an answer substitution and a set of
abduced expectations. First, an answer substitution σ′ is computed such that
(i) σ′ replaces all variables in N that are not universally quantified by a ground
term (ii) σ′ satisfies all the constraints in the store CSN . Notice that, by defini-
tion 9, there must be a grounding of the variables satisfying all the constraints.
In other words, we assume that the solver is (theory) complete [21], i.e., for each
set of constraints c, the solver always returns true or false, and never unknown.
Otherwise, if the solver is incomplete, σ′ may not exist. The non-existence of σ′

is discovered during the answer extraction phase. In such a case, the node N will
be marked as a failure node, and another leaf node can be selected (if it exists).

Definition 10. Given a non-failure node N , let σ′ be the answer substitution
extracted from N .

Let σ = σ′|vars(G) be the restriction of σ′ to the variables occurring in the
initial goal G. Let EXPN = (FULFN ∪ PEXPN )σ′. The pair (EXPN , σ) is
the expectation answer obtained from the node N .

3.1 Transitions

The transitions are based on those of the IFF proof procedure, augmented with
those of CLP [9], and with specific transitions accommodating the concepts of
fulfillment, dynamically growing history and consistency of the set of expecta-
tions with respect to the given definitions (Definitions 2, 3, and 4).

Due to lack of space, we do not list all the transitions, but we informally
describe the main ones, and we give the formal definition of one (Violation
EN), in order to give the taste of how the proof procedure works. The full list
of transition can be found in [10].
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IFF-like transitions The SCIFF proof procedure inherits the transitions of
the IFF proof procedure. The IFF proof procedure starts with a formula (that
replaces the concept of resolvent in logic programming) built as a conjunction
of the initial query and the ICs. Then it repeatedly applies one of the following
inference rules:

unfolding replaces resolution: given a node with a definite atom, it replaces it
with one of its definitions;

propagation propagates icS : given a node containing A∧B → C and an atom
A′ that unifies with A, it replaces the implication with (A = A′) ∧ B → C;

splitting distributes conjunctions and disjunctions, making the final formula in
a sum-of-products form;

case analysis if the body of an icS contains A = A′, case analysis nondeter-
ministically tries A = A′ or A 6= A′,

factoring tries to reuse a previously made hypothesis;
rewrite rules for equality use the inferences in the Clark Equality Theory;
logical simplifications try to simplify a formula through equivalences like [A∧

false] ↔ false, [true → A] ↔ A, etc.

Thanks to these inference rules, each node is always translated into a (dis-
junction of) conjunctions of atoms and implications; e.g., it can look like:

(A1 ∧ A2 ∧ [B1 ∧ B2 → A3] ∧ [B3 ∧ B4 → A4])
∨ (Ai ∧ Aj ∧ Ak ∧ [By → Az] ∧ [B5 → false])

the atoms have a similar meaning to those in the resolvent in LP, while the
implications are (partially-propagated) integrity constraints.

Given a formula, it is always clear the quantification of the variables by the
following rules:

– if a variable is in the initial query, then it is free;
– else if it appears in an atom, it is existentially quantified;
– else (it appears only in implications) it is universally quantified.

CLP-like The SCIFF proof procedure also deals with constraints. It contains
the CLP transitions [9] of Constrain (moves a constraint from R to the con-
straint store CS), Infer (infers new constraints given the current state of CS)
and Consistent (checks if the constraint store is satisfiable). The solver has been
extended to deal with unification and disunification of existentially and univer-
sally quantified atoms.

Dynamically incoming events We assume to have an external set of events
that happen in the society; the events in this external set are inserted in the his-
tory HAP by a transition Happening. Other transitions deal with non-happening
of events and closure of the history.
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Consistency, Fulfillment and Violation In order to rule out nodes that are
either inconsistent with respect to the declarative semantics or contain violations,
we defined transitions that nondeterministically try to unify/disunify the terms
in atoms. For instance, in order to detect a violation of EN atoms, we need to
check if one happened event unifies with it. We have the transition:

Violation EN Given a node Nk as follows:

– PEXPk = PEXP′ ∪ {EN(E1)}
– HAPk = HAP′ ∪ {H(E2)}

violation EN produces two nodes N1
k+1 and N2

k+1, where

N1
k+1 N2

k+1

VIOLk+1 = VIOLk ∪ {EN(E1)} VIOLk+1 = VIOLk

CSk+1 = CSk ∪ {E1 = E2} CSk+1 = CSk ∪ {E1 6= E2}

Example 1. Suppose that HAPk = {H(p(1, 2))} and ∃X∀Y PEXPk = {EN(p(X,Y ))}.
Violation EN will produce the two following nodes:

∃X∀Y PEXPk = {EN(p(X,Y ))}
HAPk = {H(p(1, 2))}

©
©

©
©

©

H
H

H
H

H

X = 1 ∧ Y = 2
VIOLk+1 = {EN(p(1, 2))}

X 6= 1 ∨ Y 6= 2

X 6= 1
where the last simplification in the right branch is due to the rules of the con-
straint solver [10].

