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Abstract. Combinatorial Auctions are an attractive application of in-
telligent agents; their applications are countless and are shown to pro-
vide good revenues. On the other hand, one of the issues they raise is
the computational complexity of the solving process (the Winner De-
termination Problem, WDP), that delayed their practical use. Recently,
efficient solvers have been applied to the WDP, so the framework starts
to be viable.
A second issue, common to many agent systems, is trust: in order for
an agent system to be used, the users must trust both their representa-
tive and the other agents inhabiting the society. Malicious agents must
be found, and their violations discovered. The SOCS project addresses
such issues, and provided a language, the social integrity constraints, for
defining the allowed interaction moves, together with a proof-procedure
able to detect violations.
In this paper we show how to write a protocol for the combinatorial
auctions by using social integrity constraints. In the devised protocol, the
auctioneer interacts with an external solver for the winner determination
problem. We also suggest some solutions for a further, challenging issue:
defining a protocol that contains the concept of optimal allocation and
checking efficiently that the allocation proposed by the auctioneer is
indeed optimal.

1 Introduction

Auctions have been practically used for centuries in human commerce, and their
properties have been studied in detail from economic, social and computer sci-
ence viewpoints. The raising of electronic commerce has pushed auctions as
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one of the favourite dealing protocols in the Internet. Now, the software agent
technology seems an attractive paradigm to support auctions [1]: agents act-
ing on behalf of end-users could reduce the effort required to complete auction
activities. Agents are intrinsically autonomous and can be easily personalised
to embody end-user preferences. In addition, they are adaptive and capable of
learning from both past experience and their environment, in order to cope with
changing operating conditions and evolving user requirements [2]. In fact, while
in the past bidders were only humans, recent Internet auction servers [3] allow
software agents to participate in the auction on behalf of end-users, and some
of them even have a built-in support for mobile agents [4]. As the rise of the
Internet and electronic commerce continues, dynamic automated markets will
be an increasingly important domain for agents.

Depending on the kind of auction, the auctioneer either sells a set of goods
trying to maximise the profit, or buys a set of goods minimising the cost. Bidders
have the goal to obtain (respectively, sell) the goods under convenient price
conditions.

Combinatorial auctions are types of auctions that give more expressiveness
to the bidders: in fact, bidders can place bids on sets of items, expressing com-
plementarity and, in some cases, also substitutability among the items [5,6]. On
the other hand, determining the winners is an NP-hard problem, so combinato-
rial auctions were not typically used due to the lack of efficient solvers. Recently,
however, various solvers have been developed, that are able to solve the winner
determination problem in reasonable time.

Of course, another issue in e-commerce and, in particular, in electronic auc-
tions, is trust [7]. Amongst the various aspects of trust in MASs (often related to
credibility levels between agents), we find utterly important that human users
trust their representatives: in order for the system to be used at all, each user
must trust its representative agent in the auction. The agent must be well spec-
ified, and a formal proof of a correspondence between specification and imple-
mentation is, at least, desirable. Also, even if the agents are compliant to their
specifications, the compliance to the social rules and protocols must be provable,
in order to avoid, or, at least, detect malicious behaviours.

A typical answer to such issues is to model-check the agents with respect
to both their specifications and requirements coming from the society. However,
this is not always possible in open environments: agents could join the society at
all times and their specifications could be unavailable to the society. Thus, the
correct behaviour of agents can be checked only from the external in an open
environment: by monitoring the communicative actions of the agents.

The SOCS project [8] addresses these issues by providing formal definitions
both for the agents, that are based on Computational Logics, and are thus called
Computees, and for the society in an open environment.

In this paper, we focus on the societal aspects, and on the compliance of the
computees (or, in general, agents) to protocols and social rules. These can be
easily expressed in a logic language, the Social Integrity Constraints (icS) that



are an extension of the integrity constraints widely used in Abductive Logic
Programming, and, in particular, extend those of the IFF proof-procedure [9].

