
Lecture Notes in Artificial Intelligence 3476
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

João Leite Andrea Omicini
Paolo Torroni Pınar Yolum (Eds.)

Declarative
Agent Languages
and Technologies II

Second International Workshop, DALT 2004
New York, NY, USA, July 19, 2004
Revised Selected Papers

1 3

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

João Leite
Universidade Nova de Lisboa
Departamento de Informática, Faculdade de Ciências e Tecnologia
Quinta da Torre, 2829-516 Caparica, Portugal
E-mail: jleite@di.fct.unl.pt

Andrea Omicini
Università di Bologna
Dipartimento di Elettronica, Informatica e Sistemistica
Via Venezia 52, 47023 Cesena, Italy
E-mail: andrea.omicini@unibo.it

Paolo Torroni
Università di Bologna
Dipartimento di Elettronica, Informatica e Sistemistica
Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: paolo.torroni@unibo.it

Pınar Yolum
Bogazici University, Department of Computer Engineering
TR-34342 Bebek, Istanbul, Turkey
Email: pinar.yolum@boun.edu.tr

Library of Congress Control Number: 2005927863

CR Subject Classification (1998): I.2.11, C.2.4, D.2.4, D.2, D.3, F.3.1

ISSN 0302-9743
ISBN-10 3-540-26172-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26172-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11493402 06/3142 5 4 3 2 1 0

Preface

The second edition of the workshop on Declarative Agent Languages and Tech-
nologies (DALT 2004) was held July 2004 in New York City, and was a great
success. We saw a significant increase in both the number of submitted papers
and workshop attendees from the first meeting, held July 2003 in Melbourne.

Nearly 40 research groups worldwide were motivated to contribute to this
event by submitting their most recent research achievements, covering a wide
variety of the topics listed in the call for papers.

More than 30 top researchers agreed to join the Program Committee, which
then collectively faced the hard task of selecting the one-day event program.

The fact that research in multi-agent systems is no longer only a novel and
promising research horizon at dawn is, in our opinion, the main reason behind
DALT’s (still short) success story. On the one hand, agent theories and appli-
cations are mature enough to model complex domains and scenarios, and to
successfully address a wide range of multifaceted problems, thus creating the
urge to make the best use of this expressive and versatile paradigm, and also
profit from all the important results achieved so far. On the other hand, build-
ing multi-agent systems still calls for models and technologies that could ensure
system predictability, accommodate flexibility, heterogeneity and openness, and
enable system verification.

Declarative approaches promise to satisfy precisely these challenges posed by
large-scale multi-agent systems, not least because of their strong theoretical foun-
dation grounded in classical and recent advances in the area of computational
logic. Equipped with such foundations, declarative approaches can, in principle,
enable agents to reason about their interactions and their environment, hence
not only establish the required tasks but also handle exceptions and unexpected
situations that arise in many systems, all in a formal, verifiable way.

The workshop aimed at bringing together (1) researchers working on formal
methods for agent and multi-agent systems design, (2) engineers interested in
exploiting the potentials of declarative approaches for specification of agent-
based systems, and (3) practitioners exploring the technology issues arising from
a declarative representation of systems. The main purpose of DALT was then to
foster a discussion forum to export declarative paradigms and techniques into the
broader community of agent researchers and practitioners, as well as to bring in
the issues from real-world, complex and possibly large-scale agent-system design
from the perspective of declarative programming and technologies.

Beside the five technical sessions consisting of paper presentations, attendees
enjoyed a stimulating discussion on declarative agent communication, in the form
of a lively panel organized and moderated by Mike Huhns from the University
of South Carolina, whom we take the opportunity to thank deeply.

VI Preface

This book contains selected and extended versions of the papers presented
at the 2004 event.

Several active research areas such as software engineering and multi-agent
prototyping, agent reasoning, BDI logics and extensions, and social aspects of
multi-agent systems made their presence felt in both the 2003 and the 2004
editions, showing how declarative technologies can give an answer to problems
such as engineering, specification and deployment of agent systems in the small
and in the large. When compared with the previous edition (also published by
Springer, as LNAI 2990) this year’s edition witnessed an increasing popularity
in the topic of agent verification.

This book is composed of five parts: (i) Reasoning, (ii) Modelling and En-
gineering, (iii) Verification, (iv) Norms and Protocols, and (v) Interaction and
Communication. There follows a brief overview.

Part I – Reasoning

The first part of the book contains three papers on reasoning in multi-agent
systems.

M. Birna van Riemsdijk, Mehdi Dastani, Frank Dignum, and John-Jules Ch.
Meyer present Dynamics of Declarative Goals in Agent Programming, in which
they explore interesting relations between goal dropping and goal adoption in
multi-agent systems. These relations are further formalized in an agent program-
ming framework.

In Theories of Intentions in the Framework of Situation Calculus, Pilar Pozos
Parra and Abhaya Nayak extend the action theories used in multiagent systems
to intention theories using situation calculus. The proposed intention theories
can be processed using a regression-based mechanism, which decreases the com-
putational complexity of the generally applied theorem proving.

Peep Küngas and Mihhail Matskin, in their paper Partial Deduction for Lin-
ear Logic — The Symbolic Negotiation Perspective, show how symbolic negoti-
ation can be formalized as partial deduction in linear logic. Their approach is
particularly interesting since they prove both the soundness and completeness
of their formalization.

Part II – Modelling and Engineering

The second part of the book contains four papers on modelling and engineering
aspects of multiagent systems.

In On Modelling Declaratively Multi-agent Systems, Andrea Bracciali, Paolo
Mancarella, Kostas Stathis, and Francesca Toni present a parametric framework
that is based on agents’ observations and their actions. This framework is then
used identify important properties of multi-agent systems, such as their success,
robustness, and so on.

In The Semantics of MALLET — An Agent Teamwork Encoding Language,
Xiaocong Fan, John Yen, Michael S. Miller, and Richard A. Volz give an oper-
ational semantics to the team-oriented agent programming language MALLET.
The operational semantics is based on a transition system and can be used in

Preface VII

developing MALLET interpreters as well as in studying various properties of
MALLET itself.

Yu Pan, Phan Huy Tu, Enrico Pontelli, and Tran Cao Son discuss an in-
teresting application area for agent-based research: evolutionary biology. Their
paper, Construction of an Agent-Based Framework for Evolutionary Biology:
A Progress Report explains an agent-based system used to specify and execute
phylogenetic inferences and discusses how the components of such a system can
be implemented.

In Reasoning About Agents’ Interaction Protocols Inside DCaseLP, Matteo
Baldoni, Cristina Baroglio, Ivana Gungui, Alberto Martelli, Maurizio Martelli,
Viviana Mascardi, Viviana Patti, and Claudio Schifanella integrate a MAS de-
velopment environment with an agent programming language to help ease agent
protocol development. The integration benefits from compiling AUML sequence
diagrams into agent skeletons semi-automatically.

Part III – Verification

The third part of the book presents three papers on verification.
In Model Checking Agent Dialogues Christopher Walton defines a light-

weight, yet expressive language and uses model checking to verify the correctness
of this language. This paper shows that the proposed language is useful in de-
tecting certain failures in agent dialogues, which is an important step in ensuring
correct agent protocols.

L. Robert Pokorny and C.R. Ramakrishnan study how agent systems that
provide services over the Web can be constructed declaratively. In Modeling and
Verification of Distributed Autonomous Agents Using Logic Programming, they
develop an approach where individual services of agents are defined using tem-
poral logic formulas. This enables verifications of service composition of several
agents that interact to carry out a service together.

In Norm Verification and Analysis of Electronic Institutions, Wamberto Vas-
concelos proposes a formal definition of norms and shows how they apply in the
context of electronic institutions. He further discusses how parts of an electronic
institution can be derived when certain norm constraints are given.

Part IV – Norms and Protocols

The fourth part of the book focuses on norms and protocols, consisting of
three papers. David Robertson presents A Lightweight Coordination Calculus
for Agent Social Norms, in which he presents a declarative language for specify-
ing social norms. The major benefit of this language is that social norms defined
within it can be analyzed and deployed easily.

In Enhancing Commitment Machines, Michael Winikoff, Wei Liu, and James
Harland study flexible interactions for agents by building on top of the commit-
ment machine abstraction. They show that the reasoning mechanism of com-
mitment machines can be improved when the specification of commitments and
some of their operators are enhanced.

VIII Preface

In A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks,
Alexander Artikis, Lloyd Kamara, Jeremy Pitt, and Marek Sergot study nor-
mative relations and their application in ad hoc networks, where participating
nodes may not comply with the system rules. To cope with the uncertainty in
ad hoc networks, they formulate a protocol that regulates the access control of
nodes in the network. This protocol is specified in event calculus and can be
executed directly.

Part V – Interaction and Communication

Finally, the last part of the book contains three papers on interaction and com-
munication in multiagent systems.

Vasu S. Alagar, Joey Paquet, and Kaiyu Wan present Intensional Program-
ming for Agent Communication in which they represent the conversation con-
texts explicitly. They provide a calculus of contexts as well as a logic of contexts
as an extension to an intensional programming language. These additions enable
reasoning on contexts in agent communication languages.

In The Logic of Communication Graphs, Eric Pacuit and Rohit Parikh show
that agents with private information can have individual communications with
other agents and gather information that is private to other parties. The intro-
duced logic is decidable and can handle a variety of cases.

In Representational Content and the Reciprocal Interplay of Agent and Envi-
ronment, Tibor Bosse, Catholijn M. Jonker, and Jan Treur advocate the temporal-
interactivist approach to denote representational content of an internal state.
Using this approach, a realistic example of interactions between an agent and
an environment is depicted.

DALT is now looking forward to its third meeting, which will take place
July 2005 in Utrecht, The Netherlands, again as an AAMAS workshop, and will
be chaired by Matteo Baldoni, Ulle Endriss, Andrea Omicini and Paolo Torroni.
We expect that DALT will once again attract a large number of submissions, each
reporting on new and exciting results about agents and declarative technologies,
and that the meeting will feature motivating presentations and lively discussions.

As a final word, we would like to thank the authors who presented their
work at the workshop and submitted improved versions of their papers, our PC
members who willingly spent their valuable time on two rounds of reviewing and
selection, all the additional reviewers who helped the PC members in this task,
and Gregory Wheeler for his help.

March 2005 João Leite
Andrea Omicini

Paolo Torroni
Pınar Yolum

Co-organizers
DALT 2004

Workshop Organization

Workshop Organizers

João Leite Universidade Nova de Lisboa, Portugal
Andrea Omicini Università di Bologna a Cesena, Italy
Paolo Torroni Università di Bologna, Italy
Pınar Yolum Bogazici University, Turkey

Program Committee

Rafael Bordini The University of Liverpool, UK
Brahim Chaib-draa Université Laval, Canada
Alessandro Cimatti IRST, Trento, Italy
Keith Clark Imperial College London, UK
Marco Colombetti Politecnico di Milano, Italy
Stefania Costantini Università degli Studi di L’Aquila, Italy
Mehdi Dastani Universiteit Utrecht, The Netherlands
Jürgen Dix Technical University of Clausthal, Germany
Michael Fisher The University of Liverpool, UK
Mike Huhns University of South Carolina, USA
Catholijn Jonker Vrije Universiteit Amsterdam, The Netherlands
Alessio Lomuscio King’s College, London, UK
Viviana Mascardi DISI, Università di Genova, Italy
John Jules Ch. Meyer Universiteit Utrecht, The Netherlands
Charles L. Ortiz SRI International, Menlo Park, CA, USA
Sascha Ossowski Universidad Rey Juan Carlos, Madrid, Spain
Julian Padget University of Bath, UK
Lin Padgham RMIT University, Australia
Wojciech Penczek Polish Academy of Sciences, Poland
Lúıs Moniz Pereira Universidade Nova de Lisboa, Portugal
Jeremy Pitt Imperial College London, UK
Juan Rodriguez-Aguilar Spanish Research Council, Spain
Fariba Sadri Imperial College London, UK
Marek Sergot Imperial College London, UK
Onn Shehory IBM Research Lab in Haifa, Israel
Munindar Singh North Carolina State University, USA
Francesca Toni Università di Pisa, Italy
Wiebe van der Hoek The University of Liverpool, UK
Wamberto Vasconcelos University of Aberdeen, UK
Michael Winikoff RMIT University, Australia
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

X Workshop Organization

Additional Reviewers

João Alcântara
Holger Billhardt
Andrea Bracciali
Amit Chopra
Marina De Vos
Ulle Endriss
Álvaro Freitas Moreira

Dorian Gaertner
Mark Hoogendoorn
Magdalena Kacprzak
John Knottenbelt
Ashok Mallya
Ken Satoh
Kostas Stathis

Arnon Sturm
Peter-Paul van Maanen
M. Birna van Riemsdijk
Bozena Wozna
Yingqian Zhang

Table of Contents

Reasoning

Dynamics of Declarative Goals in Agent Programming
M. Birna van Riemsdijk, Mehdi Dastani, Frank Dignum,
John-Jules Ch. Meyer . 1

Theories of Intentions in the Framework of Situation Calculus
Pilar Pozos-Parra, Abhaya Nayak, Robert Demolombe 19

Partial Deduction for Linear Logic — The Symbolic Negotiation
Perspective

Peep Küngas, Mihhail Matskin . 35

Modelling and Engineering

On Modelling Multi-agent Systems Declaratively
Andrea Bracciali, Paolo Mancarella, Kostas Stathis,
Francesca Toni . 53

The Semantics of MALLET – An Agent Teamwork Encoding Language
Xiaocong Fan, John Yen, Michael S. Miller, Richard A. Volz 69

Construction of an Agent-Based Framework for Evolutionary Biology:
A Progress Report

Yu Pan, Phan Huy Tu, Enrico Pontelli, Tran Cao Son 92

Reasoning About Agents’ Interaction Protocols Inside DCaseLP
Matteo Baldoni, Cristina Baroglio, Ivana Gungui,
Alberto Martelli, Maurizio Martelli, Viviana Mascardi,
Viviana Patti, Claudio Schifanella . 112

Verification

Model Checking Agent Dialogues
Christopher D. Walton . 132

Modeling and Verification of Distributed Autonomous Agents Using
Logic Programming

L. Robert Pokorny, C.R. Ramakrishnan . 148

XII Table of Contents

Norm Verification and Analysis of Electronic Institutions
Wamberto W. Vasconcelos . 166

Norms and Protocols

A Lightweight Coordination Calculus for Agent Systems
David Robertson . 183

Enhancing Commitment Machines
Michael Winikoff, Wei Liu, James Harland . 198

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks
Alexander Artikis, Lloyd Kamara, Jeremy Pitt, Marek Sergot 221

Interaction and Communication

Intensional Programming for Agent Communication
Vasu S. Alagar, Joey Paquet, Kaiyu Wan . 239

The Logic of Communication Graphs
Eric Pacuit, Rohit Parikh . 256

Representational Content and the Reciprocal Interplay of Agent and
Environment

Tibor Bosse, Catholijn M. Jonker, Jan Treur . 270

Author Index . 289

Dynamics of Declarative Goals in Agent
Programming

M. Birna van Riemsdijk, Mehdi Dastani, Frank Dignum,
and John-Jules Ch. Meyer

Institute of Information and Computing Sciences,
Utrecht University,
The Netherlands

{birna, mehdi, dignum, jj}@cs.uu.nl

Abstract. In this paper, the notion of declarative goals as used in agent
programming is central. Declarative goals describe desirable states and
are updated during the execution of an agent. These goal dynamics are
analyzed by distinguishing and formalizing various notions of goal drop-
ping and goal adoption. Furthermore, possible motivations for an agent to
drop or adopt goals are identified. Based on these motivations, we define
specific mechanisms for implementing dropping and adoption. We show
how these mechanisms are related to the general definitions of dropping
and adoption.

1 Introduction

An important concept in agent theory, agent logics and agent programming is the
concept of a goal. In agent theory, goals are introduced to explain and specify an
agent’s (proactive) behavior. In this view, agents are assumed to have their own
objectives, for the achievement of which they initiate behavior [1,2,3,4]. Various
logics have been introduced to formalize the concept of goals and reasoning about
goals [5, 6]. In these logics, a goal is formalized as a set of states and thus has a
declarative interpretation.

Many agent programming languages have been proposed to implement (rep-
resent and process) an agent’s goals [7, 8, 4, 9, 10]. The way in which goals are
dealt with, varies from language to language. In some programming languages
goals are interpreted in a procedural way as processes that need to be executed,
while in other programming languages goals are interpreted in a declarative
way as states to be reached. In this paper, we are interested in this declarative
interpretation of goals.

Declarative goals have a number of advantages in agent programming. They
for example provide for the possibility to decouple plan execution and goal
achievement [11]. If a plan fails, the goal that was to be achieved by the plan
remains in the goal base of the agent. The agent can then for example select a
different plan or wait for the circumstances to change for the better. Further-
more, agents can be implemented such that they can communicate about their

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 1–18, 2005.
�Springer-Verlag Berlin Heidelberg 2005

2 M.B. van Riemsdijk et al.

goals [12]. Also, a representation of goals in agents enables reasoning about goal
interaction [13] and declarative goals can be used in team-oriented program-
ming [14].

During the execution of an agent, the agent’s goals evolve. Goals might for ex-
ample be dropped if they are believed to be achieved and goals might be adopted
on certain grounds. This paper aims to analyze these dynamics of declarative
goals in the context of agent programming. We will do this by distinguishing and
formalizing various notions of goal dropping (section 3) and goal adoption (sec-
tion 4). In these sections, also possible motivations for an agent to drop or adopt
goals are identified. Based on these motivations, we define specific mechanisms
for capturing dropping and adoption in agent programming languages. Further-
more, we show how these mechanisms are related to the general definitions of
dropping and adoption.

The motivations we identify for goal dropping and goal adoption are based
on ideas that have been presented in the literature. Our contribution is that we
formalize these ideas within a single agent programming framework, by providing
language constructs and semantics. Given the informal meaning we have in mind
for these language constructs, we identify two general ways in which the formal
semantics can be defined. This is reflected in the two general definitions that we
provide for the notion of goal dropping as well as for the notion of goal adoption.
Different semantics give rise to different agent behavior regarding the dynamics
of goals. The aim of this paper is to provide a basis for a more systematic
analysis of the kinds of semantics one could consider and of the properties of
these semantics. A better understanding of the different possible semantics and
their properties will help to identify which semantics have the more desirable
characteristics, in general or for certain kinds of applications.

2 Preliminaries

In order to facilitate discussion, we give a number of definitions. In the sequel,
a language defined by inclusion shall be the smallest language containing the
specified elements.

First, we define the notion of an agent configuration. An agent configuration
consists of a belief base, a goal base, a plan and a set of rules as defined below.

Definition 1. (agent configuration) Let L with typical element φ be a proposi-
tional language with negation and conjunction, let Plan be a language of plans
and let R be a set of rules1. An agent configuration, typically denoted by c,
then is a tuple 〈σ, γ, π,R〉 where σ ⊆ L is the belief base, γ ⊆ L is the goal
base,π ∈ Plan is the plan2 of the agent and R is a set of rules.

1 Agents will in general have multiple sets of rules of various types, such as rules
to select or revise plans and rules to specify goal dynamics. In this paper, we will
however consider only one type of rule at the time, which is why it suffices to have
only one set of rules in the agent configuration.

Dynamics of Declarative Goals in Agent Programming 3

In the sequel, we will use σc, γc, πc and Rc to denote respectively the belief
base, the goal base, the plan and the set of rules of an agent configuration c.

This paper is based on the idea that an agent consists of data structures
representing the agent’s mental attitudes such as beliefs, goals and rules. Agents
from the 3APL language family [15, 7, 8] are for example defined based on this
view, but the ideas that are presented in this paper apply to any type of cognitive
agent with similar mental attitudes.

During the execution of an agent, the mental attitudes of the agent can
change through for example plan execution and rule application. It will often be
the case that e.g. multiple rules are applicable in a certain configuration. The
decision of which rule to apply, can then be made by the agent interpreter or
so called deliberation cycle [16], for example based on a certain ordering of the
rules.

Given an agent configuration, we are interested in the question whether the
agent has certain beliefs and goals. For this reason, we introduce a belief and a
goal language.

Definition 2. (belief and goal formulas) The belief formulas LB with typical
element β and the goal formulas LG with typical element κ are defined as follows.

– if φ ∈ L, then Bφ ∈ LB and Gφ ∈ LG,
– if β, β′ ∈ LB and κ, κ′ ∈ LG, then ¬β, β ∧ β′ ∈ LB and ¬κ, κ ∧ κ′ ∈ LG.

Note that the B and G operators cannot be nested, i.e., a formula of the form
BGφ is not part of the language. Below, we define a semantics for the belief
and goal formulas, that we call the “initial” semantics. In the sequel, we will
introduce various other semantics.

Definition 3. (initial semantics of belief and goal formulas) Let |=L be an
entailment relation defined for L as usual, let φ ∈ L and let 〈σ, γ, π,R〉 be an
agent configuration. Let ϕ ∈ LB ∪LG. The initial semantics |=0 of the belief and
goal formulas is then as defined below.

〈σ, γ, π,R〉 |=0 Bφ ⇔ σ |=L φ
〈σ, γ, π,R〉 |=0 Gφ ⇔ γ |=L φ
〈σ, γ, π,R〉 |=0 ¬ϕ ⇔ 〈σ, γ, π,R〉 �|=0 ϕ
〈σ, γ, π,R〉 |=0 ϕ1 ∧ ϕ2 ⇔ 〈σ, γ, π,R〉 |=0 ϕ1 and 〈σ, γ, π,R〉 |=0 ϕ2

This definition of the semantics of beliefs could be considered as being related to
the so-called sentential approach to beliefs [17], in the sense that belief is defined
as a relation between an agent and a sentence, rather than by means of a Kripke
style possible worlds semantics. Contrary to sentential approaches however, the
beliefs as defined above are closed under logical consequence.

2 For the purpose of this paper, an agent configuration could be defined without a
plan component, as it will not be used in the definitions. We however include it for
ease of possible extensions of the paper.

4 M.B. van Riemsdijk et al.

Further, note that this definition specifies that an agent has logical conse-
quences of its goal base as goals3. An agent cannot derive goals, based on certain
beliefs. If an agent for example believes that being at the dentist implies feeling
pain and if it has the goal to be at the dentist, it cannot derive that it has the
goal to feel pain, based on these premises. If the agent would however also have
the goal that going to the dentist implies feeling pain, it would be able to derive
the goal of feeling pain.

In this paper, we assume the semantics of agent programming languages are
defined in terms of a transition system [18]. A transition system is a set of
derivation rules for deriving transitions. A transition is a transformation of one
agent configuration into another and it corresponds to a single computation step.
In the sequel, we use c → c′ to indicate a transition from agent configuration c
to c′. It will sometimes be useful to add a label, denoting the kind of transition,
e.g. c →l c′.

The following definitions will be used in the sequel and are introduced for
notational convenience. The first definition below specifies what we mean by an
expansion or contraction of the beliefs of an agent with a certain formula. We
make a distinction between expanding or contracting with formulas φ ∈ L and
formulas β ∈ LB , as this will turn out to be useful in the sequel. The first kind
of formulas are propositional formulas without the B operator, although the
definitions of contraction and expansion with these formulas are defined using
the B operator4. The second kind of formulas are conjunctions and/or negations
of formulas of the form Bφ. The second definition specifies two notions of a
formula φ being a goal in a goal base γ, the first defined as membership of a set
(modulo equivalence) and the second as entailment.

Definition 4. (expansion and contraction of beliefs) Let c, c′ be agent config-
urations. Let φ ∈ L and β ∈ LB . Then, we define respectively the notion of
expanding the beliefs with φ or β, and contraction of the beliefs with φ or β over
the transition c → c′ as follows.

expansionB(φ, c → c′) ⇔ c �|= Bφ and c′ |= Bφ
expansionB(β, c → c′) ⇔ c �|= β and c′ |= β
contractionB(φ, c → c′) ⇔ c |= Bφ and c′ �|= Bφ
contractionB(β, c → c′) ⇔ c |= β and c′ �|= β

Definition 5. (φ is a goal in γ) Let γ be a goal base and let φ ∈ L. We then
define the following notions specifying when φ is a goal in γ.

goalset(φ, γ) ⇔ ∃φ′ ∈ γ : φ′ ≡ φ
goalent(φ, γ) ⇔ γ |=L φ

Note that goalset(φ, γ) implies goalent(φ, γ).

3 By the phrase “having a goal φ” in some configuration, we mean here that a formula
Gφ is true in this configuration.

4 An equivalent definition could be given without using the B operator, by referring
directly to the belief bases of the configurations c and c′.

Dynamics of Declarative Goals in Agent Programming 5

3 Goal Dropping

In this section, we consider possible reasons or motivations for an agent to drop
a goal. The notion of goal dropping can be related to the level of commitment
an agent has towards a goal. If the agent is not committed at all, it might
for example drop its goals right after they are adopted. If the agent is very
committed or even fanatic, it will not at all be inclined to abandon its goals.
These various levels of commitment or the way in which a certain agent deals
with goal abandonment, is often referred to as a commitment strategy for that
agent [5]. Although in principle one could consider any level of commitment for
agents, the common commitment strategies require some level of persistency of
goals [11]. In sections 3.1, 3.2 and 3.3, we will describe two widely used strategies
in some detail and discuss a few more possibilities (together with associated
problems). Before we can go into a discussion on various commitment strategies
however, we will first define the notion of goal dropping in general.

As we explained in section 2, the execution or semantics of an agent can be
described in terms of transitions. The phenomenon of dropping a goal naturally
involves a configuration change of some sort and goal dropping can thus be
defined as a property of these transitions. Informally, a goal φ is dropped over
a transition c → c′, if φ is a goal in c, but not in c′. In order to be more precise
about what we mean when we say that a goal is dropped, we first need to specify
what it means that “φ is a goal in a configuration”.

We distinguish two different notions of what we can consider to be a goal
in an agent configuration. Firstly, a formula φ can be viewed as a goal in a
configuration c if φ is in the goal base, i.e., φ ∈ γc

5. Secondly, a formula φ can
be considered as a goal in c if the formula Gφ holds, i.e., c |= Gφ where |= is an
entailment relation defined for LG. If Gφ is defined such that it holds if and only
if φ ∈ γc, these notions coincide. As we will however see in the sequel, this is
usually not the case. Based on these two views on the goals of an agent, we now
distinguish two perspectives on dropping, i.e., a so called deletion perspective
and a satisfaction perspective. The first is based on the deletion of a goal from
the goal base, whereas the second is based on the satisfaction of a formula Gφ.

Definition 6. (dropping, deletion perspective) Let c, c′ be agent configurations
and let c → c′ be a transition. Let φ ∈ L. Then, we define the notion of the goal
φ being dropped over the transition c → c′, denoted by droppeddel(φ, c → c′), as
follows:

droppeddel(φ, c → c′) ⇔ goalset(φ, γc) and ¬goalset(φ, γc′) .

Definition 7. (dropping, satisfaction perspective) Let c, c′ be agent configura-
tions and let c → c′ be a transition. Let |= be an entailment relation defined for
LG and let φ ∈ L. Then, we define the notion of the goal φ being dropped over
the transition c → c′, denoted by droppedsat(φ, c → c′), as follows:

droppedsat(φ, c → c′) ⇔ c |= Gφ and c′ �|= Gφ .

5 Possibly modulo equivalence: φ is a goal in γc iff goalset(φ, γc), i.e., ∃φ′ ∈ γc : φ′≡ φ.

6 M.B. van Riemsdijk et al.

In the definition of dropping from a satisfaction perspective above, we assume an
entailment relation |=, defined for LG. One such entailment relation is specified
in definition 3 and in the sequel we will also define other entailment relations.
However, in the definition of dropping from a satisfaction perspective, we want
to abstract from these specific entailment relations and assume a relation |=.

3.1 Blind Commitment

An often mentioned and very intuitive reason for dropping a goal is, that the
agent believes to have achieved the goal [5, 19]. In [5], an agent that only drops
its goals if believed to have achieved them, is called a blindly committed agent.
An agent that also drops its goals if believed to be unachievable, is called a single
minded agent.

A blindly committed agent should drop a goal φ if it comes to believe φ. An
implementation of a blindly committed agent should thus be such that it drops
a goal φ as soon as it comes to believe φ. This dropping can be approached
from the two perspectives discussed above, i.e., we can specify the dropping of φ
as deletion or as satisfaction. The dropping from a deletion perspective can be
defined as a general constraint on the transition systems that can be specified
for blindly committed agents.
Definition 8. (blind commitment, deletion perspective) Let c, c′ be agent con-
figurations and let φ ∈ L. An agent is then blindly committed iff

∀c → c′ : [(∃φ : expansionB(φ, c → c′)) ⇒ (γc′ = γc \ {φ | σc |=L φ})]
where c → c′ is a transition that can be derived in the transition system for the
agent.
The following proposition relates the definition of a blindly committed agent
above, to the general definition of dropping from a deletion perspective.
Proposition 1. (Goals are dropped from a deletion perspective once the agent
believes they are achieved.) If, for a blindly committed agent as specified in
definition 8, an expansion with φ takes place over a transition c → c′ and φ is
a goal in γc, then φ is dropped over this transition from a deletion perspective,
i.e.:

if expansionB(φ, c → c′) and goalset(φ, γc) then droppeddel(φ, c → c′) .

Besides taking the deletion perspective on blind commitment, we can also ap-
proach this issue from a satisfaction perspective. In order to do this, we extend
the semantics for belief and goal formulas of definition 3, specifying that Gφ
holds if and only if φ follows from the goal base and φ does not follow from the
belief base.
Definition 9. (blind commitment, satisfaction perspective) Let φ ∈ L and let
〈σ, γ, π,R〉 be an agent configuration. The semantics |=s of the belief and goal
formulas for a blindly committed agent is then as defined below6.

6 The clauses for belief formulas, negation and conjunction are as in definition 3, but
we do not repeat them here or in definitions in the sequel, for reasons of space.

Dynamics of Declarative Goals in Agent Programming 7

〈σ, γ, π,R〉 |=s Gφ ⇔ γ |=L φ and σ �|=L φ

From the definition above, we can derive that |=s Bφ → ¬Gφ is a validity, i.e.,
Gφ cannot hold if φ is believed. This implies, that if an agent comes to believe φ
over a transition, a goal φ is dropped from a satisfaction perspective (assuming
that φ was a goal before the transition). This is formulated in the following
proposition.

Proposition 2. (Goals are dropped from a satisfaction perspective once the
agent believes they are achieved.) If the semantics of belief and goal formulas
of an agent is as specified in definition 9 and an expansion with φ takes place
over a transition c → c′ and φ is a goal in γc, then φ is dropped over this
transition from a satisfaction perspective, i.e.:

if expansionB(φ, c → c′) and goalent(φ, γc) then droppedsat(φ, c → c′) .

Note that a consequence of defining blind commitment as in definition 9, is
the following: if a goal φ remains in the goal base over a series of consecutive
transitions, it can be the case that Gφ holds in one configuration, but not in the
next and again in the following configuration, depending on the beliefs of the
agent. If goals are not deleted from the goal base, this definition of the semantics
of goals will thus implement a kind of maintenance goals. It will depend on the
type of application whether this is desired behavior.

We can conclude that blindly committed agents can relatively easily be spec-
ified in terms of goals and beliefs of the agents. However, the strategy seems
very limited and not very realistic. In the literature often agent commitment
strategies are discussed that are a bit looser on the commitment, which means
that an agent could also drop its goal if it believes that it is unachievable [5,19].
We will discuss this strategy at the end of this section.

We conclude this section with a remark concerning the relation between goals
and plans. Given the semantics of definition 9, there can in principle be many
φ such that Gφ holds in some configuration. Goals of an agent are motivational
attitudes and meant to guide the adoption of plans, i.e., an agent should adopt
plans to achieve its goals. Given that an agent can have many goals, an important
issue is how to generate plans, based on these goals. In this paper, we focus on
defining an agents goals and we do not consider how plans are selected for the
goals that an agent has.

The ideas presented in this paper could however for example be combined
with the plan selection rules as presented in [7]. These rules are conditionalized
by beliefs and goals, i.e., a rule can specify that if the agent has certain beliefs
and goals, a certain plan can be selected. In this way, an agent does not have
to compute all its goals (or all formulas φ such that Gφ is true in some config-
uration), but these rules can be taken as a basis and it can be checked whether
the antecedent of a rule holds in a configuration. Combining the ideas presented
in this paper with an approach of planning from first principles would be more
difficult. It would probably call for the definition of for example a sensible pref-
erence relation among goals, such that the agent does not have to compute all
its goals before selecting one to plan for.

8 M.B. van Riemsdijk et al.

3.2 Failure Condition

The conditions for dropping a goal can be seen as a kind of failure condition
on the goal achievement. For blindly committed agents, the failure condition
is that the agent already believes the goal is true. In [11], Winikoff et al. also
consider the specification of more specific failure conditions for goals. The idea
is, that this condition specifies an explicit reason for the agent to drop the goal,
i.e., if the failure condition becomes true, the agent drops its goal. This failure
condition is thus specific to a certain goal.

The authors do not elaborate on the intuitions behind this failure condition,
but one could imagine specifying a condition which, once true, will never become
false again and which falsehood is necessary for the agent to be able to achieve
the goal. Suppose for example that agent A has a goal to have a certain egg
sunny side up and suppose A comes to believe that the egg is scrambled, then
this would be reason for A to drop its goal, as a scrambled egg can never be
prepared sunny side up. The failure condition for a goal should thus correspond
to a situation from which the agent will never be able to achieve the goal. This
situation is however specified by the designer of the agent. The designer for
example knows that a scrambled egg cannot be transformed into one that is
prepared sunny side up. The reasoning is thus done at design time by the agent
developer instead of leaving it up to the agent itself.

In order to implement this idea of specifying a failure condition for a goal,
we propose a so called failure rule. This is a rule with a condition on beliefs as
the head and a goal (being a propositional formula) as the body. The informal
reading is, that the goal in the body can be dropped if the condition in the head
holds.

Definition 10. (failure rule) The set of failure rules Rf is defined as follows:
Rf = {β ⇒−

G φ | β ∈ LB , φ ∈ L}.
The interpretation of failure rules can be approached from the two perspectives
on goal dropping we identified. We first define the semantics of this rule from a
deletion perspective, resulting in the deletion of a goal from the goal base if the
rule is applied7.

Definition 11. (failure rule semantics, deletion perspective) Let Rf be the set
of failure rules of definition 10 and let Rf ⊆ Rf . Let f = (β ⇒−

G φ) ∈ Rf and
let |= be an entailment relation defined for LB . The semantics of applying this
rule is then as follows, where γ′ = γ \ {φ′ | φ′ ≡ φ}.

〈σ, γ, π,Rf 〉 |= β and goalset(φ, γ)
〈σ, γ, π,Rf 〉 →apply(f) 〈σ, γ′, π,Rf 〉

The following proposition relates the semantics of failure rule application above,
to the general definition of dropping from a deletion perspective.

7 Note that a blindly committed agent could be specified in terms of failure rules of
the form Bφ ⇒−

G φ.

Dynamics of Declarative Goals in Agent Programming 9

Proposition 3. (Applying a failure rule results in dropping from a deletion per-
spective.) If c →apply(f) c′ where f = (β ⇒−

G φ) is a transition derived using
the transition rule of definition 11, then droppeddel(φ, c →apply(f) c′) holds.

The semantics of failure rule application that is defined above, takes an oper-
ational view on failure rules. Another option is using these rules to define, in
a declarative way, the goals of an agent as the satisfaction of a formula Gφ in
a configuration. This is done in the following definition that extends definition
9, specifying that Gφ holds if and only if φ follows from the goal base, φ is
not believed and there cannot be a rule which head holds and which body is
equivalent to φ.

Definition 12. (failure rule semantics, satisfaction perspective) Let Rf be the
set of failure rules of definition 10 and let Rf ⊆ Rf . Let φ ∈ L and let 〈σ, γ, π,Rf 〉
be an agent configuration. The semantics |=f of the belief and goal formulas in
the presence of failure rules is then as defined below.

〈σ, γ, π,Rf 〉 |=f Gφ ⇔ γ |=L φ and σ �|=L φ and
¬∃f ∈ Rf : (f = (β ⇒−

G φ′) and 〈σ, γ, π,Rf 〉 |=f β
and φ′ ≡ φ)

From the definition above, we can conclude that Gφ cannot hold in a configu-
ration if there is a rule β ⇒−

G φ′ in this configuration such that φ′ ≡ φ and such
that β holds. This implies, that if an agent comes to believe β over a transition,
i.e., if the rule is “activated” over this transition, the goal φ is dropped from
a satisfaction perspective (assuming that φ was a goal before the transition).
When stating that a rule is activated over a transition, we thus mean that the
antecedent of the rule does not follow from the configuration before the transi-
tion, but does follow from the configuration after the transition. By means of
the definition of rule activation as stated below, we can thus specify that a goal
is dropped from a satisfaction perspective if a failure rule with this goal as its
consequent becomes active (proposition 4).

Definition 13. (rule activation) Let f = (β ⇒−
G φ) ∈ Rf be a failure rule,

let c, c′ be configurations with rule set Rf and let c → c′ be a transition.
The rule f is activated over the transition, denoted by activated(f, c → c′),
iff expansionB(β, c → c′), i.e., if the rule’s head is false in c and true in c′.

Proposition 4. (If a failure rule is activated over a transition, the goal associ-
ated with that rule is dropped from a satisfaction perspective.) If the semantics of
belief and goal formulas of an agent is as specified in definition 12 and a failure
rule f = (β ⇒−

G φ) is activated over a transition c → c′ and φ is a goal in γc,
then φ is dropped from a satisfaction perspective over this transition, i.e.:

if activated(f, c → c′) and goalset(φ, γc) then droppedsat(φ, c → c′) .

10 M.B. van Riemsdijk et al.

3.3 Other Strategies

In the previous two sections we discussed two widely used strategies for dropping
goals. Both strategies can be implemented in a rather straightforward way. The-
oretically, one can of course have far more commitment strategies. We already
mentioned the single minded commitment strategy. However, implementing a
single minded agent is much more difficult. The condition stating that the agent
does not believe a goal φ to be achievable, could be specified using CTL temporal
logic [20] by the following formula: B(¬EF φ), i.e., the agent believes that there
is no possible course of future events in which φ is eventually true. In order to
evaluate this formula however, the agent would have to reason about its possi-
ble future execution traces. In general it is very difficult to check this formula,
but one could approximate it in several ways, e.g. by only considering future
traces up to a certain length, or by considering only traces generated by possible
plans of the agent. In whichever way the strategy is approximated though, the
agent needs a mechanism to reason with temporal aspects, thus complicating
the implementation considerably.

A last commitment strategy to be mentioned here is the open minded strat-
egy. This strategy states that a goal is dropped whenever the motivation for
having that goal has gone. This is directly related to the issue of goal adoption.
To implement this strategy, we should keep track of why a goal is adopted, i.e.,
which are the conditions for adopting a goal. Whenever these conditions are no
longer true, the goal will be dropped, e.g. if a goal is adopted to go to New
York in order to attend an AAMAS workshop and the workshop is cancelled,
we can drop the goal to go to New York (even though we might still believe it is
possible to go there and we are not there yet). We will briefly get back to this in
section 4.1.

4 Goal Adoption

The issue of goal adoption can be subdivided into the questions of when to start
considering to adopt goals and which goals are to be adopted. Regarding the
first question, a possible motivation for an agent to start adopting goals could for
example be the lack of goals or the lack of appropriate plans for the goals it has.
If we assume that agents generate behavior because they have goals, situations
like these would call for goal adoption to prevent an agent from being idle. The
decision of when to start adopting goals could be specified in the interpreter or
deliberation cycle of the agent (see section 2). In this paper, we will focus on the
second question.

As for goal dropping, we also distinguish two perspectives on goal adoption,
i.e., an addition perspective and a satisfaction perspective. The first is based on
the addition of a goal to the goal base, whereas the second is again based on the
satisfaction of a formula Gφ.

Definition 14. (adoption, addition perspective) Let c, c′ be agent configurations
and let c → c′ be a transition. Let φ ∈ L. Then, we define the notion of the goal

Dynamics of Declarative Goals in Agent Programming 11

φ being adopted over the transition c → c′, denoted by adoptedadd(φ, c → c′),
as follows:

adoptedadd(φ, c → c′) ⇔ ¬goalset(φ, γc) and goalset(φ, γc′) .

Definition 15. (adoption, satisfaction perspective) Let c, c′ be agent configura-
tions and let c → c′ be a transition. Let |= be an entailment relation defined for
LG and let φ ∈ L. Then, we define the notion of the goal φ being adopted over
the transition c → c′, denoted by adoptedsat(φ, c → c′), as follows:

adoptedsat(φ, c → c′) ⇔ c �|= Gφ and c′ |= Gφ .

In this section, we discuss important motivations for goal adoption that have
been identified in the literature. We distinguish reasons for adoption based on
motivational attitudes such as desires and norms (section 4.1), and reasons based
on the notion of subgoals (section 4.2). Based on this analysis, we sketch mech-
anisms for dealing with goal adoption, such as explicit goal adoption rules. We
believe it is important to analyze possible motivations for goal adoption, as dif-
ferent motivations may lead to different kinds of rules or other goal adoption
mechanisms.

Goal adoption rules have been proposed before in for example research on
3APL [8] and BOID [4]. However, in each of these languages the focus is on
one type of interpretation of the rules. 3APL for example interprets rules from
an addition perspective, whereas BOID takes the satisfaction point of view. We
believe that the observation that there are different interpretations of rules is
important, in order to be able to identify conditions under which these perspec-
tives are equivalent or differ. Although we do not provide this kind of analysis
of similarities and differences in this paper, we take a first step towards this by
identifying and defining the different perspectives.

4.1 Internal and External Motivations for Goal Adoption

In this section, we distinguish important internal and external motivations for
goal adoption. As internal motivations, we will discuss so called abstract goals
and desires, and as external motivations we will discuss obligations, norms and
communication. After a general discussion on these motivations, we will propose
a goal adoption rule to implement these ideas.

Motivations. In [21], Dignum and Conte discuss the generation of concrete
goals from built-in abstract goals as an internal motivation for adopting goals.
As Dignum and Conte put it, these abstract goals are often not really achievable
but can be approximated through concrete goals. An abstract goal could for
example be to be social or to be a law abiding agent. The concrete goal of not
driving above the speed limit, would then for example contribute to being a law
abiding agent.

Other important sources that may cause the generation of new goals for an
agent are desires, norms and obligations of the agent. In general, desires are

12 M.B. van Riemsdijk et al.

considered as agents’ internal motivational attitude while norms and obligations
are classified as external motivational attitudes. An agent’s desires represent its
preferences, wants and urges. They may be produced by emotional or affective
processes or even by biological survival mechanisms. For example, if an agent
is without food for some period, this might produce an acute desire for food.
Desire may also be long-term preferences or wants such as being rich. Such long
term preferences can be triggered by an observation, belief, or communication
through which they are turned into goals, i.e., desires can be viewed as goals that
are conditionalized by beliefs, etc. This is in contrast with the idea of abstract
goals, which are not conditionalized and might be disjoint from the (concrete)
goals of the agent.

The norms and obligations represent the social nature of agents or what
agents have to adhere to. One might have very dutiful agents that generate a
goal for any obligation they incur. In general, the norms that an agent wants
to adhere to are rules of conduct that pertain in the society in which the agent
operates. These could be represented through abstract goals that state that the
agent tries to satisfy an obligation or adhere to a norm.

Agents usually operate in a multi-agent environment and have the ability to
communicate with other agents. They do not only communicate knowledge or
belief about the world, but they can also communicate requests for achieving
goals. If an agent decides to comply with a request to achieve a goal, the request
triggers the generation of a goal.

Formalization. In order to implement these reasons for goal adoption, we pro-
pose a goal adoption rule. This is a rule with a condition on abstract goals, beliefs
and/or communicated formulas as the head, and a goal (being a propositional
formula) as the body. The informal reading is, that the goal in the body can be
adopted if the condition in the head holds. In order to define the semantics of
these rules, we need to extend agent configurations, adding an abstract goal set
and a set of communicated formulas.

Definition 16. (extended agent configuration) Let A be a set of abstract goals
consisting of abstract goal names and let LC be a set of communication formulas.
Let 〈σ, γconcr, π,R〉 be an agent configuration. An extended agent configuration
is then a tuple 〈σ, γ, π,R〉 where γ is a tuple 〈α, γconcr, γcomm〉 with α ⊆ A is
the abstract goal base and γcomm ⊆ LC are the communicated formulas.

Definition 17. (goal adoption rules) We assume a set of abstract goals A con-
sisting of abstract goal names and we assume a set of communication formulas
LC . The set of goal adoption rules Ra is then defined as follows:

Ra = {h ⇒+
G φ | h = h1, . . . , hn with hi ∈ (A ∪ LB ∪ LC)} .

Definition 18. (semantics of goal adoption rule head) Let e = 〈σ, γ, π,R〉 be
an extended agent configuration with γ = 〈α, γconcr, γcomm〉 and let a ∈ A.
We then define an entailment relation for abstract goals as follows: e |=A a ⇔

Dynamics of Declarative Goals in Agent Programming 13

a ∈ α. We furthermore assume an entailment relation |=LC
for the language of

communication formulas. The entailment relation for the set of formulas A∪LB∪
LC is then denoted as |=ALBLC

. Let h1, . . . , hn be the head of a goal adoption
rule. The entailment relation |=H for rule heads is then as follows.

〈σ, γ, π,R〉 |=H h1, . . . , hn ⇔ 〈σ, γ, π,R〉 |=ALBLC
h1 and

...
and 〈σ, γ, π,R〉 |=ALBLC

hn

As for failure rules, we define an operational as well as a declarative semantics
of the goal adoption rule. This results in semantics from an addition and a
satisfaction perspective as also indicated by the propositions below.

Definition 19. (goal adoption rule semantics, addition perspective) Let Ra ⊆
Ra be a set of goal adoption rules. Let a = (h ⇒+

G φ) ∈ Ra. The semantics of
applying this rule is then as follows, where γ′ = γ ∪ {φ}.

〈σ, γ, π,Ra〉 |=H h

〈σ, γ, π,Ra〉 →apply(a) 〈σ, γ′, π,Ra〉

Proposition 5. (Applying a goal adoption rule results in adoption from an ad-
dition perspective.) If c →apply(a) c′ where a = (h ⇒+

G φ) is a transition de-
rived using the transition rule of definition 19 and φ is not a goal in γc, i.e.,
¬goalset(φ, γc), then adoptedadd(φ, c →apply(a) c′) holds.

Definition 20. (goal adoption rule semantics, satisfaction perspective) Let Ra

be the set of goal adoption rules and let Ra ⊆ Ra. The semantics |=a for belief
and goal formulas in the presence of goal adoption rules is then as follows.

〈σ, γ, π,Ra〉 |=a Gφ ⇔ (γ |=L φ or ∃a ∈ Ra : (a = (h ⇒+
G φ′) and

〈σ, γ, π,Ra〉 |=H h and φ′ ≡ φ)) and σ �|=L φ

Proposition 6. (If a goal adoption rule is activated over a transition, the goal
associated with that rule is adopted from a satisfaction perspective.) If the se-
mantics of belief and goal formulas of an agent is as specified in definition 20
and a goal adoption rule a = (h ⇒+

G φ) is activated over a transition c → c′ and
φ is not a goal in c, then φ is adopted from a satisfaction perspective over this
transition, i.e.:

if activated(a, c → c′) and c �|=a Gφ then adoptedsat(φ, c → c′) .

Note that if a goal adoption rule is deactivated over a transition, the goal in
the consequent could be dropped over this transition due to this deactivation,
provided that no other adoption rule has this goal as its consequent. This phe-
nomenon could thus be considered an implementation of the open minded com-
mitment strategy (section 3.3).

14 M.B. van Riemsdijk et al.

4.2 Subgoal Adoption

A goal can be viewed as a subgoal if its achievement brings the agent “closer” to
its topgoal. This notion of “closeness” to a topgoal is rather vague. One could
argue that the achievement of a concrete goal contributing to an abstract goal,
brings the agent closer to this abstract goal. A concrete goal can thus be viewed
as a subgoal of an abstract goal. In this section, we distinguish two other views
on subgoals, i.e., subgoals as being the “parts” of which a topgoal is composed
and subgoals as landmarks or states that should be achieved on the road to
achieving a topgoal. As we see it, these different kinds of subgoals can lead to
different goal adoption mechanisms.