3.2 Sample Derivation

Let us consider a simple protocol: if a computee is asked for some information,
it should either provide the information or refuse, but not both.5 The protocol
definition is given by means of the following Social Integrity Constraints:

IC1: H(tell(A,B, query-ref (Info),D), T ) ⇒
E(tell(B,A, inform(Info, Answer),D), T1), T1 < T + 10 ∨
E(tell(B,A, refuse(Info),D), T1), T1 < T + 10

IC2: H(tell(A,B, inform(Info, Answer),D), T ) ⇒
EN(tell(A,B, refuse(Info),D), T1), T1 > T

IC3: H(tell(A,B, refuse(Info),D), T ) ⇒
EN(tell(A,B, inform(Info, Answer),D), T1), T1 > T

and let us suppose that the history evolves from an empty history to a final
history HAPf composed of only two events:

H(tell(yves, david, query-ref (train info), d1), 1)
H(tell(david, yves, inform(train info, “departs(sv,rm,10:15)”), d1), 2)

5 This protocol is inspired to the FIPA query-ref interaction protocol [22].
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The first node of the derivation tree is N0 ≡ 〈∅, ∅, ICS , ∅, ∅, ∅, ∅〉. The only ap-
plicable transition is Happening with one of the events in the external set of
happened events; in this example, we will consider the events in chronological
order:

N1 ≡ 〈∅, ∅, PSIC, ∅, {H(tell(yves, david, query-ref (train info), d1), 1)}, ∅, ∅〉.

Now transition Propagation is applicable to IC1.

PSIC2 = { IC1, IC2, IC3,
A′ = yves,B′ = david, Info′ = train info,D′ = d1, T

′ = 1
→ E(tell(B′, A′, inform(Info′, Answer′),D′), T ′

1), T ′

1 < T ′ + 10
∨ E(tell(B′, A′, refuse(Info′),D′), T ′

1), T ′

1 < T ′ + 10
}

Each of the equalities in the body of the implication is dealt with by case
analysis. Concerning A′ = yves, case analysis generates two nodes: in the first
A′ = yves and in the second A′ 6= yves is put in the constraint store. Since
A′ is universally quantified, the constraint A′ = yves succeeds when applying
transition Consistent, and A′ 6= yves fails.

©
©

©
©

©
©

H
H

H
H

H
H

Case Analysis
CS3 = {A′ = yves}

Infer+Consistent
PSIC4 = {IC1, IC2, IC3, IC ′

1}

Case Analysis
CS3 = {A′ 6= yves}

Consistent
fail

where

IC ′

1 =







B′ = david, Info′ = train info,D′ = d1, T
′ = 1

→ E(tell(B′, yves, inform(Info′, Answer′),D′), T ′

1), T
′

1 < T ′ + 10
∨ E(tell(B′, yves, refuse(Info′),D′), T ′

1), T
′

1 < T ′ + 10

After applying case analysis for each equality in the body, and the successive
constraint solving step, we have only one non-failure node:

N10 = 〈∅, ∅, PSIC10, ∅,HAP10, ∅, ∅〉

PSIC10 = {IC1, IC2, IC3,
true → E(tell(david, yves, inform(train info, Answer′), d1), T

′

1),
T ′

1 < 1 + 10
∨ E(tell(david, yves, refuse(train info), d1), T

′

1), T
′

1 < 1 + 10}
HAP10 = {H(tell(yves, david, query-ref(train info), d1), 1)}

We apply Logical Equivalence to the implication with true antecedent. Then,
since element R of the produced node (N11 not shown here) contains a disjunc-
tion, splitting can be applied, and its application generates two nodes. Let us
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consider the first node N ′

14, having:

R′

14 = ∅
PEXP′

14 = {E(tell(david, yves, inform(train info, Answer′), d1), T
′

1)}
CS′

14 = {T ′

1 < 1 + 10}

The declarative reading of this node is:
∃Answer′,∃T ′

1. T ′

1 < 1 + 10
∧ E(tell(david, yves, inform(train info, Answer′), d1), T

′

1).