We implemented an abductive proof-procedure, called SCIFF (extending the
IFF [9]), that is able to check the compliance to protocols and social rules given
a history of communicative actions. Besides a posteriori check of compliance,
SCIFF also accepts dynamically incoming events, so it can check compliance
during the evolution of the societal interaction, and raise violations as soon as
possible. SCIFF extends the IFF in a number of directions: it provides a richer
syntax, it caters for interactive event assimilation, it supports fulfillment check
and violation detection, and it embodies CLP-like constraints [10] in the icS .
SCIFF is sound [11] with respect to the declarative semantics of the society
model, in its abductive interpretation. The SCIFF has been implemented and
integrated into a Java-Prolog-CHR based tool [12].

In this paper, we show a definition of the combinatorial auction protocol in
Social Integrity Constraints. Since the solving process is NP-hard, we exploit
an efficient solver for the Winner Determination Problem. Finally, we propose
a challenging extension: defining a protocol conformance checking architecture
that contains the concept of optimal allocation for the Winner Determination
Problem. The protocol conformance architecture exploits again an efficient auc-
tion solver to check the optimality of an allocation.

The paper is structured as follows. In Section 2 we briefly recall the SOCS
social model. We describe the combinatorial auction scenario in Section 3, and
we propose other solutions in Section 4. Finally, we cite some related work and
we conclude.

2 SOCS social model

We sketch, for the sake of readability, the SOCS social model; the reader is
referred to previous publications for more details on the syntax and semantics
of the language [14,15].

The society knowledge is physically memorised in a device, called the Society
Infrastructure, that has reasoning capabilities and can use the society knowledge
to infer new information. We assume that the society infrastructure is time
by time aware of social events that dynamically happen in the environment
(happened events). They are represented as ground atoms

H(Event [,Time]).

Social events are typically communication actions amongst computees, but may
also involve objects: computees may need to interact with servers that are in the
environment, and that typically do not show the features that distinguish agents
from other software entities (like autonomy or proactivity). Some of the objects
could be certified by the society and be considered always trustable, i.e., their
replies will be considered always correct (provided that the requests are correct).
In human commerce there also exist certified objects: for example, a grocer has
a certified balance that is used to prove to the buyer that the quantity of goods



is correct. The client will typically trust the balance, but has the right to check
that the goods posed on the balance are indeed the requested ones.

The knowledge in a society is given by:

– a Social Organisation Knowledge Base (SOKB): a logic program;

– a set ICS of Social Integrity Constraints (icS): implications that can relate
elements in the dynamic part, CLP constraints and predicates defined in the
SOKB.

The “normative elements” are encoded in the icS . Based on the available
history of events, and on the icS-based specification, the society can define what
the “expected social events” are, i.e., what events are expected (not) to happen.
The expected events, called social expectations, reflect the “ideal” behaviour
of the agents. Social expectations are represented as atoms E(Event[, T ime])
for events that are expected to happen and as EN(Event[, T ime]) for events
expected not to happen.

While H atoms are always ground, the arguments of expectations can contain
variables. Intuitively, an E(X) atom indicates a wish about an event H(Y ) which
unifies with it: X/Y . CLP constraints [10] can be imposed on the variables
occurring in expectations.

For instance, in an auction context the atom:

E(tell(Bidder,Auctioneer, bid(ItemList, Price),D), Tbid)

stands for an expectation about a communicative act tell made by a computee
(Bidder), addressed to another computee (Auctioneer), at a time Tbid, with
subject bid(ItemList, Price). Although H, E, and EN atoms can contain any
term as argument, in this paper we will use the performative

tell(Sender,Receiver(s), Content,D).

The addressee of tell can be one or more receivers. The dialogue identifier (D),
although not always important, can be useful to distinguish different instances of
the same interaction scheme; for example, there could be two (or more) auctions
in parallel, so one may want to distinguish the auction instance the bid refers
to.

3 The Combinatorial Auctions scenario

There exist different kinds of combinatorial auctions. In this paper, we consider
single unit auctions. In a single unit auction, the auctioneer wants to sell a set
M of goods/tasks maximising the profit. Goods are distinguishable. Each bidder
j posts a bid Bj where a set Sj of goods/tasks S ⊆ M is proposed to be bought
at the price pj , i.e., Bj = (Sj , pj).