Goal Decomposition. A decomposition of a goal into subgoals should be such,
that the achievement of all subgoals at the same time implies achievement of the
topgoal. The goal p ∧ q could for example be decomposed into the subgoals p
and q. Achievement of both p and q at the same time, now implies achievement
of p ∧ q .

Goal decomposition is most naturally reached through defining the semantics
of goal formulas like was done in definition 9, i.e., such that Gφ holds if φ is a
logical consequence of the goal base. In this way, if for example p ∧ q is a goal
in the goal base, Gp will hold and Gq will hold (assuming both p and q are
not believed). We define the notion of a goal being a subgoal of another goal
as follows: a goal φ′ is a subgoal of φ, iff φ |=L φ′ but φ′ �|=L φ, which we will
denote by subgoal(φ′, φ). Note that this definition of subgoals does not record
any order in which the subgoals are to be achieved.

In the following proposition, we state that under the semantics of belief and
goal formulas of definition 9, we can get subgoal adoption over a transition if the
subgoal was achieved before the transition, but not anymore after the transition
(assuming that the topgoal remains in the goal base).

Proposition 7. (Subgoals are adopted from a satisfaction perspective once the
agent believes they are not achieved anymore.) If the semantics of belief and goal
formulas of an agent is as specified in definition 9 and φ′ is a subgoal of φ and
contraction with φ′ takes place over a transition c → c′ and φ is a goal in γc as
well as in γc′ , then the subgoal φ′ is adopted from a satisfaction perspective over
this transition, i.e.:

if subgoal(φ′, φ) and contractionB(φ′, c → c′) and goalset(φ, γc) and
goalset(φ, γc′) then adoptedsat(φ′, c → c′) .

Sketch of proof: adoptedsat(φ′, c → c′) is defined as c �|=s Gφ′ and c′ |=s Gφ′

(definition 15). c �|=s Gφ′ follows from the assumption that c |=s Bφ′ (definition

Dynamics of Declarative Goals in Agent Programming 15

4 of contractionB(φ′, c → c′)). c′ |= Gφ′ follows from the assumption that
c′ �|=s Bφ′ (definition of contractionB(φ′, c → c′)), φ ∈ γc′ and φ |=L φ′ (using
definition 9)8. ��
Landmarks. The second view on subgoals we discuss in this section, is as land-
marks. If an agent for example believes that it is in Utrecht and has the topgoal
to be in New York (and has a ticket for a flight to New York etc.), then a subgoal
would be to be at Schiphol airport. This subgoal does not contribute to the top-
goal in the sense that concrete goals contribute to abstract goals. Achievement
of the subgoal neither implies in some way achievement of the topgoal (together
with achievement of other subgoals for example) and it is thus different from
subgoals generated through decomposition.

It is important for an agent to be able to adopt landmark goals, because it
can be the case that the agent only has plans to get from landmark to landmark.
It can for example be the case that the agent has a plan in its library to get from
Utrecht to Schiphol and that it has another plan to get from Schiphol to New
York, i.e., the second plan is only applicable if the agent is at Schiphol. If the
agent now believes that it is in Utrecht and it has the goal to be in New York,
it does not have an applicable plan to execute. If however the agent can adopt
the goal to be at Schiphol from the goal to be in New York and the knowledge
that it has a plan to get to New York from Schiphol and possibly the belief to
be in Utrecht, it can execute an applicable plan.

The adoption of landmark subgoals could be implemented in various ways.
One possibility is the introduction of a goal adoption rule as below, through
which a goal can be adopted on the basis of beliefs and other goals. The semantics
can be defined analogously to that of the adoption rule of definition 17.

Definition 21. (landmark adoption rule) The set of landmark adoption rules
Rl is defined as follows: Rl = {β, κ ⇒+

G φ | β ∈ LB , κ ∈ LG, φ ∈ L}.
Note that this formalization does not record any structure or order among the
landmarks that are adopted.

We will mention two other ways to adopt landmark goals. Due to space
limitations however, we cannot elaborate on these. A first possibility could be to
use plan specifications, indicating the preconditions under which the plan could
be executed and the desired or expected postconditions. If the agent then has
the postcondition of a plan as a goal and does not believe the precondition to be
the case, it could adopt the precondition as a goal. If it then achieves this goal
or precondition, it can execute the plan and reach its initial goal.

Secondly, one could consider the definition of a goal adoption statement in an
agent’s plans, similar to achievement goals in AgentSpeak(L) [9]. The goal in the
goal adoption statement can be viewed as a subgoal of the plan at hand and the

8 Strictly speaking, we do not need the assumption goalset(φ, γc) to derive the desired
result. The phenomenon we want to investigate is however, that a formula φ remains
in the goal base, while subgoals of φ might be adopted (or dropped again) due to a
belief change.

16 M.B. van Riemsdijk et al.

goal can be adopted if the statement is executed. Another possible interpretation
of such a goal achievement statement could be, that this goal state should be
achieved before proceeding with the rest of the plan. A plan will have to be
selected for the specified goal. Plans with these kinds of statements could thus
be viewed as partial plans, the goal achievement statements of which will need
to be refined into plans.

5 Conclusion and Future Research

In agent programming languages, goals are often considered in a procedural
way. In most agent specification logics on the other hand, goals are employed
in a declarative way. We maintain that declarative goals are interesting and
useful not only in agent specification, but also in agent programming. In this
paper we have particularly explored the issue of the dynamics of declarative
goals in the context of agent programming. That is to say, we have analyzed
several motivations and mechanisms for dropping and adopting declarative goals
in a fairly general setting. We believe this distinction between dropping and
adoption and also the distinction between the different perspectives on these
phenomena are important in order to get a better understanding of declarative
goal dynamics. We have thus provided a basis for analyzing this phenomenon,
but many issues were not addressed and remain for future research.

Most importantly, we did not discuss the relation between the two perspec-
tives on dropping and adoption we defined. It will need to be investigated under
what circumstances these notions are equivalent or yield similar agent behavior
with respect to goal dynamics. Under most entailment relations for goal formu-
las, it will for example be the case that if a goal φ is adopted from an addition
perspective, φ is also adopted from a satisfaction perspective (assuming a be-
lief expansion with φ does not take place and assuming that φ does not follow
from the goal base before the adoption). Also, it is important to establish the
advantages and disadvantages of both approaches and investigate whether they
can or should be combined. A possible disadvantage for example concerns the
interpretation of goal adoption rules from a satisfaction perspective, as this in-
terpretation could diminish goal persistency: these rules can be activated and
deactivated again over a series of transitions. This could result in the repeated
adoption and dropping of a certain goal, which could be considered undesirable.

Another issue for future research has to do with the semantics of goal formulas
in the presence of dropping or adoption rules. We took a rather conservative
approach, defining that only formulas equivalent to the goal in the body of the
rules can be dropped or adopted (definitions 12 and 20). One could also consider
for example dropping logical consequences of the goal in the body of the failure
rule, or combining applicable adoption rules by defining that logical consequences
of the set of goals in the bodies of applicable rules can be adopted. Moreover,
we did not discuss interactions between rules for dropping and adoption.

Furthermore, we did not discuss goal consistency. Goals are often assumed
or required to be consistent [11] as it is argued that it is not rational for an

Dynamics of Declarative Goals in Agent Programming 17

agent to pursue conflicting objectives. This requirement has implications for
goal adoption, as goals could become inconsistent through adoption. The issue
could for example be dealt with like is done in BOID [4]. In this framework, the
rules are interpreted as default rules from which (consistent) extensions or goal
sets can be calculated. In the language GOAL [15], individual goals in the goal
base are required to be consistent, rather than the entire goal base. This has
implications for the definition of the semantics of goal formulas, as it will need
to be defined in terms of individual goals rather than in terms of the goal base
as a whole.

Finally, we mention goal revision. It seems natural that goal revision can be
characterized in terms of dropping and adoption. One could however imagine
that motivations for goal revision are different from those for dropping and
adoption, possibly calling for a separate treatment of this issue. Also the relation
with belief revision should be investigated in order to identify whether results
from this field can be applied to goal revision.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments on
an earlier version of this paper.

References

1. Wooldridge, M.: An introduction to multiagent systems. John Wiley and Sons,
LTD, West Sussex (2002)

2. Newell, A.: The knowledge level. Artificial Intelligence 18 (1982) 87–127
3. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the

BOID architecture. Cognitive Science Quarterly 2(3-4) (2002) 428–447
4. Dastani, M., van der Torre, L.: Programming BOID-Plan agents: deliberating

about conflicts among defeasible mental attitudes and plans. In: Proceedings of the
Third Conference on Autonomous Agents and Multi-agent Systems (AAMAS’04),
New York, USA (2004) 706–713

5. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann (1991) 473–484

6. Boutilier, C.: Toward a logic for qualitative decision theory. In: Proceedings of the
KR’94. (1994) 75–86

7. van Riemsdijk, M.B., van der Hoek, W., Meyer, J.J.Ch.: Agent programming in
Dribble: from beliefs to goals using plans. In: Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’03), Melbourne (2003) 393–400

8. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.Ch.: A programming
language for cognitive agents: goal directed 3APL. In: Programming multiagent
systems, First International Workshop (ProMAS’03). LNAI 3067. Springer-Verlag,
Berlin (2004) 111–130

18 M.B. van Riemsdijk et al.

9. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away (LNAI
1038), Springer-Verlag (1996) 42–55

10. Bellifemine, F., Poggi, A., Rimassa, G., Turci, P.: An object oriented framework
to realize agent systems. In: Proceedings of WOA 2000 Workshop, WOA (2000)
52–57

11. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: Proceedings of the Eighth International
Conference on Principles of Knowledge Respresentation and Reasoning (KR2002),
Toulouse (2002)

12. Moreira, A.F., Vieira, R., Bordini, R.H.: Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In: Proceedings of the First International Workshop on Declarative
Agent Languages and Technologies (DALT03). (2003) 129–145

13. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and exploiting positive
goal interaction in intelligent agents. In: Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03),
Melbourne (2003) 401–408

14. Fan, X., Yen, J., Miller, M.S., Volz, R.A.: The semantics of MALLET - an agent
teamwork encoding language. In Proceedings of the Second International Work-
shop on Declarative Agent Languages and Technologies (DALT’04), LNCS 3476,
Springer-Verlag (2005). In this volume.

15. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: Agent program-
ming with declarative goals. In: Intelligent Agents VI - Proceedings of the 7th Inter-
national Workshop on Agent Theories, Architectures, and Languages (ATAL’2000).
Lecture Notes in AI. Springer, Berlin (2001)

16. Dastani, M., de Boer, F.S., Dignum, F., Meyer, J.J.Ch.: Programming agent de-
liberation – an approach illustrated using the 3APL language. In: Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’03), Melbourne (2003) 97–104

17. Konolige, K.: What awareness isn’t: A sentential view of implicit and explicit
belief. In Halpern, J.Y., ed.: Theoretical Aspects of Reasoning about Knowledge
(TARK’86). (1986) 241–250

18. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

19. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

20. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, Workshop, Springer-
Verlag (1982) 52–71

21. Dignum, F., Conte, R.: Intentional agents and goal formation. In: Agent Theories,
Architectures, and Languages. (1997) 231–243

Theories of Intentions in the Framework of
Situation Calculus

Pilar Pozos Parra1, Abhaya Nayak1, and Robert Demolombe2

1 Division of ICS, Macquarie University,
NSW 2109, Australia

{pilar, abhaya}@ics.mq.edu.au
2 ONERA-Toulouse,

2 Avenue E. Belin BP 4025, 31055 Toulouse, France
Robert.Demolombe@cert.fr

Abstract. We propose an extension of action theories to intention theo-
ries in the framework of situation calculus. Moreover the method for im-
plementing action theories is adapted to consider the new components.
The intention theories take account of the BDI (Belief-Desire-Intention)
architecture. In order to avoid the computational complexity of theorem
proving in modal logic, we explore an alternative approach that intro-
duces the notions of belief, goal and intention fluents together with their
associated successor state axioms. Hence, under certain conditions, rea-
soning about the BDI change is computationally similar to reasoning
about ordinary fluent change. This approach can be implemented using
declarative programming.

1 Introduction

Various authors have attempted to logically formulate the behaviour of rational
agents. Most of them use modal logics to formalize cognitive concepts, such as
beliefs, desires and intentions [1, 2, 3, 4, 5, 6]. A weakness of the modal approaches
is that they overestimate the reasoning capabilities of agents; consequently prob-
lems such as logical omniscience arise in such frameworks. Work on implementing
modal systems is still scarce, perhaps due to the high computational complexity
of theorem-proving or model-checking in such systems [7, 8, 9].

A proposal [10] based on the situation calculus allows representation of the
BDI notions and their evolution, and attempts to find a trade-off between the
expressive power of the formalism and the design of a realistic implementation.
In the current paper we employ this proposal to enhance Reiter’s action theories
provided in the situation calculus [11] in order to develop intention theories. In
the process, the notion of knowledge-producing actions is generalized to mental
attitude-producing actions, meaning actions that modify the agent’s beliefs, goals
and intentions. We show that the proposed framework can be implemented using
the method for implementing Reiter’s action theories.

The paper is organised as follows. We start with a brief review of the situation
calculus and its use in the representation issues involving the evolution of the

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 19–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

20 P. Pozos Parra, A. Nayak, and R. Demolombe

world and mental states. In Section 3, we define the basic theories of intentions
and the method used to implement such theories. In Section 4, we run through a
simple example to illustrate how our approach works. Finally we conclude with
a brief discussion.

2 Situation Calculus

The situation calculus was developed to model and reason about change in an
environment brought about by actions performed [12]. It involves three types of
terms, including situation and action. In the following, s represents an arbitrary
situation, and a an action. The result do(a, s) of performing a in s is taken to be
a situation. The world’s properties (in general, relations) that are susceptible to
change are represented by predicates called “fluents” whose last argument is of
type situation. For any fluent p and situation s, the expression p(s) denotes the
truth value of p in s. It is assumed that every change in the world is caused by
an action. The evolution of fluents is represented by “successor state axioms”.
These axioms were introduced to solve the infamous frame problem, namely
the problem of specifying exactly what features of a scenario are affected by
an action, and what features are not. Furthermore, in order to solve the other
attendant problem dubbed the qualification problem, namely the problem of
specifying precisely the conditions under which an action is executable, “action
precondition axioms” were introduced.

There is a difference between what relations are true (or false) in a situation
and what relations are believed to be true (or false) in that situation. However,
the change in both cases is caused by an action. So performance of actions not
only results in physical changes, but also contributes toward change in beliefs
and intentions. Accordingly, apart from the traditional frame problem, there is
a BDI-counterpart of the frame problem: how do we exactly specify which be-
liefs, desires and intentions undergo change, and which ones don’t, as a result
of a given action. Similarly, one would expect that there are BDI-counterparts
of the qualification problem. In order to address the BDI-frame problem, the
notions of “BDI-fluents” and the corresponding “successor (BDI) state axioms”
were introduced [10]. As far as the BDI-qualification problem is concerned, only
the attitude of belief has been discussed, and accordingly the “action precon-
dition belief axioms” have been introduced. This approach has been compared
with other formalisations of BDI architecture, in particular with the Cohen and
Levesque’s approach, in [10]. A comparison with Scherl and Levesque’s approach
concerning only the attitude of belief has been presented in [13].

2.1 Dynamic Worlds

In certain frameworks of reasoning such as belief revision the worlds are assumed
to be static. However, when reasoning about actions is involved, a world must
be allowed to undergo change. The features of the world that undergo change

-

Theories of Intentions in the Framework of Situation Calculus 21

are syntactically captured by fluents. For a fluent p, the successor state axiom
Sp is of the form:1

(Sp) p(do(a, s)) ↔ Υ+
p (a, s) ∨ (p(s) ∧ ¬Υ−

p (a, s))

where Υ+
p (a, s) captures exactly the conditions under which p turns from false

to true when a is performed in s, and similarly Υ−
p (a, s) captures exactly the

conditions under which p turns from true to false when a is performed in s. It
effectively says that p holds in do(a, s) just in case either the action a performed
in situation s brought about p as an effect, or p was true beforehand, and that
the action a had no bearing upon p’s holding true or not. It is assumed that no
action can turn p to be both true and false in a situation. These axioms define
the truth values of the atomic formulas in any circumstances, and indirectly the
truth value of every formula. Furthermore, in order to solve the qualification
problem, a special fluent Poss(a, s), meaning it is possible to execute the action
a in situation s, was introduced, as well as the action preconditions axioms of
the form:

(PA) Poss(A, s) ↔ ΠA(s)

where A is an action function symbol and ΠA(s) a formula that defines the
preconditions for the executability of the action A in s. Note that Reiter’s
notation [11] shows explicitly all the fluent arguments (p(x1, . . . , xn, do(a, s)),
Υ+

p (x1, . . . , xn, a, s)) and action arguments (Poss(A(x1, . . . , xn), s),
ΠA(x1, . . . , xn, s)). For the sake of readability we show merely the action and
situation arguments.

2.2 Dynamic Beliefs

In the last section we outlined an approach that allows representation and rea-
soning about the effects of actions on the physical world. This approach however
fails to address the problem of expressing and reasoning with the “non-physical”
effects of actions, such as epistemic effects. Starting this section, we address the
problems involving beliefs, goals and intentions, with the understanding that
other attitudes can be dealt with in a similar fashion. Accordingly, we introduce
the notions of belief fluents, goal fluents and so on.

Consider a modal operator © where ©(s) for situation s means: agent i
believes that the atomic fluent p holds in situation s, for contextually fixed i and
p. Similarly, ©′(s) could represent i’s believing q, ©′′(s) could be j’s believing ¬p
and so on. For readability, we will use the modal operators Bip, Biq, Bj¬p, . . .
instead, and similar notations to represent goals and intentions. We say that the
“modalised” fluent Bip holds in situation s iff agent i believes that p holds in
situation s and represent it as Bip(s). Similarly Bi¬p(s) represents the fact that
the fluent Bi¬p holds in situation s: the agent i believes that p does not hold in
situation s.

1 In what follows, it is assumed that all the free variables are universally quantified.

22

In this case, the evolution needs to be represented by two axioms. Each axiom
allows the representation of two attitudes out of i’s four possibles attitudes
concerning her belief about the fluent p, namely Bip(s) and ¬Bip(s), or Bi¬p(s)
and ¬Bi¬p(s). The successor belief state axioms for an agent i and fluent p are
of the form:

(SBip) Bip(do(a, s)) ↔ Υ+
Bip

(a, s) ∨ (Bip(s) ∧ ¬Υ−
Bip

(a, s))

(SBi¬p) Bi¬p(do(a, s)) ↔ Υ+
Bi¬p(a, s) ∨ (Bi¬p(s) ∧ ¬Υ−

Bi¬p(a, s))

where Υ+
Bip

(a, s) are the precise conditions under which the state of i (with
regards to the fact that p holds) changes from one of disbelief to belief when
a is performed in s, and similarly Υ−

Bip
(a, s) are the precise conditions under

which the state of i changes from one of belief to disbelief. The conditions
Υ+

Bi¬p(a, s) and Υ−
Bi¬p(a, s) have a similar interpretation. These conditions may

contain belief-producing actions such as communication or sensing actions. For
example, in the Υ ’s we may have conditions of the form: a = sense p ∧ p(s),
that causes Bip(do(a, s)), and conditions of the form: a = sense p ∧ ¬p(s), that
causes Bi¬p(do(a, s)).

In these axioms as well as in the goals and intentions axioms, p is restricted
to be a fluent representing a property of the real world. Some constraints must
be imposed to prevent the derivation of inconsistent beliefs (see Section 3.1).

To address the qualification problem in the belief context, for each agent i,
a belief fluent BiPoss(a, s), which represents the belief of agent i in s about the
possible execution of the action a in s, was introduced.

2.3 Dynamic Generalised Beliefs

The statements of the form Bip(s) represent i’s beliefs about the present. In
order to represent the agent’s beliefs about the past and the future, the notation
Bip(s′, s) has been introduced, which means that in situation s, the agent i
believes that p holds in situation s′. Depending on whether s′ = s, s′ � s or
s � s′, it represents belief about the present, past or future respectively.2

The successor belief state axioms SBip and SBi¬p are further generalized to
successor generalised belief state axioms as follows:

(SBip(s′)) Bip(s′, do(a, s)) ↔ Υ+
Bip(s′)(a, s) ∨ (Bip(s′, s) ∧ ¬Υ−

Bip(s′)(a, s))

(SBi¬p(s′)) Bi¬p(s′, do(a, s)) ↔ Υ+
Bi¬p(s′)(a, s)∨ (Bi¬p(s′, s)∧¬Υ−

Bi¬p(s′)(a, s))

where Υ+
Bip(s′)(a, s) captures exactly the conditions under which, when a is per-

formed in s, i comes believing that p holds in s′. Similarly Υ−
Bip(s′)(a, s) captures

exactly the conditions under which, when a is performed in s, i stops believing
that p holds in s′. The conditions Υ+

Bi¬p(s′)(a, s) and Υ−
Bi¬p(s′)(a, s) are similarly

2 The predicate s′ � s represents the fact that the situation s is obtained from s′ after
performance of one or more actions.

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 23

interpreted. These conditions may contain belief-producing actions such as com-
munication or sensing actions. It may be noted that communication actions allow
the agent to gain information about the world in the past, present or future. For
instance, if the agent receives one of the following messages: “it was raining yes-
terday”, “it is raining” or “it will rain tomorrow”, then her beliefs about the
existence of a precipitation in the past, present and future (respectively) are re-
vised. On the other hand sensing actions cannot provide information about the
future. Strictly speaking sensing action can only inform about the past because
the physical process of sensing requires time, but for most applications the dura-
tion of the sensing process is not significant and it can be assumed that sensors
inform about the present. For example, if the agent observes raindrops, her be-
lief about the existence of a current precipitation is revised. However, there may
be applications where signal transmission requires a significant time, like for a
sensor on Mars sending information about its environment.

BiPoss(a, s′, s) was introduced in order to solve the qualification problem
about i’s beliefs. The action precondition belief axioms are of the form:

(PAi) BiPoss(A, s′, s) ↔ ΠAi(s′, s).

where A is an action function symbol and ΠAi(s′, s) a formula that defines
the preconditions for i’s belief in s concerning the executability of the action
A in s′. Certain agents may require to know when the execution of an ac-
tion is impossible, in which case we can also consider the axioms of the form:
Bi¬Poss(A, s′, s) ↔ Π ′

Ai(s
′, s) where Bi¬Poss(A, s′, s) means that in s the

agent i believes that it is not possible to execute the action A in s′.
Notice that s′ may be non-comparable with do(a, s) under �. However,

this can be used to represent hypothetical reasoning: although situation s′ is
not reachable from do(a, s) by a sequence of actions, yet, Bip(s′, do(a, s)) may
mean that i, in do(a, s), believes that p would have held had s′ been the case.
We are however mainly interested in beliefs about the future, since to make
plans, the agent must project her beliefs into the future to “discover” a situ-
ation s′ in which her goal p holds. In other words, in the current situation s
(present) the agent must find a sequence of actions to reach s′ (hypothetical
future), and she expects that her goal p will hold in s′. Therefore, we adopt
the notation: Bfip(s′, s) def= s � s′ ∧ Bip(s′, s) to denote future projections.
Similarly, to represent the expectations of executability of actions, we have:
BfiPoss(a, s′, s) def= s � s′ ∧BiPoss(a, s′, s) that represents the belief of i in s
about the possible execution of a in the future situation s′. Notice that the term
“future situation” in the belief context is used to identify a “hypothetical fu-
ture situation”. The approach cannot guarantee that the beliefs of the agent are
true, unless the agent knows the law of evolution of the real world and has true
beliefs in the initial situation (see an example in Section 4). Since the approach
allows the representation of wrong beliefs, the logical omniscience problem can
be avoided in this framework.

24

2.4 Dynamic Goals

The goal fluent Gip(s) (respectively Gi¬p(s)) means that in situation s, the
agent i has the goal that p be true (respectively false). As in the case of beliefs,
an agent may have four different goal attitudes concerning the fluent p. The
evolution of goals is affected by goal-producing actions such as “adopt a goal”
or “admit defeat of a goal”. For each agent i and fluent p, we have two successor
goal state axioms of the form:

(SGip) Gip(do(a, s)) ↔ Υ+
Gip

(a, s) ∨ (Gip(s) ∧ ¬Υ−
Gip

(a, s))

(SGi¬p) Gi¬p(do(a, s)) ↔ Υ+
Gi¬p(a, s) ∨ (Gi¬p(s) ∧ ¬Υ−

Gi¬p(a, s))

As in the case of beliefs, Υ+
Gip

(a, s) represents the exact conditions under
which, when the action a is performed in s, the agent i comes to have as a goal
‘p holds’. The other conditions Υ ’s can be analogously understood. The indiffer-
ent attitude about p can be represented by ¬Gip(s)∧¬Gi¬p(s): the agent does
not care about p. Some constraints must be imposed on the conditions Υ ’s in or-
der to prevent the agent from having inconsistent goals such as Gip(s)∧Gi¬p(s),
meaning the agent wants p to both hold and not hold simultaneously (see
Section 3.1).

2.5 Dynamic Intentions

Let T be the sequence of actions [a1, a2, . . . , an]. The fact that an agent has the
intention to perform T in the situation s to satisfy her goal p (respectively ¬p)
is represented by the intention fluent Iip(T, s) (respectively Ii¬p(T, s)). In the
following, the notation do(T, s) represents do(an, . . . , do(a2, do(a1, s)) . . .) when
n > 0 and s when n = 0. For each agent i and fluent p, the successor intention
state axioms are of the form:

(SIip) Iip(T, do(a, s)) ↔ Gip(do(a, s)) ∧ [
(a = commit(T) ∧ BfiPoss(do(T, s), s) ∧ Bfip(do(T, s), s)) ∨
Iip([a|T], s) ∨
Υ ′+

Iip
(a, s) ∨

(Iip(T, s) ∧ ¬Υ ′−
Iip

(a, s))]

(SIi¬p) Ii¬p(T, do(a, s)) ↔ Gi¬p(do(a, s)) ∧ [
(a = commit(T) ∧ BfiPoss(do(T, s), s) ∧ Bfi¬p(do(T, s), s)) ∨
Ii¬p([a|T], s) ∨
Υ ′+

Ii¬p(a, s) ∨
(Ii¬p(T, s) ∧ ¬Υ ′−

Ii¬p(a, s))]

where Υ ′’s capture certain conditions under which i’s intention attitude (con-
cerning T and goal p) change when a is performed in s. Intuitively, SIip means
that in the situation do(a, s), agent i intends to perform T in order to achieve
goal p iff

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 25

(a) In do(a, s) the agent has goal p; and
(b) either

(1) the following three facts hold true: the agent has just committed to
execute the sequence of actions T which represents a plan (the action
commit(T) is executed in s), the agent believes that the execution of
such a plan is possible BfiPoss(do(T, s), s), and she expects that her
goal will be satisfied after the execution of the plan Bfip(do(T, s), s));
or

(2) in the previous situation, the agent had the intention to perform the
sequence [a|T] and the action a has just happened; or

(3) a condition Υ ′+
Iip

(a, s) is satisfied; or
(4) in the previous situation s, the agent had the same intention Iip(T, s)

and Υ ′−
Iip

(a, s) does not hold. Υ ′−
Iip

(a, s) represents some conditions under
which, when a is performed in s, the agent i abandons her intention.

This definition of intention, as Cohen and Levesque say, allows relating goals
with beliefs and commitments. The action commit(T) is an example of intention-
producing actions that affect the evolution of intentions. An advantage of this
approach is that we can distinguish between a rational intention trigger by condi-
tion (1) after analysis of present and future situations, and an impulsive intention
trigger by condition (3) after satisfaction of Υ ′+

Iip
(a, s) that may not concern any

analysis process (for example, running intention after seeing a lion, the agent
runs by reflex and not having reasoned about it).

We have considered a “credulous” agent who makes plan only when she com-
mits to follow her plan: she is convinced that there are not exogenous actions.
However, other kinds of agents may be considered. For instance, if the projection
to the future is placed at the goal level, we can define a “prudent” agent that
replans after every action that “fails” to reach her goal. Discussion of credulous
and prudent agents is beyond the scope of this paper.

Intuitively, BfiPoss(do(T, s), s) means that in s, i believes that all the actions
occurring in T can be executed one after the other.

BfiPoss(do(T, s), s) def=
∧n

j=1 BfiPoss(aj , do([a1, a2, . . . , aj−1], s), s).
Notice the similarity of BfiPoss(do(T, s), s) with an executable situation

defined in [11] as follows:

executable(do(T, S0))
def=

∧n
i=1 Poss(ai, do([a1, a2, . . . , ai−1], S0))

executable(do(T, S0)) means that all the actions occurring in the action sequence
T can be executed one after the other. However, there are differences to con-
sider. In executable(do(T, S0)), T is executable iff the preconditions for every
action in the sequence hold in the corresponding situation. On the other hand
in BfiPoss(do(T, s), s), T is believed to be executable in s iff the agent believes
that the preconditions for every action in T hold in the corresponding situation.
Notice that the approach cannot again guarantee true beliefs concerning action
preconditions, except when BiPoss and Poss correspond for every action. So
the framework avoids problems of omniscience about the preconditions for the
executability of the actions.

26

3 Intention Theories

Now we extend the language presented in [11] with cognitive fluents and we in-
troduce the BDI notions to the action theories to build the intention theories. We
adapt regression [11] appropriately to this more general setting. The extension
of results about implementation of intention theories is immediate.

Let’s assume Lsitcalc, a language formally defined in [11]. This language has a
countable number of predicate symbols whose last argument is of type situation.
These predicate symbols are called relational fluents and denote situation depen-
dent relations such as position(x, s), student(Billy, S0) and Poss(advance, s).
We extend this language to LsitcalcBDI

with the following symbols: belief predi-
cate symbols Bip and Bi¬p, goal predicate symbols Gip and Gi¬p, and intention
predicate symbols Iip and Ii¬p, for each relational fluent p and agent i. These
predicate symbols are called belief, goal and intention fluents respectively and
denote situation dependent mental states of agent i such as Brobotposition(1, S0),
Grobotposition(3, S0), Irobotposition(3, [advance, advance], S0): in the initial sit-
uation S0, the robot believes to be in 1, wants to be in 3 and has the intention
of advancing twice to fulfill this goal.

We make the unique name assumption for actions and as a matter of simpli-
fication we consider only the languages without functional fluents (see [11] for
extra axioms that deal with function fluents).

Definition 1. A basic intention theory D has the following form:
D = Σ ∪ DS0 ∪ Duna ∪ Dap ∪ Dss ∪ DapB ∪ DssB ∪ DssD ∪ DssI

where,

1. Σ is the set of the foundational axioms of situation.
2. DS0 is a set of axioms that defines the initial situation.
3. Duna is the set of unique names axioms for actions.
4. Dap is the set of action precondition axioms. For each action function symbol

A, there is an axiom of the form PA (See Section 2.1).
5. Dss is the set of successor state axioms. For each relational fluent p, there is

an axiom of the form Sp (See Section 2.1).
6. DapB is the set of action precondition belief axioms. For each action function

symbol A and agent i, there is an axiom of the form PAi (See Section 2.3).
7. DssgB is the set of successor generalised beliefs state axioms. For each rela-

tional fluent p and agent i, there are two axioms of the form SBip(s′) and
SBi¬p(s′) (See Section 2.3).

8. DssG is the set of successor goal state axioms. For each relational fluent p
and agent i, there are two axioms of the form SGip and SGi¬p (See Section
2.4).

9. DssI is the set of successor intention state axioms. For each relational fluent
p and agent i, there are two axioms of the form SIip and SIi¬p (See Section
2.5).

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 27

The basic action theories defined in [11] consider only the first five sets of axioms.
The right hand side in PA, PAi and in the different successor state axioms must
be a uniform formula in s in LsitcalcBDI

.3

3.1 Consistency Properties

For maintaining consistency in the representation of real world and mental states,
the theory must satisfy the following properties:4

If φ is a relational or cognitive fluent, then

– D |= ∀¬(Υ+
φ ∧ Υ−

φ).

If p is a relational fluent, i an agent and M ∈ {B,G, I}, then

– D |= ∀¬(Υ+
Mip

∧ Υ+
Mi¬p)

– D |= ∀(Mip(s) ∧ Υ+
Mi¬p → Υ−

Mip
)

– D |= ∀(Mi¬p(s) ∧ Υ+
Mip

→ Υ−
Mi¬p).

Other properties can be imposed in order to represent some definitions found
in the literature. For example, the following properties:

– D |= ∀((Bip(s) ∨ ∀s′(s � s′ → Bfi¬p(s′, s))) ↔ Υ−
Gip

)
– D |= ∀((Bi¬p(s) ∨ ∀s′(s � s′ → Bfip(s′, s))) ↔ Υ−

Gi¬p)

characterize the notion of fanatical commitment: the agent maintains her goal
until she believes either the goal is achieved or it is unachievable [6]. The following
properties:

– D |= ∀(Υ+
Gip

→ ∃s′ Bfip(s′, s))
– D |= ∀(Υ+

Gi¬p → ∃s′ Bfi¬p(s′, s))

characterize the notion of realism: the agent adopts a goal that she believes to be
achievable [6]. A deeper analysis of the properties that must be imposed in order
to represent divers types of agents will be carried out in future investigations.

3.2 Automated Reasoning

At least two different types of reasoning are recognised in the literature: reason-
ing in a static environment and reasoning in a dynamic environment. The former
is closely associated with belief revision, while the latter is associated with belief
update [14]. The received information in the former, if in conflict with the cur-
rent beliefs, is taken to mean that the agent was misinformed in the fist place.

3 Intuitively, a formula is uniform in s iff it does not refer to the predicates Poss,
BiPoss or �, it does not quantify over variables of sort situation, it does not mention
equality on situations, the only term of sort situation in the last position of the fluents
is s.

4 Here, we use the symbol ∀ to denote the universal closure of all the free variables in
the scope of ∀. Also we omit the arguments (a, s) of the Υ ’s to enhance readability.

28

In the latter case it would signal a change in the environment instead, probably
due to some action or event. In the following we deal only with the latter type
of reasoning. So as a matter of simplification we assume that all the changes in
the beliefs are of the type “update”. This assumption allows us to represent the
generalised beliefs in terms of present beliefs as follows: Bip(s′, s) ↔ Bip(s′).

Automated reasoning in the situation calculus is based on a regression mech-
anism that takes advantage of a regression operator. The operator is applied to
a regressable formula.

Definition 2. A formula W is regressable iff

1. Each situation used as argument in the atoms of W has syntactic form
do([α1, . . . , αn], S0), where α1, . . . , αn are terms of type action, for some
n ≥ 0.

2. For each atom of the form Poss(α, σ) mentioned in W , α has the form
A(t1, . . . , tn) for some n-ary action function symbol A of LsitcalcBDI

.
3. For each atom of the form BiPoss(α, σ′σ) mentioned in W , α has the form

A(t1, . . . , tn) for some n-ary action function symbol A of LsitcalcBDI
.

4. W does not quantify over situations.

The regression operator R defined in [15] allows to reduce the length of the
situation terms of a regressable formula. R recursively replaces the atoms of a
regressable formula until all the situation terms are reduced to S0. In particular,
when the operator is applied to a regressable sentence, the regression operator
produces a logically equivalent sentence whose only situation term is S0 (for lack
of space we refer the reader to [15, 11] for more details). We extend R with the
following settings.
Let W be a regressable formula.

1. When W is an atom of the form BiPoss(A, σ′σ), whose action precondition
belief axiom in DapB is (PAi),

R[W] = R[ΠAi(σ)]

2. When W is a cognitive fluent of the form Mip(do(α, σ)), where M ∈
{B,G, I}. If Mip(do(a, s)) ↔ Υ+

Mip
(a, s) ∨ (Mip(s) ∧ ¬Υ−

Mip
(a, s)) is the

associated successor state axiom in DssgB ∪ DssG ∪ DssI ,

R[W] = R[Υ+
Mip

(α, σ) ∨ (Mip(σ) ∧ ¬Υ−
Mip

(α, σ))]

3. When W is a cognitive fluent of the form Mi¬p(do(α, σ)), where M ∈
{B,G, I}. If Mi¬p(do(a, s)) ↔ Υ+

Mi¬p(a, s) ∨ (Mi¬p(s) ∧ ¬Υ−
Mi¬p(a, s)) is

the associated successor state axiom in DssgB ∪ DssG ∪ DssI ,

R[W] = R[Υ+
Mi¬p(α, σ) ∨ (Mi¬p(σ) ∧ ¬Υ−

Mi¬p(α, σ))]

Intuitively, these settings eliminates atoms involving BiPoss in favour of
their definitions as given by action precondition belief axioms, and replaces cog-
nitive fluent atoms associated with do(α, σ) by logically equivalent expressions
associated with σ (as given in their associated successor state axioms).

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 29

Note that SIip is logically equivalent to Iip(T, do(a, s)) ↔ [(((a = commit(T)
∧BfiPoss(do(T, s), s)∧Bfip(do(T, s), s))∨Iip([a|T], s)∨Υ ′+

Iip
)∧Gip(do(a, s)))∨

(Iip(T, s) ∧ ¬Υ ′−
Iip

∧ Gip(do(a, s)))], hence the successor intention state axioms,
as well as every successor state axioms presented can be written in the standard
format: φ(do(a, s)) ↔ Υ+

φ (a, s) ∨ (φ(s) ∧ ¬Υ−
φ (a, s)).

For the purpose of proving W with background axioms D, it is sufficient to
prove R[W] with background axioms DS0 ∪Duna. This result is justified by the
following theorem:

Theorem 1. The Regression Theorem. Let W be a regressable sentence of
LsitcalcBDI

that mentions no functional fluents, and let D be a basic intention
theory, then

D |= W iff DS0 ∪ Duna |= R[W].

The proof is straightforward from the following theorems:

Theorem 2. The Relative Satisfiability Theorem. A basic intention theory
D is satisfiable iff DS0 ∪ Duna is.

The proof considers the construction of a model M of D from a model M0 of
DS0 ∪ Duna. The proof is similar to the proof of Theorem 1 in [15].

Theorem 3. Let W be a regressable formula of LsitcalcBDI
, and let D be a basic

intention theory. R[W] is a uniform formula in S0. Moreover

D |= ∀(W ↔ R[W]).

The proof is by induction based on the binary relation ≺ defined in [15] con-
cerning the length of the situation terms. Since cognitive fluents can be viewed
as ordinary situation calculus fluents, the proof is quite similar to the proof of
Theorem 2 in [15].

The regression-based method introduced in [15] for computing whether a
ground situation is executable can be employed to compute whether a ground
situation is executable-believed. Moreover, the test is reduced to a theorem-
proving task in the initial situation axioms together with action unique names
axioms. Regression can also be used to consider the projection problem [11],
i.e., answering queries of the form: Would G be true in the world resulting from
the performance of a given sequence of actions T , D |= G(do(T, S0))? In our
proposal, regression is used to consider projections of beliefs, i.e., answer queries
of the form: Does i believe in s that p will hold in the world resulting from the
performance of a given sequence of actions T , D |= Bfip(do(T, s), s)?

As in [16], we make the assumption that the initial theory DS0 is complete.
The closed-world assumption about belief fluents characterizes the agent’s lack
of beliefs. For example, suppose there is only Brp(S0) in DS0 but we have two
fluents p(s) and q(s), then under the closed-world assumption we have ¬Brq(S0)
and ¬Br¬q(S0), this fact represents the ignorance of r about q in S0. Similarly,
this assumption is used to represent the agent’s lack of goals and intentions.

30

The notion of Knowledge-based programs [11] can be extend to BDI-based
programs, i.e., Golog programs [16] that appeal to BDI notions as well as mental
attitude-producing actions. The evaluation of the programs is reduced to a task
of theorem proving (of sentence relative to a background intention theory). The
Golog interpreter presented in [16] can be used to execute BDI-based programs
since the intention theories use the fluent representation to support beliefs,5

goals and intentions.

4 A Planning Application

In this section we show the axiomatization for a simple robot. The goal of the
robot is to reach a position x. In order to reach its goal, it can advance, reverse
and remove obstacles. We consider two fluents: p(x, s) meaning that the robot is
in the position x in the situation s, and o(x, s) meaning that there is an obstacle
in the position x in the situation s. The successor state axiom of p is of the form:

p(x, do(a, s)) ↔ [a = advance∧p(x−1, s)]∨ [a = reverse∧p(x+1, s)]∨ [p(x, s)∧
¬(a = advance ∨ a = reverse)]

Intuitively, the position of the robot is x in the situation that results from
the performance of the action a from the situation s iff the robot was in x − 1
and a is advance or the robot was in x + 1 and a is reverse or the robot was in
x and a is neither advance nor reverse.

Suppose that the robot’s machinery updates its beliefs after the execution of
advance and reverse, i.e., we assume that the robot knows the law of evolution
of p. So the successor belief state axioms are of the form:

Brp(x, do(a, s)) ↔ [a = advance∧Brp(x−1, s)]∨ [a = reverse∧Brp(x+1, s)]∨
[Brp(x, s) ∧ ¬(a = advance ∨ a = reverse)]

Br¬p(x, do(a, s)) ↔ [(a = advance ∨ a = reverse) ∧ Brp(x, s)] ∨ [Br¬p(x, s) ∧
¬((a = advance ∧ Brp(x − 1, s)) ∨ (a = reverse ∧ Brp(x + 1, s)))]

The similarity between the successor state axiom of p and the successor be-
lief state axiom of Brp reflects this assumption. If initially the robot knows its
position, we can show that the robot has true beliefs about its position in every
situation ∀s∀x(Brp(x, s) → p(x, s)). Evidently the measure of truth concerns
solely a model of the real world and not the real world itself.

Now if in addition we assume that there are no actions allowing revision such
as communicate.p(x, s′) which “sense” whether in s the position is/was/will be
x in s′, the successor generalised belief state axioms can be represented in terms
of successor belief state axioms as follows:

5 In Scherl and Levesque’s approach [17], the notion that has been modelled is knowl-
edge. Our interests to consider beliefs is motivated by the desire to avoid the logical
omniscience problem.

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 31

Brp(x, s′, s) ↔ Brp(x, s′)

Br¬p(x, s′, s) ↔ Br¬p(x, s′)

To represent the evolution of robot’s goals, we consider the two goal-producing
actions: adopt.p(x) and adopt.not.p(x), whose effect is to adopt the goal of to be
in the position x and to adopt the goal of not to be in the position x, respectively.
Also we consider abandon.p(x) and abandon.not.p(x), whose effect is to give up
the goal to be and not to be in the position x, respectively. Possible motivations
for an agent to adopt or drop goals are identified in [18]. The successor goal state
axioms are of the form:

Grp(x, do(a, s)) ↔ a = adopt.p(x) ∨ Grp(x, s) ∧ ¬(a = abandon.p(x))

Gr¬p(x, do(a, s)) ↔ a = adopt.not.p(x)∨Gr¬p(x, s)∧¬(a = abandon.not.p(x))

The successor intention state axioms are of the form:

Irp(x, T, do(a, s)) ↔ Grp(x, do(a, s))∧ [(a = commit(T)∧BfrPoss(do(T, s), s)∧
Bfrp(x, do(T, s), s)) ∨ Irp(x, [a|T], s) ∨ Irp(x, T, s) ∧ ¬(a = giveup(T))]

Ir¬p(x, T, do(a, s))↔ Gr¬p(x, do(a, s))∧[(a = commit(T)∧BfrPoss(do(T, s), s)
∧Bfr¬p(x, do(T, s), s)) ∨ Ir¬p(x, [a|T], s) ∨ Ir¬p(x, T, s) ∧ ¬(a = giveup(T))]

where the effect of action giveup(T) is to give up the intention of carrying
out T .

The successor state axiom of o is of the form:

o(x, do(a, s)) ↔ a = add obs(x) ∨ o(x, s) ∧ ¬(a = remove obs(x))

Intuitively, an obstacle is in x in the situation that results from the perfor-
mance of the action a from the situation s iff a is add obs(x) or the obstacle was
in x in s and a is not remove obs(x). We also suppose that the robot knows also
the law of evolution of o.

Notice that there are four actions affecting the real world: advance, reverse,
add obs(x) and remove obs(x). Since the robot knows how to evolve p and
o, these actions also affect the robot’s beliefs. However, the mental attitude-
producing action: adopt.p(x), abandon.p(x) adopt.not.p(x), abandon.not.p(x),
commit(T) and giveup(T) do not have repercussion in the real world.

For the moment we are concerned with plans that involve only physical ac-
tions since the scope of goals are confined to physical properties. So the agent
does not need to include in its plans actions that modify mental states such
as adopt.p(x) or commit(T). The plans generated by the robot consider the
following action precondition belief axioms:

BrPoss(advance, s) ↔ ¬(Brp(x, s) ∧ Bro(x + 1, s))
BrPoss(reverse, s) ↔ ¬(Brp(x, s) ∧ Bro(x − 1, s))

BrPoss(add obs(x), s)

BrPoss(remove obs(x), s) ↔ (Br(x − 1, s) ∨ Br(x + 1, s)) ∧ Bro(x, s)

32

The robot believes that the execution of advance is possible iff it believes
that there is no obstacle in front of its position. The robot believes that the
execution of reverse is possible iff it believes that there is no obstacle behind
it. The robot believes that the execution of add obs(x) is always possible. The
robot believes that remove obs(x) can be executed iff it is just behind or in front
of the obstacle x.

Let D be the theory composed by the above mentioned axioms. The plans gen-
erated by the robot can be obtained by answering queries of the form: What is the
intention of the robot after it executes the action commit(T) in order to satisfy its
goal D |= Irp(T, do(commit(T), S0))? For example, suppose that we have in the
initial state the following information: p(1, S0), o(3, S0), Brp(1, S0), Grp(4, S0),
i.e., the robot believes that its position is 1 and it wants to be at 4 but it ignores
the obstacle in 3. A plan determined by it is [advance, advance, advance].

If the robot has incorrect information about the obstacle, for example
Bro(2, S0), a plan determined by it is [remove obs, advance, advance, advance].
Finally, if the robot’s beliefs corresponds to the real world, the robot can deter-
mine a correct plan [advance, remove obs, advance, advance].6

5 Conclusion

We have introduced intention theories in the framework of situation calculus.
Moreover we have adapted the systematic, regression-based mechanism intro-
duced by Reiter in order to consider formulas involving BDI. In the original
approach, queries about hypothetical futures are answered by regressing them
to equivalent queries solely concerning the initial situation. We used the mecha-
nism to answer queries about the beliefs of an agent about hypothetical futures
by regressing them to equivalent queries solely concerning the initial situation.
In the original approach, it is the designer (external observer, looking down on
the world) who knows the goals. In the current proposal, it is the agent (inter-
nal element, interacting in the world) who has goals. Moreover, under certain
conditions, the action sequence that represents a plan generated by the agent is
obtained as a side-effect of successor intention state axioms.

The notions of mental attitude-producing actions (belief-producing actions,
goal-producing actions and intention-producing actions) have been introduced
just as Scherl and Levesque introduced knowledge-producing actions. The effect
of mental attitude-producing actions (such as sense, adopt, abandon, commit
or give up) on mental state is similar in form to the effect of ordinary actions
(such as advance or reverse) on relational fluents. Therefore, reasoning about
this type of cognitive change is computationally no worse than reasoning about
ordinary fluent change. Even if the framework presents strong restrictions on the
expressive power of the cognitive part, the approach avoids further complication
of the representation and update of the world model. Diverse scenarios can be
represented and implemented.

6 These plans have been automatically generated using SWI-Prolog.

P. Pozos Parra, A. Nayak, and R. Demolombe-

Theories of Intentions in the Framework of Situation Calculus 33

The notion of omniscience, where the agent’s beliefs correspond to the real
world in every situation, can be represented under two assumptions: the agent
knows the laws of evolution of the real world, and the agent knows the initial
state of the world. In realistic situations, agents may have wrong beliefs about
the evolution of world or initial state. In the proposal, wrong beliefs can be
represented by introducing successor belief axioms that do not correspond to
successor state axioms, or by defining different initial settings between belief
fluents and their corresponding fluents.

Acknowledgements

We are thankful to all the reviewers for their helpful observations. We are also
grateful to Billy Duckworth, Mehmet Orgun and Robert Cambridge for their
comments. The two first authors are supported by a grant from the Australian
Research Council.