Suppose that now happening transition is applied with the second event in
the external set of happened events6.

HAP15 = {H(tell(yves, david, query-ref (train info), d1), 1),
H(tell(david, yves, inform(train info, “departs(sv,rm,10:15))”, d1), 2).}

We can now apply transition fulfillment E with the event H(tell(david, yves,
inform . . .)) in the history. The transition opens two alternative nodes, N ′

16 and
N ′′

16: either the event in the expectation unifies with the event in the history,
and becomes fulfilled, or it does not unify and remains pending.

–

CS′

16 = {Answer′ = “departs(sv,rm,10:15)” ∧ T ′

1 = 2
∧T ′

1 < 1 + 10}
FULF′

16 = {E(tell(david, yves, inform(train info, Answer′), d1), T
′

1)}
PEXP′

16 = ∅

–

CS′′

16 = {(Answer′ 6= “departs(sv,rm,10:15)” ∨ T ′

1 6= 2)
∧T ′

1 < 1 + 10}
FULF′′

16 = ∅
PEXP′′

16 = {E(tell(david, yves, inform(train info, Answer′), d1), T
′

1)}

The second node can be fulfilled if the history is still open, as other events may
happen matching the pending expectation. If the history gets closed, the pending
expectation will become violated, so the second will be a violation node. This
does not mean that the proof is in a global violation. As in SLD resolution a
global failure is obtained only if all the leaves of the proof tree are failure nodes,
in the same way in SCIFF we have a global violation only if all the leaves contain
violations (i.e., in all alternative branches, VIOL 6= ∅). This is not the case in
this example, since in the first node, N ′

16, the expectations are fulfilled).

Other transitions are applicable to this node; we do not continue the ex-
ample because their application is very similar to the ones already presented.
For example, transition Propagation will be applied to IC2 and to the event
H(tell(david, yves, inform . . .)) in the history, thus providing a new expectation
EN(tell(david, yves, refuse(train info), d1), T

′

1), T ′

1 > 2.

6 Of course, the happening transition was applicable also to the previous nodes. We
are giving here a sample derivation, but others may be possible.
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Fig. 1. Overview of the SOCS-SI architecture

4 Implementation

In this section, we describe the implementation of SOCS-SI, the tool for compli-
ance verification of agent interaction. The tool is composed of an implementation
of the SCIFF proof-procedure specified in the previous section, interfaced to a
graphical user interface and to a component for the observation of agent inter-
action.

The SOCS-SI software application is composed of a set of modules. All the
components except one (SCIFF) are implemented in the Java language.

The core of SOCS-SI is composed of three main modules (see Fig. 1), namely:

– Event Recorder : fetches events from different sources and stores them inside
the History Manager.

– History Manager : receives events from the Event Recorder and composes
them into an “event history”.

– Social Compliance Verifier : fetches events from the History Manager and
passes them to the proof-procedure in order to check the compliance of the
history to the specification.

Computees communicate by exchanging messages, which are then translated into
H events. The Event Recorder fetches events and records them into the History
Manager, where they become available to the proof-procedure (see Sect. 4.1). As
soon as the proof-procedure is ready to process a new event, it fetches one from
the History Manager. The event is processed and the results of the computation
are returned to the GUI. The proof-procedure then continues its computation
by fetching another event if there is any available, otherwise it suspends, waiting
for new events.
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A fourth module, named Init&Control Module provides for initialization of all
the components in the proper order. It receives as initial input a set of protocols
defined by the user, which will be used by the proof-procedure in order to check
the compliance of agents to the specification.

4.1 Implementation of SCIFF

The SCIFF proof procedure has been implemented in SICStus Prolog [23], ex-
ploiting its constraint libraries and, in particular, the Constraint Handling Rules
(CHR) library [24].

The data structures representing the proof tree nodes are represented as
follows:

– R is represented by the Prolog resolvent;
– CS is the CLP (CLPFD, CLPB) constraint store;
– PSIC, EXP, HAP, FULF, VIOL are represented as CHR constraints.

Attributes [25] are used to represent the quantification (existential or universal)
of variables in expectations; an ad-hoc CHR constraint (reif unify/3) imple-
ments reified unification (i.e., both the constraints = and 6=) between variables
and terms.