3.1 The Auction Solver

Besides the usual constraints of a combinatorial auction (i.e., two winning bids
cannot have elements in common), some real-life auction scenarios also have
the so called side constraints: other constraints that should be satisfied by the
winning bids. One typical example is when the auctioneer needs to allocate tasks,
that have precedence relations. Bidders propose to execute (bunches of) tasks,
each with an associated time window, at a given price. The auctioneer will try
to find a set of tasks that will cover the whole manufacturing process satisfying
the time precedence constraints and minimising the cost.

The Winner Determination Problem in combinatorial auctions is NP-hard
[16], so it cannot be addressed naively, but we need to exploit smart solving
techniques. While the pure WDP is best solved with an Integer Programming
(IP) solver [17], adding side constraints makes a Constraint Programming (CP)
solver more appealing.

We address the problem by exploiting a module called Auction solver [18]
that embeds two different algorithms both able to solve efficiently the WDP: one
is a pure IP-based approach, and the other is an Hybrid approach based on a CP
model with a variable selection heuristic based on the variables reduced costs
deriving from the Linear Relaxation of the IP model. For a complete description
of the IP and CP models, see [19].

The results obtained using the two algorithms strongly depend on the in-
stance structure. The module embeds an automatic Machine Learning based
portfolio selection algorithm, able to select the best algorithm on the basis of
few structural features of the problem instance. Guerri and Milano [19] show
that the method is able to select the best algorithm in the 90% of the cases,
and that the time spent to decide which of the available algorithms fits best
with the current instance is always order of magnitude lower with respect to
the search time difference between the two algorithms. This is a fundamental
assumption; in fact, if the sum of the times used to extract the features and to
solve the problem with the best algorithm is greater than the time used by the
worst algorithm to solve the same problem, the algorithm selection tool becomes
completely useless.

So, one of the key elements in our architecture is the Auction Solver, that
can be integrated in a number of different ways. We first give the general auction
protocol in terms of icS in Section 3.2, then we propose one such scenario, and
outline some alternative solutions that will be investigated in the future.

3.2 Auction Protocol

To start with, we can use icS to check that the auction protocol is indeed re-
spected, without caring for the NP-hard aspects of the protocol. I.e., we will not
check that the result provided by the auctioneer is indeed the optimal solution
of the WDP.

At this level, the auction protocol is the one depicted in Figure 1. If a com-
putee wants to sell a list of items, it can declare they are for sale with an
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Fig. 1. Auction Protocol

openauction:

H(tell(Auc,Bidders, openauction(ItemList, Tend, TDeadline),D), Topen),

containing, as parameters, the deadlines for sending valid bids (Tend), and for
the winners declaration (Tdeadline). In an open society, bidders can come with-
out registration, so the addressee of the openauction is not fundamental (bidders
could join even if not explicitly invited with an openauction from the auctioneer,
but they might have received the call from other computees, or from a black-
board). Of course, in semi-open societies [20], where there is a gatekeeper filtering
the agents that want to enter the society, more icS can be imposed to define a
registration protocol and a gatekeeper role.

After the openauction, bidders can stat placing bids, i.e., sending messages to
the auctioneer declaring the subset of the items they are interested in (ItemList),
and the price (P ) they are willing to pay for such a set:

H(tell(Bidder, Auc, bid(ItemList, P ),D), Tbid).

The auction terminates a time Tend, and the auctioneer declares the auction
closed:

H(tell(Auc,Bidder, closeauction,D), Tend).

Finally, the auctioneer sends to each of the bidders the result of the WDP by
uttering either win or lose:

H(tell(Auc,Bidder, answer(win/lose,Bidder, ItemList, P ),D), Tanswer).

We can now show how the protocol is defined by means of Social Integrity
Constraints.



The auction protocol in Social Integrity Constraints. Each time a bid-
ding event happens, the auctioneer should have sent an openauction event:

H(tell(Bidder, Auc, bid( , ),D), Tbid) →
E(tell(Auc, , openauction( , Tend, ),D), Topen)∧
Topen < Tbid ∧ Tbid ≤ Tend

(1)

Incorrect bids always lose; e.g., a bid for items not for sale must lose. Indeed,
the answer lose refers also to not acceptable bids.