References

1. Singh, M.P.: Multiagent Systems. A Theoretical Framework for Intentions, Know-
How, and Communications. LNAI 799, Springer-Verlag (1994)

2. Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)
3. Singh, M.P., Rao, A., Georgeff, M.: Formal method in dai : Logic based repre-

sentation and reasoning. In Weis, G., ed.: Introduction to Distributed Artificial
Intelligence, New York, MIT Press (1998)

4. van Linder, B.: Modal Logics for Rational Agents. PhD thesis, University of
Utrecht (1996)

5. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI Architecture. In:
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufmann (1991)

6. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213–261

7. Rao, A.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European Workshop on Modelling autonomous agents
in a multi-agent world: Agents breaking away, Springer-Verlag (1996) 42–55

8. Dixon, C., Fisher, M., Bolotov, A.: Resolution in a logic of rational agency. In: Pro-
ceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000),
Berlin, Germany, IOS Press (2000)

9. Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J.J., van der Hoek, W.:
Verification within the KARO agent theory. LNCS 1871, Springer-Verlag (2001)

10. Demolombe, R., Pozos Parra, P.: BDI architecture in the framework of Situation
Calculus. In: Proc. of the Workshop on Cognitive Modeling of Agents and Multi-
Agent Interactions at IJCAI, Acapulco, Mexico (2003)

11. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press (2001)

34

12. Reiter, R.: The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Lifschitz, V., ed.: Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, Academic Press (1991) 359–380

13. Petrick, R., Levesque, H.: Knowledge equivalence in combined action theories. In:
Proceedings of the 8th International Conference on Knowledge Representation and
Reasoning. (2002) 613–622

14. Katsuno, H., Mendelzon, A.: On the difference between updating a Knowledge
Base and Revising it. In: Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning. (1991) 387–394

15. Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus.
Journal of the ACM 46 (1999) 325–361

16. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming 31
(1997) 59–84

17. Scherl, R., Levesque, H.: The Frame Problem and Knowledge Producing Actions.
In: Proc. of the National Conference of Artificial Intelligence, AAAI Press (1993)

18. van Riemsdijk, B., Dastani, M., Dignum, F., Meyer, J.J.: Dynamics of Declara-
tive Goals in Agent Programming. In: Proceedings of the Workshop on Declara-
tive Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-Verlag
(2005). In this volume.

P. Pozos Parra, A. Nayak, and R. Demolombe-

Partial Deduction for Linear Logic — The
Symbolic Negotiation Perspective

Peep Küngas1 and Mihhail Matskin2

1 Norwegian University of Science and Technology,
Department of Computer and Information Science,

Trondheim, Norway
peep@idi.ntnu.no

2 Royal Institute of Technology,
Department of Microelectronics and Information Technology,

Kista, Sweden
misha@imit.kth.se

Abstract. Symbolic negotiation is regarded in the field of computer
science as a process, where parties try to reach an agreement on the
high-level means for achieving their goals by applying symbolic reasoning
techniques. It has been proposed [1] that symbolic negotiation could be
formalised as Partial Deduction (PD) in Linear Logic (LL). However, the
paper [1] did not provided a formalisation of the PD process in LL.

In this paper we fill the gap by providing a formalisation of PD
for !-Horn fragment of LL. The framework can be easily extended for
other fragments of LL as well such that more comprehensive aspects of
negotiation can be described. In this paper we consider also soundness
and completeness of the formalism. It turns out that, given a certain PD
procedure, PD for LL in !-Horn fragment is sound and complete.

We adopt the hypothesis that an essential component of symbolic
negotiation is Cooperative Problem Solving (CPS). Thus a formal system
for symbolic negotiation would consist of CPS rules plus negotiation-
specific rules. In this paper only CPS rules are under investigation while
negotiation-specific rules shall be published in another paper.

1 Introduction

Symbolic negotiation is regarded in the field of computer science as negotiation
through symbolic reasoning. Therefore it could be viewed as a process, where
parties try to reach an agreement on the high-level means for achieving their
goals. This approach contrasts with utility-based approaches to negotiation like
game-theoretic negotiation. Despite of possible contributions, symbolic reason-
ing could provide to negotiation, research on symbolic negotiation is still in its
preliminary stages. The work presented in this article attempts to analyse some
aspects of symbolic negotiation.

Partial Deduction (PD) (or partial evaluation of logic programs, which was
first introduced by Komorowski [2]) is known as one of optimisation techniques in

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 35–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 P. Küngas and M. Matskin

logic programming. Given a logic program, PD derives a more specific program
while preserving the meaning of the original program. Since the program is more
specialised, it is usually more efficient than the original program.

For instance, let A, B, C and D be propositional variables and A → B,
B → C and C → D computability statements in a logical framework. Then
possible partial deductions are A → C, B → D and A → D. It is easy to notice
that the first corresponds to forward chaining (from facts to goals), the second
to backward chaining (from goals to facts) and the third could be either forward
or backward chaining or even their combination.

Although the original motivation behind PD was deduction of specialised
logic programs with respect to a given goal, our motivation for PD is a bit
different. Namely, it turns out that PD could be applied for finding partial
solutions to problems written in logical formalisms. In our case, given the formal
specification of a problem, if we fail to solve the entire problem, we apply PD to
generate partial solutions.

This approach supports detection of subgoals during distributed problem
solving. If a single agent fails to solve a problem, PD is applied to solve the prob-
lem partially. As a result subproblems are detected, which could be solved further
by other agents. This would lead to a distributed problem solving mechanism,
where different agents contribute to different phases in problem solving—each
agent applies PD to solve a fragment of the problem and forwards the modified
problem to others. As a result the problem becomes solved in the distributed
manner. Usage of PD in such a way provides foundations for advance interactions
between agents.

As a logical formalism for the application of PD we use Linear Logic [3].
LL has been advocated [4] to be a computation-oriented logic and, because of
its computation-oriented nature, LL has been applied to symbolic multi-agent
negotiation in [1].

Although PD has been formalised for several frameworks, including fluent
calculus [5], normal logic programs [6], etc., it turns out that there is no work
considering PD for LL. Our goal is to fill this gap by providing a formal founda-
tion of PD for LL as a framework for symbolic negotiation between agents such
as it was introduced in [1].

We consider symbolic negotiation as a specialisation of cooperative problem
solving (CPS). Anyway, in this paper we present only a formalisation of the CPS
process. An extension of this formalism, which constitutes symbolic negotiation,
shall be described in another paper.

The rest of the paper is organised as follows. Section 2 gives a short introduc-
tion to LL. Section 3 gives basic definitions of PD. Section 4 focuses on proofs of
soundness and completeness of PD for !-Horn fragment of LL (HLL) [4]. Section
5 demonstrates the relationship between PD and symbolic negotiation. In Sec-
tion 6 we review some of the PD strategies, which could be applied for guiding
PD. Section 7 reviews the related work and Section 8 concludes the paper and
discusses further research directions.

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 37

2 Linear Logic

LL is a refinement of classical logic introduced by J.-Y. Girard to provide means
for keeping track of “resources”. In LL two assumptions of a propositional con-
stant A are distinguished from a single assumption of A. This does not apply in
classical logic, since there the truth value of a fact does not depend on the num-
ber of copies of the fact. Indeed, LL is not about truth, it is about computation.

We consider !-Horn fragment of LL (HLL) [4] consisting of multiplicative
conjunction (⊗), linear implication (�) and “of course” operator (!). In terms
of resource acquisition the logical expression A⊗B � C⊗D means that resources
C and D are obtainable only if both A and B are obtainable. After the sequent
has been applied, A and B are consumed and C and D are produced.

While implication A � B as a computability statement clause in HLL could
be applied only once, !(A � B) may be used an unbounded number of times.
When A � B is applied, then literal A becomes deleted from and B inserted
to the current set of literals. If there is no literal A available, then the clause
cannot be applied. In HLL ! cannot be applied to formulae other than linear
implications.

In order to illustrate some other features of LL, not presented in HLL, we
can consider the following LL sequent from [7]—(D ⊗ D ⊗ D ⊗ D ⊗ D) � (H ⊗
C ⊗ (O&S)⊗!F ⊗ (P ⊕ I)), which encodes a fixed price menu in a fast-food
restaurant: for 5 dollars (D) you can get an hamburger (H), a coke (C), either
onion soup O or salad S depending, which one you select, all the french fries
(F) you can eat plus a pie (P) or an ice cream (I) depending on availability
(restaurant owner selects for you). The formula !F here means that we can use
or generate a resource F as much as we want—the amount of the resource is
unbounded.

Since HLL could be encoded as a Petri net, then theorem proving complexity
in HLL is equivalent to the complexity of Petri net reachability checking and
therefore decidable [4]. Complexity of other LL fragments have been summarised
by Lincoln [8].

3 Basics of Partial Deduction

In this section we present definitions of the basic concepts of partial deduc-
tion for HLL. The names of introduced concepts are largely influenced by the
computation-oriented nature of our applications, where we intend to apply the
framework.

3.1 Basic Definitions

Definition 1. A program stack is a multiplicative conjunction
n⊗

i=1

Ai,

where Ai, i = 1 . . . n is a literal.

38 P. Küngas and M. Matskin

Definition 2. Mapping from a multiplicative conjunction to a set of conjuncts
is defined as follows:

[
n⊗

i

Ai

]

= {A1, . . . , An}

Definition 3. Consumption of formula Ai from a program stack S is a mapping

A1 ⊗ . . .⊗Ai−1 ⊗Ai ⊗Ai+1 ⊗ . . .⊗An �→S,Ai
A1 ⊗ . . .⊗Ai−1 ⊗Ai+1 ⊗ . . .⊗An,

where Aj , j = 1 . . . n could be any valid formula in LL.

Definition 4. Generation of formula Ai to a program stack S is a mapping

A1 ⊗ . . .⊗Ai−1 ⊗Ai+1 ⊗ . . .⊗An �→S,Ai
A1 ⊗ . . .⊗Ai−1 ⊗Ai ⊗Ai+1 ⊗ . . .⊗An,

where Aj , j = 1 . . . n and Ai could be any valid formulae in LL.

Definition 5. A Computation Specification Clause (CSC) is a LL sequent

� I �f O,

where I and O are multiplicative conjunctions of any valid LL formulae and f
is a function, which implements the computation step. I and O are respectively
consumed and generated from the current program stack S, when a particular
CSC is applied.

It has to be mentioned that a CSC can be applied only, if [I] ⊆ [S]. Although
in HLL CSCs are represented as linear implication formulae, we represent them
as extralogical axioms in our problem domain. This means that an extralogical
axiom � I �f O is basically equal to HLL formula !(I �f O).

Definition 6. A Computation Specification (CS) is a finite set of CSCs.

Definition 7. A Computation Specification Application (CSA) is defined as

Γ ;S � G,

where Γ is a CS, S is the initial program stack and G the goal program stack.

Definition 8. Resultant is a CSC

� I �λa1,...,an.f O,n ≥ 0,

where f is a term representing a function, which generates O from I by applying
potentially composite functions over a1, . . . , an.

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 39

CSA determines which CSCs could be applied by PD steps to derive resultant
� S �λa1,...,an.f G,n ≥ 0. It should be noted that resultants are derived by
applying PD steps to the CSAs, which are represented in form A � B. The
CSC form is achieved from particular programs stacks by implicitly applying
the following inference figure:

� A � B
resultant A � A

Id
B � B

Id

A,A � B � B
L �

A � B
Cut

While resultants encode computation, program stacks represent computation
pre- and postconditions.

3.2 PD Steps

Definition 9. Forward chaining PD step Rf (Li) is defined as a rule

B ⊗ C � G
A ⊗ C � G

Rf (Li)

where Li is a labeling of CSC � A �Li
B. A, B, C and G are multiplicative

conjunctions.

Definition 10. Backward chaining PD step Rb(Li) is defined as a rule

S � A ⊗ C
S � B ⊗ C

Rb(Li)

where Li is a labeling of CSC � A �Li
B. A, B, C and S are multiplicative

conjunctions.

PD steps Rf (Li) and Rb(Li), respectively, apply CSC Li to move the initial
program stack towards the goal stack or vice versa. In the Rb(Li) inference figure
formulae B ⊗ C and A ⊗ C denote respectively an original goal stack G and a
modified goal stack G′. Thus the inference figure encodes that, if there is an
CSC � A �Li

B, then we can change goal stack B ⊗ C to A ⊗ C. Similarly, in
the inference figure Rf (Li) formulae B ⊗ C and A ⊗ C denote, respectively, an
original initial stack S and its modification S′. And the inference figure encodes
that, if there is a CSC � A �Li

B, then we can change initial program stack
A ⊗ C to B ⊗ C.

In order to manage access to unbounded resources, we need PD steps RCl
,

RLl
, RWl

and R!l(n).

Definition 11. PD step RCl
is defined as a rule

!A⊗!A ⊗ B � C
!A ⊗ B � C

RCl

where A is a literal, while B and C are multiplicative conjunctions.

40 P. Küngas and M. Matskin

Definition 12. PD step RLl
is defined as a rule

A ⊗ B � C
!A ⊗ B � C

RLl

where A is a literal, while B and C are multiplicative conjunctions.

Definition 13. PD step RWl
is defined as a rule

B � C
!A ⊗ B � C

RWl

where A is a literal, while B and C are multiplicative conjunctions.

Definition 14. PD step R!l(n), n > 0 is defined as a rule

!A ⊗ An ⊗ B � C
!A ⊗ B � C

R!l(n)

where A is a literal, while B and C are multiplicative conjunctions. An = A ⊗ . . . ⊗ A
︸ ︷︷ ︸

n

,

for n >0.

Considering the first-order HLL we have to replace PD steps Rf (Li) and
Rb(Li) with their respective first-order variants Rf (Li(x)) and Rb(Li(x)). Other
PD steps can remain the same. We also require that the initial and the goal
program stack are ground.

Definition 15. First-order forward chaining PD step Rf (Li(x)) is defined as
a rule

B ⊗ C � G
A ⊗ C � G

Rf (Li(x))

Definition 16. First-order backward chaining PD step Rb(Li(x)) is defined as
a rule

S � A ⊗ C
S � B ⊗ C

Rb(Li(x))

In the above definitions A, B, C are LL formulae and Li(x) is defined as

� ∀x(A′ �Li(x) B′). Additionally we assume that a
def
= a1, a2, . . . is an ordered

set of constants, x
def
= x1, x2, . . . is an ordered set of variables, [a/x] denotes

substitution, and X = X ′[a/x]. When substitution is applied, elements in a and
x are mapped to each other in the order they appear in the ordered sets. These
sets must have the same number of elements.

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 41

3.3 Derivation and PD

Definition 17 (Derivation of a resultant). Let R be any predefined PD step.
A derivation of a resultant R0 is a finite sequence of resultants: R0 ⇒R R1 ⇒R
R2 ⇒R . . . ⇒R Rn, where ⇒R denotes to an application of a PD step R.

Definition 18 (Partial deduction). Partial deduction of a CSA Γ ;S � G is
a set of all resultants Ri derivable from CSC � S � G.

It is easy to see that this definition of PD generates the set of all proof
trees for CSA Γ ;S � G. Due to the non-monotonicity of LL we need a sort of
backtracking mechanism in our formalism for preserving completeness. Therefore
we need backtracking ability, which is achieved by keeping the all the proof trees
encountered.

Definition 19. A CSA Γ ;S � G is executable, iff given Γ as a CS, resultant
� S �λa1,...,an.f G,n ≥ 0 can be derived such that derivation ends with resultant
Rn, which equals to � A � A, where A is a program stack.

4 Soundness and Completeness of PD in HLL

4.1 PD Steps as Inference Figures in HLL

In this section we prove that PD steps are inference figures in HLL.

Proposition 1. Forward chaining PD step Rf (Li) is sound with respect to LL
rules.

Proof. The proof in LL follows here:

A ⊗ C � A ⊗ C
Id � (A �Li

B)
Axiom

A ⊗ C � A ⊗ C ⊗ (A �Li
B)

R⊗

C � C
Id

A � A
Id

B � B
Id

A, (A �Li
B) � B

L �

A ⊗ (A �Li
B) � B

L⊗

C, A ⊗ (A �Li
B) � B ⊗ C

R⊗

A ⊗ C ⊗ (A �Li
B) � B ⊗ C

L⊗
B ⊗ C � G

A ⊗ C ⊗ (A �Li
B) � G

Cut

A ⊗ C � G
Cut

Proposition 2. Backward chaining PD step Rb(Li) is sound with respect to LL
rules.

Proof. The proof in LL follows here:

S � A ⊗ C � (A �Li
B)

Axiom

S � A ⊗ C ⊗ (A �Li
B)

R⊗

C � C
Id

A � A
Id

B � B
Id

A, (A �Li
B) � B

L �

A ⊗ (A �Li
B) � B

L⊗

C, A ⊗ (A �Li
B) � B ⊗ C

R⊗

A ⊗ C ⊗ (A �Li
B) � B ⊗ C

L⊗

S � B ⊗ C
Cut

42 P. Küngas and M. Matskin

Proposition 3. PD step RCl
is sound with respect to LL rules.

Proof. The proof in LL follows here:
!A �!A

Id
!A �!A

Id

!A, !A �!A⊗!A
R⊗

!A �!A⊗!A
C!

B � B
Id

!A, B �!A⊗!A ⊗ B
R⊗

!A ⊗ B �!A⊗!A ⊗ B
L⊗

!A⊗!A ⊗ B � C

!A ⊗ B � C
Cut

Proposition 4. PD step RLl
is sound with respect to LL rules.

Proof. The proof in LL follows here:
A � A

Id

!A � A
L!

B � B
Id

!A, B � A ⊗ B
R⊗

!A ⊗ B � A ⊗ B
L⊗

A ⊗ B � C

!A ⊗ B � C
Cut

Proposition 5. PD step RWl
is sound with respect to LL rules.

Proof. The proof in LL follows here:
B � B

Id

!A, B � B
W !

!A ⊗ B � B
L⊗

B � C

!A ⊗ B � C
Cut

Proposition 6. PD step R!l is sound with respect to LL rules.

Proof. The proof in LL follows here:
!A ⊗ An ⊗ B � C

.

.

.

.
!A ⊗ A ⊗ B � C

!A⊗!A ⊗ B � C
RLl

!A ⊗ B � C
RCl

Proposition 7. First-order forward chaining PD step Rf (Li(x)) is sound with
respect to first order LL rules.

Proof.

A ⊗ C � A ⊗ C
Id � ∀x(A′ �Li(x) B′)

Axiom

A ⊗ C � A ⊗ C ⊗ (∀x(A′ �Li(x) B′))
R⊗

C � C
Id

A � A
Id

B � B
Id

A, (A �Li(a) B) � B
L �

A ⊗ (A �Li(a) B) � B
L⊗

C, A ⊗ (A �Li(a) B) � B ⊗ C
R⊗

A ⊗ C ⊗ (A �Li(a) B) � B ⊗ C
L⊗

A ⊗ C ⊗ (∀x(A′ �Li(x) B′)) � B ⊗ C
L∀

B ⊗ C � G

A ⊗ C ⊗ (∀x(A′ �Li(x) B′)) � G
Cut

A ⊗ C � G
Cut

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 43

Proposition 8. First-order backward chaining PD step Rb(Li(x)) is sound with
respect to first order LL rules.

Proof. The proof in LL is the following

S � A ⊗ C � ∀x(A′ �Li(x) B′)
Axiom

S � A ⊗ C ⊗ (∀x(A′ �Li(x) B′))
R⊗

C � C
Id

A � A
Id

B � B
Id

A, (A �Li(a) B) � B
L �

A ⊗ (A �Li(a) B) � B
L⊗

C, A ⊗ (A �Li(a) B) � B ⊗ C
R⊗

A ⊗ C ⊗ (A �Li(a) B) � B ⊗ C
L⊗

A ⊗ C ⊗ (∀x(A′ �Li(x) B′)) � B ⊗ C
L∀

S � B ⊗ C
Cut

4.2 Soundness and Completeness

Soundness and completeness are defined via executability of CSAs.

Definition 20 (Soundness of PD of a CSA). A CSC � S′ � G′ is exe-
cutable, if a CSC � S � G is executable in a CSA Γ ;S � G and there is a
derivation � S � G ⇒R . . . ⇒R� S′ � G′.

Completeness is the converse:

Definition 21 (Completeness of PD of a CSA). A CSC � S � G is
executable, if a CSC � S′ � G′ is executable in a CSA Γ ;S′ � G′ and there is
a derivation � S � G ⇒R . . . ⇒R� S′ � G′.

Our proofs of soundness and completeness are based on proving that deriva-
tion of a resultant is a derivation in a CSA using PD steps, which were defined as
inference figures in HLL. However, it should be emphasised that soundness and
completeness of PD as defined here have no relation with respective properties
of (H)LL.

Lemma 1. A CSC � S � G is executable, if there is a proof of Γ ;S � G in
HLL.

Proof. Since the derivation of a resultant is based on PD steps, which represent
particular inference figures in HLL, then if there is a HLL proof for Γ ;S � G,
based on inference figures in Section 4.1, then the proof can be transformed to
a derivation of resultant � S � G.

Lemma 2. Resultants in a derivation are nodes in the respective HLL proof tree
and they correspond to partial proof trees, where leaves are other resultants.

Proof. Since each resultant � A � B in a derivation is achieved by an applica-
tion of a PD step, which is defined with a respective LL inference figure, then it
represents a node A � B in the proof tree, whereas the derivation of � A � B
represents a partial proof tree.

44 P. Küngas and M. Matskin

Theorem 1 (Soundness of propositional PD). PD for LL in propositional
HLL is sound.

Proof. According to Lemma 1 and Lemma 2 PD for LL in propositional HLL is
sound, if we apply propositional PD steps. The latter derives from the fact that,
if there exists a derivation � S � G ⇒R . . . ⇒R� S′ � G′, then the derivation
is constructed by PD in a formally correct manner.

Theorem 2 (Completeness of propositional PD). PD for LL in proposi-
tional HLL is complete.

Proof. When applying PD with propositional PD steps, we first generate all
possible derivations until no derivations could be found, or all proofs have been
found. If CSC � S′ � G′ is executable then according to Lemma 1, Lemma 2
and Definition 19 there should be a path in the HLL proof tree starting with
CSC � S � G, ending with � A � A and containing CSC � S′ � G′. There is
no possibility to have a path from CSC � S′ � G′ to � A � A without having
a path from CSC � S � G to CSC � S′ � G′ in the same HLL proof tree.

Then according to Lemma 1 and Lemma 2, derivation � S � G ⇒R . . . ⇒R�
S′ � G′ would be either discovered or it will be detected that there is no such
derivation. Therefore PD for LL in HLL fragment of LL is complete.

Theorem 3 (Soundness of PD of a first-order CSA). PD for LL in first-
order HLL is sound.

Proof. The proof follows the pattern of the proof for Theorem 1, with the dif-
ference that instead of applying PD steps Rb(Li) and Rf (Li), we apply their
first-order counterparts Rb(Li(x)) and Rf (Li(x)).

Theorem 4 (Completeness of PD of a first-order CSA). PD for LL in
first-order HLL is complete.

Proof. The proof follows the pattern of the proof for Theorem 2, with the dif-
ference that instead of applying PD steps Rb(Li) and Rf (Li), we apply their
first-order counterparts Rb(Li(x)) and Rf (Li(x)).

In the general case first-order HLL is undecidable. However, Kanovich and
Vauzeilles [9] determine certain constraints, which help to reduce the complexity
of theorem proving in first-order HLL. By applying those constraints, theorem
proving complexity could be reduced to PSPACE. Propositional HLL is equiva-
lent to Petri net reachability checking, which is according to Mayr [10] decidable.

5 Application of PD to Symbolic Negotiation

In this section we demonstrate the usage of PD symbolic negotiation. We consider
here communication only between two agents and show only offers, which are

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 45

relevant to the demonstration of our framework. However, in more practical
cases possibly more agents can participate and more offers can be exchanged.
In particular, if agent A cannot help agent B to solve a problem, then A might
consider contacting agent C for help in order to solve B’s problem. This would
lead to many concurrently running negotiations.

Definition 22. An agent is defined with a CSA Γ ;S � G, where Γ , S and G
represent agent’s capabilities, what the agent can provide, and what the agent
requires, respectively.

Definition 23. An offer A � B is a CSC with Γ ≡ ∅.
In our scenario we have two agents—a traveller T and an airline company F .

The goal of T is to make a booking (Booking). Initially T knows only its starting
(From) and final (To) locations. Additionally the agent has two capabilities,
findSchedule and getPassword , for finding a schedule (Schedule) for a journey
and retrieving a password (Password) from its internal database for a particular
Web site (Site). Goals (GT), resources (ST) and capabilities (ΓT) of the traveller
T are described in LL with the following formulae.

GT = {Booking},

ST = {From ⊗ To},

ΓT =
� From ⊗ To �findSchedule Schedule,
� Site �getPassword Password .

For booking a flight agent T should contact a travel agent or an airline
company. The airline company agent F does not have any explicit declarative
goals that is usual for companies, whose information systems are based mainly
on business process models. The only fact F can expose, is its company Web
site (Site). Since access to Site is an unbounded resource (includes !), it can be
delivered to customers any number of times.

F has two capabilities—bookFlight and login for booking a flight and identi-
fying customers plus creating a secure channel for information transfer. Goals,
resources and capabilities of the airline company F are described in LL as the
following formulae.

GF = {1},

SF = {!Site},

ΓF =
� SecureChannel ⊗ Schedule �bookFlight Booking ,
� Password �login SecureChannel .

46 P. Küngas and M. Matskin

Given the specification, agent T derives and sends out the following offer:

Schedule � Booking .

The offer was deduced by PD as follows:

Schedule � Booking
From ⊗ To � Booking

Rf (findSchedule)

Since F cannot satisfy the proposal, it derives a new offer:

Schedule � Password ⊗ Schedule.

The offer was deduced by PD as follows:

Schedule � Password ⊗ Schedule

Schedule � SecureChannel ⊗ Schedule
Rb(login)

Schedule � Booking
Rb(bookF light)

Agent T deduces the offer further:

Schedule � Site ⊗ Schedule
Schedule � Password ⊗ Schedule

Rb(getPassword)

and sends the following offer to F :

Schedule � Site ⊗ Schedule.

For further reasoning in symbolic negotiation, we need the following defini-
tions. They determine the case where two agents can achieve their goals together,
by exchanging symbolic information.

Definition 24. An offer A � B is complementary to an offer C � D, if A⊗D �
B⊗C is a theorem of LL. A, B, C and D represent potentially identical formulae.

The logical justification to merging complementary offers could be given from
the global problem solving/theorem proving viewpoint. Having two complemen-
tary offers means that although two problems were locally (at a single agent)
unsolvable, they have a solution globally (if the problems of several agents have
been merged together).

Proposition 9. If two derived offers are complementary to each-other, then the
agents who proposed the initial offers (which led to the complementary offers)
can complete their symbolic negotiation by merging their offers.

Proof. Since the left hand side of an offer encodes what an agent can provide
and the right hand side of the offer represents what the agent is looking for, then
having two offers, which are complementary to each other, we have found a solu-
tion satisfying both agents, who sent out the initial offers and whose derivations
led to the complementary offers.

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 47

Now agent F constructs a new offer:

Site � 1
!Site � 1

RLl

However, instead of forwarding it to T , it merges the offer with the received
complementary offer:

Site ⊗ Schedule � Site ⊗ Schedule Id � 1 Axiom

Site ⊗ Schedule � Site ⊗ Schedule ⊗ 1 R⊗

Thereby T composed (with the help of F) a composite service, which exe-
cution achieves the goals of agents T and F (in the current example, the goal
of F is represented as constant 1). The resulting plan (a side effect of sym-
bolic negotiation) is graphically represented in Figure 1. The rectangles in the
figure represent the agent capabilities applied, while circles denote information
collection/delivery nodes. Arrows denote the flow of symbolic information.

getPassword

findSchedule

login

bookFlight

Password

Schedule

Booked

Site

Agent T Agent F

Fig. 1. The distributed plan

6 Partial Deduction Strategies

The practical value of PD is very limited without defining appropriate PD strate-
gies. These are called tactics and refer to selection and stopping criteria. Success-
ful tactics depend generally quite much on a specific logic application. Therefore
we only list some possible tactics here. From agent negotiation point of view the
strategies represent to some extent agents’ policies—they determine which offers
are proposed next.

Tammet [11] proposes a set of theorem proving strategies for speeding up LL
theorem proving. He also presents experimental results, which indicate a good
performance of the proposed strategies. Some of his strategies remind the usage
of our inference figures. Thus some LL theorem proving strategies are already
implicitly handled in our PD framework.

48 P. Küngas and M. Matskin

We also would like to point out that by using LL inference figures instead of
basic LL rules, PD, as we defined it here, could be more efficient than pure LL
theorem proving. The latter is due to the smaller search space, which emerges
through the usage of inference figures.

Definition 25. Length l of a derivation is equal to the number of the applica-
tions of PD steps R in the derivation.

Definition 26. Two derivations are computationally equivalent, regardless of
the length of their derivations, if they both start and end with the same resultant.

6.1 Selection Criteria

Selection criteria define which formulae and PD steps should be considered next
for derivation of a resultant. We consider the following selection criteria.

– Mixed backward and forward chaining—a resultant is extended by interleav-
ing backward and forward chaining.

– Different search methods—depth-first, breadth-first, iterative deepening, etc
could be used. While breadth-first allows discovering shorter derivations
faster, depth-first requires less computational overhead, since less memory
is used for storing the current search status.

– Prefer resultants with smaller derivation length—the strategy implicitly leads
to breadth-first search.

– Apply only one PD step at time.
– Combine several PD steps together. The approach is justified, if there is some

domain knowledge available, which states that certain CSCs are executed in
sequence.

– Priority-based selection—some literals have a higher weight, which is deter-
mined either manually by the user or calculated by the system according to
predefined criteria. During PD literals/resultants having higher weights are
selected first.

We would like to emphasise that the above criteria are not mutually exclusive
but rather complementary to each other.

6.2 Stopping Criteria

Stopping criteria define when to stop derivation of resultants. They could be
combined with the above-mentioned selection criteria. We suggest the following
stopping criteria:

– The derived resultant is computationally equivalent to a previous one—since
the resultants were already derived and used in other derivations, proceeding
PD again with the same resultant does not yield neither new resultants
nor unique derivations (which are not computationally equivalent with any
previously considered one).

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 49

– A generative cycle is detected—if we derived a resultant � A � B ⊗ C
from a resultant � A � C, then by repeatedly applying PD steps between
the former resultants we end up with resultants � A � Bn ⊗ C, where
n > 1. Therefore we can skip the PD steps in further derivation and rea-
son analytically how many instances of literal B we need. The approach is
largely identical to Karp-Miller [12] algorithm, which is applied for state
space collapsing during Petri net reachability checking. A similar method is
also applied by Andreoli et al [13] for analysing LL programs.

– Maximum derivation length l is reached—given that our computational re-
sources are limited and the time for problem solving is limited as well, we
may not be able to explore the full search space anyway. Then setting a limit
to derivation length helps to constrain the search space.

– A resultant is equal to the goal—since we found a solution to the problem,
there is no need to proceed further, unless we are interested in other solutions
as well.

– Stepwise—the user is queried before each derivation in order to determine,
which derivations s/he wants to perform. This stopping criterion could be
used during debugging, since it provides the user with an overview of the
derivation process.

– Exhaustive—derivation stops, when no new resultants are available.

7 Related Work

Although PD was first introduced by Komorowski [2], Lloyd and Shepherdson [6]
were first who formalised PD for normal logic programs. They showed PD’s
correctness with respect to Clark’s program completion semantics. Since then
several formalisations of PD for different logic formalisms have been developed.
Lehmann and Leuschel [5] developed a PD method capable of solving planning
problems in the fluent calculus. A Petri net reachability checking algorithm is
used there for proving completeness of the PD method.

Analogically Leuschel and Lehmann [14] applied PD of logic programs for
solving Petri net coverability problems while Petri nets are encoded as logic
programs. De Schreye et al [15] presented experiments related to the preceding
mechanisms by Lehmann and Leuschel, which support evaluation of certain PD
control strategies.

Matskin and Komorowski [16] applied PD to automated software synthesis.
One of their motivations was debugging of declarative software specification. The
idea of using PD for debugging is quite similar to the application of PD in sym-
bolic agent negotiation [1]. In both cases PD helps to determine computability
statements, which cannot be solved by a system.

Our formalism for PD, through backward chaining PD step, relates to abduc-
tion. Given the simplification that induction is abduction together with justifica-
tion, PD relates to induction as well. An overview of inductive logic programming
(ILP) s given by Muggleton and de Raedt [17].

50 P. Küngas and M. Matskin

Forward and backward chaining for linear logic have been considered by Har-
land et al [18] in the logic programming context. In this article we define back-
ward and forward chaining in PD context. Indeed, the main difference between
our work and the work by Harland et al could be characterised with a different
formalism for different purposes.

There is a similarity between the ideology behind an inductive bias in ILP
and a strategy in PD. This means that we could adapt some ILP inductive
biases as strategies for PD. In ILP θ-subsumption is defined to order clauses
partially and to generate a lattice of clauses. For instance clause parent(X,Y) ←
mother(X,Y),mother(X,Z) θ-subsumes clause parent(X,Y) ← mother(X,Y).
The approach could be useful as a PD strategy in our formalism. However, the
idea has not been evaluated yet.

8 Conclusions

In this paper we formalised PD for LL, more specifically for !-Horn fragment of
LL. The main reason for choosing the particular LL fragment was that (!)Horn
fragment of LL has been designed for rule-based applications. Therefore it suits
well for formalising CPS and symbolic negotiation.

We proved that for both propositional and first-order HLL the PD method
are sound and complete. It was also demonstrated how PD could be applied
in symbolic negotiation. The theorems proposed here can be easily adapted for
other fragments of LL, relevant to CPS and symbolic negotiation.

In this paper we assumed that symbolic negotiation would be built upon
a CPS framework. Therefore we formalised here only CPS part of symbolic
negotiation. This formalisation would be extended with negotiation-specific rules
in another paper. Anyway, from computational point of view, we can regard CPS
as AI planning and symbolic negotiation as plan reuse/repair. Then it has been
showed [19] that from problem solving point of view neither approach in general
has an advantage over another.

However, symbolic negotiation provides a more human-like way of problem
solving, which can be more naturally followed by human participants. In addi-
tion, symbolic negotiation may encode a sort of search heuristics, which would
make CPS computationally less demanding. Therefore we shall focus our further
research for developing a set of rules, which would specialise our CPS framework
to symbolic negotiation.

We have implemented an agent system, where PD is applied for symbolic
negotiation. The system is based on JADE and can be download from homepage
http://www.idi.ntnu.no/~peep/symbolic. Although in the current version
of the agent software the derived offers are broadcasted, we are working on
heuristics, which would allow us to limit the number of offer receivers. In the long
term we would like to end up with a P2P agent software where a large number
of agents would apply symbolic negotiation for concurrent problem solving.

Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective 51

Acknowledgements

This work was partially supported by the Norwegian Research Foundation in the
framework of Information and Communication Technology (IKT-2010) program–
the ADIS project. The authors would additionally like to thank anonymous
referees for their comments.

References

1. Küngas, P., Matskin, M.: Linear logic, partial deduction and cooperative prob-
lem solving. In: Proceedings of the First International Workshop on Declarative
Agent Languages and Technologies (DALT’2003). Volume 2990 of Lecture Notes
in Artificial Intelligence., Springer-Verlag (2004)

2. Komorowski, J.: A Specification of An Abstract Prolog Machine and Its Applica-
tion to Partial Evaluation. PhD thesis, Department of Computer and Information
Science, Linkoping University, Linkoping, Sweden (1981)

3. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102
4. Kanovich, M.I.: Linear logic as a logic of computations. Annals of Pure and

Applied Logic 67 (1994) 183–212
5. Lehmann, H., Leuschel, M.: Solving planning problems by partial deduction. In:

Proceedings of the 7th International Conference on Logic for Programming and Au-
tomated Reasoning, LPAR’2000, Reunion Island, France, November 11–12, 2000.
Volume 1955 of Lecture Notes in Artificial Intelligence. Springer-Verlag (2000)
451–467

6. Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. Journal
of Logic Programming 11 (1991) 217–242

7. Lincoln, P.: Linear logic. ACM SIGACT Notices 23 (1992) 29–37
8. Lincoln, P.: Deciding provability of linear logic formulas. In Girard, J.Y., Lafont,

Y., Regnier, L., eds.: Advances in Linear Logic. Volume 222 of London Mathemat-
ical Society Lecture Note Series. Cambridge University Press (1995) 109–122

9. Kanovich, M.I., Vauzeilles, J.: The classical AI planning problems in the mirror of
Horn linear logic: Semantics, expressibility, complexity. Mathematical Structures
in Computer Science 11 (2001) 689–716

10. Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM
Journal on Computing 13 (1984) 441–460

11. Tammet, T.: Proof strategies in linear logic. Journal of Automated Reasoning 12
(1994) 273–304

12. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
Systems Sciences 3 (1969) 147–195

13. Andreoli, J.M., R.Pareschi, Castagnetti, T.: Static analysis of linear logic program-
ming. New Generation Computing 15 (1997) 449–481

14. Leuschel, M., Lehmann, H.: Solving coverability problems of Petri nets by partial
deduction. In: Proceedings of the 2nd International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, PPDP’2000, Montreal,
Canada, September 20–23, 2000, ACM Press (2000) 268–279

15. de Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.:
Conjunctive partial deduction: Foundations, control, algorithms and experiments.
Journal of Logic Programming 41 (1999) 231–277

52 P. Küngas and M. Matskin

16. Matskin, M., Komorowski, J.: Partial structural synthesis of programs. Funda-
menta Informaticae 30 (1997) 23–41

17. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

18. Harland, J., Pym, D., Winikoff, M.: Forward and backward chaining in linear logic.
In: Proceedings of the CADE-17 Workshop on Proof-Search in Type-Theoretic Sys-
tems, Pittsburgh, June 20–21, 2000. Volume 37 of Electronic Notes in Theoretical
Computer Science. Elsevier (2000)

19. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and em-
pirical analysis. Artificial Intelligence 76 (1995) 427–454

On Modelling Multi-agent Systems Declaratively

Andrea Bracciali1, Paolo Mancarella1, Kostas Stathis1,2, and Francesca Toni1,3

1 Dipartimento di Informatica, Università di Pisa
{braccia, paolo}@di.unipi.it

2 Department of Computing, City University London
kostas@soi.city.ac.uk

3 Department of Computing, Imperial College London
ft@doc.ic.ac.uk

Abstract. We propose a declarative framework for modelling multi-agent sys-
tems and specify a number of properties of these systems and agents within them.
The framework is parametric with respect to an input/output semantics for agents,
whereby inputs are the agents’ observations, and outputs are their actions. The ob-
servations include actions performed by other agents and events happening in the
world. We define the semantics of a multi-agent system via a stability condition
over the individual agents’ semantics. We instantiate the framework with respect
to simple abductive logic agents. We illustrate the framework and the proposed
properties by means of a simple example of agent negotiation.

1 Introduction

The ever-growing use of agents and multi-agent systems in practical applications poses
the problem of formally verifying their properties; the idea being that by verifying prop-
erties of the overall system we can make informed judgements about the suitability of
agents and multi-agent systems in solving problems posed within application domains.
For example, if a multi-agent system is to be used to negotiate on behalf of people, in
order to solve problems of re-allocation and sharing of resources (e.g., as in [1]), the
problem arises as to whether a specific set of agents/multi-agent system can actually
solve a concrete problem of resource-reallocation.

We specify a set of generic properties, which we believe to be interesting, of indi-
vidual agents, multi-agent systems and agents within multi-agent systems. Rather than
proposing a specific architecture or theory for agents, we view agents as “black-boxes”,
whose “semantics” is expressed solely in terms of (i) their observable behaviour, which
is public and thus visible to other agents in the same multi-agent system, and (ii) their
mental state, which is private and thus inaccessible to other agents in the same multi-
agent system. Our proposed properties can be instantiated for any concrete agent ar-
chitecture/theory that can be abstracted away in terms of the aforementioned “seman-
tics”, and apply to systems consisting of architecturally heterogeneous agents, including
legacy systems. Thus, our approach is not concerned with the specification or program-
ming of agents and agents’ applications, but rather it is tailored towards the specification
of properties of agents, which is to serve for their verification.

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 53–68, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

54 A. Bracciali et al.

The observable behaviour of an agent is expressed in terms of an output set of ac-
tions from a pool of actions that the agent can perform, given an input set of obser-
vations from a pool of observations that the agent can make. Actions and observation
can be communicative or not. Actions of one agent may be observations of another.
Observations may include also events in the world in which agents are situated. The
set of visible events and actions by other agents that an agent can observe in the world
constitute its environment. If all agents in a multi-agent system can observe all events
happening in the world and all actions performed by the other agents, then we call the
multi-agent system fully transparent. Otherwise, we call the system partially transpar-
ent. The mental state is seen as a set of beliefs by the agent. Actions, observations,
events and beliefs are seen as atoms in some logical languages.

Given the “semantics” of agents as described above, we define the semantics of
a multi-agent system via a definition of stability on the set of all actions performed
by all agents in the system, possibly arising from their communication and interaction
via observation: a set of actions (by the different agents) is stable if, assuming that an
“oracle” could feed each of the agents with all the actions in the set performed by the
other agents (and all events happening in the world), then each agent would do exactly
what is in the set, namely their observable behaviour would be exactly what the set
envisages.

We specify properties of individual success of agents, overall success of a multi-
agent system, robustness and world-dependence of a multi-agent system, as well as a
number of properties of agents within systems. We then instantiate our framework by
means of simple abductive logic agents, whose mental state and observable behaviour
can be computed by applying an adaptation of the Tp operator of logic programs (see
e.g., [2]) starting from the observations of the agents. If a multi-agent system consists
of these simple agents, we show how stable sets of actions by all the agents can be
computed incrementally. We also illustrate the framework and the properties we propose
in the context of multi-agent systems consisting of the simple abductive logic agents.

2 Preliminaries

A multi-agent system 〈A,W〉 consists of a set A of n agents (n ≥ 2) that we refer
to simply as 1, . . . , n, and a world W in which events may happen which the agents
may perceive. Until section 5, we will abstract away from the details of the agents’
architecture and model, and simply rely upon the existence of a semantics of agents,
as understood below. Thus, note that our model applies to systems of architecturally
heterogeneous agents. We will also abstract away from the details of the world, except
for assuming that it is characterised by a (possibly empty, possibly infinite) set of events,
which may be observed by the agents. We will refer to these events as E(W).

Each agent i is associated with a (possibly empty, possibly infinite) set of potential
actions that it can perform, indicated as A(i), and a (possibly empty, possibly infinite)
set of observations it can make, indicated as O(i). Without loss of generality, we will
assume that A(i) ∩ A(j) = ∅, for i �= j, namely no action can be performed by two
different agents. For example, the action whereby agent 1 asks agent 2 for some re-
source can only be performed by agent 1, while the action whereby agent 2 asks agent

On Modelling Multi-agent Systems Declaratively 55

3 for some resource can only be performed by agent 2, and so on. For simplicity, we
do not explicitly deal with the representation of time, but we assume that actions are
distinguished by their execution time (i.e. the same action executed at different instants
will be represented by different elements in A(i)) and executed in the “proper” order.
Also, given some set ∆, we will denote by ∆(j) the set of actions in ∆ pertaining to
the agent j, namely ∆(j) = ∆ ∩ A(j).

Actions performed by one agent may be observations of another, namely the lan-
guage in which actions and observations are represented is common amongst the agents.
E.g., actions may be outgoing communication and observations may be incoming com-
munication, and the language in which they are represented may be an agent commu-
nication language. Observations by agents may also be events happening in the world,
taken from E(W). Formally,

⋃

i∈A
O(i) ⊆ E(W) ∪

⋃

i∈A
A(i)

In Section 3.1 we will first consider the case in which each agent can observe all other
agents’ actions as well as the whole world. In Section 3.2 we will consider the case in
which each agent may have only a partial visibility both of other agents’ actions and
of the world. This may be due to its inability to fully observe the other agents and the
world, as well as to the unwillingness of some agents to disclose all their actions to
every other agent. The portion of the world and of the (actions performed by) other
agents visible to an agent can be seen as the environment in which this agent is situated.

The semantics of agent i is indicated as

Si(∆in,∆0) = 〈M,∆out〉,
where

– ∆in ⊆ O(i) is a (possibly infinite) set of observations by agent i,
– ∆0 ⊆ A(i) is a (possibly infinite) set of actions by agent i,
– M is a (possibly infinite) set of atomic sentences (from a given “private” language

that the agent is equipped with), understood as the mental state of the agent, and
– ∆out ⊆ A(i) is a (possibly infinite) set of actions performed by agent i, understood

as the observable behaviour of the agent.

∆0 will typically belong to some initial plan of the agent i, allowing i to achieve its
goals or desires, according to its mental state. We will refer to the goals of agent
i as Gi. Syntactically, goals are sets of atoms in the internal language of the agent. In
particular, the set of goals may be empty. M can be seen as the set of atomic beliefs held
by the agent, and private to the agent itself. It may be ⊥, indicating the inconsistency
of a mental state of the agent. ∆out is instead the public side of the agent. Given ∆in

and ∆0, Si(∆in,∆0) may not be unique (namely Si may not be a function in general).
Although this declarative formulation of our model can deal with infinite sets, e.g.,

accounting for reactive agent behaviour, its operational counterparts for verification will
typically revert to finite instances of agents’ behaviour (as in well-known verification
methodologies, like finite model checking). Section 5 proposes a possible way to con-
struct a concrete such semantics for agents based on abductive logic programming.

56 A. Bracciali et al.

3 Semantics of a Multi-agent System

We define a semantics for a multi-agent system, parametric with respect to the semantics
of the individual agents. This semantics relies upon the notion of stable set of actions
(by all agents in the system). Agents are assumed to start with (possibly empty) initial
plans ∆1

0, . . . ,∆
n
0 . Moreover, the world is supposed to provide a set ∆E ⊆ E(W) of

happened events. We provide two definitions for the notion of stable set, according to
whether the agents fully or partially perceive the world and the other agents.

3.1 Fully Transparent Multi-agent Systems

In this section we assume that each agent has full perception of each other agent as well
as of the world. We call such a multi-agent system fully transparent.

Definition 1. A fully transparent multi-agent system 〈A,W〉 is stable if there exists
∆ ⊆ ⋃

i∈A A(i), such that

i.
⋃

i∈A
∆i

out = ∆

ii. Si(∆−i ∪ ∆E ,∆i
0) = 〈M i,∆i

out〉
iii. ∆ ⊇ ⋃

i∈A
∆i

0

where ∆−i is the set of all actions performed by all agents except agent i, namely

∆−i =
⋃

j ∈ A
j �= i

∆(j)

The set ∆ is called a stable set for 〈A,W〉.
By the previous definition, the sets ∆1

out, . . . ,∆
n
out, if they exist, are a solution for the

set of mutually recursive equations

S1(∆−1 ∪ ∆E ,∆1
0) = 〈M1,∆1

out〉
...

Sn(∆−n ∪ ∆E ,∆n
0) = 〈Mn,∆n

out〉
where each ∆−i occurring on the left-hand side of the i − th equation is defined in
terms of the ∆j

out sets, occurring in all the other equations. Intuitively speaking, a set
of actions (by the different agents) is stable if, assuming that an “oracle” could feed
each of the agents with all the actions in the set performed by the other agents (and
all events happening in the world), then each agent would do exactly what is in the
set, namely their observable behaviour would be exactly what the set envisages. Note
that the assumption on the existence of an “oracle” is justified by the fact that we are
providing a semantics for multi-agent systems, rather than relying upon their execution
model.

Note that conditions i. and ii. in Definition 1 imply that ∆i
0 ⊆ ∆i

out, namely that
agents cannot change their initial plans. This condition could be relaxed.

On Modelling Multi-agent Systems Declaratively 57

3.2 Partially Transparent Multi-agent Systems

We model now multi-agent systems where each agent may have only a partial visibility
of the rest of the system and of the world. We call such multi-agent systems partially
transparent. We assume that the perception of the world by every agent i is given by
∆i

E ⊆ ∆E , as opposed to the whole ∆E in Definition 1(ii.). ∆i
E could be defined

via a suitable projection function. Clearly, for fully transparent multi-agent systems
∆i

E = ∆E .

Definition 2. A partially transparent multi-agent system 〈A,W〉 is stable if there exists
∆ ⊆ ⋃

i∈A A(i) such that

i.
⋃

i∈A
∆i

out = ∆

ii. Si(∆−i ∪ ∆i
E ,∆i

0) = 〈M i,∆i
out〉

iii. ∆ ⊇ ⋃

i∈A
∆i

0

where

∆−i ⊆
⋃

j ∈ A
j �= i

∆(j)

The set ∆ is called a stable set for 〈A,W〉.