Thanks to the representation of most data structures as CHR constraints, the
transitions (such as propagation, happening, fulfillment/violation) that modify
those data structures have been implemented by exploiting the CHR computa-
tional model.

For instance, the following rule immplements the check for E-consistence:

e_consistency @

e(EEvent,ETime),

en(ENEvent,ENTime)

==>

reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0).

This is a propagation rule, i.e., a rule that adds a constraint to the CHR store
whenever a combination of constraints is present in the store. The name of
the rule is e_consistency. e(EEvent,ETime) and en(ENEvent,ENTime) are
the two CHR constraints representing the expectations E(EEvent ,ETime) and
EN(ENEvent ,ENTime), respectively. Whenever these two constraints are in the
CHR store, the dis-unification constraint

reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0)

is added to the store to impose that the arguments of the positive and the
negative expectations do not unify, as required by E-consistency (see Def. 3).

The CLP transitions, instead, are delegated to the CLP solvers available in
SICStus Prolog: we have used CLPFD for finite domains and CLPB for binary
domains variables, but in principle it would be possible to use any CLP library
based on SICStus.
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Fig. 2. A screenshot of the application

The SCIFF proof tree is searched with a depth-first strategy, so to exploit
the Prolog stack for backtracking. The success of the proof procedure (see Def.
8) is mapped onto a successful Prolog derivation.

4.2 The Graphical User Interface

The Graphical User Interface is implemented by using the Swing graphic library,
and implements the Model-View-Control programming pattern. The main win-
dow is composed of three areas (or sub-windows), and of a button bar that
contains the controls (see Fig. 2).

The bottom area contains the list of all the messages received by SOCS-SI.
The left pane contains the list of agents known by the society, i.e., agents that
have performed at least one communicative action. The central pane contains the
results of the computation, returned by the proof-procedure. These results are
expressed in terms of society expectations about the future behavior of agents,
and also in terms of fulfilled expectations and violations of social rules. By select-
ing an agent from the left pane, it is possible to restrict the information shown
on the larger pane to be only that relevant to that particular agent. Among other
features, it is possible to execute step-by-step the application, so that it elabo-
rates one message at a time and then waits for a user acknowledge (similarly to
the debug interface of modern compilers).
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5 Related Work

The main result of the first two years of the SOCS project, with respect to
societies od computees, is the definition of a social framework. In doing this, we
have provided (i) a declarative representation of the social knowledge, (ii) a logic
formalism based on social expectations and ICS , for specifying social rules and
easily verifiable protocols, and for defining the semantics of communicative acts
in an open system scenario, (iii) a proof-procedure proven correct with respect
to the declarative representation of the social knowledge, and (iv) a prototypical
implementation of the social framework which can be used to test the framework
with a number of scenarios, protocols, and communication languages.

Our work relates to several aspects of Multi-Agent Systems research, in terms
of social and interaction models, operational frameworks, and implemented sys-
tems, and to work done in Computational Logics, specifically in extensions of
logic programming. Space limitations prevent us from thoroughly discussing here
the SOCS social framework in relationship with other conspicuous work done on
all these areas. We will only give an overview of some related work, and give a
reference to the relevant project deliverables for further discussions.

ICS represent in a way social norms. Several researchers have studied the con-
cepts of norms, commitments and social relations in the context of Multi-Agent
Systems [26]. Furthermore, a lot of research has been devoted in proposing archi-
tectures for developing agents with social awareness (see, for instance [27]). Our
approach can be conceived as complementary to these efforts, since instead of
proposing a specific architecture for designing computees, our work is mainly fo-
cused on the definition of a society infrastructure based on Computational Logic
for regulating and improving robustness of interaction in an open environment,
where the internal architecture of the computees might be unknown.

Our work is very related, as far as objectives and methodology, to the work on
computational societies presented and developed in the context of the ALFEBI-
ITE project [28]. We have in fact the same understanding of openness, as we
pointed out in the introduction. In turn, our work is especially oriented to com-
putational aspects, and it was developed with the purpose of providing a com-
putational framework that can be directly used for automatic verification of
properties such as compliance.