H(tell(Auc, , openauction(Items, , ),D), )∧
H(tell(Bidder, Auc, bid(ItemBids, P ),D), )∧
not included(ItemBid, Items)
→ E(tell(Auc,Bidder, answer(lose,Bidder, ItemBids, P ),D), )

included([], ).
included([H|T ], L) : −member(H,L), included(T,L).

(2)

The auction should be closed at time Tend

H(tell(Auc,Bidder, openauction( , Tend, ),D), )
→ E(tell(Auc,Bidder, closeauction,D), Tend)

(3)

The auctioneer should answer to each bid. The answer should be sent after
the auction is closed within the deadline Tdeadline.

H(tell(Bidder, Auc, bid(ItemList, P ),D), )∧
H(tell(Auc, , openauction( , Tend, Tdeadline),D), )
→ E(tell(Auc,Bidder, answer(Ans,Bidder, ItemList, P ),D), Tanswer)

∧Tanswer > Tend ∧ Tanswer < Tdeadline ∧ Ans :: [win, lose]

(4)

A bidder should not receive for the same auction on the same bid two con-
flicting answers:

H(tell(Auc,Bidder, answer(Ans1,Bidder, ItemList, P ),D), )
→ EN(tell(Auc,Bidder, answer(Ans2,Bidder, ItemList, P ),D), )

∧ Ans1 6= Ans2

(5)

Two different winning bids cannot contain the same item:

H(tell(Auc,Bidder1, answer(win,Bidder1, ItemList1, ),D), )
∧H(tell(Bidder2, Auc, bid(ItemList2, P2),D), )
∧Bidder1 6= Bidder2

∧intersect(ItemList1, ItemList2) →
EN(tell(Auc,Bidder2, answer(win,Bidder2, ItemList2, P2),D), )

intersect([X| ], L) : −member(X,L).
intersect([ |Tx], L) : −intersect(Tx,L).

(6)
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Example. Suppose that a bidder tries to force the auctioneer to sell an item that
was not offered in the openauction; e.g., the history could be:

H(tell(auct, bidder1, openauction([pc,monitor,mouse], 10, 20), 1), 1)
H(tell(bidder1, auct, bid([keyboard], 10e), 1), 3)

In this case, the protocol defines the correct behaviour of the auctioneer: it raises
the expectation

E(tell(auct, bidder1, answer(lose, bidder1, [keyboard], 10e), 1, ).

If the auctioneer does not give a matching reply, the proof-procedure will raise
a violation.

3.3 Implementation with the Auction Solver

In this scenario, the Auction Solver is conceived as a passive object while the
auctioneer is a computee. Their interaction is not monitored by the society,
therefore at society level they are indeed considered as a unique entity as shown
by the dashed circle in Figure 2. Obviously, more than one auctioneer can cohabit
in the same society, each of them conceptually embedding its own instance of
the Auction Solver object.

The auctioneer provides the auction solver a WDP instance and receives its
optimal solution. The auction solver has been wrapped into Java, so as to define
a simple interface for providing a problem instance to the solver and receive the
solution of the problem. In this case the auctioneer should collect the data of
the instance and send them to the auction solver. In a sense, in this case we
are inserting part of the auction protocol (the optimality part) in the knowledge
base of the auctioneer, similar to the idea of protocol conformance enforcing
given by Endriss et al. [21].

We have some preliminary results for this scenario, shown in Figure 3, where
the computation times of the SCIFF proof-procedure and of the Auction Solver
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are shown. Experiments were performed on a 2.4 GHz Intel Pentium 4 with 512
Mb RAM. In [18] the authors show that the Auction Solver module outperforms,
both in search time and in anytime solution quality, any other commercial solver
in a WDP with temporal precedence constraints.

4 Other possible solutions

There are obviously other solutions for this problem, that will be taken into
account in future work. In particular, we can, at society level, monitor the com-
munications between the auctioneer and the auction solver.