Moreover, the set ∆−i does not consists, in the general case, of the whole set of
actions performed by other agents. Concretely, for each agent i and set ∆ ⊆ ⋃

i∈A
A(i),

the set ∆−i can be given by a suitable visibility projection function which filters out the
elements of ∆ that are not visible to agent i. For example

∆−i =
⋃

j ∈ A
j �= i

vj
i (∆(j))

where vj
i is the visibility projection function of agent i on agent j, expressing what

agent i sees of what agent j does. Necessarily, vj
i (X) ⊆ X , and, for fully transparent

multi-agent systems, vj
i (X) = X . Actions performed by j and not ”seen” by i may be

private to j, or simply not under i’s jurisdiction. Note that the visible environment of i,
given ∆E and ∆, can be formally defined as

E(i) = ∆i
E ∪

⋃

j ∈ A
j �= i

vj
i (∆(j))

58 A. Bracciali et al.

4 Properties

In this section we define properties of individual agents, of multi-agent systems, and
of agents in multi-agent systems. These properties rely upon agents having the se-
mantics we describe in section 2 and multi-agent systems having the semantics we
describe in sections 3.1 and 3.2, depending on whether they are fully or partially
transparent.

4.1 Individual Agents

Definition 3. (Successful agent)
Assume that agent i is equipped with a set of desires Gi. We say that the agent is
successful with respect to input ∆in and initial plan ∆0 (for Gi) if Si(∆in,∆0) =
〈M,∆out〉 and Gi ⊆ M .

Namely, a successful agent is one that achieves its desires, in that its desires hold in
the mental state of the agent. Note that our notion of success is local and subjective to
the agent, namely, an agent may believe to be successful without being so in the world.
Note also that, if the agent has no desires, then success amounts to its mental state
being different from ⊥. This is required also in the case of the agent being equipped
with desires.

4.2 Multi-agent Systems

Definition 4. (Overall successful system)
〈A,W〉 is overall successful wrt some ∆E , ∆1

0, . . . ,∆
n
0 , if there exists a stable ∆ such

that each i is successful, wrt ∆−i and ∆i
0.

Namely, overall success amounts to individual success for all the agents. Note that this
is a rather weak notion of overall success, as it only requires for one successful stable
set to exist. Stronger versions could also be interesting. Note also that, if agents have no
desires, then overall success amounts to the existence of a stable set and to the property
that no agent has ⊥ as its mental state.

Definition 5. (Robust system)
An overall successful system 〈A,W〉 is robust if there exists no i ∈ A such that 〈A \
{i},W〉 is not.

Namely, a robust system is one that does not need any of its agents to be overall suc-
cessful, or, alternatively, one in which no agent needs any of the others in order to be
successful.

Definition 6. (World-dependent system)
〈A,W〉 is world-dependent if it is not overall successful wrt ∆E = ∅ (and any
∆1

0, . . . ,∆
n
0) but it is overall successful wrt some ∆E �= ∅ (and some ∆1

0, . . . ,∆
n
0).

Namely, a world-dependent multi-agent system is one that cannot do without the world,
and events happening in it, to be successful.

On Modelling Multi-agent Systems Declaratively 59

4.3 Agents in Multi-agent Systems

Definition 7. (Aware agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Given
input ∆in, initial plan ∆0, and set of events ∆E , let Si(∆in,∆0) = 〈M i,∆i

out〉. Then,
we say that agent i ∈ A is

– world aware, if ∆i
E ∩ ∆in ⊆ M i,

– j-aware, for some j ∈ A, j �= i, if A(j) ∩ ∆in ⊆ M i,
– environment aware, if it is world-aware and j-aware, for all j ∈ A, j �= i.

Namely, a world-aware agent is one that holds, within its mental state, a belief of all the
events that have happened in the world and that it has observed. An other-agent aware
agent is one that believes in all the observations it made upon the other. An environment-
aware agent is one that believes in everything it observes, including events in the world
and actions by other agents it can observe.

Definition 8. (System dependent agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Given
∆E and Gi, assume that for no initial plan ∆0, agent i is successful with respect to
∆E and ∆0. We say that agent i is system dependent if there exists a stable set ∆ for
〈A,W〉 such that agent i is successful with respect to ∆−i and some initial plan ∆0.

Namely, a system-dependent agent is one that cannot be successful alone, but it can be
successful if with other agents in a multi-agent system. Thus, this agent has a motivation
to look for other agents with which to join forces.

Definition 9. (Dispensable agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system, and i ∈ A. Agent i
is dispensable within 〈A,W〉 if 〈A \ {i},W〉 is overall successful.

Namely, a dispensable agent is one that is not needed to guarantee success of the other
agents in the system. So, designers of a multi-agent systems, or individual agents having
control over which agents belong to the system, could exclude any dispensable agent
from it (e.g., to reduce communication costs).

Definition 10. (Dangerous agent)
Let 〈A,W〉 be a (fully or partially) transparent multi-agent system. i �∈ A is dangerous
to 〈A,W〉 if 〈A,W〉 is overall successful but 〈A ∪ {i},W〉 is not.

Namely, a dangerous agent is one that can undermine the overall success of a multi-
agent system, if added to it. So, designers of a multi-agent systems, or individual agents
having control over which agents belong to the system, should make sure that no dan-
gerous agent belong to the system.

5 A Concrete Multi-agent Semantics

We illustrate our framework by means of a simple example where agents are abductive
logic agents. Abductive logic programming has been recently used to describe agents

60 A. Bracciali et al.

and their interactions (see e.g., [3, 4, 5]). The semantics S of a single (abductive) agent
is defined by means of a bottom-up construction, in the spirit of the Tp operator for
logic programs [2], and adapted here for abductive logic programs. Informally, given
a “partial semantics”, the operator returns a more defined semantics, if it exists, by
adding the immediate consequences of it. The (possibly infinite) repeated application
of the operator is proved to converge to a semantics which is taken as the semantics S
of the agent. This kind of semantics is then lifted to multi-agent systems by defining
a bottom-up semantics in terms of the operators of the single agents the multi-agent
system is made up of. This construction of S is not to be interpreted as the execution
model of the agent. For simplicity, we concentrate upon fully transparent multi-agent
systems.

5.1 Single Agent Language and Semantics

Due to lack of space, we assume that the reader has some familiarity with abductive
logic programming (ALP for short, see e.g., [6]). An agent i consists of an abductive
theory 〈P,O ∪ A, IC〉, where P is a logic program, O ∪ A is a set of abducible atoms
partitioned in observations and actions, and IC is a set of integrity constraints. 1 P
consists of a set of clauses of the form

p ← p1, . . . , pn n ≥ 0
where p is a non-abducible atom and p1, . . . , pn are (possibly abducible) atoms. As
usual in ALP, we assume that abducibles have no definition in P . The integrity con-
straints IC are of the form

p1, . . . , pn ⇒ false p1, . . . , pn ⇒ a

where false is a special symbol denoting integrity violation, each pj is a (possibly ab-
ducible) atom and a is an action, namely a ∈ A. Notice that ⊥ can occur only in the
conclusion of integrity constraints. We assume that variables occurring in clauses and
integrity constraints are implicitly universally quantified from the outside, with scope
the entire formula in which they occur. Moreover, we assume that no variable occurs
in the conclusion of an IC that does not occur in its body. As usual in logic program-
ming, given an abductive logic agent as defined above, we will denote by ground(P)
(resp. ground(IC)) the (possibly infinite) set of all possible ground instantiations of
the clauses in P (resp. of the integrity constraints in IC). Moreover, given a set of
ground abducibles ∆ ⊆ O∪A, we indicate with I an interpretation for P ∪∆. Roughly
speaking, the semantics of an abductive theory 〈P,O∪A, IC〉, if it exists, can be given
as a pair 〈I,∆〉, where ∆ ⊆ O ∪ A, I is a model of P ∪ ∆ ∪ IC and false �∈ I (see
e.g., [7]).

In the sequel, given an abductive logic agent, we define its input/output semantics
S(∆in,∆0) by a suitable T operator, which step-wise approximates both the mental
state and the observable behaviour of the agent, and which is a simple generalization of
the immediate consequences operator TP of logic programming, suitably extended in
order to take integrity constraints into account.

1 The sets O and A correspond to the sets O(i) and A(i) of Section 2, respectively.

On Modelling Multi-agent Systems Declaratively 61

Definition 11 (T operator). Given an abductive logic agent 〈P,O ∪ A, IC〉, let ∆ ⊆
O ∪ A and let I be an interpretation. The T operator is defined as:

T (I,∆) = 〈I ′,∆′〉

where:
I ′ = {p | p ← l1, . . . ln ∈ ground(P) ∧ {l1, . . . ln} ⊆ I ∪ ∆},
∆′ = ∆∪{a ∈ A∪{false} | l1, . . . ln ⇒ a ∈ ground(IC) ∧ {l1, . . . ln} ⊆ I ∪∆}.

It is not difficult to see that the T operator is monotonic. For simplicity, in the sequel
we use ⊆ to denote pairwise set inclusion.

Lemma 1 (T is monotonic). Let be 〈I1,∆1〉 ⊆ 〈I2,∆2〉, then:

T (I1,∆1) ⊆ T (I2,∆2).

Proof. Let T (I1,∆1) = 〈I ′1,∆′
1〉 and T (I2,∆2) = 〈I ′2,∆′

2〉. We show that I ′1 ⊆
I ′2 (the proof of ∆′

1 ⊆ ∆′
2 is analogous). Let p ∈ I ′1. Then there exists a clause in

ground(P) of the form p ← l1, . . . ln such that {l1, . . . ln} ⊆ I1 ∪ ∆1. Since, by
hypothesis, I1 ∪ ∆1 ⊆ I2 ∪ ∆2, {l1, . . . ln} ⊆ I2 ∪ ∆2 and hence p ∈ I ′2. ��
The monotonicity of T ensures that, given a set of observations ∆in ⊆ O and an initial
plan ∆0 ⊆ A, we can define the semantics of an abductive logic agent i in terms of the
least fix-point of the T operator, that we denote by T∞(∅,∆in ∪∆0), starting from the
initial pair 〈∅,∆in ∪ ∆0〉.
Definition 12. Given an abductive logic agent i, an initial set of observations ∆in and
an initial plan ∆0, let T∞(∅,∆in ∪ ∆0) = 〈M,∆〉. Then

Si(∆in,∆0) =
{ 〈M,∆(i)〉 if false �∈ M
〈⊥,∆(i)〉 otherwise

Example: A Concrete Agent. Consider a simple agent 1 who can achieve some goal
g by asking to get a resource from a friend (we assume that resources can be shared
amongst agents and be re-used as many times as required). This simplifying assumption
allows us to present our model within a monotonic framework. Agent 1 believes that
agent 2 is a friend. Agent 1 can observe that another agent gives something to it and
can perform the actions of paying and thanking. It is forced to thank a friend or pay an
enemy for a received resource.

P : g ← friend(Y), ask(1, Y, r), getfrom(Y, r) O: give(Y, 1, r)
getfrom(Y, r) ← give(Y, 1, r) A: thank(1, Y)
friend(2) pay(1, Y)

IC: give(Y, 1, r), friend(Y) ⇒ thanks(1, Y) ask(1, Y, r)
give(Y, 1, r), enemy(Y) ⇒ pay(1, Y)

We also assume here an implicit treatment of time, so that an asking action is performed
before the asked resource is obtained.

62 A. Bracciali et al.

Let us imagine that the agent has the initial plan to ask for the resource from agent
2, i.e., ask(1, 2, r) ∈ ∆0, and that agent 2 is actually giving the owned resource to
1, as confirmed by the observation give(2, 1, r) ∈ ∆in. The semantics of the agent
is then defined as follows (note that in this case the fix-point has been reached in few
iterations):

T1(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r)}, {give(2, 1, r), ask(1, 2, r)}〉

T2(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g}, {give(2, 1, r), ask(1, 2, r)}〉

T3(∅, {give(2, 1, r), ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g},{give(2, 1, r), ask(1, 2, r), thank(1, 2)}〉

T4(∅, {give(2, 1, r), ask(1, 2, r)}) = T3(∅, {give(2, 1, r), ask(1, 2, r)})
that is, the agent satisfies its goal g. In the notation of Section 3.1:

S1({give(2, 1, r)}, {ask(1, 2, r)}) =
〈{friend(2), getfrom(2, r), g}, {ask(1, 2, r), thank(1, 2)}〉.

Instead, considering the case in which agent 1 asks another agent not believed to be a
friend, say agent 3 that behaves as agent 2, it still acquires the resource, but fails its
goal g:

S1({give(2, 1, r)}, {ask(1, 3, r)}) =
〈{friend(2), getfrom(2, r)}, {ask(1, 3, r), thank(1, 2)}〉.

5.2 Multi-agent Semantics

A fully transparent multi-agent system, as defined in Section 3.1, can consist of agents
whose concrete semantics is the one defined in Section 5.1. We first show a simple
example of the resulting semantics for a multi-agent system consisting of agent 1 pre-
viously introduced, and two new agents. Then, we define an operational bottom-up
semantics for the multi-agent system, by lifting the single agent semantics. Semantics
hence consists of a set of mutually recursive T j , one for each agent participating into
the system. Finally, we prove that, under specific circumstances, the operational seman-
tics entails the one defined in Section 3.1.

Example: A Fully Transparent Multi-agent System. Let us consider a system con-
sisting of agent 1 of Section 1, together with agents 2 and 3, as below defined:

2:
P : have(r) ← offer(Y, 2, r)
A: give(2,X, r)
O: ask(X, 2, r)

offer(Y, 2, r)
IC: ask(X, 2, r), have(r) ⇒ give(2,X, r)

3:
P : friend(2)

have(r)
A: offer(3,X, r)
IC: have(r), friend(X) ⇒

offer(3,X, r)

Agent 2 has a resource if it observes that the resource has been offered by someone.
In this case the agent is forced to give the resource to anybody who requires it. Agent

On Modelling Multi-agent Systems Declaratively 63

3 has the resource and a friend, and it must give the owned resource to the friend.
Agent 1 is the only agent having a goal, g namely, while all the others have a reactive
behaviour with respect to (their representation of) the world and the behaviour of the
other agents. Given their knowledge bases, agents are able to cooperate and allow agent
1 to accomplish its goal, as soon as it adopts the initial plan to ask for the resource
(∆1

0 = {ask(1, 2, r)}).
Assuming that no other information is provided by the environment ∆E = ∅, and

that agents 2 and 3 have empty initial plans, ∆2
0 = ∆3

0 = ∅,

∆ = {ask(1, 2, r), give(2, 1, r), thank(1, 2), offer (3, 2, r)}

is a stable set for the multi-agent system 〈A = {1, 2, 3},W〉 with E(W) = ∅. Indeed,
we have

S1(∆−1, {ask(1, 2, r)}) = 〈{g, friend(2), getfrom(2, r)},
{ask(1,2, r), thank(1,2)}〉

S2(∆−2, ∅) = 〈{have(r)}, {give(2,1, r)}〉
S3(∆−3, ∅) = 〈{friend(2), have(r)}, {offer(3,2, r)}〉
and

⋃
i∈A ∆i

out = ∆ ⊇ ⋃
i∈A ∆i

0, where ∆i
out are boldface. Notice how some of the

actions performed by an agent are interpreted as observations by the other agents (e.g.,
ask(1, 2, r) for agents 1 and 2, respectively).

The multi-agent system is thus overall successful, but it is not robust (e.g., 2 is
needed for the overall success of the system, and so is 3). Agent 1 is system-dependent,
whereas agents 2, 3 are not. Finally, 〈A = {1, 2, 3},W〉 is obviously not world-
dependent.

5.3 Fully Transparent Multi-agent System Operational Semantics

Similarly to the case of the single agent operational semantics presented in Section 5.1,
also multi-agent system can be provided with a bottom-up semantics in the case of
the simple agent language taken into account. The semantics of a system builds upon
the semantic operators T i of the single agents i belonging to the system. The overall
semantics is then obtained by the mutual interaction of agent semantics, where each
application of the semantic operators takes into account not only the single agent so-far
approximated, but also the observable semantics, namely the actions, produced up to
now by the repeated application of the semantic operators of the other agents. In this
way, agents “react” to the output actions by the other agents in the system as soon as
they are observed.

The operational counterpart of Sj(∆j
in,∆j

0) within the context of the chosen lan-
guage, is defined on top of the single agent operational semantics as a class of mutually
recursive operators, which step-wise approximate the semantics of the system. In the
following we will use the short-hand 〈I,∆〉 for the tuple 〈〈I1,∆1〉, . . . , 〈In,∆n〉〉,
where 1, . . . , n are the agents in A. On the other hand, when clear from the context,
〈Ii,∆i〉 will denote the i−th component of the tuple 〈I,∆〉. Finally, given two tuples
〈I,∆〉 and 〈J, Γ 〉, we will write 〈I,∆〉 ⊆ 〈J, Γ 〉 as a shorthand for the conjunction
〈I1,∆1〉 ⊆ 〈J1, Γ 1〉 ∧ . . . 〈In,∆n〉 ⊆ 〈Jn, Γn〉.

64 A. Bracciali et al.

For simplicity, in this section we consider multi-agent systems where the world
component W is not present. Hence, in the sequel we refer to a multi-agent system
consisting only of a set A, where each agent i is an abductive logic agent 〈Pi, Oi ∪
Ai, ICi〉 (as introduced in Section 5.1). For each agent i ∈ A we denote by T i its
operator as defined in Definition 11.

Definition 13 (T A). Let A = {1, . . . , n}, Ii and ∆i be an interpretation and a subset
of abducibles for each agent i, respectively. The TA operator is defined as follows

TA(I,∆) = 〈J, Γ 〉

where for each i,

〈J i, Γ i〉 = T i(Ii,∆i ∪ ∆−i)

where ∆−i =
⋃

j∈A, j �=i ∆j(j).

It is not difficult to show that the operator TA is monotonic.

Lemma 2 (T A is monotonic).
Let 〈I,∆〉 and 〈J, Γ 〉 be such that 〈I,∆〉 ⊆ 〈J, Γ 〉. Then

TA(I,∆) ⊆ TA(J, Γ).

Proof. Let:

– 〈I1,∆1〉 = TA(I,∆)
– 〈J1, Γ1〉 = TA(J, Γ)

We need to show that, for each i, 〈Ii
1,∆

i
1〉 ⊆ 〈J i

1, Γ
i
1〉. By definition, for all i, 〈Ii

1,∆
i
1〉 =

T i(Ii,∆i ∪ ∆−i). By the hypothesis 〈I,∆〉 ⊆ 〈J, Γ 〉, it is clear that ∆−i ⊆ Γ−i and
hence 〈Ii

1,∆
i
1〉 = 〈Ii,∆i ∪ ∆−i〉 ⊆ 〈J i, Γ i ∪ Γ−i〉. By the monotonicity of T i it

follows that T i(Ii,∆i ∪ ∆−i) ⊆ T i(J i, Γ i ∪ Γ−i) = 〈J i
1, Γ

i
1〉. ��

The monotonicity of T A allows us to give a bottom-up characterisation of the se-
mantics of a multi-agent system as a whole, similarly to what we have done in Definition
12 for a single agent. In the next definition we denote by T A

∞ (∅,∆0) the least fix-point
of T A, obtained by repeatedly applying it starting from the initial tuple 〈∅,∆0〉, where,
for each i, ∆i

0 is a (possibly empty) initial plan for the agent i.

Definition 14. Given a multi-agent system A, and and initial plan ∆i
0 for each i ∈ A,

let 〈I,∆〉 = T A
∞ (∅,∆0). Then the concrete semantics SA(∆0) of the system is defined

as follows:

SA(∆0) = 〈I,∆〉

Notice that the semantics of the system as a whole is defined even if the semantics
of some or all of the agents in the system is undefined. This is somewhat an arbitrary
decision, that could be changed according to the needs of applications.

On Modelling Multi-agent Systems Declaratively 65

Example: A Fully Transparent Multi-agent System Concrete Semantics. We show
how the operator T A behaves in the case of the multi-agent system of Section 5.2. The
process is summed up by the following table, where rows represent the iteration steps
and columns represent the agents. In the example, the initial plans are empty as far as
agents 2 and 3 are concerned, whereas the initial plan of agent 1 consists of asking
to agent 2 for the resource. We highlight in boldface the pairs 〈Ii,∆i〉 which do not
change in the future iterations. Hence the operator’s fix-point is obtained by the tuple
composed by the boldface pairs.

1 2 3
〈{friend(2)}, {ask(1, 2, r)}〉 〈∅, ∅〉 〈{friend(2), have(r)},

{}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈∅, {ask(1, 2, r)}〉 〈{friend(2),have(r)},
{offer(3,2, r)}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈{have(r)}, {ask(1, 2, r),
offer(3, 2, r)}〉

〈{friend(2)}, {ask(1, 2, r)}〉 〈{have(r)}, {ask(1,2, r),
offer(3,2, r),give(2,1, r)}〉

〈{friend(2), getfrom(2, r)},
{ask(1, 2, r), give(2, 1, r),
thank(1, 2)}〉

〈{friend(2),getfrom(2, r),g},
{ask(1,2, r),give(2,1, r),
thank(1,2),g}〉

From the fix-point, we can extract the set

∆ = {ask(1, 2, r), give(2, 1, r), thank(1, 2), offer (3, 2, r)}
of the actions performed by each agent (and hence their single semantics). It is worth
noting that this set coincides with the stable set shown in Section 5.2.

Indeed, we conjecture that a stable set can be constructed from the fix-points of the
operator T A. If this is the case, the latter can be seen as a way of incrementally building
stable sets for the multi-agent system.

6 Related Work

Viroli and Omicini in [8] view a multi-agent system (MAS) as the composition of ob-
servable systems. The focus on observation is based, like in our framework, on the
assumption that the hidden part of an agent manifests itself through interactions with
the environment, and on how an agent makes its internal state perceivable in the out-
side. However, our work further distinguishes between different kinds of environment
accessibility by agents through the use of visibility projection functions used by these

66 A. Bracciali et al.

agents. In addition, we combine observable behaviour with the mental state of the agent,
so as to permit to have partial access to the mental state of an agent in order to prove
properties that are useful to a MAS, e.g. by allowing MAS designers to tests the desires
against the mental state of an agent, without necessarily revealing/computing the full
mental state.

Wooldridge and Lomuscio in [9] define a family of multi-modal logics for reason-
ing about the information properties of situated computational agents. They distinguish
between what is objectively true in the environment, which in our approach is defined
by what holds true in the world, the information that is visible, which our approach
does not provide, information that an agent perceives, as with our observations, and
finally information that the agent knows of the environment, which in our framework is
defined by the mental state of an agent. Apart from the fact that we do not use a modal
logic semantics, we also differ in the way we understand an environment. Wooldridge
and Lomuscio’s work is based on a definition often found in distributed systems [10],
in that an environment does not contain the other agents (a bit like our notion of world).
Instead in our approach the environment of an agent contains the state of the world and
the other agents, and is closer to [11].

Another related approach to our work, presented by Ashri et al. in [12], is the iden-
tification and management of relationships in MASs. A formal model of the different
kinds of relationships formed between interacting agents is presented and the way such
relationships impact the overall system functioning is being investigated. If relation-
ships between agents can be seen as properties, their work is similar to ours in that it
attempts to identify properties in relation to observable parts of the environment in an
application neutral manner. In this context, their way of managing relationships using
control mechanisms can be thought in our terms as the required mechanisms that can be
used to compute the semantics. However, Ashri et al. focus more on finding dependen-
cies and influences between agent actions in the environment and less upon our concern
of proving properties using the notion of stability.

Computational Logic approaches for formally describing and understanding MASs
systems have been proposed in the past, e.g. [13, 14, 15], and are being pursued cur-
rently, possibly enhanced with other techniques, like Temporal Model Checking in [16].
Closer to our work is the work on the ALIAS system [17, 13], which relies on abduc-
tive logic programming to define a MAS. One major difference between ALIAS and
our work is that agents in ALIAS have all the part of their mental states public, while
in our approach part of the mental state needs to be public to the designer only.

7 Conclusions

We have proposed a semantics for multi-agent systems and a catalogue of properties
for individual agents, multi-agent systems, and agents in multi-agent systems that we
believe to be useful to aid the designers of concrete applications. Our semantics is fully
declarative and abstract, and does not rely upon any concrete agent architecture or
model, except for assuming that the semantics of individual agents is given in terms
of their (public) observable behaviour and (private) mental state. We have illustrated
the proposed notions for concrete abductive logic agents, whose beliefs are held within

On Modelling Multi-agent Systems Declaratively 67

an abductive logic program, and whose mental state and observable behaviour is given
by adapting the Tp operator for logic programming. We have adopted a qualitative ap-
proach to the definition of success of agents, rather than assuming they are equipped
with quantitative utility functions. The resulting model is not based upon game-theoretic
concepts, but it would be interesting to compare/integrate our approach with that theory,
e.g., comparing our notion of stable set with that of Nash equilibrium.

Other notions of individual welfare, different from the notion of individual success,
would also be interesting. For example, we could consider maximising the number of
achieved goals. Also, rather than having a “yes-no” kind success, we could compare
multi-agent systems in terms of how close to success they are.

As future work, we plan to investigate the relationships between fix-points of the
T A operator, i.e., the concrete semantics of a multi-agent system, and stable sets of A,
as described in the final example of Section 5.3. A further important problem for future
studies is that of identifying means for the automatic verification of properties of multi-
agent systems, in terms of properties of the individual agents composing them. This
would aid the effective design of the such systems for the solution of concrete problems.
Additional, less simplistic instances of our framework would also be interesting, e.g.,
3APL agents [18]. In particular, we plan to adopt this framework for KGP agents, as
defined in [19], and study the problem of properties verification in that context.

Acknowledgments

We would like to thank the anonymous referees for their valuable comments. This
work has been supported by the SOCS project (IST-2001-32530), funded under the
EU Global Computing initiative. The last two authors would also like to acknowledge
support from the Italian programme “Rientro dei cervelli”.

References

1. Sadri, F., Toni, F., Torroni, P.: Dialogues for negotiation: agent varieties and dialogue se-
quences. In: Intelligent Agents VIII: 8th International Workshop, ATAL 2001, LNAI 2333,
Springer-Verlag (2002)

2. Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science. Volume B.
Elsevier Science Publishers (1990) 493–574

3. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems. Annals of
Mathematics and Artificial Intelligence 25 (1999) 391–419

4. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for negotiating
agents. In Greco, S., Leone, N., eds.: Proceedings of the 8th European Conference on Logics
in Artificial Intelligence (JELIA), LNCS 2424, Springer-Verlag (2002)

5. Toni, F., Stathis, K.: Access-as-you-need: a computational logic framework for flexible re-
source access in artificial societies. In: Proceedings of the Third International Workshop on
Engineering Societies in the Agents World (ESAW’02), LNAI 2577, Springer-Verlag (2002)

6. Kakas, A., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and
Computation 2 (1993) 719–770

7. Kakas, A., Mancarella, P.: Generalized stable models: a semantics for abduction. In: Proc.
9th European Conference on Artificial Intelligence, Pitman Pub. (1990)

68 A. Bracciali et al.

8. Viroli, M., Omicini, A.: Multi-agent systems as composition of observable systems. In
Omicini, A., Viroli, M., eds.: AI*IA/TABOO Workshop - Dagli oggetti agli agenti: tendenze
evolutive dei sistemi software” (WOA 2001). (2001)

9. Wooldridge, M., Lomuscio, A.: A logic of visibility, perception, and knowledge: complete-
ness and correspondence results. Journal of the IGPL 9 (2001)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press
(1995)

11. Abramsky, S.: Semantics of Interaction. (Technical report) Available at
http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz.

12. Ashri, R., Luck, M., d’Inverno, M.: On identifying and managing relationships in multi-
agent systems. In: Proc. of 18th International Joint Conference on Artificial Intelligence
(IJCAI03), Acapulco, Mexico (2003)

13. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and competition
in ALIAS: a logic framework for agents that negotiate. Computational Logic in Multi-Agent
Systems. Annals of Mathematics and Artificial Intelligence 37 (2003) 65–91

14. Alferes, J., Brogi, A., Leite, J.A., Pereira, L.M.: Computing environment-aware agent be-
haviours with logic program updates. In Pettorossi, A., ed.: Logic Based Program Synthesis
and Transformation, 11th International Workshop, (LOPSTR’01), LNCS 2372, Springer-
Verlag (2002)

15. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In Flesca, S.,
Greco, S., Leone, N., Ianni, G., eds.: Proceedings of the 8th European Conference on Logics
in Artificial Intelligence (JELIA’02), LNAI 2424, Springer-Verlag (2002)

16. Pokorny, L.R., Ramakrishnan, C.R.: Modeling and verification of distributed autonomous
agents using logic programming. In: Proceedings of the Workshop on Declarative Agent
Languages and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this vol-
ume.

17. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: Rambling abductive agents in ALIAS.
In: Proc. ICLP Workshop on Multi-Agent Sytems in Logic Programming (MAS’99), Las
Cruces, New Mexico (1999)

18. Dastani, M., de Boer, F.S., Dignum, F., van der Hoek, W., Kroese, M., Meyer, J.C.: Pro-
gramming the deliberation cycle of cognitive robots. In: Proc. of 3rd International Cognitive
Robotics Workshop (CogRob) (2002)

19. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI), Valencia,
Spain (2004)

http://www.dcs.ed.ac.uk/home/samson/coursenotes.ps.gz

The Semantics of MALLET – An Agent
Teamwork Encoding Language

Xiaocong Fan1, John Yen1, Michael S. Miller2, and Richard A. Volz2

1 School of Information Sciences and Technology,
The Pennsylvania State University, University Park, PA 16802

2 Department of Computer Science,
Texas A&M University, College Station, TX 77843

{zfan, jyen}@ist.psu.edu, {mmiller, volz}@cs.tamu.edu

Abstract. MALLET is a team-oriented agent specification and pro-
gramming language. In this paper, we define an operational semantics
for MALLET in terms of a transition system. The semantics can be used
to guide the implementation of MALLET interpreters, and to formally
study the properties of team-based agents specified in MALLET.

1 Introduction

Agent teamwork has been the focus of a great deal of research in both theories
[1, 2, 3, 4] and practices [5, 6, 7, 8]. A team is a group of agents having a shared
objective and a shared mental state [2]. While the notion of joint goal (joint in-
tention) provides the glue that binds team members together, it is not sufficient
to guarantee that cooperative problem solving will ensue [3]. The agreement of
a common recipe among team members is essential for them to achieve their
shared objective in an effective and collaborative way [4]. Languages for spec-
ifying common recipes (plans) and other teamwork related knowledge are thus
highly needed both for agent designers to specify and implement cohesive team-
work behaviors, and for agents themselves to easily interpret and manipulate the
mutually committed course of actions so that they could collaborate smoothly
both when everything is progressing as planned and when something goes wrong
unexpectedly.

The term “team-oriented programming” has been used to refer to both the
idea of using a meta-language to describe team behaviors (based on mutual be-
liefs, joint plans and social structures) [9] and the effort of using a reusable team
wrapper for supporting rapid development of agent teams from existing heteroge-
neous distributed agents [10, 11]. In this paper, we take the former meaning and
focus on the semantics of an agent teamwork encoding language called MALLET
(Multi-Agent Logic Language for Encoding Teamwork), which has been devel-
oped and used in the CAST (Collaborative Agents for Simulating Teamwork)
system [8] to specify agents’ individual and teamwork behaviors.

There have been several efforts in defining languages for describing team ac-
tivities [12, 13, 3]. What distinguishes MALLET from the existing efforts is two-

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 69–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 X. Fan et al.

fold. First, MALLET is a generic language for encoding teamwork knowledge.
Teamwork knowledge may include both declarative knowledge and procedural
knowledge. Declarative knowledge (knowing “that”) describes objects, events,
and their relationships. Procedural knowledge (knowing “how”) focuses on the
way needed to obtain a result, where the control information for using the knowl-
edge is embedded in the knowledge itself. MALLET supports the specification of
both declarative and procedural teamwork knowledge. For instance, MALLET
has reserved keywords for specifying team structure-related knowledge (such as
who are in a team, what roles an agent can play) as well as inference knowledge
(in terms of horn-clauses).

Second, MALLET is a richer language for encoding teamwork process. MAL-
LET has constructs for specifying control flows (e.g., sequential, conditional,
iterative) in a team process. Tidhar also adopted such an synthesized approach
[9], where the notions of social structure and plan structure respectively cor-
respond to the team structure and team process in our term. While MALLET
does not describe team structure in the command and control dimension as Tid-
har did, it is more expressive than the simple OR-AND plan graphs and thus
more suitable for describing complex team processes. In addition, MALLET
allows the constraints for task assignments, preconditions of actions, dynamic
agent selection, decision points within a process and termination conditions of
a process to be explicitly specified. The recipe language used in [3] lacks the
support for specifying decision points in a process, which is often desirable in
dealing with uncertainty. While OR nodes of a plan graph [9] can be used for
such a purpose, the language cannot specify processes with complex execution
orders. Team/agent selection (i.e., the process of selecting a group of agents that
have complimentary skills to achieve a given goal) is a key activity for effec-
tive collaboration [14]. No existing languages except MALLET allow the task
of agent-selection to be explicitly specified in a team process. Using MALLET,
a group of agents can collaboratively recruit doers for the subsequent activities
based on the constraints associated with agent-selection statements.

The structure of this paper is as follows. Section 2 gives the syntax of MAL-
LET and Section 3 gives some preparations. We give the transition semantics
in Section 4, and in Section 5 introduce the CAST architecture, which has im-
plemented a MALLET interpreter. Section 6 gives comparisons and discussions
and Section 7 concludes the paper.

2 Syntax

The syntax of MALLET is given in Table 1. A MALLET specification is com-
posed of definitions for agents, teams, membership of a team, team goals, initial
team activities, agent capabilities, roles, roles each agent can play, agents play-
ing a certain role, individual operators, team operators, plans (recipes), and
inference rules.

Operators are atomic domain actions, each of which is associated with pre-
conditions and effects. Individual operators are supposed to be carried out by

The Semantics of MALLET 71

Table 1. The Abstract Syntax of MALLET

CompilationUnit ::= (AgentDef | TeamDef | MemberOf | GoalDef | Start |
CapabilityDef | RoleDef | PlaysRole | FulfilledBy |
IOperDef | TOperDef | PlanDef | RuleDecl)*

AgentDef ::= ’(’ 〈AGENT〉 AgentName ’)’
TeamDef ::= ’(’ 〈TEAM〉 TeamName (’(’ (AgentName)+ ’)’)? ’)’

MemberOf ::= ’(’ 〈MEMBEROF〉 AgentName
(TeamName | ’(’ (TeamName)+ ’)’) ’)’

GoalDef ::= ’(’ 〈GOAL〉 AgentOrTeamName (Cond)+ ’)’
Start ::= ’(’ 〈START〉 AgentOrTeamName Invocation ’)’

CapabilityDef ::= ’(’ 〈CAPABILITY〉 (AgentName | ’(’ (AgentName)+’)’)
(Invocation | ’(’ (Invocation)+ ’)’) ’)’

RoleDef ::= ’(’ 〈ROLE〉 RoleName (Invocation | ’(’(Invocation)+’)’)’)’
PlaysRole ::= ’(’ 〈PLAYSROLE〉 AgentName ’(’ (RoleName)+ ’)’ ’)’

FulfilledBy ::= ’(’ 〈FULFILLEDBY〉 RoleName ’(’ (AgentName)+ ’)’ ’)’
IOperDef ::= ’(’ 〈IOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? ’)’
TOperDef ::= ’(’ 〈TOPER〉 OperName ’(’ (〈Variable〉)* ’)’

(PreConditionList)* (EffectsList)? (NumSpec)? ’)’
PlanDef ::= ’(’ 〈PLAN〉 PlanName ’(’ (〈Variable〉)* ’)’

(PreConditionList | EffectsList | TermConditionList)*
’(’ 〈PROCESS〉 MalletProcess ’)’ ’)’

RuleDecl ::= ’(’ (Pred)+ ’)’
Cond ::= Pred | ’(’ 〈NOT〉 Cond ’)’
Pred ::= ’(’ 〈IDENTIFIER〉 (〈IDENTIFIER〉 | 〈VARIABLE〉)* ’)’

Invocation ::= ’(’PlanOrOperName (〈IDENTIFIER〉 | 〈VARIABLE〉)* ’)’
PreConditionList ::= ’(’ 〈PRECOND〉 (Cond)+ (’:IF-FALSE’ (〈SKIP〉 |

〈FAIL〉 | 〈WAIT-SKIP〉 ((〈DIGIT〉)+)? |
〈WAIT-FAIL〉 ((〈DIGIT〉)+)? |
〈ACHIEVE-SKIP〉 | 〈ACHIEVE-FAIL〉))? ’)’

EffectsList ::= ’(’ 〈EFFECTS〉 (Cond)+ ’)’
TermConditionList ::= ’(’〈TERMCOND〉 (〈SUCCESS-SKIP> |

〈SUCCESS-FAIL> | 〈FAILURE-SKIP〉|
〈FAILURE-FAIL〉)? (Cond)+’)’

NumSpec ::= ’(’ 〈NUM〉 (′ =′ |′ <′ |′ >′ |′ ≤′ |′ ≥′) (〈DIGIT 〉)+ ’)’
PrefCondList ::= ’(’ 〈PREFCOND〉 (Cond)+ (’:IF-FALSE’ (〈FAIL〉 |

〈WAIT〉 ((〈DIGIT〉)+)? | 〈ACHIEVE〉))? ’)’
Priority ::= ’(’〈PRIORITY〉 (〈DIGIT〉)+ ’) ’

ByWhom ::= AgentOrTeamName | 〈VARIABLE〉 | MixedList
MixedList ::= ’(’ (〈IDENTIFIER〉 | 〈VARIABLE〉)+ ’)’

Branch ::= ’(’(PrefCondList)?(Priority)? ’(’〈DO〉ByWhom Invocation’)”)’
MalletProcess ::= Invocation | ’(’〈DO〉 ByWhom MalletProcess ’)’

| ’(’〈AGENTBIND〉 VariableList ’(’ (Cond)+ ’)’ ’)’
| ’(’〈JOINTDO〉 (〈AND〉 | 〈OR〉 | 〈XOR〉)?

(’(’ ByWhom MalletProcess ’)’)+ ’)’
| ’(’〈SEQ〉 (MalletProcess)+ ’)’
| ’(’〈PAR〉 (MalletProcess)+ ’)’
| ’(’〈IF〉’(’〈COND〉(Cond)+’)’MalletProcess(MalletProcess)?’)’
| ’(’〈WHILE〉 ’(’ 〈COND〉 (Cond)+ ’)’ MalletProcess ’)’
| ’(’〈FOREACH〉 ’(’ 〈COND〉 (Cond)+’)’MalletProcess’)’
| ’(’〈FORALL〉 ’(’ 〈COND〉 (Cond)+ ‘)’MalletProcess’)’
| ’(’〈CHOICE〉 (Branch)+ ’)’

72 X. Fan et al.

only one agent independently, while team operators can only be invoked by more
than one agent who play specific roles as required by the operators. Before doing
a team action, all the involving agents should synchronize their activities and
satisfy the corresponding preconditions.

Plans are decomposable higher-level actions, which are built upon lower-
level atomic operators hierarchically. Plans play the same role as recipes in the
SharedPlan theory. A plan in MALLET specifies which agents (variables), under
what pre-conditions, can achieve what effects by following what a process, and
optionally under what conditions the execution of the plan can be terminated.

The process component of a plan plays essential role in supporting coordi-
nations among team members. A process can be specified using constructs such
as sequential (SEQ), parallel (PAR), iterative (WHILE, FOREACH, FORALL),
conditional (IF) and choice (CHOICE). An invocation statement is used to di-
rectly execute an action or invoke a plan; since there is no associated doer spec-
ification, each agent coming to such a statement will do it individually. A DO
process is composed of a doer specification and an embedded process. An agent
coming to a DO statement has to check if itself belongs to the doer specification.
If so, the agent simply does the action and moves on; otherwise the agent waits
until being informed of the ending of the action. A joint-do process (JOINTDO)
specifies a share type (i.e., AND, OR, XOR) and a list of (ByWhom process)
pairs. A joint-do of share type “AND” requires all the involved agents acting
simultaneously— the joint-do succeeds only after all the pairs have be executed
successfully. For an “XOR”, exactly one must be executed to avoid potential
conflicts, and for an “OR”, at least one must be executed (with no potential
conflicts). An agent-bind statement is used to dynamically select agents satis-
fying certain constraints (e.g., finding an agent that is capable of some role or
action). An agent-bind statement becomes eligible for execution at the point
when progress of the embedding plan has reached it, as opposed to being exe-
cuted when the plan is entered. The scope for the binding to a variable extends
to either the end of the embedding plan, or the beginning of the next agent-bind
statement that also binds this variable, whichever comes first.

3 Preparation

The following notational conventions are adopted. We use i, j, k,m, n as indexes;
a’s 1 to denote individual agents; A’s to denote sets of agents; b’s to denote
beliefs; g’s to denote goals; h’s to denote intentions; ρ’s to denote plan templates;
p’s to denote plan preconditions; q’s to denote plan effects; e’s to denote plan
termination-conditions; β’s and α’s to denote individual operators; Γ ’s to denote
team operators; s’s and l’s to denote Mallet process statements; ψ’s and φ’s to
denote first-order formulas; t’s to denote terms; bold t and v to denote vector
of terms and variables. A substitution (binding) is a set of variable-term pairs

1 We use a’s to refer to a and a with a subscript or superscript. The same applies to
the description of other notations.

The Semantics of MALLET 73

{[xi/ti]}, where variable xi is associated with term ti (xi does not occur free
in ti). We use θ, δ, η, µ, τ to denote substitutions. Wffs is the set of well-formed
formulas.

Given a team specification in MALLET, let Agent be the set of agent names,
Ioper be the set of individual operators, TOper be the set of team operators,
Plan be the set of plans, B be the initial set of beliefs (belief base), and G be
the initial set of goals (goal base).

Let P = Plan ∪ Toper ∪ Ioper. We call P the plan (template) base, which
consists of all the specified operators and plans. Every invocation of a template
in P is associated with a substitution: each formal parameter of the template is
bound to the corresponding actual parameter. For instance, given a template
(plan ρ (v1 · · · vj)

(pre-cond p1 · · · pk) (effects q1 · · · qm) (term-cond e1 · · · en) (process s)).
A plan call (ρ t1 · · · tj) will instantiate the template with binding θ = {v/t},
where the evaluation of ti may further depend on some other (environment)
binding µ. Note that such instantiation process will substitute ti for all the
occurrence of vi in the precondition, effects, term-condition, and plan body s
(for all 1 ≤ i ≤ j). The instantiation of ρ wrt. binding η is denoted by ρ · η, or
ρη for simplicity.

We define some auxiliary functions. For any operator α, pre(α) and post(α)
return the conjunction of the preconditions and effects specified for α respec-
tively, λ(α) returns the binding if α is an instantiated operator. For team op-
erator Γ , |Γ | returns the minimal number of agents required for executing Γ .
For any plan ρ, in addition to pre(ρ), post(ρ) and λ(ρ) as defined above, tc(ρ),
χp(ρ), χt(ρ), and body(ρ) return the conjunction of termination-conditions, the
precondition type (∈ {skip, fail, wait-skip, wait-fail, achieve-skip, achieve-
fail, ε}), the termination type (∈ {success-skip, success-fail, failure-skip,
failure-fail, ε}), and the plan body of ρ, respectively. The precondition, effects
and termination-condition components of a plan are optional. When they are
not specified, pre(ρ) and post(ρ) return true and χt(ρ) = ε. For any statement
s, isP lan(s) returns true if s is of form (ρ t) or (Do A (ρ t)) for some A,
where ρ is a plan defined in P ; otherwise, it returns false. (SEQ s1 · · · si) is
abbreviated as (s1; · · · ; si). ε is used to denote the empty Mallet process state-
ment. For any statement s, ε; s = s; ε = s. (wait until φ) is an abbreviation of
(while (cond ¬φ) (do self skip)) 2, where skip is a built-in individual operator
with pre(skip) = true and post(skip) = true (i.e., the execution of skip changes
nothing).

Messages Control messages are needed in defining the operational semantics
of MALLET. A control message is a tuple 〈type, aid, gid, pid, · · · 〉, where aid ∈
Agent, gid ∈ Wffs, pid ∈ P ∪{nil}, and type ∈ {sync, ctell , cask , unachievable}.
A message of type sync is used by agent aid to synchronize with the recipient
with respect to the committed goal gid and the activity pid; a message of type

2 The keyword “self” can be used in specifying doers of a process. An agent always
evaluate self as itself.

74 X. Fan et al.

ctell is used by agent aid to tell the recipient about the status of pid; a message
of type cask is used by agent aid to request the recipient to perform pid; a
message of type unachievable is used by agent aid to inform the recipient of the
unachievability of pid.

MALLET has a built-in domain-independent operator send(receivers, msg),
which is used for inter-agent communications. pre(send) = true. We assume that
the execution of send always succeeds. If 〈type, a1, · · · 〉 is a control message, the
effect of send(a2, 〈type, a1, · · · 〉) is that agent a1 will assert the fact (typ a1 · · ·)
into its belief base, and agent a2 will do the same thing when it receives the
message.
Goals and Intentions. A goal g is a pair 〈φ,A〉, where A ⊆ Agent is a set of
agents responsible for achieving a state satisfying φ. When A is a singleton, g is
an individual goal; otherwise, it is a team goal.

An intention slice is of form (ψ,A) ← s, where the execution of statement s
by agents in A is to achieve a state satisfying ψ. An intention is a stack of inten-
tion slices, denoted by [ω0\ · · · \ωk] (0 ≤ k)3, where ωi (0 ≤ i ≤ k) are of form
(ψi, Ai) ← si. ω0 and ωk are the bottom and top slice of the intention, respec-
tively. The ultimate goal state of intention h = [(ψ0, A0) ← s0\ · · · \ωk] is ψ0,
referred to by o(h). The empty intention is denoted by �. For h = [ω0\ · · · \ωk],
[h\ω′] � [ω0\ · · · \ωk\ω′]. If ωi is of form (true,A) ← ε (0 ≤ i ≤ k) for some A,
then h = [ω0\ · · · \ωi−1\ωi+1\ · · · \ωk]. Let H denote the intention set.

Definition 1 (configuration). A Mallet configuration is a tuple 〈B,G,H, θ〉,
where B,G,H, θ are the belief base, the goal base, the intention set, and the
current substitution, respectively4. And, (1) B 	|=⊥, (2) for any goal g ∈ G,
B 	|= g, and g 	|=⊥ hold.

B,G,H, θ are used in defining Mallet configurations, because beliefs, goals,
and intentions of an agent are dynamically changing, and a substitution is re-
quired to store the current environment bindings for free variables. Plan base P
is omitted since we assume P will not be changed at run time.

Similar to [17] we give an auxiliary function to facilitate the definition of
semantics of intentions.

Definition 2. Function agls is defined recursively as: agls(�) = {}, and for
any intention h = [ω0\ · · · \ωk−1\(ψk, Ak) ← sk] (k ≥ 0), agls(h) = {ψk} ∪
agls([ω0\ · · · \ωk−1]).

Note that goals in G are top-level goals specified initially, while function
agls returns a set of achievement goals generated at run time in pursuing some
(top-level) goal in G.

3 The form of intentions here is similar to Rao’s approach [15]. Some researchers also
borrow the idea of fluents to represent intentions, see [16] for an example.

4 There are no global beliefs, goals, and intentions. Mallet configurations are defined
with respect to individual agents. The transitions of an agent team are made up of
the transitions of member agents. Here, B, G, H, θ should all be understood as the
belief base, goal base, intention set, and current substitution of an individual agent.
Of course, for agents in a team, their Bs, Gs and Hs may overlap.

The Semantics of MALLET 75

4 Operational Semantics

Usually there are two ways of defining semantics for an agent-oriented program-
ming language: operational semantics and temporal semantics. For instance,
temporal semantics is given to MABLE [18]; while 3APL [19] and AgentSpeak(L)
[15] have operational semantics, and transition semantics is defined for ConGolog
based on Situation calculus [20]. Temporal semantics is better for property verifi-
cation using existing tools, such as SPIN (a model checking tool which can check
whether temporal formulas hold for the implemented systems), while operational
semantics is better for implementing interpreters for the language.