Most formal approaches to protocol modelling specify protocols as legal se-
quences of actions [29, pp.19–22]. In this way, protocols can be over-constrained,
and this affects autonomy, heterogeneity, and ability to exploit opportunities
and exceptions [30]. Moreover, the mentalistic approach to protocol definition
has been much criticized mainly because its assumptions regarding agents’ in-
ternals are not realistic in open societies of heterogeneous agents [31]. Therefore
we advocated a social approach, where the semantics of interactions is defined in
terms of the effects of the computees interactions on the society. Following this
approach, even if the computees mental state cannot be accessed, it is possible
to verify whether communicating computees in a society comply to some social
laws and norms which regulate the interactions. Another expressive advantage
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of our framework is that it can express with the same formalism both protocols
and social semantics of communicative acts.

In our social approach we drew inspiration from work done by Yolum and
Singh [30] where a social semantics of agent interaction protocols is exempli-
fied by using a commitment-based approach, and by Fornara and Colombetti
[32,33,34], especially as it concerns the semantics of communication languages
[29, pp. 37–41]. In particular, the latter approach is similar to ours in that it
specifies the semantics of actions in terms of their social effects, and presup-
poses a social framework (which is called institution in [33]) for assigning agents
with roles, verifying their social behavior and, possibly, recovering from violation
conditions. There are, however, some significant differences with [33], mainly
originating from the different paradigm we have chosen to express semantics
(logic-based instead of object-oriented), as it is shown in [29, p. 71].

Yolum and Singh also propose an interesting way of linking together com-
municative acts and protocol specifications using the idea of social semantics in
[30], where an agent can find a communication path leaving no pending com-
mitments by exploiting its reasoning/planning capabilities. Our approach rather
aims at ensuring protocol compliance regardless of computees’ reasoning capa-
bilities. In fact, ICS are designed to explicit constraints between communicative
acts. However, equipping the communication model of single computees with suf-
ficient knowledge to reason about social expectations is certainly an interesting
option. This topic is discussed in D4 [35].

Finally, there exist other approaches based on Deontic Logic to formally
defining norms and dealing with their possible violations. An example of it is
work by Dignum et al. [36], as discussed in [29, pp. 72]. Deontic operators have
been used not only at the social level, but also at the agent level. Notably,
in IMPACT [37,38], agent programs may be used to specify what an agent is
obliged to do, what an agent may do, and what an agent cannot do on the basis
of deontic operators of Permission, Obligation and Prohibition (whose semantics
does not rely on a Deontic Logic semantics). In this respect, IMPACT and our
work have similarities even if their purpose and expressivity are different. The
main difference is that the goal of agent programs in IMPACT is to express and
determine by its application the behavior of a single agent, whereas our goal is to
express rules of interaction, that instead cannot really determine and constrain
the behavior of the single computees participating to the interaction protocols,
since computees are autonomous.

Our work is not only directly related to social aspects of MAS, but also to
extensions of Logic Programming for MAS. In particular, the syntax of icS is
strictly related to that of integrity constraints in the IFF proof-procedure [8]. In
[29, pp. 92–94] work on ICS is discussed with that done by Fung and Kowalski,
with a focus on some syntactic aspects of the integrity constraints handled by
the IFF proof-procedure. Briefly, the SCIFF can be considered as an extension
of the IFF proof procedure that also:

– abduces atoms with variables universally quantified;
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– deals with CLP constraints, also imposed as quantifier restrictions on uni-
versally quantified variables;

– is more dynamic, in fact new events may arrive, and the proof procedure
dynamically takes them into consideration in the knowledge base;

– has the new concepts, related to on-line verification, of fulfillment and vio-
lation.

The IFF is not the only abductive logic programming proof-procedure in
literature. Various abductive proof procedures have been proposed in the past.
In [39, p. 173] other procedures are discussed in relationship with our choice
based on the IFF.

Other authors also proposed using abduction for verification. Noteworthily,
Russo et al. [40] use an abductive proof procedure for analyzing event-based re-
quirements specifications. In their approach, the system has a declarative spec-
ification given through the Event Calculus [41] axioms, and the goal is proving
that some invariant I is true in all cases. This method uses abduction for ana-
lyzing the correctness of specifications, while our system is more focussed on the
on-line check of compliance of a set of agents.

We will conclude this section by quickly mentioning two other implementa-
tions of social frameworks. The cited above ALFEBIITE project delivers a tool
(Society Visualiser) to demonstrate animations of protocol runs in such systems
[5]. The Society Visualiser’s main purpose is to explicitly represent the institu-
tional power of the members and the concept of valid action. As we stressed
earlier on, our work is not based on any deontic infrastructure. For this reason,
the SOCS social framework could be used in a different, possibly broader spec-
trum of application domains, ranging from intelligent agents to reactive systems.