Since the auctioneer is autonomous, it might decide to take a sub-optimal
decision, for various reasons: e.g., the auctioneer might have been bribed by
some bidders to make them win. Since the WDP is hard, we assume that only a
specific solver can efficiently find the optimum: it is unlikely that the auctioneer
can find it within the given deadlines without relying on the auction solver. It
could be sensible to have, in the society, the auction solver as a trusted object:
its replies are supposed to be correct. If the society does not trust the auctioneer
but only the passive object auction solver, we have various possibilities; we show
two of them.

In the first, the auctioneer is separated from the auction solver, and the
society checks (besides the compliance to the protocol given in Section 3.2), that
the auctioneer sends indeed to the auction solver the same bids it receives (not
a fake problem in which, e.g., some bids were excluded to make some bidder
win) and that the replies of the auctioneer are indeed the same computed by the
solver (Figure 4):

H(tell(Bidder, Auc, bid(ItemList, P ),D), ) →
E(tell(Auc, solver, bid(ItemList, P ),D), )

(7)
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H(tell(solver,Auc, answer(Ans,Bidder, ItemList, P ),D), ) →
E(tell(Auc,Bidder, answer(Ans,Bidder, ItemList, P ),D), )

(8)

In the second solution, we do not want the society to force the auctioneer
to use a given object, or algorithm, to solve the WDP, but we leave it free to
choose autonomously how to solve the problem. It might use our solver, or it
might do it in other ways. In such a case, however, the auctioneer must face
an external check: a controller can check that the provided solution is indeed
correct. In order to check the validity of a solution, a computee takes the role
of controller, and uses the trusted object auction solver in order to prove to the
society the correctness of the solution (Figure 5).

5 Related Work

Combinatorial Auctions are increasingly studied since they have the advantage
that bidders can bid on combinations of items. This leads to more efficient allo-
cation than traditional auctions where the bidders valuations are only additive.
The drawback is that evaluating bids and determining the winning bids is a
NP-hard problem. However, there are different systems and methods to solve a
combinatorial auction in an efficient way. The methods used to solve the problem
exploit

– dynamic programming techniques [16]
– approximate methods that look for a reasonably good allocation of bids

[22,23]
– integer programming techniques [24,5]
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– search algorithms [6].

Various works are related to the SCIFF proof procedure and the checking
of compliance to protocols; a full discussion can be found in previous publica-
tions [14,15]. We will cite here ISLANDER [25], a tool to specify protocols in
a system ruled by electronic institutions that has been applied to a Dutch auc-
tion (and other scenarios). Their formalism is multi-levelled: agents have roles,
agents playing a role are constrained to follow protocols when they belong to a
scene; agents can move from a scene to another by means of transitions. As in
various works, protocols are defined by means of transition graphs, in a finite
state machine. Our definition of protocols is wider than finite state machines,
and leaves more freedom degrees to the agents. In our model, an event could be
expected to happen, expected not to happen or have no expectations upon, thus
there can be three possible states, while in finite state machines there are only
two states. Moreover, they apply the model to the Dutch auction, while we focus
on combinatorial auctions; this extends the possibilities, as widely documented
in the literature on combinatorial auctions, but also makes the solving problem
NP-hard. For this reason, a general purpose proof-procedure that checks the
compliance to the protocol could be inefficient. We proposed a specialised solver
and integrated it in our system.

6 Conclusions

Combinatorial auctions are recently starting to withdraw from the set of practi-
cally unusable applications as more efficient solvers are being produced for the
winner determination problem. One of their natural applications involve intel-



ligent agents as both bidders and auctioneers, but this raises the problem of
humans trusting their representatives, and the other agents in the society.

Through the tools provided by the SOCS project, we give means for the user
to specify the fair and trusty behaviour, and a proof-procedure for detecting the
unworthy and fallacious one. We defined the combinatorial auctions protocol
through social integrity constraints, also exploiting an efficient solver for the
winner determination problem.

Future work will concern trying other interaction schemes between the auc-
tion solver and the auctioneer agent; for example, by having a centralised auction
solver that serves more auctioneers. We are also interested in continuing experi-
mentation, in order to find how many auctioneers an auction solver can efficiently
serve.
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