We define an operational semantics for MALLET in terms of a transition
system, aiming to guide the implementation of interpreters. Each transition cor-
responds to a single computation step which transforms the system from one
configuration to another. A computation run of an agent is a finite or infinite
sequence of configurations connected by transition relation →. The meaning of
an agent is a set of computation runs starting from the initial configuration.
We assume a belief update function BU(B, p), which revises the belief base B
with a new fact p. The details of BU is out the scope of this paper. For conve-
nience, we assume two domain-independent operators over B: unsync(ψ, ρ) and
untell(ψ, s). Their effects are to remove all the predicates that can be unified
with sync(?a, ψ, ρ) and ctell(?a, ψ, s, ?id), respectively, from B.

4.1 Semantics of Beliefs, Goals and Intentions in MALLET

We allow explicit negation in B, and for each b(t) ∈ B, its explicit negation is
denoted by b̃(t). Such treatment enables the representation of ‘unknown’.

Definition 3. Given a Mallet configuration M = 〈B,G,H, θ〉, for any wff φ,
any belief or goal formula ψ, ψ′, any agent a,

1. M |= Bel(φ) iff B |= φ,
2. M |= ¬Bel(φ) iff B |= φ̃,
3. M |= Unknown(φ) iff B 	|= φ and B 	|= φ̃,
4. M |= Goal(φ) iff ∃〈φ′, A〉 ∈ G such that φ′ |= φ and B 	|= φ,
5. M |= ¬Goal(φ) iff M 	|= Goal(φ),
6. M |= Goala(φ) iff ∃〈φ′, A〉 ∈ G such that a ∈ A, φ′ |= φ and B 	|= φ,
7. M |= ¬Goal(φ) iff M 	|= Goal(φ), M |= ¬Goala(φ) iff M 	|= Goala(φ),
8. M |= ψ ∧ ψ′ iff M |= ψ and M |= ψ′,
9. M |= Intend(φ) iff φ ∈ ⋃

h∈H agls(h).

4.2 Failures in MALLET

We start with the semantics of failures in MALLET. MALLET imposes the
following semantics rules on execution failures:

– There are three causes of process failures:
• The precondition is false when an agent is ready to enter a plan or ex-

ecute an operator. The execution continues or terminates depending on
the type of the precondition:

76 X. Fan et al.

skip: skip this plan/operator and execute the next one;
fail: terminate execution and propagate the failure upward;
wait-skip: check the precondition after a certain time period, if it is still
false, proceed to the next plan/operator;
wait-fail: check the precondition after a certain time period, if it is still
false, terminate execution and propagate the failure upward;
achieve-skip: try to bring about the precondition (e.g., triggering an-
other plan that might make the precondition true), if failed after the
attempt then skip this plan/operator and execute the next one;
achieve-fail: try to bring about the precondition, if failed after the at-
tempt then terminate execution and propagate the failure upward;

• An agent monitors the termination condition, if any, of a plan during the
execution of the plan. The execution continues or terminates depending
on the type of the termination condition:
success-skip: if the termination condition is true, then skip the rest of
the plan and proceed to the next statement after the plan;
success-fail: if the termination condition is true, then terminate execu-
tion and propagate the failure upward;
failure-skip: if the termination condition is false, then skip the rest of
the plan and proceed to the next statement after the plan;
failure-fail: if the termination condition is false, then terminate execu-
tion and propagate the failure upward;

• When doing agent-bind, an agent cannot find solutions to the agent
variables;

– Process failures must propagate upward until a choice point:
• If any MalletProcess in a seq returns fail, then the entire seq terminates

execution and fails;
• If any branch of a par fails, the entire par terminates and fails;
• If the body of a while, foreach, or forall fails, the entire iterative

statement terminates execution and fails;
• If any branch of an if fails, the entire if terminates execution and fails;
• If any branch of a JointDo fails, the JointDo terminates and fails;
• If the body of a plan fails, the plan invocation fails;

– Process failures are captured and processed at a choice point:
• If, except for those branches the execution of which has caused process

failures, the choice point still has other alternatives to try, then select
one and the execution continues;

• If the choice point has no more alternatives to try, then propagate the
failure backward/upward until another choice point.

Note 1. Operators are considered atomic from the perspective of MALLET; they
do not have termination conditions. If there is a concern that operators may not
succeed, they should be embedded in a plan and the result be checked, with use
of the termination condition in the case of failure.

The Semantics of MALLET 77

Note 2. MALLET allows a skip or fail mode to be included with preconditions
and termination conditions (supported since version V.3). One argument for
allowing both modes is that continuing operations, even when some precondition
is not satisfied, is what happens in real life. To the extent that we are trying to
allow agent designs to respond to real-life, we need this capability. This argument
is also related to the argument that we wanted to leave as much flexibility as
possible in the MALLET specification so that different implementations and
levels of intelligence could be experimented with.

We thus can formally define rules for failure propagation. Given the current
configuration 〈B,G,H, θ〉, a plan template (ρ v) and an invocation (ρ t) or
(Do A (ρ t)), let η = {v/t}.
– Assert (failed ρ η) into B, if χp(ρ) = fail, and 	 ∃τ · B |= pre(ρ)θητ ;
– Assert (failed ρ η) into B, if χp(ρ) =wait-fail, and 	 ∃τ · B |= pre(ρ)θητ for

neither before nor after the specified waiting time period;
– Assert (failed ρ η) into B, if χp(ρ) =achieve-fail, and 	 ∃τ · B |= pre(ρ)θητ

for neither before nor after the ‘achieve’ attempt;
– Assert (failed ρ η) into B, if χt(ρ) =success-fail, and ∃τ · B |= tc(ρ)θητ ;
– Assert (failed ρ η) into B, if χt(ρ) =failure-fail, and 	 ∃τ · B |= tc(ρ)θητ ;
– Assert (failed s η) into B, where s = (ρ t) or s = (Do A (ρ t)), if ∃τ · B |=

(failed body(ρ) τ);
– Assert (failed s θ) into B, where s = (agent-bind v ψ), if 	 ∃τ · B |= ψθτ ;
– Assert (failed s θ) into B, where s = (l1; · · · lm), if ∃θ′ · B |= (failed l1 θ′);
– Assert (failed s θ) into B, where s = (par l1 · · · lm), if B |= ∨m

i=1 ∃θ′ ·
(failed li θ′);

– Assert (failed s θ) into B, where s = (forall (cond ψ) l1) or
s = (foreach (cond ψ) l1), if B |= ∨

τ∈{η:B|=ψη} ∃θ′ · (failed l1τ θ′);
– Assert (failed s θ) into B, where s = (while (cond ψ) l1), if ∃θ′ · B |=

(failed l1 θ′);
– Assert (failed s θ) into B, where s = (if (cond ψ) l1 l2), if ∃θ′ · B |=

(failed l1 θ′) ∨ (failed l2 θ′);
– Assert (failed s θ) into B, where s = (JointDo X (A1 l1) · · · (Am lm))

(X ∈ {AND,OR,XOR}), if B |= ∨m
i=1 ∃θ′ · (failed li θ′);

– Assert (failed s θ) into B, where s = (choice l1 · · · lm), if B |= ∧m
i=1 ∃θ′ ·

(failed li θ′).

Note that conjunction rather than disjunction is used in the rule about
choice. This is because the semantics of choice allows re-try upon failures: a
choice statement fails only when all the branches have failed.

The semantics of failure is defined in terms of failed .

Definition 4 (semantics of failure). Let s be any Mallet statement.
〈B,G,H, θ〉 |= failed(s) iff ∃θ′ · B |= (failed s θ′).

4.3 Transition System

We use SUCCEED to denote the terminal configuration where the execution
terminates successfully (i.e., all the specified goals and generated intentions are

78 X. Fan et al.

fulfilled); use STOP to denote the terminal configuration where the execution
terminates abnormally—all the remaining goals are unachievable. In particular,
we use STOP(h) to denote the execution of intention h terminates abnormally.

Definition 5. Let h = [h′\(ψk, Ak) ← l1; l2]. UC is defined recursively:
UC (�) = �,
UC (h) = h, if l1 is of form (choice s1 · · · sm);
UC (h) = UC (h′), if l1 is not of form (choice s1 · · · sm).

Function UC (h) returns h′, where h′ is h with all the top intention slices
popped until the first choice point is found.

Definition 6 (Backtracking upon failure). Let h = [h′\(ψk, Ak) ← s\ · · ·],

〈B,G, h, θ〉 |= failed(s),UC (h) 	= �
〈B,G, h, θ〉 → 〈B,G,UC (h), θ〉 , (F1)

〈B,G, h, θ〉 |= failed(s),UC (h) = �
〈B,G, h, θ〉 → STOP(h)

. (F2)

In Definition 6, F1 is a transition rule for backtracking upon process failure.
Rule (F2) states that the execution of an intention stops if there is no choice
point backward.

Definition 7 (Goal selection).

∃g = 〈ψ,A〉 ∈ G, ∃(ρ v) ∈ P, self ∈ A,

∃τ, (θτ has bindings for v), B |= pre(ρ)θτ, and post(ρ)θτ |= ψ

〈B,G, ∅, θ〉 → 〈B,G \ {g}, {[(ψ,A) ← (Do A (ρ v)θτ)]}, θτ〉 , (G1)

∀g = 〈ψ,A〉 ∈ G,∀(ρ v) ∈ P 	 ∃τ · post(ρ)θτ |= ψ

〈B,G, ∅, θ〉 → STOP
, (G2)

〈B, ∅, ∅, θ〉 → SUCCEED
. (G3)

In Definition 7, Rule G1 states that when the intention set is empty, the agent
will choose one goal from its goal set and select an appropriate plan, if there exists
such a plan, to achieve that goal. Rule G2 states that an agent will stop running
if there is no plan can be used to pursue any goal in G. Rule G3 states that an
agent terminates successfully if all the goals and intentions have been achieved.
G1 is the only rule introducing new intentions. It indicates that an agent can
only have one intention in focus (it cannot commit to another intention until
the current one has already been achieved or dropped). G1 can be modified to
allow intention shifting (i.e., pursue multiple top-level goals simultaneously).

Definition 8 (End of intention/intention slice). Let
h1 = [· · · \ωk−1\(ψk, Ak) ← ε],
h2 = [(ψ0, A0) ← s\ · · ·],

The Semantics of MALLET 79

B 	|= ψkθ,UC (h1) 	= �
〈B,G, h1, θ〉 → 〈B,G,UC (h1), θ〉, (EI1)

B 	|= ψkθ,UC (h1) = �
〈B,G, h1, θ〉 → STOP(h1)

, (EI2)

B |= ψkθ

〈B,G, h1, θ〉 → 〈B,G, [· · · \ωk−1], θ〉, (EI3)

h2 ∈ H,B |= ψ0θ

〈B,G,H, θ〉 → 〈B,G,H \ {h2}, θ〉. (EI4)

In Definition 8, EI1 and EI2 are the counterparts of rules F1 and F2, respec-
tively. According to Rule P3 in Definition 15, the achievement goal ψk comes
from the effects condition of some plan. The effects condition associated with a
plan represents an obligation that the plan must achieve. Normally, ψk can be
achieved unless the execution of the plan body failed. But this is not always the
case (e.g., an agent simply had made a wrong choice). It is thus useful to verify
that a plan has, in fact, achieved the effects condition, although this is not a
requirement of MALLET. In the definition, when the execution of the top inten-
tion slice is done (the body becomes ε), the corresponding achievement goal ψk

will be checked. If ψk is false, the execution backtracks to the latest choice point
(EI1) or stops (EI2). If ψk is true, then the top intention slice is popped and
the execution proceeds (EI3). Rule EI4 states that at any stage if the ultimate
goal ψ0 of an intention becomes true, then drop this already fulfilled intention.

Goals in G are declarative abstract goals while intention set H including all
the intermediate subgoals. Definition 7 and Definition 8 give rules for adopting
and dropping goals, respectively. Later we will give other rules that are relevant
to goal adoption and termination (e.g. propagation of failure in plan execution).
Birna van Riemsdijk, et al. [21] analyzed several motivations and mechanisms for
dropping and adopting declarative goals. In their terminology, MALLET sup-
ports goals in both procedural and declarative ways, and employs the landmark
view of subgoals.

As we have explained earlier, the choice construct is used to specify explicit
choice points in a complex team process, and it is a language-level mechanism for
handling process failures. For example, suppose a fire-fighting team is assigned
to extinguish a fire caused by an explosion at a chemical plant. After collecting
enough information (e.g., there are toxic materials in the plant, there are facilities
endangered, etc.), the team needs to decide how to put out the fire. They have to
select one plan if there exist several options. And they have to resort to another
option if one is found to be unworkable.

In syntax, the choice construct is composed of a list of branches, each of
which specifies a plan (a course of actions) and may be associated with prefer-
ence condition and a priority information. The preference condition of a branch is
a collection of first-order formulas; the evaluation of their conjunction determines
whether the branch can be selected under that context. The priority informa-
tion is considered when the preference conditions of more than one branch are
satisfiable.

80 X. Fan et al.

Given a configuration 〈B,G,H, θ〉 and a statement (choice Br1 Br2 · · ·Brm)
where Bri = (prefi proi (DO Ai (ρi ti))), let BR = {Bri|1 ≤ i ≤ m}, BR− ⊆
BR be the set of branches in BR which have already been considered but failed.
We assume that B can track the changes of BR−. Let BR+ = {Brk| ∃τ · B |=
prefk · θτ, 1 ≤ k ≤ m} \ BR−, which is the set of branches that have not been
considered and the associated preference conditions can be satisfied by B. In
addition, let BR⊕ be the subset of BR+ such that all the branches in BR⊕ have
the maximal priority value among those in BR+, and ram(BR⊕) can randomly
select and return one branch from BR⊕.

Definition 9 (Choice construct). Let
h = [ω0\ · · · \(ψk, Ak) ← (choice Br1 Br2 · · ·Brm); s],
h1 = [h\(true,Ak) ← (DO Ai (ρi ti)); cend],
h2 = [h\(true,Ak) ← cend],

ram(BR⊕) = Bri, B
′ = BU(B, BR−.add(Bri))

〈B, G, h, θ〉 → 〈B′, G, h1, θ〉 , (C1)

self ∈ Ai, 〈B, G, h2, θ〉 �|= failed(ρi), B
′ = BU(B, post(ρi)θ)

〈B, G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉 . (C2)

In Definition 9, Rule C1 applies when there exists a workable branch. The
intention h is appended with a new slice ended with cend, which marks explicitly
the scope of the choice point. An agent has to wait (e.g., until more information
becomes available) if there is no workable branch. Rule C2 states that when
an agent comes to the statement cend and the execution of ρi is successful, it
proceeds to the next statement following the choice point. Rule C3 states that if
failed(ρi) is true, the execution returns to the choice point to try another branch.

Note 3. First, when a selected branch has failed, according to Rule F1 the exe-
cution backtracks to this choice point (i.e., the intention of the current configu-
ration becomes h again). When all the branches Bri(1 ≤ i ≤ m) have failed (i.e.,
failed(choice Br1 Br2 · · ·Brm) holds), again by Rule F1 the execution back-
tracks to the next choice point, if there is one. Second, an implementation can
enforce the agents in a group to synchronize with others when backtracking to a
preceding choice point, although this is not required by MALLET, which, as a
generic language, allows experimentation with different levels and forms of team
intelligence. By explicitly marking the scope of choice points, synchronization
can be enforced, if necessary, when agents reaching cend.

Definition 10 (Agent selection). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (agent-bind v φ); s],

∃τ · B |= φθτ

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s], θτ〉. (B1)

The successful execution of an agent-bind statement is to compose the sub-
stitution obtained from evaluating the constraint φ with θ (Rule B1). The ex-
ecution fails if there is no solution to the constraints. Since each agent has an

The Semantics of MALLET 81

individual belief base, one complication can arise here if the individual agents in
Ak reach a different choice for the agents to bind to the agent variables. Conse-
quences can involve vary from two different agents performing an operation that
only one was supposed to do, to some agents successfully determining a binding
while others fail to do so. Different strategies can be adopted when an interpreter
of MALLET is implemented. For instance, in case there is a leader in a team,
one solution is to delegate the binding task to the leader, who informs the results
to other teammates once it finishes. If so, B1 has to be adapted accordingly.

Note 4. Given any configuration 〈B,G,H, θ〉, for any instantiated plan ρ, vari-
ables in body(ρ) are all bounded either by some binding τ where B |= pre(p)θτ ,
or by some preceeding agent-bind statement in body(ρ).

Definition 11 (Sequential execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← l1; · · · ; lm],

〈B, ∅, [(true,Ak) ← l1], θ〉 → 〈B′, ∅, [(true,Ak) ← ε], θ′〉
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l2; · · · ; lm], θ′〉. (SE)

seq is a basic construct for composing complex processes. As shown in Defini-
tion 11, if the execution of l1 can transform B and θ into B′ and θ′ respectively,
the rest will be executed in the context settled by the execution of l1.

Definition 12 (Individual operator execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (Do a (α t)); s],
h2 = [ω0\ · · · \(ψk, Ak) ← (α t); s], where (α v) ∈ Ioper, η = {v/t},

self = a,∃τ,B |= pre(α)θητ,B′ = BU(B, post(α)θητ)
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← l; s], θ〉 , (I1)

self 	= a

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← l2; s], θ〉, (I2)

self = a, 	 ∃τ · B |= pre(α)θητ, χp(ρ) = X
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s′; s], θ〉, (I3)

∃τ,B |= pre(α)θητ,B′ = BU(B, post(α)θητ)
〈B,G, h2, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ〉, (I4)

	 ∃τ · B |= pre(α)θητ, χp(ρ) = X
〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s′′; s], θ〉. (I5)

where l and l2 are points for team synchronization, if needed; s′ and s′′ are points
for responding to different precondition types when the precondition is false.

In Definition 12, Rule I1 states that if an agent is the assigned doer a, and
the precondition of α is satisfiable wrt. the agent’s belief base, then the execution
of the individual operator is to update the belief base with the postcondition of
the operator. Rule I2 states that the agents other than the doer a can either

82 X. Fan et al.

synchronize or proceeds, depending on the actual implementation of MALLET
interpreters. In Rule I3, s′ can be replaced by different statements, depending
on the actual precondition types. Rules I4 and I5 are similar to I1 and I3 except
that the intention is of form h2, which by default all the individual agents in Ak

are the doers of α.

Note 5. The statements l, l2, s′, and s′′ are left open for flexibility so that al-
ternate interpretations of agent interaction semantics can be implemented. For
instance, when l and l2 are replaced by ε, each agent in Ak can just do their own
jobs. Alternatively, if we let l = (Do self (send Ak \{self}, 〈ctell, self, ψ0, α〉)),
l2 = (wait until ctell(a, ψ0, α) ∈ B), then the team has to synchronize be-
fore proceeding next. Precondition failures have already been covered by Rules
F1 and F2. Rules I3 and I5 apply when the precondition is false and the
precondition type is of ‘skip’ mode. For instance, if X is skip, then s′ and
s′′ can be ε or statements for synchronization, depending to the agent inter-
action semantics as explained above. If X is wait-skip, it is feasible to let
s′ = (wait until ∃τ · B |= pre(α)θητ); (Do self (α t)), and
s′′ = (wait until ∃τ · B |= pre(α)θητ); (α t).

To execute a team operator, all the involved agents need to synchronize. Let
Y (ψ, Γ) = {a′|sync(a′, ψ, Γ) ∈ B}, which is a set of agent names from whom,
according to the current agent’s beliefs, it has received a synchronization message
wrt. ψ and Γ .

Definition 13 (Team operator execution). Let intention
h = [ω0\ · · · \(ψk, Ak) ← (Do A (Γ t)); s], where (Γ v) ∈ Toper, η = {v/t},

self ∈ A,∃τ · B |= pre(Γ)θητ, sync(self, ψ0, Γ) 	∈ B

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉 , (T1)

self ∈ A,∃τ · B |= pre(Γ)θητ, sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| < |Γ |
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉 , (T2)

self ∈ A,∃τ,B |= pre(Γ)θητ,

sync(self, ψ0, Γ) ∈ B, |Y (ψ0, Γ)| ≥ |Γ |, B′ = BU(B, post(Γ)θητ)
〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s3; s], θ〉 , (T3)

self 	∈ A

〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s4; s], θ〉, (T4)

self ∈ A, 	 ∃τ · B |= pre(Γ)θητ, χp(Γ) = wait-skip
〈B,G, h, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s5; s], θ〉 . (T5)

where s1 = (Do self send(A, 〈sync, self, ψ0, Γ 〉)); (Do A (Γ t)),
s2 = (wait until (|Y (ψ0, Γ)| ≥ |Γ |)); (Do A (Γ t)),
s3 = (Do self unsync(ψ0, Γ));(Do self send(Ak \ A, 〈ctell, self, ψ0, Γ 〉)),
s4 = (wait until ∀a ∈ A · ctell(a, ψ0, Γ) ∈ B),
s5 = (wait until ∃τ · B |= pre(Γ)θητ); (Do A (Γ t)).

In Definition 13, Rule T1 states that if an agent itself is one of the assigned doers,
the precondition of the team operator holds, and the agent has not synchronized

The Semantics of MALLET 83

with other agents in A, then it will first send out synchronization messages
before executing Γ . Rule T2 states that an agent has already synchronized with
others, but has not received enough synchronization messages from others, then
it continues waiting. Rule T3 states that the execution of Γ will update B
with the effects of the team operator, and before proceeding, the agent has to
retract the sync messages regarding Γ (to ensure proper agent behavior in case
that Γ needs to be re-executed later) and inform the agents not in A of the
accomplishment of Γ . Rule T4 deals with the case when an agent belongs to
Ak \A—the agent has to wait until being informed of the accomplishment of Γ .
Rule T5 applies when the preconditions of Γ does not hold. Variants of T5 can
be given when χp(Γ) is skip or achieve-skip.

Note 6. Usually in the use of transition systems (as in concurrency semantics)
the aspect of ‘waiting’ is modeled implicitly by the fact that if the proper condi-
tions are not met the rule cannot be applied so that the transition must wait to
take place until the condition becomes true. In this paper, there are a number
of places where ‘waiting’ is included in the transitions explicitly. It is true that
in some places implicit modeling of waiting can be used (say, the rule T2), but
not all the ‘wait’ can be removed without sacrificing the semantics (say, the rule
T4). We use explicit modeling of waiting mainly for two reasons. First, agents
in a team typically need to synchronize with other team members while waiting.
For example, the doers of a team operator need to synchronize with each other
both before and after the execution. Here, the agents are not passively waiting,
but waiting for a certain number of incoming messages. Second, ‘wait’ in the
rules provides a hook for further extensions. For instance, currently the wait
semantics states that an agent has to wait until the precondition of an action to
be executed is satisfied. We can ascribe a “proactive” semantics to the language
such that the doer of an action will proactive bring about a state that can make
the precondition true or seek help from other teammates.

The semantics of JointDo is a little complicated. A joint-do statement im-
plies agent synchronization both at the beginning and at the end of its execution.
Its semantics is given in terms of basic constructs.

Definition 14 (Joint-Do). Let intentions
h1 = [ω0\ · · · \(ψk, Ak) ← (JointDo AND (A′

1 l1) · · · (A′
n ln)); s],

h2 = [ω0\ · · · \(ψk, Ak) ← (JointDo OR (A′
1 l1) · · · (A′

n ln)); s],
h3 = [ω0\ · · · \(ψk, Ak) ← (JointDo XOR (A′

1 l1) · · · (A′
n ln)); s],

⋂n
j=1 A′

j = ∅, self ∈ A′
i

〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J1)
⋂n

j=1 A′
j = ∅, self ∈ A′

i

〈B,G, h2, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s21; s22; s0; s], θ〉, (J2)

84 X. Fan et al.

self ∈ A′
i, isSelected(A′

i)
〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s1; s], θ〉, (J3)

self ∈ A′
i,¬isSelected(A′

i)
〈B,G, h3, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s0; s], θ〉, (J4)

where s0 = (Do self (send
⋃n

j=1 A′
j , 〈sync, self, ψ0, nil〉));

(wait until (∀a ∈ ⋃n
j=1 A′

j ·sync(a, ψ0, nil) ∈ B)); (Do self (unsync ψ0, nil));
s1 = s0; (Do A′

i li); s0,
s21 = (If(cond 	 ∃lx, a · ctell(a, ψ0, lx, 0) ∈ B)

(s3; (Do A′
i li); (Do self (send

⋃n
j=1,j �=i A′

j , 〈ctell, self, ψ0, li, 1〉)))),
s3 = (If (cond 	 ∃a · cask(a, ψ0, li) ∈ B)

((Do self (send
⋃n

j=1,j �=i A′
j , 〈ctell, self, ψ0, li, 0〉));

(Do self (send A′
i \ {self}, 〈cask, self, ψ0, li〉)))),

s22 = (while(cond ∃φx, a · ctell(a, ψ0, lx, 0) ∈ B)
(wait until ∀b ∈ A′

x · ctell(b, ψ0, lx, 1) ∈ B); (Do (untell ψ0, lx))).

In Definition 14, Rule J1 defines semantics for joint-do with share type
“AND”. It states that before and after an agent does its task li, it needs to
synchronize (i.e., s0) with the other teammates wrt. li. A joint-do statement
with share type “OR” requires that at least one sub-process has to be executed.
In Rule J2, the joint-do statement is replaced by s0; s21; s22; s0. Statement s21

states that if an agent has not received any message regarding the start of some
sub-statement lx (i.e., this agent itself is the first ready to execute the joint-do
statement), it will sequentially do (a) s3: if among A′

i this agent is the first
ready to execute li, then tell all other agents not in A′

i regarding the start of
li (i.e., 〈ctell · · · 0〉) and request other agents in A′

i to execute li; (b) agents in
A′

i together execute li; (c) tell other agents not in A′
i the accomplishment of li

(i.e., 〈ctell · · · 1〉). Statement s22 states that if this agent was informed of the
start of some other sub-statement lx, it needs to wait until being informed by
all the doers that lx has been completed. The semantics of joint-do with share
type “XOR” is based on a function isSelected()5: if an agent belongs to the
group of selected agents, it simply synchronizes and executes the corresponding
sub-statement (Rule J3); otherwise, only synchronization is needed (Rule J4).

Plan execution is a process of hierarchical expansion of (sub-)plans. In Defi-
nition 15 below, Rule P1 states that if an agent is not involved, it simply waits
until ρ is done. Before entering a plan, an agent first checks the corresponding
pre-conditions. Rule P2 applies when the precondition is false and Rule P3 ap-
plies when the precondition is true. Rule P2 is defined for the case where the
precondition type is skip. Variants of P2 can be given for other ‘skip’ modes. In
Rule P3, s1 states that on entering a plan, a new intention slice will be appended
where the agent needs to synchronize with others (when everyone is ready the

5 Some negotiation strategies, even social norms [22], can be employed to allow
agents to know each others’ commitments [23] in determining the selected agents
in isSelected. We leave such an issue to the designers of MALLET interpreters.

The Semantics of MALLET 85

synchronization messages are dropped to ensure that this plan can be properly
re-entered later), then execute the plan body instantiated by the environment
binding θ and local binding τ , and then tell other agents not involved in ρ about
the accomplishment of ρ. Rule P4 states that when exiting a plan (i.e., endp is
the only statement in the body of the top intention slice), if ρ has been success-
fully executed, the execution proceeds to the statement after the plan call, with
B being updated with the effects of ρ. Rules P5 and P6 complement Rules F1
and F2. Rule F1 (F2) applies when failed(Do A (ρ t)) holds, that is, when the
execution of the body of ρ fails (including the failures propagated from sub-plans
of ρ). Rule P5 (P6) applies when failed(ρ) holds, that is, when failures emerge
from the precondition or termination condition of ρ. This means, an agent needs
to monitor all the termination conditions of the calling plans. The semantics
of plan invocation of form (ρ t) (i.e., no doers are explicitly specified) can be
similarly defined, except that Ak will be used as the doers of ρ.

Definition 15 (Plan entering, executing and exiting). Let
h1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t)); s],
h′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t))θητ ; sθ],
h′′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t))θητ ; sθ\(post(ρ)θητ,A) ← endp],
h′′′

1 = [ω0\ · · · \(ψk, Ak) ← (Do A (ρ t)); s\ · · ·], where (ρ v) ∈ Plan, η = {v/t},

self 	∈ A

〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s2; s], θ〉, (P1)

self ∈ A, 	 ∃τ · B |= pre(ρ)θητ, χp(ρ) = skip
〈B,G, h1, θ〉 → 〈B,G, [ω0\ · · · \(ψk, Ak) ← s0; s], θ〉, (P2)

self ∈ A,∃τ · B |= pre(ρ)θητ

〈B,G, h1, θ〉 → 〈B,G, [h′
1\(post(ρ)θητ,A) ← s1; endp], θητ〉, (P3)

self ∈ A, 〈B,G, h′′
1 , ι〉 	|= failed(ρ), B′ = BU(B, post(ρ)ι)

〈B,G, h′′
1 , ι〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← sθ], ι〉 , (P4)

self ∈ Ak, 〈B,G, h′′′
1 , θ〉 |= failed(ρ),UC (h′′′

1) 	= �
〈B,G, h′′′

1 , θ〉 → 〈B,G,UC (h′′′
1), θ〉 , (P5)

self ∈ Ak, 〈B,G, h′′′
1 , θ〉 |= failed(ρ),UC (h′′′

1) = �
〈B,G, h′′′

1 , θ〉 → STOP(h′′′
1)

. (P6)

where s0 = (Do self (send Ak, 〈ctell, self, ψ0, ρ〉));
(wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)),

s1 = (Do self (send A, 〈sync, self, ψ0, ρ〉)); (wait until (∀a ∈ A·sync(a, ψ0, ρ) ∈
B));

(Do self (unsync ψ0, ρ)); body(ρ)θητ ; s0,
s2 = (wait until (∀a ∈ A · ctell(a, ψ0, ρ) ∈ B)).

Par is a construct that takes a list of processes and executes them in any
order. When each process in the list has completed successfully, the entire par
process is said to complete successfully. If at any point one of the process fails,

86 X. Fan et al.

then the entire par process returns failure and gives up executing any of the
statements after that point.

Intuitively, a parallel statement with k branches requires the current process
(transition) to split itself into k processes. These spawned processes each will
be responsible for the execution of exactly one parallel branch, and they have
to be merged into one process immediately after each has completed its own
responsibility. To prevent the spawned processes from committing to other tasks,
their initial transitions need to be established such that (1) the intention set only
has one intention with one intention slice at its top; (2) the goal base is empty (so
that the transition cannot proceed further after the unique intention has been
completed). Because the original goal set and intention set has to be recovered
after the execution of the parallel statement, we adopt an extra transition, which
has the same components as the original transition except that # is pushed as
the top intention slice, which indicates that this specific intention is suspended.

Definition 16 (Parallel construct). Let h0 = [ω0\ · · · \(ψk, Ak) ← sk; s],
h = [ω0\ · · · \(ψk, Ak) ← sk; s\#], where sk = (par l1 l2 · · · lm),
Tj = 〈B, ∅, [(true,Ak) ← lj], θ〉 →∗ 〈Bj , ∅, [(true,Ak) ← ε], θj〉∧Bj 	|= failed(lj),
and
PB = 〈B,G, h, θ〉 ‖ 〈B, ∅, [(true,Ak) ← l1], θ〉 ‖ · · · ‖ 〈B, ∅, [(true,Ak) ← lm], θ〉,

〈B,G, h0, θ 	|= failed(sk)
〈B,G, h0, θ〉 → PB

, (PA1)
∧m

j=1(Tj), B′ = BU(
⋃m

j=1 Bj , B), θ′ = θ0θ1 · · · θm

〈B,G, h, θ〉 → 〈B′, G, [ω0\ · · · \(ψk, Ak) ← s], θ′〉 . (PA2)

In Definition 16, Rule PA1 states that when an agent reaches a par state-
ment, if the par statement is not failed, the transition is split into k + 1 parallel
transitions. Rule PA2 states that if all the spawned processes execute success-
fully, the suspended intention will be reactivated with the belief base and sub-
stitution modified.

Now, it is straightforward to define semantics for composite processes. For
instance, the forall construct is an implied par over the condition bindings,
whereas the foreach is an implied seq over the condition bindings. The con-
structs forall and foreach are fairly expressive when the number of choices is
unknown before runtime.

Definition 17 (Composite plans). Let
h1 = [ω0\ · · · \(ψk, Ak) ← (if (cond φ) l1 l2); s],
h2 = [ω0\ · · · \(ψk, Ak) ← (while (cond φ) l); s],
h3 = [ω0\ · · · \(ψk, Ak) ← (foreach (cond φ) l); s],
h4 = [ω0\ · · · \(ψk, Ak) ← (forall (cond φ) l); s],

B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← l1τ ; s]}, θ〉, (S1)

The Semantics of MALLET 87

	 ∃τ · B |= φθτ

〈B,G, {h1}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← l2; s]}, θ〉, (S2)

B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ ; (while (cond φ) l); s], θ〉,
(S3)

	 ∃τ · B |= φθτ

〈B,G, {h2}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s], θ〉, (S4)

∃τ1, · · · , τk · ∧k
j=1 B |= φθτj

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← lτ1; · · · ; lτk; s]}, θ〉, (S5)

	 ∃τ · B |= φθτ

〈B,G, {h3}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S6)

∃τ1, · · · , τk · ∧k
j=1 B |= φθτj

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← (par lτ1 · · · lτk); s]}, θ〉, (S7)

	 ∃τ · B |= φθτ

〈B,G, {h4}, θ〉 → 〈B,G, {[ω0\ · · · \(ψk, Ak) ← s]}, θ〉, (S8)

5 CAST–An Agent Architecture Realizing MALLET

CAST (Collaborative Agents for Simulating Teamwork) is a team-oriented agent
architecture that supports teamwork using a shared mental model (SMM) among
teammates [8]. The CAST kernel includes an implemented interpreter of MAL-
LET. At compile time, CAST translates processes specified in MALLET into
PrT nets (specialized Petri-Nets), which use predicate evaluation at decision
points. CAST supports predicate evaluation using a knowledge base with a Java-
based backward chaining reasoning engine called JARE. The main distinguish-
ing feature of CAST is proactive team behaviors enabled by the fact that agents
within a CAST architecture share the same declarative specification of team
structure and process as well as share explicit declaration of what each agent
can observe. Therefore, every agent can reason about what other teammates are
working on, what the preconditions of teammates’ actions are, whether a team-
mate can observe the information required to evaluate a precondition, and hence
what information might be potentially useful to the teammate. As such, agents
can figure out what information to proactively deliver to teammates, and use a
decision theoretic cost/benefit analysis for doing proactive information delivery.
CAST has been used in several domains including fire-fighting, simulated battle
fields [24]. Examples and practices of using MALLET can be found in [25].

Figure 1 is a screen shot of CAST monitor. CAST monitor can display the
PrT nets (visual representation of MALLET plans) that a team of agents are
working on. Different colors are used to indicate the progress of activities, so
that a human can track the running status of a team process.

It is worth noting that MALLET is designed to be a language for encod-
ing teamwork knowledge, and CAST is just one agent architecture that realizes

88 X. Fan et al.

Fig. 1. The CAST Monitor

MALLET. It is not required that all agents in a team have to be homogeneous
in that they are all implemented in the same way. Agents with different archi-
tectures can form a team and work together with CAST agents as long as they
conform to the semantics of MALLET and the same communication protocols.

6 Comparison and Discussion

We compare MALLET with JACK Teams [26], OWL-S [27], PDDL [28], and
the team-oriented programming framework [9].

JACK Teams [26], instead of providing a higher-level plan-encoding language
like MALLET, extends a traditional programming language (i.e. Java) with spe-
cial statements for programming team activities. In JACK Teams, a team is an
individual reasoning entity characterized by the roles it performs and the roles
it requires others to perform. To form a team is to set up the declared role obli-
gation structure by identifying particular sub-teams capable of performing the
roles to be filled.

JACK Teams has constructs particularly for specifying team-oriented behav-
iors. Teamdata is a concept that allows propagation of beliefs from teams to
sub-teams and vice versa. In a sense, belief propagation in JACK is compara-
ble to the maintenance of SMM in CAST. However, SMM in CAST is a much
more general concept, which includes team plans, progress of team activities,
results of task allocations, decision results of choice points, information needs
graphs, etc. CAST Agents in a team need to proactively exchange information

The Semantics of MALLET 89

(beliefs) to maintain the consistency of their SMM. Statements @team achieve
and @parallel are used in JACK for team goal handling. @team achieve is sim-
ilar to the DO statement in MALLET, except that @team achieve is realized
by sending an event to the involved sub-team while the agents involved in a DO
statement can start to perform the associated activity whenever they reach the
statement along the team process. A @parallel statement can specify success
condition, termination condition, how termination is notified, and whether to
monitor and control the parallel execution. In semantics, @parallel statements
can be simulated using PAR or CHOICE in MALLET. As far as failure han-
dling is concerned, JACK Teams leverages the Java exception mechanism to
throw and catch exceptions while in CAST, CHOICE points are used as places
to catch failures and re-attempt the failed goals if needed, which is much more
flexible in recovery from failure at the team plan level.

OWL-S [27] is an ontology language for describing properties and capabili-
ties of Web services. It enables users and software agents to automatically dis-
cover, invoke, compose, and monitor Web services. Similar to MALLET, OWL-S
provides constructs (such as Sequence, Split, Split+Join, Choice, Unordered, If-
Then-Else, Iterate, etc.) for composing composite processes, to which precondi-
tions and effects can be specified. There exist correspondences between OWL-S
and MALLET. For instance, both ‘Split’ in OWL-S and PAR in MALLET can
be used to specify concurrent activities. The main difference between these two
languages lies in the fact that MALLET is designed for encoding team intelli-
gence where the actors of each activity within a team process need to collaborate
with each other in pursuing their joint goals, while OML-S, as an abstract frame-
work for describing service workflows, does not consider collaboration issues from
the perspective of teamwork.

PDDL (the Planning Domain Definition Language) [28], inspired by the well-
known STRIPS formulations of planning problems, is a standard language for
the encoding of planning domains. PDDL is capable of capturing a wide variety
of complex behaviors using constructs such as seq, parallel, choice, foreach and
forsome. The semantics of processes in PDDL is grounded on a branching time
structure. One key difference between PDDL and MALLET is that PDDL is used
for guiding planning while MALLET is used for encoding the planning results.
The processes defined in PDDL serve as guides for a planner to compose actions
to achieve certain goals, while the processes in MALLET serve as common recipes
for a team of agents to collaborate their behaviors.

In summary, MALLET has been designed as a language for encoding team-
work knowledge, and CAST is just one agent architecture that realizes MAL-
LET. It is not required that all agents in a team have to be homogeneous in that
they are all implemented in the same way. Agents with different architectures
can form a team and work together with CAST agents as long as their kernels
conform to the semantics of MALLET and the same communication protocols.

MALLET does have several limitations. For instance, there is no clear se-
mantics defined for dynamic joining or leaving a team. Also, MALLET does not
specify what to do if agents do not have a plan to reach a goal. Although some of

90 X. Fan et al.

these issues can be left open to agent system designers, providing a language-level
solution might be helpful in guiding the implementation of team-based agent
systems. One way is to extend MALLET with certain build-in meta-plans. For
instance, meta-plans, say, resource-based-planner, can be added so that agents
could execute it to construct a plan when they need but do not have one.

7 Conclusion

MALLET is a language that organizes plans hierarchically in terms of different
process constructs such as sequential, parallel, selective, iterative, or conditional.
It can be used to represent teamwork knowledge in a way that is independent
of the context in which the knowledge is used. In this paper, we defined an
operational semantics for MALLET in terms of a transition system, which is
important in further studying the formal properties of team-based agents speci-
fied in MALLET. The effectiveness of MALLET in encoding complex teamwork
knowledge has already been shown in the CAST system [8], which implements
an interpreter for MALLET using PrT nets as the internal representation of
team process.

Acknowledgments

This research has been supported by AFOSR MURI grant No. F49620-00-1-0326.

References

1. Cohen, P.R., Levesque, H.J.: Teamwork. Nous 25:487–512, (1991)
2. Cohen, P.R., Levesque, H.J., Smith, I.A.: On team formation. In Hintikka, J.,

Tuomela, R., eds.: Contemporary Action Theory. (1997)
3. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions. Artificial Intelligence 75 (1995) 195–240
4. Grosz, B., Kraus, S.: Collaborative plans for complex group actions. Artificial

Intelligence 86 (1996) 269–358
5. Tambe, M.: Towards flexible teamwork. Journal of AI Research 7 (1997) 83–124
6. Rich, C., Sidner, C.: Collagen: When agents collaborate with people. In: Proceed-

ings of the International Conference on Autonomous Agents (Agents’97). (1997)
284–291

7. Giampapa, J., Sycara, K.: Team-oriented agent coordination in the RETSINA
multi-agent system. Technical Report CMU-RI-TR-02-34, CMU (2002)

8. Yen, J., Yin, J., Ioerger, T., Miller, M., Xu, D., Volz, R.: CAST: Collaborative
agents for simulating teamworks. In: Proceedings of IJCAI’2001. (2001) 1135–1142

9. Tidhar, G.: Team oriented programming: Preliminary report. In: Technical Report
41, AAII, Australia. (1993)

10. Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.: Toward team-oriented
programming. In: Agent Theories, Architectures, and Languages. (1999) 233–247

The Semantics of MALLET 91

11. Scerri, P., Pynadath, D.V., Schurr, N., Farinelli, A.: Team oriented programming
and proxy agents: the next generation. In: Proc. of the 1st Inter. Workshop on
Prog. MAS at AAMAS’03. (2003) 131–138

12. Rao, A.S., Georgeff, M.P., Sonenberg, E.A.: Social plans: A preliminary report. In
Werner, E., Demazeau, Y., eds.: Decentralized AI 3 –Proceedings of MAAMAW-
91), Elsevier Science B.V.: Amsterdam, Netherland (1992) 57–76

13. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.:
Planned team activity. In Castelfranchi, C., Werner, E., eds.: Artificial Social
Systems (LNAI-830), Springer-Verlag: Heidelberg, Germany (1992) 226–256

14. Tidhar, G., Rao, A., Sonenberg, E.: Guided team selection. In: Proceedings of the
2nd International Conference on Multi-agent Systems (ICMAS-96). (1996)

15. Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: MAAMAW’96, LNAI 1038, Springer-Verlag: Heidelberg, Germany (1996) 42–55

16. Pozos-Parra, P., Nayak, A., Demolombe, R.: Theories of intentions in the frame-
work of situation calculus. In Leite, J., Omicini, A., Torroni, P., Yolum, P.,
eds.: Declarative Agent Languages and Technologies (DALT 2004), LNCS 3476,
Springer-Verlag (2005). In this volume.

17. Bordini, R., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agentspeak.
In: Proceedings of AAMAS-2003. (2003) 409–416

18. Wooldridge, M., Fisher, M., Huget, M., Parsons, S.: Model checking multiagent
systems with MABLE. In: Proceedings of AAMAS-2002. (2002) 952–959

19. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.C.: A programming lan-
guage for cognitive agents: Goal directed 3APL. In: Proc. of the 1st Inter. Workshop
on Prog. MAS at AAMAS’03. (2003) 111–130

20. Giacomo, G.D., Lesperance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus. AI 121 (2000) 109–169

21. van Riemsdijk, M.B., Dastani, M., Dignum, F., Meyer, J.J.C.: Dynamics of declar-
ative goals in agent programming. In Leite, J., Omicini, A., Torroni, P., Yolum, P.,
eds.: Declarative Agent Languages and Technologies (DALT 2004), LNCS 3476,
Springer-Verlag (2005). In this volume.

22. Robertson, D.: A lightweight coordination calculus for agent systems. In Leite,
J., Omicini, A., Torroni, P., Yolum, P., eds.: Declarative Agent Languages and
Technologies (DALT 2004), LNCS 3476, Springer-Verlag (2005). In this volume.

23. Winikoff, M., Liu, W., Harland, J.: Enhancing commitment machines. In Leite,
J., Omicini, A., Torroni, P., Yolum, P., eds.: Declarative Agent Languages and
Technologies (DALT 2004), LNCS 3476, Springer-Verlag (2005). In this volume.

24. Yen, J., Fan, X., Sun, S., Hanratty, T., Dumer, J.: Agents with shared mental
models for enhancing team decision-makings. Decision Support Systems, Special
issue on Intelligence and Security Informatics (In press) (2004)

25. Yen, J., et al: CAST manual. Technical report, IST, The Pennsylvania State
University (2004)

26. JACK Teams Manual. http://www.agent-software.com/shared/demosNdocs/
JACK-Teams-Manual.pdf. (2004)

27. OWL-S. http://www.daml.org/services/owl-s/1.0/owl-s.html (2003)
28. McDermott, D.: The formal semantics of processes in PDDL. In: Proc. ICAPS

Workshop on PDDL. (2003)

Construction of an Agent-Based Framework for
Evolutionary Biology: A Progress Report

Yu Pan, Phan Huy Tu, Enrico Pontelli, and Tran Cao Son

Department of Computer Science,
New Mexico State University,

{ypan,tphan,epontell,tson}@cs.nmsu.edu

Abstract. We report on the development of an agent-based system, called ΦLOG,
for the specification and execution of phylogenetic inference applications. We
detail the implementation of the main components of the system. In the pro-
cess, we discuss how advanced techniques developed in different research ar-
eas such as domain-specific languages, planning, Web Services discovery and
invocation, and Web Service compositions can be applied in the building of the
ΦLOG system.

1 Introduction

In biological sciences data is accumulating much faster than our ability to convert it into
meaningful knowledge. For example, the Human Genome Project and related activities
have flooded our databases with molecular data. The size of the DNA sequence database
maintained by NCBI has surpassed 15 million sequences and keeps growing at a rapid
pace. Our modeling tools are woefully inadequate for the task of integrating all that
information into the rest of biology, preventing scientists from using these data to draw
meaningful biological inferences. Thus, one of the major challenges faced by computer
scientists and biologists together is the enhancement of information technology suit-
able for modeling a diversity of biological entities, leading to a greater understanding
from the influx of data. Instead of allowing the direct expression of high-level con-
cepts natural to a scientific discipline, current development techniques require mastery
of programming and access to low level aspects of software development.

1.1 The ΦLOG Project

The ΦLOG project at NMSU is aimed at the development of a computational work-
bench to allow evolutionary biologists to rapidly and independently construct compu-
tational analysis processes in phylogenetic inference. Phylogenetic inference involves
the study of evolutionary change of traits (genetic or genomic sequences, morphology,
physiology, behavior, etc.) in the context of biological entities (genes, genomes, individ-
uals, species, higher taxa, etc.) related to each other by a phylogenetic tree or genealogy
depicting the hierarchical relationship of common ancestors.

The overall objective of the ΦLOG framework is to allow biologists to design com-
putational analysis processes by describing them at the same level of abstraction com-

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 92–111, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Construction of an Agent-Based Framework for Evolutionary Biology 93

monly used by biologists to think and communicate—and not in terms of complex low-
level programming constructs and communication protocols. The ΦLOG framework
will automatically translate these high-level descriptions into executable programs—
commonly containing appropriately composed sequences of invocations to external
bioinformatics tools (e.g., BLAST, DNAML).

The ΦLOG framework is characterized by two innovative aspects: the use of a Do-
main Specific Language (DSL) as interface to the biologists and the adoption of an
agent-based platform for the execution of ΦLOG programs. These aspects are dis-
cussed in the next subsections.

1.2 The ΦLOG Language

The ΦLOG framework offers biologists a Domain Specific Language (DSL) for the
description of computational analysis processes in evolutionary biology. The DSL al-
lows biologists to computationally solve a problem by programming solutions at the
same level of abstraction they use for thinking and reasoning. In the DSL approach,
a language is developed to allow users to build software in an application domain by
using programming constructs that are natural for the specific domain. A DSL results in
programs that are more likely to be correct, easier to write and reason about, and easier
to maintain. The DSL approach to software engineering has been advocated by many
researchers [11, 14, 15, 20, 29].

The ΦLOG DSL has been extensively described in [25]. The language provides:

• high-level data types representing the classes of entities typically encountered in
evolutionary biology analysis (e.g., genes, taxon, alignments). The set of types and
their properties have been derived as a combination of existing data description
languages (e.g., NEXUS [22]) and biological ontologies (e.g., Bio-Ontology [28]).

• high-level operations corresponding to the transformations commonly adopted in
computational analyses for evolutionary biology (e.g., sequence alignment, phylo-
genetic tree construction, sequence similarity search). The operations are described
at a high-level; the mapping from high-level operations to concrete computational
tools can be either automatically realized by the ΦLOG execution model, or ex-
plicitly resolved by the programmer.

• both declarative as well as imperative control structures to describe execution flow.
Declarative control relies on high-level combinators (e.g., functions, quantifiers)
while imperative control relies on more traditional sequencing, conditional, and
iterative control forms.