ISLANDER [42] is a tool for the specification and verification of interaction in
complex social infrastructures, such as electronic institutions. ISLANDER allows
to analyse situations, called scenes, and visualise liveness or safeness properties
in some specific settings. The kind of verification involved is static and is used
to help designing institutions. Although our framework could also be used at
design time, its main intended use is for on-the-fly verification of heterogeneous
and open systems.

6 Conclusion and Future Work

In this work, we reported on a Computational Logic-based framework for mod-
elling societies of computees and their interactions. We presented both published
and original work done in the first two years of the SOCS project about mod-
elling interactions among agents/computees. In [29, pp. 9–10] we give a list of
pointers to publications where some of the results presented here can be seen in
more detail.

One of the main objectives of SOCS was to deliver a formal logic-based frame-
work to characterize the interactions between computees in a rule-based manner,
either by relying on protocols shared and agreed upon by all computees in a given
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society, or by interaction patterns that are specific to individual computees and
possibly different for different computees.

We defined a model which lent itself easily to a computational realisation,
and which is precise and amenable to formal verification of properties pertaining
to the interactions of the computees belonging to a particular societies.

The social model of interaction among computees that we propose follows a
Computational Logic-based approach. In this model, Logic Programming, suit-
ably extended with the concept of ICS and expectations (interpreted as ab-
ducibles), acts as a uniform language for protocols, interaction policies and pat-
terns.

A degree of openness, understood as the freedom of its members to join or
leave the society, is given by the model presented in Section 2, which caters
for new members joining a society and existing members leaving it [29, p. 27].
Another degree of openness, understood as the possibility to have a society of
heterogeneous computees, is achieved by the fact that the model of the society,
including the handling of expectations, the protocol conformance checking and
the generation of violations, are only based on the socially observable behaviour
of computees: no assumption is made on the internals of computees, but their
social behaviour is constrained by the semantics of social actions and protocols.
Non-conforming behaviour of computees is still possible, but it will be detected
by the society infrastructure and it will have social consequences.

Violation handling and recovery is a matter of current and future work. The
SOCS model of society caters for reasoning under incomplete information, in
the sense that events that did not happen or that have not been “detected”
are treated as unattended expectations, and it is possible to reason over both
expectations and happened events.

The formalism for expressing society rules and protocols, together with the
semantics of the individual communication utterances, is based on Abductive
Logic Programming and constraints over abducible predicates, and its declara-
tive semantics has been given in terms of logical entailment. The SCIFF provides
the operational support for the underlying infrastructure.

Time is explicit in the model. The “reasoning” at a social level is made over
time, and it takes into account issues such as dealing with deadlines, that are
important also from a practical viewpoint [29, pp. 35–36]. In this way, we propose
a social framework which is suitable for modelling a dynamic setting and able
to handle changes in a dynamic environment.

In [43] we present an evaluation of the society model in the context of the
Global Computing programme. We believe that one of the strong points of our
approach are to be found in its formality, not only at a syntactic level (definition
of what is the format of the society knowledge, icS , protocols, CCL format
and constraints), but also, and more interestingly, at the semantic level, which
allows us to describe what are the desirable evolutions of a society and link these
formally to the social structure and social behaviour of the computees

Most importantly, the formality of the framework is indeed backed-up by an
existing and well-defined operational counterpart, the SCIFF, a proof-procedure
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which has been proven correct with respect to the model, implemented, and
integrated in the implementation of a tool, SOCS-SI, which can be used to run
some tests.

We have interpreted the protocol conformance checks and the normative
control performed by the society as abductive tasks, and defined an extension of
the IFF abductive proof procedure to deal with this task. The extension is non-
trivial, and deals with complex forms of variables quantification in abductive
logic programs, as well as constraint predicates.

Finally, we believe that a further contribution of the work presented in this
document is that the computational models devised within SOCS for the com-
putee and for their societies are can be easily integrated with each other, since
they are based on a similar formalism and on the same technology.

Future work will go in the direction of testing the system in different scenar-
ios and studying properties of the model and of specific instances of societies.
Among the scenarios that we are considering to evaluate the expressiveness of
the designed interaction models are: dialogue-based interaction, with a special fo-
cus on resource reallocation, a combinatorial auction and an electronic payment
network protocol.
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