1.3 The ΦLOG Agent Infrastructure

An essential goal behind the development of ΦLOG is to provide biologists with a
framework that facilitates discovery and use of the variety of bioinformatics tools and
data repository publicly available. The Web has become a means for the widespread
distribution of a large quantity of analysis tools and data sources, each providing dif-
ferent capabilities, interfaces, data formats and different modalities of operation. Bi-
ologists are left with the daunting task of locating the most appropriate tools for each
specific analysis task, learning how to use them, dealing with the issues of interoper-

94 Y. Pan et al.

ability (e.g., data format conversions), and interpreting the results. As a result of this
state of things, frequently biologists make use of suboptimal tools, are forced to per-
form time-consuming manual tasks, and, more in general, are limited in the scope of
analysis and range of hypothesis they can explore.

ΦLOG relies on an agent infrastructure, where existing bioinformatics tools and
data sources are viewed as bioinformatics services. Services are formally described;
the agent infrastructure is in charge of making use of such formal descriptions and of
the content of ΦLOG programs to determine the appropriate sequence of service in-
vocations required to accomplish the task described by the biologist. The reasoning
component of the agent is employed to select services and compose them, eventually
introducing additional services to guarantee interoperability. The rest of this paper de-
scribes in detail the structure of such agent infrastructure.

1.4 Related Work

Relatively limited effort has been invested in the use of agent-based technology to facil-
itate the creation of analysis processes and computational biology applications. TAM-
BIS [10] provides a knowledge base for accessing a set of data sources, and it can
map queries expressed in graphical form to sequences of accesses. Some proposals
have recently appeared addressing some of the aspects covered by ΦLOG , such as
ontologies for computational biology (e.g., BIOML [12] and Bio-Ontology [28]), in-
teroperability initiatives (e.g., the Bioperl Project [6], XOL project [21] and the TAM-
BIS project [10]), low-level infrastructure for bioinformatics services (e.g., OmniGene
[8], BioMOBY [9], and the DAS [24]), and generic bioinformatics computational in-
frastructures (e.g., BioSoft [13, 16]). Most of the aforementioned projects concentrate
on the problem of accessing and querying various biological data sources, while we
emphasize on the problem of automatic composition of biological web services. Like
others, we propose to use ontologies and web services as a means to overcome different
obstacles in the integration and exploitation of biological services.

2 System Overview

The overall architecture of our system is illustrated in Figure 1. The execution of ΦLOG
programs will be carried out by an agent infrastructure and will develop according to
the flow denoted by the arrows in Figure 1. In this framework, bioinformatics tools
are viewed as Web services; in turn, each agent treats such services as actions, and the
execution ofΦLOG programs is treated as an instance of the planning and execution
monitoring problem [19]. Each data source and tool has to be properly described (in
terms of capabilities, inputs and outputs) so that the agent can determine when a par-
ticular data source or tool can be used to satisfy one of the steps required by the ΦLOG
program. This description process is supported by a bioinformatics ontologies for the
description of the entities involved in this process. ΦLOG programs will be processed
by a compiler and translated into an abstract plan, that identifies the high-level actions
(i.e., analysis steps) required, along with their correct execution order. The abstract plan
is processed by a configuration component; the output of the configuration component

Construction of an Agent-Based Framework for Evolutionary Biology 95

is a situation calculus
theory [26] and a
ConGolog program
[17]. The ConGolog
program represents the
underlying skeleton
of the plan required
to perform the com-
putation described in
the original ΦLOG
program. The action
theory describes the
actions that can be

Compiler
Configuration
Component

Planning
Execution
Monitoring

Abstract
Plan

ΦLOG
Program

Action Theories
& GOLOG Program

Execution
Output

Service Broker

Service
Descriptions

Service
Invocations

Fig. 1. Overall System Organization

used in such plan. These actions correspond to the bioinformatics services that can
be employed to carry out the tasks described by the high-level actions present in the
abstract plan. The descriptions of such actions are retrieved from a service broker,
which maintains (DAML-S) descriptions of all registered bioinformatics services.

The situation calculus theory and the ConGolog program are then processed by a
planner; the task of the planner is to develop a concrete plan, which indicates how
to compose individual bioinformatics services to accomplish the objectives required
by biologists in their ΦLOG programs. In the concrete plan, the high-level actions
are replaced by invocation calls to concrete bioinformatics services; the concrete plan
might also include additional steps not indicated in the original ΦLOG program, e.g.,
to support interoperation between services (e.g., data format conversions) and to re-
solve ambiguities (e.g., tests to select one of possible services). The creation of the
concrete plan relies on technology for reasoning about actions and change. The plan-
ner is integrated with an execution monitor, in charge of executing the concrete plan,
by repeatedly contacting the broker to request the execution of specific services. The
execution monitor interacts with the planner to resolve situations where a plan fails and
replanning is required.

3 Service Description and Management

Bioinformatics services are described in our framework using DAML-S 0.71, a lan-
guage built on top of the DAML+OIL2 ontology for Web Services. We adopt DAML-
S over previously developed Web Service languages (e.g., WSDL3,SOAP4), for its
expressiveness and declarativeness. Furthermore, DAML-S is developed for the pur-
pose of making Web Services computer-interpretable, thus allowing the development
of agents for service discovery, invocation, and composition. As such, it should be a
good representation language for representing bioinformatic services. We used DAML-

1 www.daml.org/services/daml-s/0.7/.
2 www.daml.org/2001/03/daml+oil-index.html.
3 www.w3.org/TR/wsdl.
4 ws.apache.org/soap/.

96 Y. Pan et al.

Fig. 2. Part of Service Hierarchy

S to represent the bioinformatic services necessary for our experiment. DAML-S turned
out to be adequate to provide high-level descriptions of services. The main obstacle
we encountered is the mismatch between the current technology and the execution of
DAML-S services: for each service, we have to develop our own interface between the
ΦLOG system and the bioinformatic service, being the latter still provided through
HTTP-requests.

3.1 Service Description

Bioinformatic services in ΦLOG are classified into a hierarchy. This classification
facilitates the matching between the high-level actions present in a ΦLOG program
and the services. More details related to this topic will be discussed in Section 5. A
part of the hierarchy used for services classification is shown in Figures 2. The top
class in this hierarchy is called BioinformaticsServices and is specified by the
XML-element:

<daml:Class rdf:ID="BiologyServices">

<rdfs:label>Biology Service</rdfs:label>

<rdfs:comment> ... </rdfs:comment>

<rdfs:subClassOf rdf:resource= "www.daml.org/services/

daml-s/0.7/ProfileHierarchy.daml#Information Service" />

</daml:Class>

All the other classes are derived directly or indirectly from this class. As an
example (Figure 2), BibliographicDatabases and GenomeDatabases
are subclasses of the Databases class, which, in turn, is a subclass of
BioinformaticsServices. Both of them are database related services which
allow users to access different databases. Some of these services are GDB [3] (Human
genomic information), OMIM [4] (Catalogue of human genetic disorders), EMBASE
[7] (Excerpta Medica Database), etc.. Their representation is as follows.

<daml:Class rdf:ID="GenomeDatabases">

<rdfs:subClassOf rdf:resource="#Databases"/>

</daml:Class>

<daml:Class rdf:ID="BiliographicDatabases">

Construction of an Agent-Based Framework for Evolutionary Biology 97

Fig. 3. Part of Bioinformatic Object Classification

<rdfs:subClassOf rdf:resource="#Databases"/>

</daml:Class>

Information about the service classification is stored in the file
datatypes.daml 5 In addition to the classification of services, this file also con-
tains information about the types of biological entities that are important for the
development of our system. As with services, these objects are also organized as class
hierarchies to facilitate reasoning about types of objects in different components of
our system. For example, to represent biological sequences, we use a correspond-
ing class Sequences. Part of this classification is shown in Figure 3. The file
datatypes.daml also includes some predefined instances of classes. E.g., the FASTA
format is represented as an instance SF FASTA of the class SequenceFormat in
the datatypes.daml.

<SequenceFormat rdf:ID="SF FASTA">

<sequenceFormatProvider rdf:resource="#P FASTA"/>

</SequenceFormat>

Let us now describe the DAML-S representation of services through an example. We
will present the description of the ClustalW service, a multiple sequence alignment
program [2]. In DAML-S, each service is characterized by a profile representing the
capabilities and parameters of the service, a process model illustrating the workflow of
the service and a grounding file specifying in details how to access the service. The
DAML-S representation of the ClustalW service will correspondingly compose of
four files6.

The first file clustalw-service.daml7 stores information about the locations of the
profile, the process model, and the grounding:

<service:Service rdf:ID="Service ClustalW">

<service:presents

5 www.cs.nmsu.edu/∼tphan/philog/nondet/datatypes.daml.
6 The complete DAML-S descriptions of this service can be found at www.cs.nmsu.edu/
∼tphan/philog/nondet/.

7 www.cs.nmsu.edu/∼tphan/philog/nondet/clustalw-service.daml.

98 Y. Pan et al.

rdf:resource="&clw profile;#Profile ClustalW"/>

<service:describedBy

rdf:resource="&clw process;#Process ClustalW"/>

<service:supports

rdf:resource="&clw grounding;#Grounding ClustalW"/>

</service:Service>

The second file, clustalw-profile.daml 8 is the profile for ClustalW service. It defines
the parameters needed for the invocation of this service and specifies the membership
of this service in the service classification hierarchy. For example, ClustalW is an
instance of the class Align. This is specified by the element

<ftypes:Align rdf:ID="Profile ClustalW">

...

</ftypes:Align>

This file also contains input, output, or precondition elements defining the service’s in-
puts, outputs, and preconditions, respectively. They are the parameters of the service.
The type of each parameter is specified by the restrictedTo property. For exam-
ple, the element

<profile:input> <profile:ParameterDescription

rdf:ID="Sequences">

<profile:restrictedTordf:resource="&ftypes;#UnalignedSequences"/>

<profile:refersTo rdf:resource="&clw process;#sequences"/>

</profile:ParameterDescription> </profile:input>

encodes an input parameter named Sequences of the type
UnalignedSequences.

The third file (the process model file) provides the necessary information for an
agent to use the service. For example, whether it is an atomic process or a composed
process, what are its inputs, outputs, and preconditions. For the ClustalW service9,
the element:

<daml:Class rdf:ID="ClustalWProcess">

<rdfs:subClassOf rdf:resource="&process;#AtomicProcess" />

</daml:Class>

specifies that it is an atomic process. The element:

<daml:Property rdf:ID="sequences">

<daml:subPropertyOf rdf:resource="&process;#input"/>

<daml:domain rdf:resource="#ClustalWProcess"/>

<daml:range rdf:resource="&ftypes;#UnalignedSequences"/>

</daml:Property>

specifies that it has an input of the type UnalignedSequence.

8 www.cs.nmsu.edu/∼tphan/philog/nondet/clustalw-profile.daml.
9 www.cs.nmsu.edu/∼tphan/philog/nondet/clustalw-process.daml.

Construction of an Agent-Based Framework for Evolutionary Biology 99

The grounding model for ClustalW specifies the details of how to access the
service—details having mainly to do with protocol and message formats, serializa-
tion, transport, and addressing. It consists of two complementary parts: a DAML-
S file specifying the mapping between DAML processes/types and WSDL opera-
tions/messages, and a WSDL file designating the binding of messages to various
protocols and formats.

For example, in the file clustalw-grounding.daml we can find the description of the
mapping from the DAML type description of ClustalW’s input to the corresponding
WSDL type:

<grounding:wsdlInputMessage rdf:resource="&wsdl;#clustalwInput"/>

<grounding:wsdlInputs rdf:parseType="daml:collection">

<grounding:wsdlInputMessageMap>

<grounding:damlsParameter rdf:resource="#sequence">

<grounding:wsdlMessagePart>

<xsd:uriReference rdf:value="&wsdl;#sequence">

</grounding:wsdlMessagePart>

</grounding:wsdlInputMessageMap>

</grounding:wsdlInputs>

In the companion WSDL file (clustalw-grounding.wsdl) we can find the binding
information—protocol and message format—for the ClustalW operation, along with
the URL of the service.

3.2 Service Management

The services, together with their classification, are registered with the service broker,
which is responsible for providing service descriptions to the configuration module
and fulfilling service execution requests from the execution monitoring modules. We
employ the OAA system [30] in the development of the service broker. To facilitate
these tasks, a lookup agent and several service wrappers have been developed. The
lookup agent receives high-level action names from the compiler and will match these
actions with possible available services. For example, a request for a high-level ac-
tion align will be answered with the set of all available alignment services such as
service clustalw and service dialign. This process will be detailed in Sec-
tion 5. Service wrappers have been developed for the purpose of executing the services
since most of the bioinformatic services are still offered through http-requests and not
as Web services. Agents—playing the role of service wrappers—are ready for the in-
stantiation and execution of bioinformatic services.

4 ΦLOG Compiler

The objective of the ΦLOG compiler is to process a program written in ΦLOG and
produce as output a high-level sketch of the execution plan—what we call an abstract
plan—a symbol table describing the entities involved in the computation, in terms of
their names and types. The main tasks of the ΦLOG compiler include syntax analysis,
type checking, and construction of the abstract plan.

100 Y. Pan et al.

4.1 Syntax Analysis

Each ΦLOG program contains a sequence of declarations and a sequence of statements.
The declaration part is used to:

• describe the data items (variables) used by the program;
• allow users to select the computational components to be used during execution—

e.g., associate high-level ΦLOG operations to specific bioinformatics tools;
• provide parameters affecting the behavior of the different components.

Each data item used in the program must be properly declared. Declarations are
of the type <variable> : <type> [<properties>] and are used to explicitly de-
scribe data items, by providing a name (<variable>), a description of the nature of the
values that are going to be stored in it (<type>) and eventually properties of the item.
For example, gene1 : Gene (gi | 557882) declares an entity called gene1,
of type Gene, and identifies the initial value for this object—the gene with accession
number 557882 in the GenBank database.

Declarations are also used to identify computational components to be used during
the execution—this allows the user to customize some of the operations performed. For
example, a declaration of the type

align sequences : Operation(CLUSTALW -- alignment = full,

score type = percent, matrix = pam, pairgap = 4);

allows the user to configure the language operation align sequences—a ΦLOG op-
eration to perform sequence alignments—by associating this operation with the align-
ment program (ClustalW), with the given values for the input parameters.

Variable assignments are expressed as:
<output variable> is <operation>(<input variable>).

The syntax itself is self-explanatory. In this prototype, we have focused our attention
on a subset of the possible classes of operations—i.e., <searchOp>, <alignOp>,
<buildTreeOp>, and <specificOp>.

4.2 Type Checking

All variables used in a ΦLOG program must be declared with specific types. ΦLOG
provides two classes of datatypes. The first class includes generic (non-domain specific)
datatypes, while the second class includes all those datatypes that are domain-specific,
like DNA Sequence, Protein, etc. These domain-specific types are defined in our type
system. Part of the datatype hierarchy is shown in Fig. 3. There are two major types of
type checking

• type checking against attributes of objects;
• type checking against input and output variables of operations.

Domain specific datatypes contain attributes that are specific to each type. Those at-
tributes could be either generic or domain specific. Consider the following ΦLOG pro-
gram segment

Construction of an Agent-Based Framework for Evolutionary Biology 101

g1 : Gene (gi | 557882)

se : Sequence

se is sequence(g1)

It assigns to the variable g1 the Gene having accession number GI | 557882 and
extracts its sequence data, which is stored in the variable se. The compiler must check
the datatype hierarchy to verify that GI|557882 is a legal value for an object of type
Gene—i.e., it is a well-formed accession number—and an attribute called sequence
with type Sequence exists for the type Gene. Attribute mismatches and type mis-
matches will cause compiling error.

Type checking is also performed for each operation in the program. Datatypes of
input and output variables are defined in our services ontology (see Figure 2). The
ΦLOG compiler must check the validity of such parameters; for example s2 is
align(s1) performs a multi-sequence alignment operation on the data item s1, stor-
ing the result in data item s2. In order to be able to perform the action, s1 must be of
type UnalignedSequences (i.e., a set of unaligned sequences) and s2 must be of
type AlignedSequences (i.e., a set of aligned sequences).

4.3 Operations Identification and Abstract Plan Assembly

As described in the syntax analysis section, the current preliminary prototype focuses
on a limited classes of operations (explored for feasibility purposes):

<operation> ::= <searchOp> | <alignOp> | <buildTreeOp> |

<specificOp>

<searchOp> ::= <variable> : <variable> is <complexType> and

<attribute>(<variable>) <verb> <literal>

<alignOp> ::= align

<buildTreeOp> ::= build tree

Database search operations are conveniently expressed using intensional set construc-
tions. For example, the following command defines a database search operation

p is { x : x is Gene and name(x) contains "fever" }
The operation searches a nucleotide database—automatically inferred from the type of
the collected variable x—for all genes whose name contains the keyword “fever”,
and the resulting collection of genes is stored in the variable p.

Each syntactic occurrence of an operations leads to the generation of one high-level
action in the abstract plan assembled by the compiler. The identification of the operation
is accomplished by navigating the services hierarchy, with the goal of locating the most
specific class of services corresponding to the specified operation. The operation pro-
vides a link to the most general class of services in the ontology corresponding to such
operation (e.g., the align operation used in a ΦLOG program will link to the general
class of sequence alignment services in service hierarchy); the usage of the operation—
and, in particular, the type of the parameters, inputs, and outputs—will constrain the
focus on appropriate subclasses of services.

The ΦLOG language allows us also to directly refer to specific services (e.g.,
either through a declaration, as illustrated in the previous section, or directly as an

102 Y. Pan et al.

operation). For example, s is ClustalW JP(p) identifies the ClustalW multi-
sequence alignment service located at clustalw.genome.ad.jp. This operation
is described in the service hierarchy, with input type UnalignedSequences and
output type AlignedSequences. However, the use of a specific service is not rec-
ommended in a ΦLOG program because user then can not take advantage of the power
of dynamic service plan composition of the ΦLOG framework.

As another example, the service hierarchy offers three subclasses of
build tree operation—used to construct a phylogenetic inference tree—
that use different algorithms: ParsimonyAlign, DistanceMatrixAlign, and
MaximumLikelyhoodAlign. These operations are differentiated by their input
parameters and the ΦLOG compiler must be able to find the correct match. For
example,

p : UnalignedSequences

m : DistanceMatrix

s is align(p, m)

identifies the operation DistanceMatrixAlign(p, m) because it has two inputs:
a set of unaligned sequences and a distance matrix.

The output produced by the compiler is an abstract plan. The abstract plan is a Con-
Golog program whose actions are high-level actions. Each service is described by a
three elements tuple: 〈A, IL,OL〉 where A is the operation name, IL is the list of A’s
input parameters and OL is the list of A’s output parameters respectively. Each input
or output is of the form (name, type, value), where name, type, and value are the name,
type and value of the input/output respectively. The value of an input or output must be
either a constant or a variable.

In addition to the abstract plan, the output of the compiler also contains information
about all the variables used in the ΦLOG program and a list of high-level actions.
Specifically, for each variable X of type T in the program, there is a corresponding fact
var(X,T) in the output. As an example, consider the ΦLOG program:

Program sample is

p : UnalignedSequences;

s : AlignedSequences;

t : PhylogeneticTree;

begin

p is x : x is Gene and name(x) contains "fever";

s is align(p);

t is build tree(s);

end

This simple program defines a sequence of operations—first search a database to find all
the genes contains the keyword “fever”, then conduct a multiple sequence alignment
operation on the returned sequence set, and finally build a evolution tree based on the
aligned sequence set. The output of the compiler is a list of three high-level actions
db search, align, and build tree and the Prolog program

Construction of an Agent-Based Framework for Evolutionary Biology 103

plan([(db search, [(db,str,nucleotide),(term,str,fever)],

[(sequence,unalignedsequences,p)]),

(align, [(sequence,unalignedsequences,p)],

[(sequence,alignedsequences,s)]),

(build tree,[(inFile,alignedsequences,s)],

[(outputFile,phylogenetictree,t)])]).

var(t,phylogenetictree). var(s,alignedsequences).

var(p,unalignedsequences).

Here, the fact plan(...) represents the ΦLOG program and the set of facts of the
form var(.,.) list the variables used in the program.

5 Configuration Component

The configuration component
plays an important role in
preparing the ΦLOG program
for execution. Its input is an
abstract plan from the com-
piler. Its output is a ConGolog
program with a underlying
situation calculus theory that
will be used by the Planning
and Execution monitoring
module to execute the ΦLOG
program. For the background

PDDAML
Translator

Output
Generator

Action Theories
& GOLOG Program

Service Broker
Service
Lookup

Abstract Plan

Service Names
& URI

PDDL files

Lookup
Agent

High-Level
Services

Fig. 4. Configuration Component

behind this design and its advantages, we refer the readers to our previous paper [27].
Figure 4 shows the phases of the configuration component. We next describe these
phases in more detail.

5.1 DAML-PDDL Translator

The DAML-PDDL translator, in concert with the lookup agent from the broker, which
is developed for the maintenance of the service registry, is responsible for collecting
DAML-S service descriptions, needed for the execution of the ΦLOG program, and
converting them into PDDL files. The lookup agent, after receiving the list of high-
level actions from the compiler, will request the broker for the list of bioinformatic
services which can be used to realize the high-level actions. The lookup agent will
obtain the list of bioinformatic services’ names and locations (URIs) and send them to
the translator. For example, the db search service is realized by the bioinformatic
services ncbi and blast at www.cs.nmsu.edu/∼tphan/philog/nondet/.
For each service, the translator will download the service descriptions from the specified
URIs and convert them to PDDL files10.

10 More precisely, the output is in WebPDDL format.

104 Y. Pan et al.

The DAML-PDDL translator used in this project, called PDDAML, is an au-
tomatic translator between PDDL and DAML from [5]. It is worth noticing that
this step could be eliminated and replaced by a module that translates DAML-
S service descriptions directly into a situation calculus theory. However, we still
adopt this path for several reasons. First of all, the language DAML-S is still un-
der development, and any changes in its specification would also mean changes
to our system. Secondly, the language PDDL is well-known and accepted as the
input language for many planning systems. Furthermore, the DAML-S parser and
analyzer are being developed and updated by the DAML coalition. By using
PDDAML, we make our system less sensitive to changes in the DAML-S specifi-
cation and avoid the need of writing programs for processing DAML-S specifica-
tions.

Each DAML-S file (service, profile, process model, or grounding) — as described in
Section 3 — is translated into a PDDL file, often referred to as a PDDL domain. Each
PDDL domain consists of several sections specifying the external domains that are ex-
tended by the current domain and defining the domain’s entities and their relationships
such as data types, objects, predicates, axioms, etc. As an example, the PDDL domain
representing the profile of the service ClustaW 11, named clustalw-profile-ont,
uses the external domains clustalw-service-ont (representing the service) and
clustalw-process-ont (representing the process model) and defines objects named
Profile ClustalW, Sequences, OutputSequences, etc.; it also contains ax-
ioms describing the input, output, and precondition of the services.

5.2 Generating the Situation Calculus Theory and the ConGolog Program

In the second phase, the configuration component takes the output from the DAML-
PDDL translator (a collection of PDDL files) and from the compiler (the abstract
plan) and generates the situation calculus theory and the ConGolog program for the
Planning and Execution module. This is done in two steps. First, the set of PDDL
domains is combined into a single Prolog file whose facts and rules represent the
objects and axioms in the PDDL files. To avoid naming conflicts between entities
from different domains, we associate to each domain a unique string, called tag,
and prefix each entity of the domain with the corresponding tag. Consider, for ex-
ample, the object Sequences, that represents the input of ClustalW, and is de-
fined in the PDDL domain clustalw-profile-ont (originated from clustalw-
profile.daml) with the type UnalignedSequences. Assume that this domain is
associated with the tag F17. In this case, the object is translated into a predicate
unalignedSequences(F17 Sequences) of the Prolog program.

The final step in the configuration component is to generate the situation calculus
theory and to formulate the ConGolog program corresponding to the ΦLOG program.
This process involves collecting all the necessary information about a particular service
from the Prolog program produced in the previous step and from the abstract plan—the
output of the compiler (see Section 4). This step is performed as follows.

11 Results of the translation process are at www.cs.nmsu.edu/∼tphan/philog/nondet.

Construction of an Agent-Based Framework for Evolutionary Biology 105

Generating the Facts. Each variable X of type T in the ΦLOG program corresponds
to a fact T (X) in the action theory. Similarly, a constant C of type T has the correspond-
ing fact T (C). For example, for the output of the ΦLOG program described in Sec-
tion 4, the destination theory contains the following facts: phylogenetictree(p).

alignedsequences(s). unalignedsequences(t).

str(nucleotide). str(fever).

where p, s, and t are variables, while nucleotide and fever are constants.

Generating the Fluents. For each variable X used in the ΦLOG program, there is
a corresponding fluent variable(X) in the destination ConGolog program. In ad-
dition, there is one more fluent has value(X) to indicate whether that variable has
been assigned some value or not. At the beginning, no variable has been assigned a
value.

prim fluent(variable(p)).

prim fluent(variable(s)).

prim fluent(variable(t)).

prim fluent(has value(X)) :- prim fluent(variable(X)).

Besides, it might be the case that an input of an action12 is required to have some fixed
value. For example, the abstract plan in Section 4 requires that all the db-search
services have “nucleotide” as the value of their first argument and “fever” as
the value of their second argument. To deal with this case, we use a fluent of the form
value(X,V) to say that the value of the input X must be V . The meaning of this kind
of fluents will become more precise when we discuss the executability condition of an
action in the following parts. As an example, the translator will automatically generate
the following fluents for the ΦLOG program output above.

prim fluent(value(f13 db,nucleotide)).

prim fluent(value(f13 term,fever)).

prim fluent(value(f0 db,nucleotide)).

prim fluent(value(f0 term,fever)).

Furthermore, depending on the service description, the situation calculus might have
some additional fluents. For example, since the precondition of ClustalW involves the
format property, the theory will contain the fluent format(X,V) to denote that the
format of some object X is V.

Generating the Actions. Each service occurring in the previous step corresponds to
an action in the destination theory, whose parameters are the inputs and outputs of the
service. The translator will automatically assign a unique variable name for each input
and output of a service. For example, the service ClustalW corresponds to the following
action in the action theory:

prim action(service clustalw(input(F17 sequences),

output(F17 outputsequences))):-

12 Recall that in our system, bioinformatics services are viewed as actions.

106 Y. Pan et al.

unalignedsequences(F17 sequences),

alignedsequences(F17 outputsequences).

It says that the service ClustalW has an input F17 sequences
and output F17 outputsequences, where F17 sequences and
F17 outputsequences are of the types unalignedsequences and
alignedsequences respectively.

In several cases, some services in the local database might be used to formulate
actions in the theory. For instance, we notice that we may need to do some kind of
format conversions for our ΦLOG program. Hence, all the format conversion services
in the local database are looked up and included in the theory. In the future, the search
for related services will be done online, through the service broker.

Generating the Executability Conditions. The following is an example of the exe-
cutability condition for the ClustalW service.

executable(service clustalw(input(F17 sequences),

output(F17 outputsequences)),

and(format(F17 sequences,sf ncbi),

or(value(f17 sequences,F17 sequences),

and(variable(F17 sequences),

has value(F17 sequences))))) :-

unalignedsequences(F17 sequences),

alignedsequences(F17 outputsequences).

The intuition behind the above condition is that, for the service ClustalW to be ex-
ecutable, it requires each of its input parameters either to be a variable that is already
assigned to some value or to have some default value. In addition, it also requires that
the format of the input F17 sequences be sf ncbi.

Generating the Effects. One type of effect of an action is that its outputs will be
assigned some value. For example, the effect of the ClustalW service in the action
theory looks like:

causes val(service clustalw(input(F17 sequences),

output(F17 outputsequences)),

has value(F17 outputsequences),true,true) :-

unalignedsequences(F17 sequences),

alignedsequences(F17 outputsequences).

The other type of effect relates to effects that are explicitly described in the service
description. For example, the BLAST search service has an effect stating that the format
of its output is sf blast. This is represented as follows.

causes val(service blast(input(F13 db,F13 term),

output(F13 outputsequences)),

format(F13 outputsequences,sf blast),true,true) :-

str(F13 db),str(F13 term),

unalignedsequences(F13 outputsequences).

Construction of an Agent-Based Framework for Evolutionary Biology 107

Generating the Initial State. As mentioned previously, for the ΦLOG program we
are considering, initially no variable has been assigned any value. This is represented in
ConGolog as:

initially(variable(p),true).

initially(variable(s),true).

initially(variable(t),true).

initially(has value(t),false).

initially(has value(s),false).

initially(has value(p),false).

initially(value(f13 db,nucleotide),true).

initially(value(f13 term,nucleotide),true).

initially(value(f0 db,nucleotide),true).

initially(value(f0 term,fever),true).

Generating ConGolog Programs. Based on the abstract plan and the domain de-
scription, a ConGolog program representing the concrete plan can be constructed. The
following is an example of such a ConGolog program for the ΦLOG program in
Section 4.

proc(plan,

[service ncbi(input(F0 db,F0 term),output(F0 outputsequences))

make doable

service dialign(input(F21 sequence),output(F21 outputsequences)):

service clustalw(input(F17 sequence),output(F17 outputsequences))

make doable

service treeview(input(F29 inputfile),

output(F29 outputphylogenetictree)):

service dnaml(input(F25 inputfile),

output(F25 outputphylogenetictree))]).

Notice that any pair of consecutive plan steps has a construct make doable in-
between. This construct, introduced in [23], is a relaxation of the sequence construct
of ConGolog.

6 Planning and Execution Monitoring Module

The input of the planning and execution monitoring module consists of a ConGolog
program and a situation calculus theory which represents the original ΦLOG program
and the bioinformatic services, respectively. The module’s job is to execute the Con-
Golog program. To do so, it repeatedly generates traces of the ConGolog program and
executes them until at least one concrete plan succeeds, or all of them fail (Figure 5).

6.1 Planning

The main job of this component is to find a possible trace of the ConGolog pro-
gram which can be successfully executed and then executes this trace. Given a

108 Y. Pan et al.

ConGolog program
and the underlying
situation calculus the-
ory, this problem can
be solved in different
ways by employing
different ConGolog
interpreters [17, 19].
In this paper, we use
an off-line ConGolog
interpreter with the
insertion constructor
‘make doable’ from

Modified
GOLOG

Interpreter

Execution
Monitor

Action Theories
& GOLOG Program

Execution
Output

Service Broker

Service
Descriptions

Service
Invocations

Concrete Plan

Failure

Fig. 5. Planning and Execution Monitoring Module

[23] to generate traces, which we will call hereafter concrete plans.
We prefer the off-line interpreter over the on-line interpreter for different reasons.

First of all, the effects of the actions in our ConGolog programs do not change over
time, i.e., the execution of a service with the same set of input will yield the same
output regardless of its execution time. In this sense, domains in our application
satisfy the IPR condition of [23], and therefore this model of planning and execution
monitoring is suitable. In addition, there are some services whose runtime is large. As
such, a service should be invoked only if it can lead to a successful execution of the
program at hand. This property cannot be satisfied by an on-line interpreter, since it
does not guarantee completeness [19].

The use of the insertion constructor allows ΦLOG ’s users to write ΦLOG programs
without the need of worrying about the data conversion operator in their programs.
This simplifies the process of writing ΦLOG programs considerably since the number
of data formats currently used by bioinformatic services is huge, and each service
only works with certain formats. During the planning phase, the interpreter will
automatically insert the data format conversion operators into the program, whenever
needed. Due to the frequent use of the format conversion utility, we decided to add
the situation calculus representation of the format conversion service to every situation
calculus theory generated by the configuration component.

To illustrate this process, consider the ConGolog program and the corresponding
situation calculus theory from the last section. A possible trace of this program is:

| ?- do(plan,s0,S).

S = do(service treeview(input(s),output(t)),

do(service clustalw(input(p),output(s)),

do(service ncbi(input(nucleotide,fever),output(p)),s0)))) ?

Suppose that the output format of the service NCBI does not match the input format of
the service ClustalW. In this case, the output of the planning process is

| ?- do(plan,s0,S).

S = do(service treeview(input(s),output(t)),

do(service clustalw(input(p),output(s)),

do(conversion(input(p),output(p)),

do(service blast(input(nucleotide,fever),output(p)),s0)))) ?

Construction of an Agent-Based Framework for Evolutionary Biology 109

The action conversion(input(p),output(p)) that converts the output format
of service blast into a format suitable to service clustalw, is the main dif-
ference between the two traces. It ensures that the sequence of actions is executable
from s0.

In order to deal with conditional and loop statements in ΦLOG programs we have
modified the ConGolog interpreter and its output so that it can deal with conditions
whose truth value can only be determined at runtime. We choose to do so instead of
using one of the available modified ConGolog interpreters, such as IndiGolog [18],
for the same reasons that make us favor an off-line over an on-line ConGolog in-
terpreter. Presently, whenever the interpreter cannot evaluate a condition in a condi-
tional/loop statement, the planning process will continue with the guess that the con-
dition is true/false, thus leaving the job of evaluating the condition for the execution
monitoring module. If the evaluation of the condition turns out to be not different than
the guess, the execution monitoring module will report a failure (i.e., a backtrack oc-
curs) and the planning process will continue with the opposite guess that the condi-
tion is false/true, respectively. To illustrate this, let us consider the ConGolog program
s1; if v = 2 then s2 else s3, which involves three services s1, s2, s3 where s1 com-
putes the value of a parameter v, 0 ≤ v ≤ 3. The off-line ConGolog interpreter will
fail to find a trace of this program since it cannot evaluate the condition v = 2 if the
service s1 has not been executed. In our interpreter, the first output is s1; (v = 2)?; s2

(obtained by guessing that v = 2 is true). If a backtrack occurs, the next output is
s1; (¬(v = 2))?; s3. Notice that if a backtrack occurs, s1 will be executed twice. This
might not be a good practice when s1 is a irreversible action (e.g., killing the turkey
is an irreversible action). Because we can always restart (the execution of) a ΦLOG
program, we can safely assume that actions or bioinformatic services in our application
domain are always reversible. Nevertheless, we plan to address this issue in the next
phase of our project.

6.2 Execution Monitoring

The result of the planning process is a concrete plan which is a sequence of bioinfor-
matic services and test conditions. The execution monitoring component will execute
the concrete plan by sequentially executing each services or test for the correctness of
the condition of the plan. If the service somehow fails or the condition is not satisfied,
the execution of the plan fails.

It should be noted that if the low-level services occurring in the concrete plan are web
services, i.e., they are properly constructed and described using a web service markup
language (DAML and WSDL in our case), the invocation of the service is just a matter
of using a standard parser to parse the service grounding information and construct in-
vocation messages accordingly. In the current prototype we have created simple agent
wrappers for the services to support service invocation. Each wrapper agent must reg-
ister their functionalities with the OAA broker—in this case, the functionalities provide
the name of the service and the invocation parameters. For example,

oaa Register(parent, ’ClustalW JP’,

[clustalw jp([(sequence, Sequence)], Resp)], [])

110 Y. Pan et al.

registers with OAA a service called ’ClustalW JP’ which takes one input parameter
named sequence. The service invocation is simply a request to the OAA broker for
execution of one particular service:

oaa Solve(clustalw jp([(sequence, Sequence)], Result), [])

The wrapper agent will handle the actual service invocation—i.e., building the connec-
tion between client and server, constructing the message using either HTTP GET or
POST method, parsing the returning message, and storing the result.

In case of execution failure—e.g., a time-out or loss of connection to the remote
provider—the monitor will take appropriate actions. Repair may involve either repeat-
ing the execution of the service or re-entering the configuration agent. The latter case
may lead to exploring alternative ways of instantiating the partial plan, to avoid the fail-
ing service. The replanning process is developed in such a way to attempt to reuse as
much as possible the part of the concrete plan executed before the failure.

7 Conclusions and Future Work

This paper reports the work that has been done so far in our ΦLOG project. It demon-
strates the feasibility of applying agent technologies in phylogenetic inference applica-
tions. The main achievement in this phase is the development of the ΦLOG compiler,
the configuration component, the execution monitor, and the integration of these com-
ponents within the OAA system and the ConGolog interpreter. The current system can
be used to work with a small class of ΦLOG programs. Much work is still needed
before we can get a system that can execute ΦLOG programs as described in [25],
i.e., most general ΦLOG programs. This will be our concentration in the near future.
We plan to complete the compiler and the configuration component to allow control
constructors in ΦLOG programs. This will also demand changes in the planning and
execution monitoring module. Furthermore, we would like to improve the planning and
execution monitoring module in such a way that results, that have been computed by a
failed concrete plan, can be reused as much as possible in the replanning process.

References

1. Entrez, The Life Sciences Search Engine. www.ncbi.nlm.nih.gov/Entrez/.
2. European Bioinformatics Institute. www.ebi.ac.uk/clustalw/.
3. Gene Data Bank. gdbwww.gdb.org/.
4. OMIN. www.ncbi.nlm.nih.gov/omim/.
5. PDDAML – An Automatic Translator Between PDDL and DAML. www.cs.yale.edu/

homes/dvm/daml/pddl daml translator1.html.
6. The Bioperl Project. www.bioperl.org.
7. UK Human Genome Mapping Project Resource Center. www.hgmp.mrc.ac.uk/

MANUAL/.
8. OmniGene: Standardizing Biological Data Interchange Through Web Services,

omnigene.sourceforge.net, 2001.
9. The BioMOBY Project. biomoby.org, 2002.

Construction of an Agent-Based Framework for Evolutionary Biology 111

10. P.G. Baker, A. Brass, S. Bechoofer, C. Goble, N. Paton, and R. Stevens. TAMBIS – Trans-
parent Access to Multiple Bioinformatics Information Sources. In Proceedings of the Inter-
national Conference on Intelligent Systems for Molecular Biology, 1998.

11. T. Ball, editor. Proc. of the 2nd Conference on Domain-specific Languages. 2000.
12. R. Beavis. The Biopolymer Markup Language (BIOML). TR, ProteoMetrics, LLC, 1999.
13. S. Cao, L. Qin, W. Wang, Y. Zhu, and Y. Li. Application of Gene Ontology in Bio-data

Warehouse. In R. Stevens and R. McEntire, eds, 6th Annual Bio-Ontologies Meeting. 2003.
14. W. Codenie, K. De Hondt, P. Stayaert, and A. Vercammen. From custom applications to

domain-specific frameworks. Communications of the ACM, 40(10):70–77, 1997.
15. C. Consel. Architecturing software using a methodology for language development. In

PLILP, pages 170–194. Springer Verlag, 1998.
16. F. Corradini, L. Mariani, and E. Merelli. A Programming Environment for Global Activity-

based Aplications. In WOA, 2003.
17. G. De Giacomo, Y. Lespérance, and H. Levesque. ConGolog, a concurrent programming

language based on the situation calculus. Artificial Intelligence, 121(1-2):109–169, 2000.
18. G. De Giacomo, H. J. Levesque, and S. Sardiña. Incremental execution of guarded theories.

ACM Transactions on Computational Logic, 2(4):495–525, 2001.
19. G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level robot

programs. In KRR’98, pages 453–465. Morgan Kaufmann Publishers, 1998.
20. G. Gupta and E. Pontelli. Specification, Implementation, and Verification of Domain Spe-

cific Languages: a Logic Programming-based Approach. In CL: from LP into the Future.
Springer, 2001.

21. A.H. Karp. Programming for Parallelism. Computer, 20, May 1987.
22. D. R. Maddison, D.L. Swofford, and W.P. Maddison. NEXUS: An Extensible File Format

for Systematic Information. Syst. Biol., 464(4):590–621, 1997.
23. S. McIlraith and T.C. Son. Adapting golog for composition of semantic web services. In

(KR’2002), pages 482–493. Morgan Kaufmann Publisher, 2002.
24. S. Pearson. DAS: Open Source System for Exchanging Annotations of Genomic Sequence

Data. Technical report, Open Bioinformatics Foundation, 2002.
25. E. Pontelli, D. Ranjan, G. Gupta, and B. Milligan. Design and Implementation of a Domain

Specific Language for Phylogenetic Inference. J. Bio. and Comp. Bio., 2(1):201–230, 2003.
26. R. Reiter. KNOWLEDGE IN ACTION: Logical Foundations for Describing and Implement-

ing Dynamical Systems. MIT Press, 2001.
27. T.C. Son, E. Pontelli, D. Ranjan, B. Milligan, and G. Gupta. An Agent-based Domain Spe-

cific Framework for Rapid Prototyping of Applications in Evolutionary Biology. In Proceed-
ings of the 1st Workshop on Declarative Agent Languages and Technologies, 2003.

28. R. Stevens. Bio-Ontology Reference Collection, cs.man.ac.uk/∼stevens/
onto-publications.html.

29. M.G.J. Van Den Brand, J. Heering, P. Klint, and P.A. Olivier. Compiling Language Defini-
tions: the ASF+SDF Compiler. ACM Trans. on Prog. Languages and Systems, 24(4), 2002.

30. R. Waldinger. Deductive composition of Web software agents. In Proc. NASA Wkshp on
Formal Approaches to Agent-Based Systems, LNCS. Springer-Verlag, 2000.

Reasoning About Agents’ Interaction Protocols
Inside DCaseLP

M. Baldoni1, C. Baroglio1, I. Gungui2, A. Martelli1,
M. Martelli2, V. Mascardi2, V. Patti1, and C. Schifanella1

1 Dipartimento di Informatica,
Università degli Studi di Torino, Italy

{baldoni, baroglio, mrt, patti, schi}@di.unito.it
2 Dipartimento di Informatica e Scienze dell’Informazione,

Università degli Studi di Genova, Italy
1995s133@educ.disi.unige.it, {martelli, mascardi}@disi.unige.it

Abstract. Engineering systems of heterogeneous agents is a difficult
task; one of the ways for achieving the successful industrial deployment
of agent technology is the development of engineering tools that support
the developer in all the steps of design and implementation. In this work
we focus on the problem of supporting the design of agent interaction
protocols by carrying out a methodological integration of the MAS pro-
totyping environment DCaseLP with the agent programming language
DyLOG for reasoning about action and change.

1 Introduction

Multiagent Systems (MASs) involve heterogeneous components which have dif-
ferent ways of representing their knowledge of the world, themselves, and other
agents, and also adopt different mechanisms for reasoning. Despite heterogene-
ity, agents need to interact and exchange information in order to cooperate or
compete not only for the control of shared resources but also to achieve their
aims; this interaction may follow sophisticated communication protocols.

For these reasons and due to the complexity of agents’ behavior, MASs are
difficult to be correctly and efficiently engineered; even developing a working
prototype may require a long time and a lot of effort. In this paper we present
an ongoing research aimed at developing a “multi-language” environment for en-
gineering systems of heterogeneous agents. This environment will allow the pro-
totype developer to specify, verify and implement different aspects of the MAS
and different agents inside the MAS, choosing the most appropriate language
from a given set. In particular, the discussion will be focused on the advan-
tages of integrating an agent programming language for reasoning about actions
and change (using the language DyLOG [9, 7]) into the DCaseLP [4, 21, 29] MAS
prototyping environment.

The development of a prototype system of heterogeneous agents can be car-
ried out in different ways. The “one-size-fits-all” solution consists of developing

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 112–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 113

all the agents by means of the same implementation language and to execute
the obtained program. If this approach is adopted, during the specification stage
it would be natural to select a language that can be directly executed or easily
translated into code, and to use it to specify all the agents in the MAS. The other
solution is to specify each “view” of the MAS (that includes its architecture, the
interaction protocols among agents, the internal architecture and functioning of
each agent), with the most suitable language in order to deal with the MAS’s
peculiar features, and then to verify and execute the obtained specifications in-
side an integrated environment. Such a multi-language environment should offer
the means not only to select the proper specification language for each view
of the MAS but also to check the specifications exploiting formal validation
and verification methods and to produce an implementation of the prototype
in a semi-automatic way. The prototype implementation should be composed of
heterogeneous pieces of code created by semi-automatic translations of hetero-
geneous specifications. Moreover, the multi-language environment should allow
these pieces of code to be seamlessly integrated and capable of interacting.

The greater complexity associated with the latter solution is proportional to
the advantages it gives with respect to the former. In particular, by allowing
different specification languages for modeling different aspects of the MAS, it
provides the flexibility needed to describe the MAS from different points of view.
Moreover, by allowing different specification languages for the internal architec-
ture and functioning of each agent, it respects the differences existing among
agents, namely the way they reason and the way they represent their knowledge,
other agents, and the world. Clearly, this solution also has some drawbacks in
respect to the former. The coherent integration of different languages into the
same environment must be carefully designed and implemented by the environ-
ment creators, who must also take care of the environment maintenance. It must
be emphasized that the developer of the MAS does not have to be an expert of
all the supported languages: he/she will use those he/she is more familiar with,
and this will lead to more reliable specifications and implementations.

DCaseLP (Distributed CaseLP, [4, 21, 29]) integrates a set of specification
and implementation languages in order to model and prototype MASs. It de-
fines a methodology which covers the engineering stages, from the requirements
analysis to the prototype execution, and relies on the use of UML and AUML
(Agent UML, [6]) not only during the requirements analysis, but also to de-
scribe the interaction protocols followed by the agents. The choice of UML
and AUML, initially developed for documentation purposes, to represent in-
teraction protocols in DCaseLP is motivated by the wide support that it is
obtaining from the agent research community. Even if AUML cannot be consid-
ered a standard agent modeling language yet, it has many chances to become
such, as shown by the interest that both the FIPA modeling technical commit-
tee (http://www.fipa.org/activities/modeling.html) and the OMG Agent
Platform Special Interest Group (http://www.objs.com/agent/) demonstrate
in it. Quoting [31]: “The successful industrial deployment of agent technology
requires techniques that reduce the inherent risks in any new technology and

114 M. Baldoni et al.

there are two ways in which this can be done: presenting a new technology as
an extension of a previous, well-established one, or providing engineering tools
that support industry-accepted methods of technology deployment.” We can say
that by choosing a UML-based language we place DCaseLP in the line of both
the proposed strategies.

In DCaseLP, UML and AUML are used to describe the public interaction
protocols, which can be animated by creating agents whose behavior adheres to
the given protocols. The idea of translating UML and AUML diagrams into a
formalism and check their properties by either animating or formally verifying
the resulting code is shared by many researchers working in the agent-oriented
software engineering field [24, 30, 35]. We followed an animation approach to
check that the interaction protocols produced during the requirement specifi-
cation stage are the ones necessary to describe the system requirements and,
moreover, that they are correct. The “coherence check” is done by comparing
the results of the execution runs with the interaction specification [4]. Despite
its usefulness, this approach does not straightforwardly allow the formal proof of
properties of the resulting system a priori: indeed, a key issue in the design and
engineering of interaction protocols, that DCaseLP does not currently address.
One possible extension in the line of [25] is the integration of formal methods to
perform validation tests, i.e., to check the coherence of the AUML description
with the specifications derived from the analysis. To this aim, it is possible to
rely on works that give to AUML sequence diagrams a semantics based on Petri
Nets [22, 23, 12]. Validation tests, however, are just one side of the problem. In
fact, another kind of a priori verification that is very important for the MAS
designer is to check properties of specific implementations, obtained on the basis
of the public protocol description.

One step in this direction is to exploit the characteristic of DCaseLP of being
a multi-language development environment and to integrate a language, DyLOG
[9, 7], which, being based on computational logic, can be exploited both as an
implementation language and for verifying properties. DyLOG is a logic-based
agent language that includes a fully integrated “communication kit”, that al-
lows the implementation of interaction protocols as agent conversation policies
based on speech acts, and it supports reasoning about interaction properties.
In the language reasoning about the conversations, defined by a protocol im-
plementation, basically means to check if there is a conversation after whose
execution a given set of properties holds. This characteristic can for instance be
exploited to determine which protocol, from a set of available ones, satisfies a
goal of interest, and also to compose many protocols for accomplishing complex
tasks. In this perspective, DyLOG is particularly interesting because there is a
conformance relation between DyLOG implementations of interaction protocols
and AUML sequence diagrams: in fact it is possible to prove in a formal way if
every conversation generated by a DyLOG program is correct w.r.t. a specifica-
tion expressed by AUML diagrams [8]. After proving desired properties of the
interaction protocols, the developer can animate them thanks to the facilities
offered by DCaseLP, discussed in Section 2.

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 115

So far, the integration of DyLOG into DCaseLP is a methodological integration:
it extends the set of languages supported by DCaseLP during the MAS engi-
neering process and augments the verification capabilities of DCaseLP, without
requiring any real integration of the DyLOG working interpreter into DCaseLP
(see Section 4). Nevertheless, DyLOG can also be used to directly specify agents
and execute them inside the DCaseLP environment, in order to exploit the dis-
tribution, concurrency, monitoring and debugging facilities that DCaseLP offers.

2 The DCaseLP Environment

DCaseLP is a prototyping environment where agents specified and implemented
in a given set of languages can be seamlessly integrated. It provides an agent-
oriented software engineering methodology to guide the developer during the
analysis of the MAS requirements, its design, and the development of a working
MAS prototype. The methodology is sketched in Figure 1. Solid arrows represent
the information flow from one stage to the next one. Dotted arrows represent
the iterative refinement of previous choices. The first release of DCaseLP did not
realize all the stages of the methodology. In particular, as we have pointed in last
section, the stage of properties verification was not addressed. The integration
of DyLOG into DCaseLP discussed in Section 4 will allow us to address also
the verification phase. The tools and languages supported by the first release of

Knowledge
specification

Role model
specification

Execution of the
prototype

Prototype
implementation

Verification

Prototype
testing

Verification of
specifications

Translation of speci−
fications into code

specification

specification
Design

specification

Analysis

Architecture

Agent class

Agent instance

Properties
verification

Fig. 1. DCaseLP’s methodology

DCaseLP, discussed in [29, 4], included UML and AUML for the specification of
the general structure of the MAS, and Jess [27] and Java for the implementation
of the agents.

DCaseLP adopts an existing multi-view, use-case driven and UML-based
method [5] in the phase of requirements analysis. Once the requirements of the

116 M. Baldoni et al.

application have been clearly identified, the developer can use UML and/or
AUML to describe the interaction protocols followed by the agents, the general
MAS architecture and the agent types and instances. Moreover, the developer
can automatically translate the UML/AUML diagrams, describing the agents in
the MAS, into Jess rule-based code. In the following we will assume that AUML
is used during the requirements analysis stage, although the translation from
AUML into Jess is not fully automated (while the translation from pure UML
into Jess is).

The Jess code obtained from the translation of AUML diagrams must be
manually completed by the developer with the behavioral knowledge which was
not explicitly provided at the specification level. The developer does not need
to have a deep insight into rule-based languages in order to complete the Jess
code, since he/she is guided by comments included in the automatically gener-
ated code. The agents obtained by means of the manual completion of the Jess
code are integrated into the JADE (Java Agent Development Framework, [26])
middle-ware. JADE complies with the FIPA specifications [16] and provides a set
of graphical tools that support the execution, debugging and deployment phases.
The agents can be distributed across several machines and can run concurrently.
By integrating Jess into JADE, we were able to easily monitor and debug the
execution of Jess agents thanks to the monitoring facilities that JADE provides.

A recent extension of DCaseLP, discussed in [21], has been the integration of
tuProlog [36]. The choice of tuProlog was due to two of its features:

1. it is implemented in Java, which makes its integration into JADE easier, and
2. it is very light, which ensures a certain level of efficiency to the prototype.

By extending DCaseLP with tuProlog we have obtained the possibility to
execute agents, whose behavior is completely described by a Prolog-like the-
ory, in the JADE platform. For this purpose, we have developed a library of
predicates that allow agents specified in tuProlog to access the communication
primitives provided by JADE: asynchronous send, asynchronous receive, and
blocking receive (with and without timeout). These predicates are mapped onto
the corresponding JADE primitives. Two predicates for converting strings into
terms and vice-versa are also provided, in order to allow agents to send strings
as the content of their messages, and to reason over them as if they were Prolog
terms.

A developer who wants to define tuProlog agents and integrate them into
JADE can do it without even knowing the details of JADE’s functioning. An
agent whose behavior is written in tuProlog is, in fact, loaded in JADE as an
ordinary agent written in Java. The developer just needs to know how to start
JADE.

3 Interaction Protocols in DyLOG

Logic-based executable agent specification languages have been deeply investi-
gated in the last years [3, 17, 13, 9, 28]. In this section we will briefly recall the

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 117

main features of DyLOG, by focussing on how the communicative behavior of an
agent can be specified and on the form of reasoning supported.

DyLOG is a high-level logic programming language for modeling rational
agents, based on a modal theory of actions and mental attitudes where modal-
ities are used for representing actions, while beliefs model the agent’s internal
state. We refer to a mentalistic approach, which is also adopted by the standard
FIPA-ACL [16], where communicative actions affect the internal mental state of
the agent. More recently, some authors have proposed a social approach to agent
communication [34], where communicative actions affect the “social state” of the
system, rather than the internal states of the agents. The social state records the
social facts, like the permissions and the commitments of the agents, which are
created and modified along the interaction. The dissatisfaction to the mentalistic
approach is mostly due to the difficulty of verifying that an agent acts according
to a commonly agreed semantics, because it is not possible to have access to
the agents’ private mental state [37], a problem known as semantics verification.
The growing interest into the social approach is motivated by the fact that it
overcomes this problem by exploiting a set of established commitments between
the agents, that are stored as part of the MAS social state. In this framework it
is possible to formally prove the correctness of public interaction protocols with
respect to the specifications outcoming from the analysis phases; such proof can
be obtained, for instance, by means of model checking techniques [32, 37, 19, 10]
(but not only, e.g., [11]).

When one passes from the public protocol specification to its implementation
in some language (e.g. Java, DyLOG), a program is obtained which, by defini-
tion, relies on the information contained in the internal “state” of the agent for
deciding which action to execute [20]. In this perspective, the use of a declara-
tive language is helpful because it allows the proof of properties of the specific
implementation in a straightforward way. In particular, the use of a language
that explicitly represents and uses the agent internal state is useful for proving
to which extent certain properties depend on the agent mental state or on the
semantics of the speech acts. For instance, in our work we perform hypothet-
ical reasoning about the effects of conversations on the agent mental state, in
order to find conversation plans which are proved to respect the implemented
protocols, achieving at the same time some desired goal, and we can prove the
conformance of an implemented protocol w.r.t. its specification in AUML.

3.1 DyLOG in Brief

Intuitively, DyLOG [9, 7] allows the specification of rational agents that reason
about their own behavior, choose courses of actions conditioned by their mental
state and can use sensors and communication for obtaining fresh knowledge. The
agent behavior is described by a domain description, which includes, besides
a specification of the agent initial beliefs, a description of the agent behavior
plus a communication kit (denoted by CKitagi), that encodes its communicative
behavior. Atomic actions are either world actions, affecting the world, or mental
actions, i.e., sensing and communicative actions producing new beliefs and then

118 M. Baldoni et al.

affecting the agent mental state. Complex actions are defined through (possibly
recursive) definitions, given by means of Prolog-like clauses and by action opera-
tors from dynamic logic, like sequence “;”, test “?” and non-deterministic choice
“∪”. The action theory allows coping with the problem of reasoning about com-
plex actions with incomplete knowledge and in particular to address the temporal
projection and planning problem in presence of sensing and communication.

Communication is supported both at the level of primitive speech acts and at
the level of interaction protocols. Thus, the communication kit of an agent agi

is defined as a triple (ΠC ,ΠCP ,ΠSget): ΠC is a set of laws defining precondition
and effects of the agent speech acts; ΠCP is a set of procedure axioms, specifying
a set of interaction protocols, and can be intended as a library of conversation
policies, that the agent follows when interacting with others; ΠSget is a set of
sensing axioms for acquiring information by messages reception.

Speech acts are represented as atomic actions with preconditions and effect
on agi’s mental state, of form speech act(agi, agj , l), where agi (sender) and agj

(receiver) are agents and l (a fluent) is the object of the communication. Effects
and preconditions are modeled by a set of effect and precondition laws. We use
the modality � to denote such laws, i.e., formulas that hold always, after every
(possibly empty) arbitrary action sequence.

A DyLOG agent has a twofold representation of each a speech act: one holds
when it is the sender, the other when it is the receiver. As an example, let us
define the semantics of the inform speech act within the DyLOG framework:

a) �(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉�)
b) �([inform(Self,Other, l)]MSelfBOtherl)
c) �(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOtherl)
d) �(� ⊃ 〈inform(Other, Self, l)〉�)
e) �([inform(Other, Self, l)]BSelfBOtherl)
f) �(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

In general, for each action a and agent agi, [aagi] is a universal modality (〈aagi〉
is its dual). [aagi]α means that α holds after every execution of action a by
agent agi, while 〈aagi〉α means that there is a possible execution of a (by agi)
after which α holds. Therefore clause (a) states executability preconditions for
the action inform(Self,Other, l): it specifies the mental conditions that make
the action executable in a state. Intuitively, it states that Self can execute an
inform act only if it believes l (we use the modal operator Bagi to model the
beliefs of agent agi) and it believes that the receiver (Other) does not know l. It
also considers possible that the receiver will adopt its belief (the modal operator
Magi is defined as the dual of Bagi , intuitively Magiϕ means the agi consid-
ers ϕ possible), clause (b), although it cannot be certain about it -autonomy
assumption-. If agent Self believes to be considered a trusted authority about
l by the receiver, it is also confident that Other will adopt its belief, clause (c).
Since executability preconditions can be tested only on the Self mental state,
when Self is the receiver, the action of informing is considered to be always
executable (d). When Self is the receiver, the effect of an inform act is that

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 119

Self will believe that l is believed by the sender (Other), clause (e), but Self
will adopt l as an own belief only if it thinks that Other is a trusted authority,
clause (f).

DyLOG supports also the representation of interaction protocols by means
of procedures, that build on individual speech acts and specify communication
patterns guiding the agent communicative behavior during a protocol-oriented
dialogue. Formally, protocols are expressed by means of a collection of proce-
dure axioms of the action logic of the form 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where p0

is the procedure name the pi’s can be i’s speech acts, special sensing actions
for modeling message reception, test actions (actions of the form Fs?, where
Fs is conjunction of belief formulas) or procedure names 1. Each agent has a
subjective perception of the communication with other agents; for this reason,
given a protocol specification, we have as many procedural representations as
the possible roles in the conversation (see example in the next section).

Message reception is modeled as a special kind of sensing action, what we
call get message actions. Indeed, from the point of view of an individual agent
receiving a message can be interpreted as a query for an external input, whose
outcome cannot be predicted before the actual execution, thus it seems natural
to model it as a special case of sensing. The get message actions are defined by
means of inclusion axioms, that specify a finite set of (alternative) speech acts
expected by the interlocutor.

DyLOG allows reasoning about agents’ communicative behavior, by support-
ing techniques for proving existential properties of the kind “given a protocol
and a set of desiderata, is there a specific conversation, respecting the protocol,
that also satisfies the desired conditions?”. Formally, given a DyLOG domain
description Πagi

containing a CKitagi with the specifications of the interaction
protocols and of the relevant speech acts, a planning activity can be triggered by
existential queries of the form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where each pk (k = 1, . . . , m)
may be a primitive speech act or an interaction protocol, executed by our agent,
or a get message action (in which our agent plays the role of the receiver). Check-
ing if the query succeeds corresponds to answering to the question “is there an
execution of p1, . . . , pm leading to a state where the conjunction of belief for-
mulas Fs holds for agent agi?”. Such an execution is a plan to bring about Fs.
The procedure definition constrains the search space.

Actions in the plan can be speech acts performed or received by agi, the
latter can be read as the assumption that certain messages will be received
from the interlocutor. The ability of making assumptions about which message
(among those foreseen by the protocol) will be received is necessary in order to
actually build the plan. Depending on the task that one has to execute, it may
alternatively be necessary to take into account all of the possible alternatives that
lead to the goal or just to find one of them. In the former case, the extracted
plan will be conditional, because for each get message it will generally contain

1 For sake of brevity, sometimes we will write these axioms as 〈p0〉ϕ ⊂
〈p1; p2; . . . ; pn〉ϕ.

120 M. Baldoni et al.

many branches. Each path in the resulting tree is a linear plan that brings about
Fs. In the latter case, instead, the plan is linear.

4 Integrating DyLOG into DCaseLP to Reason About
Communicating Agents

Let us now illustrate, by means of examples, the advantages of adding to the
current interaction design tools of DCaseLP the possibility of converting AUML
sequence diagrams into a DyLOG program. In the first DCaseLP release, AUML
interaction protocols could be only translated into Jess code, which could not be
formally verified but just executed. The use of DyLOG bears some advantages: on
the one hand it is possible to automatically verify that a DyLOG implementation
is conformant to the AUML specification (see below), moreover, it is also possible
to verify properties of the so obtained DyLOG program. Property proof can be
carried out using the existing DyLOG interpreter, implemented in Sicstus [1].

Besides the methodological integration, DyLOG can be also integrated in a
physical way. Recently we have begun a new implementation in Java of the lan-
guage, based on tuProlog [36]. A visual editor based on Eclipse is also being
implemented; the editor will allow the designer to write DyLOG programs in
a graphical and intuitive way, the designer will also have the possibility of ex-
porting them in OWL [33] for realizing Semantic Web applications like the one
described hereafter. Once the physical integration will be completed, it will be
possible to animate complete DyLOG agents into DCaseLP. This will mean that
agents specified in Jess, Java, DyLOG, will be able to interact with each other
inside a single prototype whose execution will be monitored using JADE.

In the rest of this section, however, we deal with the methodological integra-
tion. Let us suppose, for instance, to be developing a set of interaction protocols
for a restaurant and a cinema that, for promotional reasons, will cooperate in
this way: a customer that makes a reservation at the restaurant will get a free
ticket for a movie shown by the cinema. By restaurant and cinema we here mean
two generic service providers and not a specific restaurant and a specific cinema.
In this scenario the same customer will interact with both providers. The devel-
oper must be sure that the customer, by interacting with the composition (by
sequentialization) of the two protocols, will obtain what desired. Figure 2 shows
an example of AUML protocols, for the two services; (i) and (ii) are followed by
the cinema, (iii) by the restaurant. This level of representation does not allow
any proof of properties because is lacking of a formal semantics. Supposing that
the designed diagrams are correct, the protocols are to be implemented. It is de-
sirable that the correctness of the implementation w.r.t. the AUML specification
can be verified. If the protocols are implemented in DyLOG, this can actually
be done. In [8] we, actually, show that, given an AUML protocol specification
and a DyLOG implementation, it is possible to prove if the latter will never
produce conversations that are not foreseen by the protocol. This problem is
known as conformance verification. Briefly, with reference to Figure 3, this can
be done by turning the problem into a problem of verification of the inclusion of

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 121

CINEMACUSTOMER

queryIf(available(Movie))

X

refuseInform(available(Movie))

inform(~available(Movie))

inform(available(Movie))

yes_no_query

[available(Movie)]
queryIf(cinema_promo)

X

refuseInform(cinema_promo)

inform(~cinema_promo)

inform(cinema_promo)

[available(Movie),cinema_promo]
inform(ft_number)

[available(Movie),cinema_promo]
inform(reservation(Movie))

yes_no_query

CINEMACUSTOMER

yes_no_query(available(Movie))

[available(Movie)]
yes_no_query(cinema_promo)

[available(Movie),~cinema_promo]
yes_no_query(pay_by(c_card))

[available(Movie),~cinema_promo,
pay_by(c_card)]inform(cc_number)

[available(Movie,~cinema_promo,
pay_by(c_card)]inform(reservation(Movie))

(i) (ii)

RESTAURANTCUSTOMER

yes_no_query(available(Time)

[available(Time)]
inform(reservation(Time))

[available(Time)]
inform(cinema_promo)

[available(Time)]
inform(ft_numeber)

(iii)

Fig. 2. AUML sequence diagrams representing the interactions between customer and
provider: (i) and (ii) are followed by the cinema service, (iii) is followed by the restau-
rant. Formulas in square brackets represent preconditions to speech act execution

the language of all the sequences generated by the implementation L(GpDyLOG
)

in the language of all the sequence generated by the AUML sequence diagram
L(GpAUML

). In particular, we have studied the dependence of conformance on
the agent private mental state and on the semantics of speech acts, proposing
three degrees of conformance, at different levels of abstraction. The strongest of
the three, protocol conformance, is proved to be decidable and tractable, and if
it holds also the other degrees (which depend at some extent on the the agent
mental state) hold.

Let us describe one possible implementation of the two protocols in a Dy-
LOG program. Each implemented protocol will have two complementary views
(customer and provider) but for the sake of brevity, we report only the view
of the customer. It is easy to see how the structure of the procedure clauses
corresponds to the sequence of AUML operators in the sequence diagrams. The
subscripts next to the protocol names are a writing convention for representing
the role that the agent plays; so, for instance, Q stands for querier, and C for
customer. The customer view of the restaurant protocol is the following:

122 M. Baldoni et al.

Fig. 3. Conformance verification of a DyLOG implementation w.r.t. an AUML protocol:
the problem is interpreted as the verification of language inclusion

(a) 〈reserv restC(Self, Service, T ime)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Time)) ;

BSelfavailable(Time)? ;
get info(Self, Service, reservation(Time)) ;
get info(Self, Service, cinema promo) ;
get info(Self, Service, ft number)〉ϕ

(b) [get info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ

Procedure (a) is the protocol procedure: the customer asks if a table is available
at a certain time, if so, the restaurant informs it that a reservation has been
taken and that it gained a promotional free ticket for a cinema (cinema promo),
whose code number (ft number) is returned. Clause (b) shows how get info can
be implemented as an inform act executed by the service and having as recipient
the customer. The question mark amounts to check the value of a fluent in
the current state; the semicolon is the sequencing operator of two actions. The
cinema protocol, instead, is:

(c) 〈reserv cinemaC(Self, Service, Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

¬BSelfcinema promo? ;
yes no queryI(Self, Service, pay by(c card)) ;

BSelfpay by(c card)? ;
inform(Self, Service, cc number) ;
get info(Self, Service, reservation(Movie))〉ϕ

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 123

(d) 〈reserv cinemaC(Self, Service, Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

BSelfcinema promo? ;
inform(Self, Service, ft number) ;
get info(Self, Service, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the cinema alternatively ac-
cepts credit card payments (c) or promotional tickets (d). We can verify if the
two implementations can be composed with the desired effect, by using the rea-
soning mechanisms embedded in the language and answering to the query:

〈reserv restC(customer, restaurant, dinner) ;
reserv cinemaC(customer, cinema, movie)〉

(Bcustomercinema promo ∧ Bcustomerreservation(dinner)∧
Bcustomerreservation(movie) ∧ BcustomerBcinemaft number)

This query amounts to determine if it is possible to compose the interaction
so to reserve a table for dinner (Bcustomerreservation(dinner)) and to book a
ticket for the movie movie (Bcustomerreservation(movie)), exploiting a promo-
tion (Bcustomercinema promo). The obtained free ticket is to be spent (Bcustomer

Bcinema ft number), i.e., customer believes that after the conversation the cho-
sen cinema will know the number of the ticket given by the selected restaurant.
If the customer has neither a reservation for dinner nor one for the cinema or a
free ticket, the query succeeds, returning the following linear plan:

queryIf(customer, restaurant, available(dinner)) ;

inform(restaurant, customer, available(dinner)) ;

inform(restaurant, customer, reservation(dinner)) ;
inform(restaurant, customer, cinema promo) ;
inform(restaurant, customer, ft number) ;
queryIf(customer, cinema, available(movie)) ;

inform(cinema, customer, available(movie)) ;

queryIf(cinema, customer, cinema promo) ;
inform(customer, cinema, cinema promo) ;
inform(customer, cinema, ft number) ;
inform(cinema, customer, reservation(movie))

This means that there is first a conversation between customer and restaurant
and, then, a conversation between customer and cinema, that are instances of
the respective conversation protocols, after which the desired condition holds.
The linear plan, will, actually lead to the desired goal given that some assump-
tions about the provider’s answers hold. In the above plan, assumptions have
been outlined with a box. For instance, an assumption for reserving a seat at a
cinema is that there is a free seat, a fact that can be known only at execution
time. Assumptions occur when the interlocutor can respond in different ways
depending on its internal state. It is not possible to know in this phase which

124 M. Baldoni et al.

the answer will be, but since the set of the possible answers is given by the pro-
tocol, it is possible to identify the subset that leads to the goal. In the example
they are answers foreseen by a yes no query protocol (see Figure 2 (i) and [7]).
Returning such assumptions to the designer is also very important to understand
the correctness of the implementation also with respect to the chosen speech act
ontology.

Using DyLOG as an implementation language is useful also for other purposes.
For instance, if a library of protocol implementations is available, a designer
might will to search for one that fits the requirements of some new project.
Let us suppose, for instance, that the developer must design a protocol for a
restaurant where a reservation can be made, not necessarily using a credit card.
The developer will, then, search the library of available protocol implementa-
tions, looking for one that satisfies this request. Given that search service is
a procedure for searching in a library for a given category of protocol, a pro-
tocol fits the request if there is at least one conversation generated by it after
which ¬Bservicecc number; such a conversation can be found by answering to
the existential query:

〈search service(restaurant, Protocol) ; Protocol(customer, service, time)〉
(Bcustomer¬Bservicecc number ∧ Bcustomerreservation(time))

which means: find a protocol with at least one execution after which the cus-
tomer is sure that the provider does not know his/her credit card number and
a reservation has been taken.

5 Generating and Executing Jess Agents That Adhere
to the AUML Protocols

From the AUML sequence diagrams represented in Figure 4, and by defining two
more AUML diagrams that provide information on the classes and instances of
agents that will be involved in the MAS (“class diagram” and “agent diagram”,
see [4, 29]) we can automatically generate the Jess code for the given agent
classes. Here, by “agent class” we mean a group of agents that share the same
role (in the restaurant + cinema example the roles are customer, cinema and
restaurant) and the same internal structure (in the restaurant + cinema example
agents are conceptualized using mental attitudes, thus we can assume that their
internal structure is based on a BDI-style architecture). The code for the program
that characterizes each class must be completed by adding the conditions under
which a message can be sent. In the diagrams in Figure 4, these conditions
appear just above the message which labels each arrow, thus the developer can
easily add them to the Jess code. Once the code is completed, the developer must
define the initial state of the agent instances. The information about the initial
state cannot be found in the diagrams in Figure 4, since these diagrams describe
general patterns of interaction between roles, rather than between instances of
agents, and they abstract from the details that characterize the agents’ state.

As an example, the Jess rule shown in Table 1 is taken from the program of the
agents that play the Cinema role. It manages the situation in which the Cinema

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 125

agent has received a queryIf(available(Movie)) message from an agent playing the
role of Customer, and that there are seats available for Movie. In this case an
inform(available(Movie)) message is to be sent to the Customer agent2. The bold
font indicates the part of code added by the developer. The added code, (seats
?movie ?s) and (> ?s 0), allows to retrieve the seats available for movie, and
to verify that they are more than zero.

Table 1. Jess rule for the Cinema agent class

(defrule E 2 1 1
(state E 1 ?cid)
(seats ?movie ?s)
(¿ ?s 0)

=>
(assert (state E 2 1 1 ?cid))
(retract-string

(str-cat ”(state E 1 ” ?cid ”)”))
(send (assert (ACLMessage

(communicative-act inform)
(role-sender Cinema) (role-receiver Customer)
(conversation-id ?cid) (content (available ?movie))))))))

The developer will be interested in configuring simulation runs which differ
from the initial state of the agents involved, and check that, whatever the initial
state may be, the interaction protocols are always followed and the properties
verified using DyLOG are always satisfied. For each simulation run, once the
initial state of the agents has been defined, the Java classes for interfacing Jess
and JADE can be automatically created and the resulting JADE prototype can
be executed.

The agent’s state determines the protocol diagram branch that will be fol-
lowed in a simulation run. As an example, let us suppose that the customer
agent Customer 1 sends a queryIf(available(the lord of the rings)) request to the
cinema agent Cinema 1. If the current state of Cinema 1 includes the informa-
tion (seats ?the lord of the rings 2), the client request can be accepted and the
number of available seats for the “The Lord of the Rings” movie is updated
consequently. Cinema 1 will then ask to Customer 1 if it adheres to the pro-
motional offer of a free ticket. Since Customer 1 adheres to the offer, it will
issue an inform(cinema promo) message followed by the number of its free ticket.
The interaction ends when Cinema 1 confirms the reservation by sending an in-
form(reservation(the lord of the rings)) message to Customer 1.

2 The syntax of messages used in both Figure 4 and this paragraph is Prolog-like,
while Jess uses a Lisp-like syntax with variables preceeded by a question mark.
Messages can be easily converted from the Prolog-like syntax to the Lisp-like one,
and vice-versa.

126 M. Baldoni et al.

Let us also suppose that, besides Customer 1, in the MAS there are two more
customer agents, namely Customer 2, which does not adhere to the promotional
offer, and Customer 3, which adheres to the promotional offer. Both of them
want to buy a ticket for the “The Lord of the Rings” movie. Customer 2 asks
if there are available seats to Cinema 1 and gets the information that there is
one. Cinema 1 considers this seat as reserved, and thus, when Customer 3 asks for
available seats, it answers that there are no more left: the ones initially possessed
by Cinema 1 have already been issued to Customer 1 and Customer 2.

The performatives of messages exchanged between Cinema 1 and Customer 1
can be seen in Figure 4 which shows the output of the JADE Sniffer agent.
Figure 5 shows the details of the message that Cinema 1 sends to Customer 3 to
inform it that there are no seats left.

Fig. 4. Interactions between three customers interested in the “The Lord of the Rings”
movie, and a cinema

By running the prototype a sufficient number of times starting from as many
different agents’ initial states as possible, all the possible evolutions of the MAS
should be observed. If the software engineer who captured the requirements
of the system using the AUML diagrams of Figure 4 forgot to describe some
interaction patterns or described them incorrectly, and the verification carried
out by means of DyLOG did not allow to discover these deficiencies, the prototype
execution may help the developer in completing (resp. correcting) the missing
(resp. incorrect) interaction patterns.

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 127

Fig. 5. Details of the last message sent by Cinema 1 to Customer 3

The possibility to both verify some properties of a set of AUML diagrams by
means of their translation into DyLOG, and animate the diagrams by creating
a simulation of a MAS, helps the MAS engineer in the task of developing a
real MAS that is correct w.r.t. the initial requirements. Once the simulation of
the MAS works properly, the real MAS can be obtained by substituting the
agents developed using Jess, with agents that show the same behavior but are
developed using Java3. A prototype of the MAS that includes only Java agents,
is very close to a final implementation. Java agents can easily act as interfaces
towards existing services, databases or the Web thus allowing the integration of
legacy software and data and the interaction with Web services.

The integration of DyLOG inside DCaseLP, although just methodological, is
a step forward towards achieving the goal of making DCaseLP a truly multi
lingual environment, where agents that are heterogeneous in both the language
they are specified/implemented and in their internal architecture4 are used in
the different stages of the engineering process.

3 The substitution should be carried out in such a way that the internal and social
behavior of the Java agents is exactly the same as the one of the Jess agents. For
the moment, techniques and tools for proving the correctness of the substitution are
not provided with the DCaseLP environment: the MAS developer must ensure this
correctness by him-/herself.

4 The agents of the restaurant + cinema example have a BDI-like architecture, but
simpler reactive or proactive agents could be specified/implemented as well using
Jess and Java.

128 M. Baldoni et al.

6 Conclusions and Related Work

AOSE does not yet supply solid and complete environments for the seamless in-
tegration of heterogeneous specification and implementation languages, nonethe-
less, some interesting results have already been achieved with the development
of prototypical environments for engineering heterogeneous agents. Just to cite
some of them, the AgentTool development system [2] is a Java-based graphical
development environment to help users analyze, design, and implement MASs. It
is designed to support the Multiagent Systems Engineering (MaSE) methodology
[14], which can be used by the system designer to graphically define a high-level
system behavior. The system designer defines the types of agents in the system
as well as the possible communications that may take place between them. This
system-level specification is then refined for each type of agent in the system.
To refine the specification of an agent, the designer either selects or creates an
agent’s architecture and then provides detailed behavioral specification for each
component in such architecture. Zeus [38] is an environment developed by British
Telecommunications for specifying and implementing collaborative agents, fol-
lowing a clear methodology and using the software tools provided by the environ-
ment. The approach of Zeus to the development of a MAS consists of analysis,
design, realization and runtime support. The first two stages of the methodology
are described in detail in the documentation, but only the last two stages are
supported by software tools. The description of other prototyping environments
can be found starting from the UMBC Web Site (http://agents.umbc.edu)
and following the path Applications and Software, Software, Academic,
Platforms. The reader can refer to [15] for a comparison between some of them,
including the predecessor of DCaseLP (CaseLP).

In respect to the existing MAS prototyping environments, DCaseLP stres-
ses the aspect of multi-language support to cope with the heterogeneity of both
the views of the MAS and the agents. This aspect is usually not considered in
depth, and this is the reason why we opted to work with DCaseLP rather than
with other existing environments. In particular, in this paper we have focused on
the methodological integration of the agent logic-based implementation language
DyLOG into the MAS prototyping environment DCaseLP, with the main aim of
exploiting the formal methods supported by DyLOG in order to reason about
agent protocol-driven interactions.

A methodology for integrating DyLOG into DCaseLP has been proposed that
is based on the semi-automatic generation of a DyLOG implementation from an
AUML sequence diagram, in a similar way as it has been done for the AUML →
Jess translation [4]. Such an integration allows to support the MAS developer
in many ways. In fact, by means of this integration we add to DCaseLP the
ability of verifying properties of the implemented protocols during the design
phase of the MAS; this feature is not offered by DCaseLP (without DyLOG)
since protocols can only be translated into Jess code and executed. The ability
of reasoning about possible interactions is very useful in many practical tasks.
In this paper we have shown a couple of examples of use: selection of already
developed protocols from a library and verification of compositional properties.

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 129

In recent work, part of the authors have used formal methods for proving
other kinds of properties of the interaction protocols implemented in DyLOG. In
particular, we have faced the conformance problem, which amounts to determine
if a given protocol implementation respects a protocol specification (in our case
the specification language is AUML). In [8] we have, in fact, proposed three def-
initions of conformance, characterized by different levels of abstraction from the
agent private mental state, we have shown that by interpreting the conformance
test as a problem of language inclusion, protocol conformance (the strongest of
the three) is actually decidable and tractable (see Figure 3).

In the future, we mean to study the application of other techniques derived
from the area of logic-based protocol verification [18] where the problem of prov-
ing universal properties of interaction protocols (i.e., properties that hold after
every possible execution of the protocol) is faced. Such techniques could be ex-
ploited to perform the validation stage [25] in order to check the coherence of
the AUML description with the specifications derived from the analysis. This is
usually done by defining a model of the protocol (AUML) and expressing the
specification by a temporal logic formula; thus model checking techniques test if
the model satisfies the temporal logic formula.

Acknowledgement

This research is partially supported by MIUR Cofin 2003 “Logic-based develop-
ment and verification of multi-agent systems (MASSiVE)” national project.

References

1. Advanced logic in computing environment. Available at http://www.di.unito.

it/~alice/.
2. AgentTool development system. http://www.cis.ksu.edu/ sdeloach/ai/projects/

agentTool/agentool.htm.
3. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V.S. Subrahmanian. IM-

PACT: a platform for collaborating agents. IEEE Intelligent Systems, 14(2):64–72,
1999.

4. E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From Requirement Spec-
ification to Prototype Execution: a Combination of a Multiview Use-Case Driven
Method and Agent-Oriented Techniques. In J. Debenham and K. Zhang, edi-
tors, Proceedings of the 15th International Conference on Software Engineering
and Knowledge Engineering (SEKE’03), pages 578–585. The Knowledge System
Institute, 2003.

5. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Re-
quirement Specification. In Proceedings of SEKE 2002. ACM Press, 2002.

6. AUML Home Page. http://www.auml.org.
7. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:

communicating agents in a modal action logic. In C. Blundo and C. Laneve, editors,
Theoretical Computer Science, 8th Italian Conference, ICTCS’2003, volume 2841
of LNCS, pages 228–241, Bertinoro, Italy, October 2003. Springer.

130 M. Baldoni et al.

8. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying proto-
col conformance for logic-based communicating agents. In J. Leite and P. Torroni,
editors, Pre-Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, pages 82–97, Lisbon, Portugal, September 2004.

9. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

10. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational
model for conversation policies for agent communication. In J. Leite and P. Torroni,
editors, Pre-Proc. of 5th Int. Workshop on Computational Logic in Multi-Agent
Systems, CLIMA V, pages 66–81, Lisbon, Portugal, September 2004.

11. A. Bracciali, P. Mancarella, K. Stathis, and F. Toni. On modelling declaratively
multiagent systems. In Proceedings of the Workshop on Declarative Agent Lan-
guages and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this
volume.

12. L. Cabac and D. Moldt. Formal semantics for AUML agent interaction protocol
diagrams. In Proceedings of Agent-Oriented Software Engineering (AOSE), 2004.

13. G. De Giacomo, Y. Lespérance, and H. J. Levesque. CONGOLOG, a concurrent
programming language based on situation calculus. Artificial Intelligence, 121:109–
169, 2000.

14. S. A. DeLoach. Methodologies and Software Engineering for Agent Systems, chapter
The MaSE Methodology. Kluwer Academic Publisher, 2004. To appear.

15. T. Eiter and V. Mascardi. Comparing Environments for Developing Software
Agents. AI Communications, 15(4):169–197, 2002.

16. FIPA Specifications. http://www.fipa.org.

17. M. Fisher. A survey of concurrent METATEM - the language and its applications.
In D. M. Gabbay and H.J. Ohlbach, editors, Proc. of the 1st Int. Conf. on Temporal
Logic (ICTL’94), LNCS 827, pages 480–505. Springer-Verlag, 1994.

18. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Systems of
Communicating Agents in a Temporal Action Logic. In A. Cappelli and F. Turini,
editors, Proc. of the 8th Conf. of AI*IA, LNAI 2829, Springer-Verlag, 2003.

19. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA’04), LNAI 3229,
pages 57–69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

20. F. Guerin and J. Pitt. Verification and Compliance Testing. In M.P. Huget, editor,
Communication in Multiagent Systems, LNAI 2650, pages 98–112. Springer-Verlag,
2003.

21. I. Gungui and V. Mascardi. Integrating tuProlog into DCaseLP to engineer
heterogeneous agent systems. Proceedings of CILC 2004. Available at http:

//www.disi.unige.it/person/MascardiV/Download/CILC04a.pdf.gz.

22. G. Gutnik and G. Kaminka. A scalable Petri Net representation of interaction
protocols for overhearing. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), volume 3, pages
1246–1247, 2004.

23. G. Gutnik and G.A. Kaminka. A comprehensive Petri Net representation for
multi-agent conversations. Technical Report 2004/1, Bar-Ilan University, 2004.

24. M-P. Huget. Model checking agent UML protocol diagrams. Technical Report
ULCS–02–012, CS Department, University of Liverpool, UK, 2002.

Reasoning About Agents’ Interaction Protocols Inside DCaseLP 131

25. M.P. Huget and J.L. Koning. Interaction Protocol Engineering. In M.P. Huget, ed-
itor, Communication in Multiagent Systems, LNAI 2650, pages 179–193. Springer,
2003.

26. JADE Home Page. http://jade.cselt.it/.
27. Jess Home Page. http://herzberg.ca.sandia.gov/jess/.
28. J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors. Proceedings of the Work-

shop on Declarative Agent Languages and Technologies (DALT’04), LNCS 3476,
Springer-Verlag (2005). This volume.

29. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO
and rule-based languages to specify, implement and execute agents. In F. Bucca-
furri, editor, Proceedings of the 8th APPIA-GULP-PRODE Joint Conference on
Declarative Programming (AGP’03), pages 275–286, 2003.

30. H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design
for complex interactions in multi-agent systems. In C. Castelfranchi and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pages 517–526. ACM
Press, 2002.

31. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Pro-
ceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence. 2000.

32. L. R. Pokorny and C. R. Ramakrishnan. Modeling and verification of distributed
autonomous agents using logic programming. In Proceedings of the Workshop on
Declarative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-
Verlag (2005). In this volume.

33. C. Schifanella, L. Lusso, M. Baldoni, and C. Baroglio. Design and development of
a visual environment for writing dylog, 2004. Submitted.

34. M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.

35. F. Stolzenburg and T. Arai. From the specification of multiagent systems by stat-
echarts to their formal analysis by model checking: Towards safety-critical appli-
cations. In M. Schillo, M. Klusch, J. Müller, and H. Tianfield, editors, Proceedings
of the First German Conference on Multiagent System Technologies, LNAI 2831,
pages 131–143. Springer-Verlag, 2003.

36. tuProlog Home Page. http://lia.deis.unibo.it/research/tuprolog/.
37. C. Walton. Model checking agent dialogues. In Proceedings of the Workshop on

Declarative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-
Verlag (2005). In this volume.

38. ZEUS Home Page. http://more.btexact.com/projects/agents.htm.

Model Checking Agent Dialogues

Christopher D. Walton

Centre for Intelligent Systems and their Applications (CISA),
School of Informatics, University of Edinburgh, UK

Tel: +44-(0)131-650-2718
cdw@inf.ed.ac.uk

Abstract. In this paper we address the challenges associated with the verification
of correctness of communication between agents in Multi-Agent Systems. Our
approach applies model-checking techniques to protocols which express interac-
tions between a group of agents in the form of a dialogue. We define a lightweight
protocol language which can express a wide range of dialogue types, and we use
the SPIN model checker to verify properties of this language. Our early results
show this approach has a high success rate in the detection of failures in agent
dialogues.

1 Introduction

A popular basis for agent communication in Multi-Agent Systems (MAS) is the the-
ory of speech acts, which is generally recognised to have come from the work of the
philosopher John Austin [1]. This theory recognises that certain natural language ut-
terances have the characteristics of physical actions in that they change the state of the
world (e.g., declaring war). Austin identified a number of performative verbs which
correspond to different types of speech acts, e.g., inform, promise, request. The theory
of speech acts has been adapted for expressing interactions between agents by many
MAS researchers, and this is most visible in the development of Agent Communication
Languages (ACLs). The two most popular ACLs are currently the Knowledge Query
and Manipulation Language (KQML) [2] and the Foundation for Intelligent Physical
Agents ACL (FIPA-ACL) [3]. In these languages, the model of interaction between
agents is based on the exchange of messages. KQML and FIPA-ACL define sets of per-
formatives (message types) that express the intended meaning of the messages. These
languages do not define the actual content of the messages and they assume a reliable
method of message exchange.

In order to connect the theory of speech acts with the rational processes of agents,
Cohen and Levesque defined a general theory of rational action [4]. This theory is itself
based upon the theory of intentional reasoning, developed by the philosopher Michael
Bratman [5], which introduced the notion that human behaviour can be predicted and
explained through the use of attitudes (mental states), e.g., believing, fearing, hoping.
In the general theory, speech acts are modelled as actions performed by agents to sat-
isfy their intentions. The FIPA-ACL specification recognises this theory by providing
a formal semantics for the performatives expressed in Belief-Desire-Intension (BDI)
logic [6]. A BDI semantics for KQML has also been developed [7]. The combination

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 132–147, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Model Checking Agent Dialogues 133

of speech acts and intentional reasoning provides an appealing theoretical basis for the
specification and verification of MAS [8]. Similarly, the KQML and FIPA standards
provide useful frameworks for the implementation of MAS based upon these theories,
e.g., JADE [9].

Nonetheless, there is a growing dissatisfaction with the mentalistic model of agency
as a basis for defining inter-operable agents between different agent platforms [10, 11].
Inter-operability requires that agents built by different organisations, and using differ-
ent software systems, are able to reliably communicate with one another in a common
language with an agreed semantics. The problem with the BDI model as a basis for
inter-operable agents is that although agents can be defined according to a commonly
agreed semantics, it is not generally possible to verify that an agent is acting according
to these semantics. This stems from the fact that it is not known how to assign mental
states systematically to arbitrary programs. For example, we have no way of knowing
whether an agent actually believes a particular fact. For the semantics to be verifiable it
would be necessary to have access to an agents’ internal mental states. This problem is
known as the semantic verification problem and is detailed in [12].

To understand why semantic verification is a highly-desirable property for an inter-
operable agent system it is necessary to view the communication between agents as
part of a coherent dialogue between the agents. According to the theory of rational
action, the dialogue emerges from a sequence of speech acts performed by an agent
to satisfy their intentions. Furthermore, agents should be able to recognise and reason
about the other agents intentions based upon these speech acts. For example, according
to the FIPA-ACL standard, if an agent receives an inform message then it is entitled
to believe that the sender believes the proposition in the message. There is an under-
lying sincerity assumption in this definition which demands that agents always act in
accordance with their intentions. This assumption is considered too restrictive in an
open environment as it will always be possible for an insincere agent to simulate any
required internal state, and we cannot verify the sincerity of an agent as we have no
access to is mental states.

In order to avoid the problems associated with the mentalistic model, and thereby
express a greater range of dialogue types, a number of alternative semantics for ex-
pressing rational agency have been proposed. The two approaches that have received
the most attention are a semantics based on social commitments, and a semantics based
on dialogue games [13].

The key concept of the social commitment model is the establishment of shared
commitments between agents. A social commitment between agents is a binding agree-
ment from one agent to another. The commitment distinguishes between the creditor
who commits to a course of action, and the debtor on whose behalf the action is done.
Establishing a commitment constrains the subsequent actions of the agent until the com-
mitment is discharged. Commitments are stored as part of the social state of the MAS
and are verifiable. A theory which combines speech acts with social commitments is
outlined in [14].

Dialogue games can trace their origins to the philosophical tradition of Aristo-
tle. Dialogue games have been used to study fallacious reasoning, for natural lan-
guage processing and generation, and to develop a game-theoretic semantics for various

134 C.D. Walton

logics. These games can also be applied in MAS as the basis for interaction between
autonomous agents. A group of agents participate in a dialogue game in which their
utterances correspond to moves in this game. Different rules can be applied to the
game, which correspond to different dialogue types, e.g., persuasion, negotiation, en-
quiry [15]. For example, a persuasion dialogue begins with an assertion and ends when
the proponent withdraws the claim or the opponent concedes the claim. A framework
which permits different kinds of dialogue games, and also meta-dialogues is outlined
in [16].

There is an additional problem of verification of the BDI model, which we term the
concurrency verification problem. A system constructed using the BDI model defines
a complex concurrent system of communicating agents. Concurrency introduces non-
determinism into the system which gives rise to a large number of potential problems,
such as synchronisation, fairness, and deadlocks. It is difficult, even for an experienced
designer, to obtain a good intuition for the behaviour of a concurrent protocol, primarily
due to the large number of possible interleavings which can occur. Traditional debug-
ging and simulation techniques cannot readily explore all of the possible behaviours of
such systems, and therefore significant problems can remain undiscovered. The detec-
tion of problems in these systems is typically accomplished through the use of formal
verification techniques such as theorem proving and model checking.

In order to address the concurrency verification problem, a number of attempts have
been made to apply model checking to models of BDI agents [17, 18, 19, 20]. The model
checking technique is appealing as it is an automated process, though it is limited to
finite-state systems. A model checker normally performs an exhaustive search of the
state space of a system to determine if a particular property holds and, given sufficient
resources, the procedure will always terminate with a yes/no answer.

One of the main issues in the verification of software systems using model check-
ing techniques is the state-space explosion problem. The exhaustive nature of model
checking means that the state space can rapidly grow beyond the available resources
as the size of the model increases. Thus, in order to successfully check a system it is
necessary that the model is as small as possible. However, it is a fundamental concept
of the BDI model that communicative acts are generated by agents in order to satisfy
their intentions. Therefore, in order to model check BDI agents we must represent both
rational and communicative processes in the model. This problem has affected previous
attempts to model-check multi-agent systems e.g., [18], which use the BDI model as the
basis for the verification process, limiting the applicability to very small agent models.

In this paper we do not adopt a specific semantics of rational agency, or define a
fixed model of interaction between agents. Our belief is that in a truly heterogeneous
agent system we cannot constrain the agents to any particular model. For example, web-
service [21] agents are rapidly becoming an attractive alternative to BDI-based agents.
Instead, we define a model of dialogue which separates the rational process and inter-
actions from the actual dialogue itself. This is accomplished through the adoption of a
dialogue protocol which exists at a layer between these processes. This approach has
been adopted in the Conversation Policy [22] and Electronic Institutions [23, 24] for-
malisms, among others. The definition presented in this paper differs in that dialogue
protocol specifications can be directly executed. We define a lightweight language of

Model Checking Agent Dialogues 135

Multi-Agent dialogue Protocols (MAP) as an alternative to the state-chart [25] repre-
sentation of protocols. Our formalism allows the definition of infinite-state dialogues
and the mechanical processing of the resulting dialogue protocols. MAP protocols con-
tain only a representation of the communicative processes of the agents and the resulting
models are therefore significantly simpler.

Dialogue protocols specify complex concurrent and asynchronous patterns of com-
munication between agents. This approach does not suffer from the semantic verifica-
tion problem as the state of the dialogue is defined in the protocol itself, and it is straight-
forward to verify that an agent is acting in accordance with the protocol. Nonetheless,
our experiences with defining dialogue protocols in MAP have shown that it is a dif-
ficult task to define correct protocols, even for simple dialogues. The problem is not
related to the internal states of the agent, but rather as a result of unexpected interac-
tions between agents. For example, the receipt of a stale bid may adversely affect an
auction. In general, the prediction of undesirable behaviour in our dialogue protocols
is non trivial. Thus, the focus of this paper if on the verification of dialogue protocols
specified in MAP.

We use the SPIN model checker [26] to verify our MAP protocols, as we have
no desire to construct our own model checking system. The SPIN model checker has
been in development for many years and includes a large number of techniques for
improving the efficiency of the model checking, e.g., partial-order reduction, state-
compression, and on-the-fly verification. SPIN accepts design specifications in its own
language PROMELA (PROcess MEta-LAnguage), and verifies correctness claims spec-
ified as Linear Temporal Logic (LTL) formula. The verification of our dialogue proto-
cols is achieved by a translation from the MAP language to an abstract representation in
PROMELA. We use this representation in SPIN to check a number of properties of the
protocols, such as termination, liveness, and correctness. Our approach to translation
is similar to [19], though we are primarily interested in checking general properties of
inter-agent communication rather than specific BDI properties.

Our presentation in this paper is structured as follows: in Section 2 we define the
syntax of the Multi-Agent Protocol (MAP) language. In Section 3 we specify the es-
sential features of a translation from MAP to PROMELA which enables us to perform
model checking of our protocols, and discuss our initial model checking results. We
conclude in Section 4 with a discussion of future work.

2 The MAP Language

The MAP language is a lightweight dialogue protocol language which provides a re-
placement for the state-chart representation of protocols found in Electronic Institu-
tions. The underlying semantics of our language is derived from process calculus. In
particular MAP can be considered a sugared variant of the π-calculus [27]. We have
redefined the core of the Electronic Institutions framework to provide an executable
specification, while retaining the concepts of scenes, and roles.

The division of agent dialogues into scenes is a key concept in our protocol lan-
guage. A scene can be thought of as a bounded space in which a group agents interact
on a single task. The use of scenes divides a large protocol into manageable chunks. For

136 C.D. Walton

example, a negotiation scene may be part of a larger marketplace institution. Scenes also
add a measure of security to a protocol, in that agents which are not relevant to the task
are excluded from the scene. This can prevent interference with the protocol and limits
the number of exceptions and special cases that must be considered in the design of
the protocol. Additional security measures can also be introduced into a scene, such as
placing entry and exit conditions on the agents, though we do not deal with these here.
However, we assume that a scene places barrier conditions on the agents, such that a
scene cannot begin until all the agents are present, and the agents cannot leave the scene
until the dialogue is complete.

P ::= n(r{M})+ (Scene)

M ::= method(φ(k)) = op (Method)

op ::= α (Action)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| waitfor op1 timeout op2 (Iteration)
| call(φ(k)) (Recursion)

α ::= ε (No Action)
| v = p(φ(k)) (Decision)
| M => agent(φ1, φ2) (Send)
| M <= agent(φ1, φ2) (Receive)

M ::= ρ(φ(k)) (Performative)

φ ::= _ | a | r | c | v (Terms)

Fig. 1. MAP Abstract Syntax

The concept of an agent role is also central to our definition of a dialogue protocol.
Agents entering a scene assume a fixed role which persists until the end of the scene. For
example, a negotiation scene may involve agents with the roles of buyer and seller. The
protocol which the agent follows in a dialogue will typically depend on the role of the
agent. For example, an agent acting as a seller will typically attempt to maximise profit
and will act accordingly in the negotiation. A role also identifies capabilities which the
agent must provide. For example, the buyer must have the capability to make buying
decisions and to purchase items. Capabilities are related to the rational processes of the
agent and are encapsulated by decision procedures in our definition.

The abstract syntax of MAP is presented in Figure 1. We have also defined a corre-
sponding concrete XML-based syntax for MAP which is used in our implementation. A
scene protocol P is uniquely named n and defined as a (non-empty) sequence of roles
r, each of which define a set of methods M. Agents have a fixed role for the duration
of the protocol, and are individually identified by unique names a. A method M can
be considered a procedure where φ(k) are the arguments. The initial protocol for an
agent is specified by setting φ(k) to be empty (i.e., k = 0). Protocols are constructed
from operations op which control the flow of the protocol, and actions α which have

Model Checking Agent Dialogues 137

side-effects, and can fail. The interface between the protocol and the rational process
of the agent is achieved through the invocation of decision procedures p. Interaction
between agents is performed by the exchange of messages M which contain performa-
tives ρ. Procedures and performatives are parameterised by terms φ, which are either
variables v, agent names a, role names r, constants c, or wild-cards _. Variables are
bound to terms by unification which occurs in the invocation of procedures, the receipt
of messages, or through recursive calls.

OFFER(S, B)
INITIAL

BUYER

DELIBERATEDELIBERATE

ACCEPT

SELLER

REJECT

REJECT(S, B)REJECT(B, S)

ACCEPT(B, S) ACCEPT(S, B)

PROPOSE(B, S)

PROPOSE(S, B)

Fig. 2. Negotiation Protocol

We will now define a simple negotiation protocol, which will illustrate the MAP
language and act as an example for model-checking. Before we present the definition
of this protocol in MAP, we consider a state-based description of the protocol, as shown
in Figure 2. The state-based description is similar to a specification of the protocol in
the Electronic Institutions framework, e.g., [24].

Our negotiation protocol is an attempt to simulate a standard bargaining process be-
tween two parties (a buyer and a seller). We do not impose artificial constraints, such as
turns or rounds, on the participants in the protocol. The negotiation begins with an offer
from the seller to the buyer, which we denote with the message OFFER(S, B). Upon
receipt of the initial offer, the buyer enters a deliberative state, in which a decision is
required. The buyer can accept or reject the offer in which case the protocol terminates.
The buyer can also make a proposal to the seller PROPOSE(B, S), e.g., an offer at
a lower price. If a proposal is made to the seller, then the seller enters a deliberative
state. The seller can in turn accept or reject the proposal, or make a counterproposal.
If a counterproposal is made, the buyer deliberates further. Thus, the negotiation is ef-
fectively captured by a sequence of proposals and counter-proposals between the buyer
and the seller.

138 C.D. Walton

A definition of the negotiation protocol in MAP syntax is presented in Figure 3. For
convenience, we distinguish between the different types of terms by prefixing variables
names with $, and role names with %. We define two roles: %buyer and %seller.
Each of these roles has three associated methods which define the protocol states for
the roles.

When exchanging messages through send and receive actions, a unification of terms
in the definition agent(φ1, φ2) is performed, where φ1 is matched against the agent
name, and φ2 against the agent role. For example, when the buyer receives the initial
offer, in line 5 of the protocol, the terms will match any agent whose role is a %seller,
and $seller will be bound to the name of the seller.

The semantics of message passing corresponds to reliable, buffered, non-blocking
communication. Sending a message will succeed immediately if an agent matches the
definition, and the message M will be stored in a buffer on the recipient. Receiving a
message involves an additional unification step. The message M supplied in the def-
inition is treated as a template to be matched against any message in the buffer. For
example, in line 19 of the protocol, a message must match accept($sellvalue),
and the variable $sellvalue will be bound to the content of the message if the match
is successful. Sending a message will fail if no agent matches the supplied terms, and
receiving a message will fail if no message matches the message template.

The send and receive actions complete immediately and do not delay the agent. For
this reason, all of the receive actions are wrapped by waitfor loops to avoid race
conditions. For example, in line 18 the agent will loop until a message is received. If
this loop was not present the agent may fail to find a response and the protocol would
terminate prematurely. The advantage of non-blocking communication is that we can
check for the receipt of a number of different messages. For example, in lines 19, 20, and
21 the protocol, the agent waits for either an accept, reject, or propose message
respectively. The waitfor loop includes a timeout condition which is triggered
after a certain interval has elapsed. The timeout is defined to restart the loop (in lines
23 and 37), though we could define an alternative behaviour, such as withdrawing from
the negotiation. Timeouts give us a measure of fault tolerance in the presence of delays
or failures.

At various points in the protocol, an agent is required to perform various tasks,
e.g., making a decision, or retrieving some information. This is achieved through the
use of decision procedures. As stated earlier, a decision procedure provide an interface
between the dialogue protocol and the rational processes of the agent. In our language,
a decision procedure p takes a number of terms as arguments and returns a single result
in a variable v. The actual implementation of the decision procedure is external to the
dialogue protocol. For example, the acceptOffer decision procedure in line 31 of
the dialogue refers to an external decision procedure, which can be arbitrarily complex,
e.g., based on reputation, or according to some negotiation strategy.

The operations in the protocol are sequenced by the then operator which evaluates
op1 followed by op2, unless op1 involved an action which failed. The failure of ac-
tions is handled by the or operator. This operator is defined such that if op1 fails, then
op2 is evaluated, otherwise op2 is ignored. External data is represented by constants
c in our language. We do not attempt to assign types to this data, rather we leave the

Model Checking Agent Dialogues 139

1 negotiate[
2 %buyer{
3 method() =
4 waitfor
5 (offer($value) <= agent($seller, %seller) then
6 call(deliberate, $value, $seller))
7 timeout (e)
8
9 method(deliberate, $value, $seller) =
10 ($newvalue = acceptOffer($value, $seller) then
11 accept($value) => agent($seller, %seller))
12 or ($newvalue = counterPropose($value, $seller) then
13 propose($newvalue) => agent($seller, %seller) then
14 call(wait, $newvalue))
15 or reject($value) => agent($seller, %seller)
16
17 method(wait, $value) =
18 waitfor
19 (accept($sellvalue) <= agent($seller, %seller)
20 or reject($oldvalue) <= agent($seller, %seller)
21 or (propose($newvalue) <= agent($seller, %seller)
22 then call(deliberate, $newvalue, $seller)))
23 timeout (call(wait, $value))}
24
25 %seller{
26 method() =
27 $value = getValue() then
28 offer($value) => agent(_, %buyer) then
29 call(wait, $value)
30
31 method(wait, $value) =
32 waitfor
33 (accept($sellvalue) <= agent($buyer, %buyer)
34 or reject($oldvalue) <= agent($buyer, %buyer)
35 or (propose($newvalue) <= agent($buyer, %buyer) then
36 call(deliberate, $newvalue, $buyer)))
37 timeout (call(wait, $value))
38
39 method(deliberate, $value, $buyer) =
40 ($newvalue = acceptOffer($value, $buyer) then
41 accept($value) => agent($buyer, %buyer))
42 or ($newvalue = counterPropose($value, $buyer) then
43 propose($newvalue) => agent($buyer, %buyer) then
44 call(wait, $newvalue))
45 or reject($value) => agent($buyer, %buyer)}]

Fig. 3. MAP Negotiation Protocol

140 C.D. Walton

interpretation of this data to the decision procedures. For example, in line 27 the starting
value is returned by the getValue procedure, and interpreted by the acceptOffer
procedure in line 10. Constants can therefore refer to complex data-types, e.g., currency,
flat-file data, XML documents.

It should be clear that MAP is a powerful language for expressing multi-agent di-
alogues. It is important to note that MAP is only intended to express protocols, and is
not intended to be a general-purpose language for computation. Therefore, the relative
paucity of features, e.g., no user-defined data-types, is entirely appropriate. Further-
more, MAP is designed to be a lightweight protocol language and only a minimal set of
operations has been provided. It is intended that MAP protocols will be automatically
generated, e.g., from a planning system, or from visual tools such as ISLANDER [28].

n(r{M})+ � [[M1]] ∧ · · · ∧ [[Mk]] (Scene)

method(φ(k)) = op � [[op]] ∆ ∪ {φ(k) �→ op} (Protocol)

α � ⊥ | � (Action)

op1 then op2 � [[op1]] ∧ �[[op2]] (Sequence)

op1 or op2 � [[op1]] ∨ [[op2]] (Choice)

waitfor op1 timeout op2 � �([[op1]] ∨ [[op2]]) (Iteration)

call(φ(k)) � [[∆(φ(k))]] (Recursion)

Fig. 4. MAP Denotational Semantics

A formal operational semantics for the MAP language has previously been pre-
sented in [29], together with an encoding of an auction protocol. It is also helpful to
define the semantics of MAP denotationally to show what is being computed mathe-
matically. Thus, we now sketch the semantics of MAP in a modal temporal logic. We
require only one modal construct: the term �ϕ denotes that the expression ϕ is true at
some future time. Figure 4 illustrates the translations into this form for the operations
of MAP. The square brackets indicate that the translation should be applied recursively.
The environment ∆ stores mappings from method arguments to operations. For each
action α, we must make a judgement as to whether the action is true � or false ⊥. We
note that the semantics are for a stricter variant of the language, where the choice oper-
ations are evaluated non-deterministic, rather than in left-to-right order. This behaviour
is useful for exposing errors in the protocols which may otherwise remain hidden.

We have used our language to specify a wide range of other protocols, including a
range of popular negotiation and auction protocols. We have also restated the semantics
of the FIPA-ACL performatives in MAP. Figure 5 gives a flavour of this transformation,
with a (simplified) encoding of the FIPA inform performative. We also outline an
encoding of the dialogue-games model in [30].

Model Checking Agent Dialogues 141

FIPA Semantics: < i, inform(j, Φ) >
FP : BiΦ ∧ ¬Bi(BifjΦ ∨ UifjΦ)
RE : BjΦ

MAP Encoding: method(inform, $p, $i, $j) =
believe($i, $p) then
not(believe($i, bif($j, $p)) then
not(believe($i, uif($j, $p)) then
inform(p) => agent($j, _) then
assert(believe, $j, $p)

Fig. 5. Encoding of FIPA inform Performative

3 Model Checking MAP

The first step in the application of SPIN model checking to MAP protocols is the con-
struction of an appropriate system model. The underlying framework for modelling in
SPIN is the Kripke structure, though this is well hidden underneath its own process
meta-language PROMELA. SPIN translates the PROMELA language into Kripke struc-
tures, through a (loose) mapping of processes to states and channels to transitions. To
generate the appropriate model for our MAP protocols, we perform a a translation from
the MAP language to an abstract representation in PROMELA. Of particular importance
in this translation is the level of abstraction of the model on which the verification is
performed. If the level of abstraction is too low-level, the state space will be too large
and verification will be impossible. For example, it would be possible to construct a
meta-interpreter for MAP protocols in PROMELA, but this would be unlikely to yield
a sufficiently compact representation. Conversely, if the level of abstraction is too high
then important issues will be obscured by the representation. Our chosen method of
representation is a syntax-directed translation of the MAP protocols into PROMELA.

At an intuitive level there are a number of apparent similarities between MAP and
PROMELA. For example, both are based on the notion of asynchronous sequential pro-
cesses (or agents), and both assume that communication is performed via message
passing. These high-level similarities significantly simplify the translation as we can
translate MAP agents directly into PROMELA processes and agent communication into
message passing over buffered channels. Nonetheless, the translation of the low-level
details of MAP is not so straightforward as there are significant semantic differences in
the execution behaviour of the languages.

There are three key points of semantic mismatch between MAP and PROMELA
which we must address. The first of these concerns the order of execution of the state-
ments. In MAP, we assume a depth-first execution order, while PROMELA is based on
guarded commands [31]. The MAP language makes use of unification for the invoca-
tion of decision procedures, for recursion, and in message passing, while PROMELA has
a call-by-value semantics. Furthermore, MAP assumes that messages can be retrieved

142 C.D. Walton

in an arbitrary order (by unification), while PROMELA enforces a strict queue of mes-
sages. Finally, we must consider how to represent MAP decision procedures in our
specification. We will now sketch how these semantic differences are handled in our
translation system.

We cannot readily represent the MAP execution tree in PROMELA as the language
does not permit the definition of complex data structures. Our adopted solution involves
flattening the execution tree through the translations shown in Figure 6. The templates
shown are applied recursively, where T (op) denotes a further translation of the oper-
ation op. We use a reserved variable fail to indicate whether a failure has occurred.
This variable is tested on the execution of then and or operations. If a failure occurs,
we skip all of the intermediate operations until an or node is encountered at which
point the execution resumes. In this way we simulate the essential behaviour of the
depth-first algorithm.

MAP: op1 then op2 op1 or op2

PROMELA: fail = false ; fail = false ;
T (op1) ; T (op1) ;
if if

:: (fail == false) -> :: (fail == true) ->
T (op2) fail = false ; T (op2)

:: else -> skip :: else -> skip
fi fi

Fig. 6. Control Flow Translation

Pattern matching is an essential part of the MAP language as it is used in method
invocation, and in the exchange of messages. Pattern matching is achieved through the
unification of terms, which may bind variables to values. As PROMELA does not support
pattern matching, we must perform a match compilation step in order to unfold the uni-
fication into a sequence of conditional tests. We do not describe the match compilation
further here as there are many existing algorithms for performing this task.

We previously stated that messages are stored in buffered channels in PROMELA,
and we define a separate message buffer for each agent. However, a message buffer acts
as a FIFO queue, and the messages must be retrieved in a strict order from the front of
the queue. By contrast, messages in MAP are retrieved by unification and any message
in the queue may be returned as a result. To simulate the required behaviour, we must
remove all of the messages in the queue in turn and compare them with the required
message by unification. The first message that is successfully matched is stored and the
remaining messages are returned to the queue. We note that it is not enough simply to
examine all the messages in the queue in-place, as we must also remove a matching
message.

A remaining issue in the translation process is the treatment of decision proce-
dures, which are references to external rational processes. For example, in our ne-
gotiation the buyer may make a counterproposal, expressed in line 12: $newvalue

Model Checking Agent Dialogues 143

= counterPropose($value, %seller). The separation of rational processes
from the communicative processes is a key feature in MAP. Nonetheless, the decision
procedures are ultimately responsible for controlling the protocol and must be repre-
sented in some manner by our translation to PROMELA. To address this issue we make
the observation that the purpose of a decision procedure is to make a yes/no decision.
Similarly, the purpose of the model checking process is to detect errors in the proto-
col and not in the decision procedures. Thus, based on these observations we can in
principle replace a decision procedure with any code that returns a yes/no decision.
Furthermore, if this code returns a non-deterministic decision, the exhaustive nature of
the model checking process will mean that all possible behaviours of the protocol will
be explored. In other words, the model checker will explore all consequences for the
protocol where the decision was yes, and where the decision was no.

Our translation of decision procedures into PROMELA is achieved by exploiting
the non-determinism of guarded commands in the language. The semantics of guarded
commands is such that if more than one guard is executable in a given situation, a
non-deterministic choice is made between the guards. Therefore, the code fragment
presented in Figure 7 can act as a suitable substitute for the counterPropose deci-
sion procedure. The decision is marked as atomic as this improves the efficiency of
the model checking operation.

1 /* Decision: counterPropose */
2 atomic {
3 if
4 :: true -> fail = true
5 :: true -> newvalue = PROC_COUNTERPROPOSE
6 fi }

Fig. 7. Translation of counterPropose Decision Procedure

We have now sketched the essence of the translation from MAP to PROMELA. There
are a number of residual implementation issues, such as the implementation of parallel
composition, but these can be readily represented in PROMELA. The result of the trans-
lation is an specification of a protocol in PROMELA which replicates the semantics of
the protocol as defined in MAP.

Our initial model checking experiments with the SPIN model checker have focused
on the termination of MAP protocols. This is an important consideration in the design
of protocols, as we do not (normally) want to define scenes that cannot conclude. Non-
termination can occur as a result of many different issues such as deadlocks, live-locks,
infinite recursion, and message synchronisation errors. We also want to ensure that pro-
tocols do not simply terminate due to failure within the protocol. The termination con-
dition is the most straightforward to validate. Given that progress is a requirement in
almost every concurrent system, the SPIN model checker automatically verifies this
property by default. Every PROMELA process has one or more associated end states,
which denote the valid termination points. The final state of a process is implicitly an
end state. The termination condition states that every process eventually reaches a valid

144 C.D. Walton

end state. This can be expressed as the following LTL formula, where end1 is the
end state for the first process, and end2 is the end state for the second process, etc:
�(�(end1 ∧ end2 ∧ end3 ∧ · · ·)). We append the PROMELA code in Figure 8 to
the end of each translated process. The test in line 2 will block if a failure has occurred,
and the process will be prevented from reaching the end-state in line 3, i.e., the process
will not terminate.

1 /* Check For Failure */
2 fail == false ;
3 end: skip

Fig. 8. Test for Protocol Failure

One of the main pragmatic issues associated with model checking is producing a
state space that is sufficiently small to be checking with the available resources (1GB
memory in our case). Hence, it is frequently necessary to make a number of simplifying
assumptions in order to work within these limits. The negotiation protocol which we
have defined does not place any restriction on the length of the deliberation process and
is therefore in effect an infinite protocol. Model checking is restricted to finite models,
and therefore we must set a limit on the length of the negotiation. We therefore set a
limit of 50 cycles before the negotiation if forced to terminate.

An issue that was uncovered in the verification of the negotiation protocol is the
treatment of certain decision procedures. Our protocol was designed under the assump-
tion that the getValue() procedure would always return a value to be used as the
starting value of the negotiation. However, our translation makes no such assumption
as it substitutes a non-deterministic choice for each decision procedure. Therefore, the
result is that if the getValue() procedure fails, then the seller agent will terminate
with a failure, and the buyer will timeout. The issue with decision procedures was re-
solved by introducing a new type of procedure into the MAP language, corresponding
to a simple procedure that does not fail. We have found that it is often useful in the
design of MAP protocols to have simple procedures which perform basic tasks, such as
recording or returning values, and performing calculations. Amending the negotiation
protocol with a simple getValue() procedure resulted in a model which successfully
passed the model checking process.

4 Results and Conclusions

In this paper we have presented a novel language for representing Multi-Agent Dia-
logue Protocols (MAP), and we have outlined a syntax-directed translation from MAP
into PROMELA for use in conjunction with the SPIN model checker. Our translator has
been applied to a number of protocols, including the negotiation example in this pa-
per. We were pleased to find that the model checking process uncovered issues in these
protocols which had remained hidden during simulation. We believe that this is a sig-
nificant achievement in the design of reliable agent dialogue protocols. In contrast with

Model Checking Agent Dialogues 145

existing approaches to model checking MAS, our protocols remain acceptable in terms
of memory and time consumption. Furthermore, we verify the actual protocol that will
be executed, rather than an abstract version of the system.

Our MAP protocol language was designed to be independent of any particular model
of rational agency. This makes the verification applicable to heterogeneous agent sys-
tems. Nonetheless, we recognise that the BDI model is still of significant importance to
the agent community. To address this issue, we are currently defining a system which
translates FIPA-ACL specifications into MAP protocols. We believe this will allow us
to overcome the problems of the BDI model highlighted in the introduction, and will
yield models that do not suffer from state-space explosion.

The translation system which we have outlined in this paper is designed to per-
form automatic checking of MAP protocols. This makes the system suitable for use
by non-experts who do not need to understand the model checking process. However,
this approach places restrictions on the kinds of properties of the protocols that we can
check. In our negotiation example, we can check that the protocol terminates, but we
cannot check for a particular outcome. This is a result of our abstraction of decision
procedures to non-deterministic entities.

Our current research is aimed at extending the range of properties of dialogue pro-
tocols that can be checked with model checking. In order to check a greater range
of properties we must augment the PROMELA translation with additional information
about the protocol. This information, and the resulting properties that we can check, are
specific to the protocol under verification. We have been able to verify protocol-specific
properties with a hand-encoding of the decision procedures as PROMELA macros, but
this relies on a detailed knowledge of the translation system. The provision of a general
solution to the specification of protocol-specific properties remains as further work.

Acknowledgements

This work is sponsored by the UK Engineering and Physical Sciences Research Council
(EPSRC Grant GR/N15764/01) Advanced Knowledge Technologies Interdisciplinary
Research Collaboration (AKT-IRC).

References

1. Austin, J.L.: How to Do Things With Words. Oxford University Press, Oxford, UK (1962)
2. Patil, R., Fikes, R.F., Patel-Schneider, P.F., McKay, D., Finin, T., Gruber, T., Neches, R.: The

DARPA Knowledge Sharing Effort: Progress Report. In Nebel, B., Rich, C., Swartout, W.,
eds.: KR’92. Principles of Knowledge Representation and Reasoning: Proceedings of the
Third International Conference. Morgan Kaufmann, San Mateo, California (1992) 777–788

3. Foundation for Intelligent Physical Agents: Fipa specification part 2 - agent communication
language. Available at: www.fipa.org (1999)

4. Cohen, P.R., Levesque, H.J.: Rational interaction as the basis for communication. Intentions
in Communication (1990) 221–256

5. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA (1987)

146 C.D. Walton

6. Rao, A.S., Georgeff, M.: Decision procedures for BDI logics. Journal of Logic and Compu-
tation 8 (1998) 293–344

7. Labrou, Y., Finin, T.: Semantics and conversations for an agent communication language. In:
Proceedings of the FIfteenth International Joint Conference of Artificial Intelligence (IJCAI-
97), Nagoya, Japan (1997) 584–591

8. Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)
9. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA-compliant agent framework. In: Pro-

ceedings of the 1999 Conference on Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM’99), London, UK (1999) 97–108

10. Singh, M.P.: Agent Communication Languages: Rethinking the Principles. IEEE Computer
(1998) 40–47

11. Labrou, Y., Finin, T.: Comments on the specification for FIPA ’97 Agent Communication
Language. Available at: www.cs.umbc.edu/kqml/papers/ (1997)

12. Wooldridge, M.: Semantic issues in the verification of agent communication languages.
Autonomous Agents and Multi-Agent Systems 3 (2000) 9–31

13. Maudet, N., Chaib-draa, B.: Commitment-based and Dialogue-game based Protocols–News
Trends in Agent Communication Language. The Knowledge Engineering Review 17 (2002)
157–179

14. Flores, R.A., Kremer, R.C.: Bringing Coherence to Agent Conversations. In: Proceedings
of Agent-Oriented Software Engineering (AOSE 2001). Volume 2222 of Lecture Notes in
Computer Science., Montreal, Canada, Springer-Verlag (2002) 50–67

15. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1995)

16. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dialogues be-
tween autonomous agents. Journal of Logic, Language and Information 11 (2002) 315–334

17. Benerecetti, M., Giunchiglia, F., Serafini, L.: Model Checking Multiagent Systems. Journal
of Logic and Computation 8 (1998) 401–423

18. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model Checking Multiagent systems
with MABLE. In: Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-02), Bologna, Italy (2002)

19. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model Checking AgentSpeak.
In: Proceedings of the Second International Joint Conference on Autonomous Agents &
Multiagent Systems (AAMAS), Melbourne, Australia, ACM (2003) 409–416

20. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.J.: State-space Reduction Techniques in
Agent Verification. In: Proceedings of the Third International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-04), New York, USA, ACM Press (2004) 896–
903

21. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:
Web Services Architecture. World-Wide-Web Consortium (W3C). (2003) Available at:
www.w3.org/TR/ws-arch/.

22. Greaves, M., Holmback, H., Bradshaw, J.: What is a Conversation Policy? In: Proceedings of
the Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents
’99, Seattle, Washington (1999)

23. Esteva, M., Rodrı́guez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal Specification of
Electronic Institutions. In: Agent-mediated Electronic Commerce (The European AgentLink
Perspective). Number 1991 in Lecture Notes in Artificial Intelligence (2001) 126–147

24. Vaconcelos, W.: Norm Verification and Analysis of Electronic Institutions. In: 2004 Work-
shop on Declarative Agent Languages and Technologies (DALT-04), New York, USA (2004)
141–155

25. Harel, D.: Statecharts: A Visual Formalism for Computer System. Science of Computer
Programming 8 (1987) 231–274

Model Checking Agent Dialogues 147

26. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison Wesley
(2003)

27. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes (Part 1/2). Information
and Computation 100 (1992) 1–77

28. Esteva, M., Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents & Multiagent
Systems (AAMAS), Bologna, Italy, ACM press (2002) 1045–1052

29. Walton, C.: Multi-Agent Dialogue Protocols. In: Proceedings of the Eighth International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida (2004)

30. McGinnis, J.P., Robertson, D., Walton, C.: Using Distributed Protocols as an Implementation
of Dialogue Games. In: Proceedings of the 1st European Workshop on Multi-Agent Systems
(EUMAS-03), Oxford, UK (2003)

31. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18 (1975) 453–457

Modeling and Verification of Distributed
Autonomous Agents Using Logic Programming

L. Robert Pokorny and C.R. Ramakrishnan

Department of Computer Science,
State University of New York at Stony Brook,
Stony Brook, New York, 11794-4400, U.S.A.
pokorny@xsb.com, cram@cs.sunysb.edu

Abstract. Systems of autonomous agents providing automated services
over the Web are fast becoming a reality. Often these agent systems
are constructed using procedural architectures that provide a framework
for connecting agent components that perform specific tasks. The agent
designer codes the tasks necessary to perform a service and uses the
framework to connect the tasks into an integrated agent structure. This
bottom up approach does not provide an easy mechanism for confirming
global properties of constructed agent systems. In this paper we propose
a declarative methodology based on logic programming for modeling such
procedurally constructed agents and specifying their global properties as
temporal logic formulas. This methodology allows us to bring to bear
a body of work for using logic programming based model checking to
verify certain global properties of procedurally constructed Multi-Agent
Systems.

1 Introduction

The Internet is fast becoming a venue for automated services. The advent of
the Semantic Web and Web Services fosters an environment where complex
services can be provided that are composed of a number of tasks. The tasks
that compose the service are often accomplished by a group of autonomous
agent programs. These agents communicate asynchronously over a LAN or the
Internet to provide the desired service. Ideally, specifying agents as programs
in a declarative logic programming language facilitates the implementation of
agent systems for desired service. It also provides a formal model for proving
that the implemented agent system performs the service with expected results.

While a number of high-level formalisms for specifying multi-agent systems
have been proposed (see, e.g. [23, 3, 20]), many agent systems are currently being
implemented in a procedural language such as Java. Development and deploy-
ment of agent systems using traditional languages such as Java has been simpli-
fied by the presence of frameworks that provide a rich array of services. These
range from communication and database interfaces to persistence and fault-
tolerance (e.g., the Cognitive Agent Architecture, Cougaar [2]). It should be
noted that the standardization efforts in the web services community

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 148–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling and Verification of Distributed Autonomous Agents 149

(e.g. BPEL4WS [1]) have been oriented towards languages for specifying agent
interfaces (e.g. the services offered and the types of data exchanged). These fa-
cilitate service discovery and composition, while leaving the implementation of
the agents themselves unspecified. Although these developments alleviate some
of the drudgery involved in constructing agents and provide facilities to compose
agent systems, they do not provide mechanisms to give formal assurances about
the behavior of agent systems.

The interesting problem here is to develop methods and techniques to ensure
that agent systems built in this manner exhibit certain desired properties. We
outline here a declarative approach to addressing this problem. This approach
models the procedural agent framework as a logic program. The program cap-
tures the generic structure of the framework as a state transition system and can
be easily customized to reflect specific agents built in the framework. Properties
of the MAS can be expressed as temporal logic formulas that can be checked
using model checking techniques.

Using a procedural agent architecture such as Cougaar, described in Section 2,
agent systems are most easily developed in a bottom-up fashion. Individual agent
programs are first built to perform specific tasks and then the allowable commu-
nications between agents are defined. The key to formally verifying the behavior
of agent systems implemented in this manner is to first develop a formal model of
the agent architecture itself. The main contribution of this paper is the develop-
ment of a formal model of the main parts of the Cougaar architecture, including
its persistence and fault-tolerance features. We then develop a framework, based
on this model, to formally describe an agent system by specifying the behavior
of the individual agent programs. The internal behavior of an agent is modeled
as an extended finite-state automaton (EFSA), i.e., an automaton where states
may be associated with variables and transitions may be guarded by constraints
on values of the variables). In particular, the EFSA models a state transition
system where there are a finite number of control states but potentially an infi-
nite number of data states that can be partitioned into a finite number of data
types. This is outlined in Section 3.

The intra-agent processes of an agent are presented as Horn clauses repre-
senting state transitions between control states in the EFSA. The EFSA for an
agent describes the intra-agent actions. The behavior of the agent system can
then be obtained as a concurrent composition of individual agent EFSAs and
the architecture model that accounts for the possible synchronizations due to
inter-agent communications.

The service being provided by an agent system is most easily described as a
temporal process in which certain changes occur to a set of objects in a certain
order. This is a workflow-centric view of the service where its global proper-
ties are enumerated. The workflow describes the desired or, at least, antici-
pated outcomes of the service without making any explicit statements about the
implementation details of the system of agents providing the service. While a
graph-based workflow formalism can be used to easily specify certain required
(or prohibited) behaviors of an agent system at a high-level, we find it better to

150 L.R. Pokorny and C.R. Ramakrishnan

use a more expressive temporal logic formalism to describe complex properties
such as availability, resilience to failure, etc.

We choose to represent workflow properties as temporal logic formulas for
two reasons. First, temporal logic formulas make statements about infinite exe-
cutions of EFSAs and, in particular, Linear Temporal Logic (LTL) [16] can rep-
resent fairness properties. Second, this formulation allows us to directly use the
logic-based model checking techniques that have been developed in the past few
years, (in which properties expressed in temporal logics can be directly verified
for state transition models). Model checking allows us to determine whether an
agent implementation possesses certain high-level behavioral properties. There-
fore in this paper, we use generalized linear temporal logic (GLTL), described
in Section 4, which allows for statements about properties of states and labels
on state transitions. GLTL is extended with data variables as the formalism for
specifying behavioral properties. In Section 5 we present workflow properties
represented in GLTL. We have developed model checkers for verifying GLTL
properties for transition systems expressed as logic programs [18]. We can use
this model checker to verify GLTL properties that depend on the control struc-
ture or data types in the model as long as the the GLTL formula being checked
does not make starements that depend on the values of specific data objects.
There have been many languages based on the Beliefs-Desires-Intensions (BDI)
model for describing agent systems and their properties. This paper does not
directly address the addition of modalities needed to model BDI properties in
GLTL; we discuss issues related to this in Section 6.

In summary, there are three main contributions of this paper. First of all,
we develop a formal operational model of the Cougaar framework in terms of a
transition relation. The encoding of the transition relation as a logic program
makes the model amenable to verification. The key technical contribution here
is the modeling of persistence and recovery features of the Cougaar architecture.
Secondly, we propose a simple formalism, based on definite-clause grammar no-
tation, for specifying the behaviour of Cougaar agents. Finally, we show the
usefulness of parameterized temporal formulas in GLTL to specify properties of
Cougaar agents.

2 Cougaar, an Implementation Architecture for
Distributed Autonomous Agents

Cougaar is a Java based procedural implementation architecture for building
systems of autonomous agents. It was originally funded by DARPA and is now
maintained by an open-source community. It uses a design framework that han-
dles both intra-agent data manipulation and inter-agent communications in a
manner that provides transparency to the agent system designer. The architec-
ture uses a distributed blackboard for inter-agent as well as intra-agent commu-
nication. This design framework provides persistence and recovery for individual
agents and also system resilience against the loss of agents.

Modeling and Verification of Distributed Autonomous Agents 151

Data is stored and persisted at the agent level. Each agents keeps only the
data necessary to perform its own functions. Data needed by more than one agent
is shared by copying data objects from one agent to another. This distributed
data model has the advantage that data is only stored where needed and dose
not have to be made continuously available to all agents in the system. The
disadvantage is that agents needing to share data are responsible for maintaining
synchronization of that data. It is the responsibility of the agent designer to
insure this synchronization.

At the agent level, all data is stored in a communal blackboard. The black-
board contains objects that are instantiations of Java classes representing items
of interest to the agent. Objects are added to the blackboard either through
communication with another agent or by an agent subprocess called a plugin.
Plugins can also change or delete objects on the blackboard. Plugins are designed
to be stateless processes that handle the computation required of the agent.
Plugins subscribe to objects on the blackboard and execute a defined proce-
dure in response to changes in those objects. The executed procedure can query
the blackboard about objects; add, change, or delete objects and publish these
changes to the blackboard; change the plugin’s subscription; or interact with the
environment outside the agent system. Data on the blackboard is changed by
the plugins, but the data changes are persisted by the agent control structure.

Fig. 1. Cougaar Architecture

The agent control structure is illustrated in Figure 1. When an agent starts
up, it first instantiates an inter-agent communication service and an agent man-
ager which contains a blackboard, subscription list, and plugin pending execution

152 L.R. Pokorny and C.R. Ramakrishnan

list. It then instantiates its component plugins. When a plugin is instantiated, it
runs a subscribe method which notifies the agent manager about the objects in
which it is interested. Once all plugins have been instantiated and have run their
subscribe methods, the agent checks to see if any objects have been added to
the blackboard which match a plugin’s subscription. If so, that plugin is queued
to run an execute method which can publish changes that add, modify, or delete
blackboard objects. Whenever a change is published to the blackboard, plugin
subscriptions are checked and the plugins affected by the change are added to
the pending execution list and scheduled to run by the plugin controller.

Blackboard objects can also be communicated to other agents. The inter-
agent messenger service sends copies of these objects as messages to other agents
and also publishes added objects to the blackboard when they are received as
messages from other agents. The state of the blackboard, subscription list, and
plugin pending execution list is persisted by saving to a file before every sent
message and after every received message.

If an agent crashes and is then restored, the restoration proceeds in a similar
fashion to agent initialization. The main difference is that agent state is restored
from the persisted state file written during the last inter-agent communication
before the crash. This method of restoring an agent coupled with the fact that
copies of data objects are passed between agent blackboards means that when
an agent is restored, it will have internal consistency but its blackboard might
be out of synchronization with other agents in the system. In the Cougaar imple-
mentation it is up to the agent designer to provide inter agent synchronization if
needed. Also Cougaar assumes that any state information that individual plugins
need is embodied in data objects that the plugins publish to the blackboard.

We will use an order processing system as a running example of a Cougaar-
based multi-agent system. In this example, a simple Cougaar agent would contain
order objects on its blackboard. New orders would be received from other agents
and cause order objects to be added to the blackboard. The order objects would
contain a status flag that is set to received when the order is added. This order
agent might have a capacity setting so that when the number of orders on the
blackboard reaches a certain level no more orders will be accepted. Processing
of orders in the agent would be handled by plugins. In the simplest case, a
plugin would subscribe to order objects on the blackboard and be notified when
orders are added. When notified, the plugin would execute and check an external
database for credit and inventory information and change the status of the order
to shipped, rejected, or back-ordered. The agent would then communicate these
revised statuses to other agents in the system by sending a copy of the order
object to the appropriate agent. An order with a shipped status might go to
a billing agent, a rejected order to a customer notification agent, and a back-
ordered order to a production scheduling agent. Once copies of the order objects
are sent to these other agents the objects would then be removed from the
processing agent’s blackboard. As order objects are removed the capacity to
receive and process new orders is correspondingly increased.

Modeling and Verification of Distributed Autonomous Agents 153

In summary, the plugins in each agent can be considered as actions taken
by an agent with each plugin representing a specific action. The agent system
is developed by specifying, albeit in a procedural form, the behavior of each
plugin. Note that the development of an agent focuses on the detailed behaviors
of the plugins. Combining the models of behaviors of each plugin with a detailed
formal model of the behavior of the Cougaar architecture itself, we can derive
the agent-wide and system-wide behaviors. Note, however, that the Cougaar
architecture itself does not directly support the specification of global agent-
wide and system-wide behaviors. Hence it is possible that the actual agent or
system behavior deviates from its expected behavior. In the next section we
introduce a declarative model of the Cougaar Agent Architecture.

3 A Declarative Model of the Cougaar Architecture

We now develop a high-level model of the Cougaar architecture. The model
for an agent consists of a set of concurrent automata, one automaton for each
component: the blackboard and agent manager, the communication interface,
and the components representing plug-ins. The automata have a finite number
of control locations with local variables, and transitions in the automaton may
be guarded by conditions on the valuation of these variables. Each automaton,
formalized as an extended finite-state automaton (EFSA) can be simply described
by a logic program that represents its transition relation [22].

We represent the transition relation of an automaton in our model using the
ternary relation trans. A tuple in this relation of the form trans(S, A, T)
represents a transition from state S to state T labeled with action A. The states
may be in general be terms representing both the control information (e.g. the
program counter value at an agent state) and data values at a state. The ac-
tion labels represent events: communication with other automata, or simply
computation steps internal to the automaton. The labels for internal computa-
tions may specify additional parameters that qualify the computation. Labels for
communication operations are written as terms either of the form f(t1, . . . tn)
where f is a function symbol, or of the form f(t1, . . . , tn). The two are usually
taken to represent an input action (where f stands for the channel or port over
which the communication takes place), and an output action, respectively. In
our case we do not distinguish between input and output actions; rather than
considering communication as a transmission of data from one automaton to
another, we generalize the approach of CCS [17] and view communication as
an agreement of data values in two automata. Two concurrent automata syn-
chronize by simultaneously taking transitions with complemenary labels: e.g.
f(t1) and f(t2). At synchronization, the terms t1 and t2 are unified. In gen-
eral, synchronization takes place only when the labels of the two transitions
unify.

The transition relation model captures the details of the operational behavior
of a Cougaar agent. However, such an explicit representation may become tedious
to develop (and consequently, error-prone) when used to model large systems.

154 L.R. Pokorny and C.R. Ramakrishnan

Hence we represent the transition relation by a set of Horn clauses defining the
relation, rather than as an explicit set of tuples.

We divide agent models into two parts: a generic part consisting of services
provided by the Cougaar architecture, such as the blackboard service, commu-
nication service, etc; and a part specific to a particular agent instance, which is
described by the behaviors of the plug-ins in the agent. The Cougaar architec-
ture provides a rich variety of common services to simplify agent development
and deployment. In terms of the behavioral models, this means that an agent
model can be obtained by composing models of generic services (developed once
and subsequently reused for all agents) with models describing the behaviors of
the specific plugins. We first describe the models for Cougaar’s generic services.

3.1 A Model of Cougaar’s Generic Sevices

The blackboard service is central to a Cougaar agent. The blackboard serves
as a storehouse for passive information— the objects manipluated by the dif-
ferent plugins within the agent. At the same time actively participates in agent
behaviours such as serving object change notifications to plug-ins, handling per-
sistance, scheduling certain communication operations, etc.

The storage used by the blackboard service comprises of the following com-
ponents:

1. the set of objects in the agent’s blackboard (data)
2. the set of plugins pending execution in response to changes to data objects

(pending)
3. the set of object subscriptions in which each plugin is interested

(subscription)

We represent these three areas collectively by store(D,P,S) where D, P and
S represent the above three storage areas respectively. In addition, to enable
recovery from faults, an agent checkpoints its execution by saving the blackboard
state at each intra-agent communication point. We model this persistence by
representing a blackboard’s state by state(Current, Saved) where Current is
the representation of the current storage (a term of the form store(...)) and
Saved is the representation of the storage at the last checkpoint.

The data part of a blackboard’s storage is simply a set of objects. We use a no-
tation borrowed from F-logic [15] to denote objects and use F-logic’s mechanisms
for representing an object store using attribute-value, subclass and instance re-
lations. For instance, an object Obj belonging to class Cls and whose status
field holds the value new, represented in F-logic by Obj:Cls[status->new],
will be stored in the blackboard’s storage as tuples instance(Obj, Cls) and
attr(Obj, status, new). Evaluation of attribute values follow F-logic’s inher-
itance mechanisms.

The pending list is a set of pairs of the form (plugin, object) where a change to
the object matches the plugin subscription. The set of subscriptions associates
a plugin with subscription patterns which are of the form (class, change), where
class is the class of objects and change is the change flag for this subscription.

Modeling and Verification of Distributed Autonomous Agents 155

The blackboard is the arbiter of data and communication between the plugins
and other Cougaar services in an agent. Plugins communicate synchronously
with the blackboard using the following four primitives:

1. query: check the presence or absence of an object in the data area, and to
retrieve information from objects in the data area

2. modify: add/delete objects to/from the data area
3. subscribe: add/remove self from subscription lists
4. publish: notify the rest of the agent system about changes made to the

blackboard objects by this plugin

Apart from the data access operations from the agent’s plugins, the black-
board also services communication requests from other agents. Although the
Cougaar implementation separates the data service provided by the blackboard
from the communication services, it vastly simplifies the model to combine the
two. A Cougaar agent may receive a put request to place an object in its black-
board from another agent; and may send objects, when requested to do so by its
plugins, to other agents. Each of these requests (from plugins or other agents)
represent events; the behavior of the generic services of Cougaar in response to
these events (or when generating these events) is captured by the Horn clause
rules in Figure 2 defining the trans relation.

Plugins are executed under the control of a plugin scheduler. Initially, the
plugin scheduler invokes the subscribe method of each plugin which enables
them to register with the blackboard service for object modification notifica-
tions. After the initialization phase is complete, the scheduler enters a loop,
nondeterministically selecting a plugin to execute from the pending set in the
blackboard, and invoking the corresponding plugin. The plugins, may in gen-
eral, be run on a separate thread from the scheduler. We model the simpler and
more common case where the plugins are sequentialized in the same thread as
the scheduler. The transition relation of the scheduler’s automaton can then be
written as illustrated in Figure 3.

In the above, we assume that the subscribe(Pin,C) and and execute((Pin,
Obj),C) correpond to the entry points of the subscribe and execute methods of
a plugin Pin. The second argument C is the continuation: the state to which the
methods return.

States of a system composed of two concurrent automata are represented
by terms of the form par(P1, P2) where P1 and P2 represent the local states
of the component automata. Operationally, an interleaving of the executions of
two concurrent automata is an execution of the composition. In addition, the
two automata may synchronize by unifying their action labels. The behavior
of the concurrent composition of two automata is captured by the transition
rules in Figure 4. It should be noted that synchronization by unification general-
izes CCS’s agreement-based synchronization for non-value-passing systems and
synchronization by substitution for value-passing systems.

Note that with the above notation, it is straightforward to extend the model
to deal with agents with multi-threaded plugins: instead of the sequential com-
position encoded by execute((Pin,Obj),C), the scheduler loop will spawn Pin

156 L.R. Pokorny and C.R. Ramakrishnan

% QUERY
trans(S, present(Q), S) :-

S = state(store(Data, ,),), Q ∈ Data.
trans(S, absent(Q), S) :-

S = state(store(Data, ,),), Q �∈ Data.

% MODIFY
trans(S, add(Q), T) :-

S = state(store(Data,P,Subs), Saved),
Data’ = Data ∪ {Q},
T = state(store(Data’,P,Subs), Saved).

trans(S, delete(Q), T) :-
S = state(store(Data,P,Subs), Saved),
Data’ = Data − {Q},
T = state(store(Data’,P,Subs), Saved).

% SUBSCRIBE
trans(S, subscribe(Pin, Class, Change), T) :-

S = state(store(D,P,Subs), Saved),
Subs’ = Subs ∪ {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).

trans(S, unsubscribe(Pin, Class, Change), T) :-
S = state(store(D,P,Subs), Saved),
Subs’ = Subs − {sub(Pin, Class, Change)},
T = state(store(D,P,Subs), Saved).

% PUBLISH
trans(S, publish(Obj, Change), T) :-

S = state(store(D,Pending,Subs), Saved),
Notify = {Pin | subs(Pin, Class, Change) ∈ Subs, Obj:Class},
Pending’ = Pending ∪ Notify,
T = state(store(D,Pending’,Subs), Saved).

% PENDING EXECUTION

trans(S, select(Pin, Obj), T) :-
S = state(store(D,Pending,Subs), Saved),
Pending’ = Pending − {Pin},
T = state(store(D,Pending’,Subs), Saved).

% PUT
trans(S, put(Obj), T) :-

S = state(store(Data,Pending,Subs),),
Data’ = Data ∪ {Obj}
Notify = {Pin | subs(Pin, Class, add) ∈ Subs, Obj:Class},
Pending’ = Pending ∪ Notify,
SavedStore = store(Data’, Pending’,Subs),
T = state(SavedStore, SavedStore).

% SEND
trans(S, put(Obj), T) :-

S = state(Current,),
Current = store(Data,P,Subs),
Data’ = Data − {send(Obj)}
NewStore = store(Data’,P,Subs)
T = state(NewStore, Current).

Fig. 2. Transition Relation for Generic Cougaar Services

Modeling and Verification of Distributed Autonomous Agents 157

% INITIALIZE
trans(scheduler, initialize, init(Pins, scheduler loop)) :-

initial plugins(Pins).
trans(init([], S), A, T) :- trans(S, A, T).
trans(init([Pin|Pins], S), A, T) :-

trans(subscribe(Pin, init(Pins, S)), A, T).

% EXECUTE
trans(scheduler loop, select(Pin, Obj), execute((Pin, Obj), scheduler loop)).

Fig. 3. Transition Relation for the Plugin Scheduler

% INTERLEAVE
trans(par(P1, P2), A, par(Q1, P2)) :-

trans(P1, A, Q1).
trans(par(P1, P2), A, par(P1, Q2)) :-

trans(P2, A, Q2).

% SYNCHRONIZE
trans(par(P1, P2), tau, par(Q1, Q2)) :-

trans(P1, A, Q1),
trans(P2, B, Q2),
complement(A, B).

complement(L(X), L(X)).
complement(L(X), L(X)).

Fig. 4. Transition Relation for Parallel Composition

in an available concurrent thread and return immediately to picking up another
plugin to notify.

When an agent crashes, the current state of the blackboard and other generic
services is lost, and so are the local states of the plugins and the scheduler. When
the agent recovers, it refreshes its state from the one saved at the last checkpoint,
and resumes the scheduler loop. Thus, the crash and the eventual recovery of an
agent can be captured by the transition rules given in Figure 5.

% CRASH

trans(agent(par(state(,Saved),)), crash, agent crashed(Saved)).

% RECOVER
trans(agent crashed(Saved), recover,

agent(par(state(Saved,Saved), scheduler loop))).

Fig. 5. Transition Relation for Crash and Recovery

The crash and recover labels can be used in the model checker to specify
properties representing fair behaviors, considering only paths where crash occurs
only finitely often, or those where recover occurs infinitely often.

158 L.R. Pokorny and C.R. Ramakrishnan

3.2 Modeling Specific Cougaar Agents

Having developed a detailed model for the generic Cougaar services, we can
instantiate an agent by simply specifying (a) the set of plugins in the agent, and
(b) the behaviors of their subscribe and execute methods. We illustrate such
an instantiation by considering a simple order processing agent with a plugin
process order which takes an object of class order whose status field is new,
and changes the order status field to one of shipped, back ordered or rejected.
For the purposes of this illustration, we will replace the logic for determining
the status field with a nondeterministic choice. Orders processed by the agent
then need to be transmitted to the other agents. The transition system for the
execute method of this plugin can be written as:

trans(execute((process order,order(Order)), C),
delete(Order[status->new]), order 1(Order, C)).

trans(order 1(Order, C)), add(Order[status->NS]), order 2(Order, C)) :-
choose status(NS).

trans(order 2(Order, C)), send(Order), order 3(Order, C)).
trans(order 3(Order, C)), publish(Order, modify), C).

choose status(shipped).
choose status(back ordered).
choose status(rejected).

Since plugins typically have a simple structure (e.g. no thread creation, and
usually no loops), we can simplify the specification of plugin behaviors by using
a DCG-like notation that makes the states implicit. For instance, the above order
plugin may be written as:

order(Order) -->
[delete(Order[status->new])],
{choose status(NS)},
[add(Order[status->NS])],
[send(Order)],
[publish(Order, modify)].

Each terminal symbol in the above DCG specifies only the action label of a tran-
sition, leaving the source and destination states implicit. It is easy to convert the
above specification to the explicit transition rules given earlier. We can thus de-
rive models of agent systems by modeling each plugin separately and combining
these models with the models of generic services.

4 Linear Temporal Logic

We now review Linear Temporal Logic (LTL) and its extensions that are used
for specifying temporal properties of finite-state systems. In particular we de-
scribe Generalized LTL (GLTL) which can make statements about properties of
system states as well as action labels on transitions between states. GLTL has
the following syntax (P is the finite set of propositions and A is the finite set of
action labels):

Modeling and Verification of Distributed Autonomous Agents 159

Ψ → AΦ | EΦ

Φ → p | ¬p | α | ¬α | Φ ∧ Φ | Φ ∨ Φ | Φ U Φ | Φ R Φ | XΦ p ∈ P , α ⊆ A

Formulas derived from Φ are called path formulas and formulas derived from Ψ
are state formulas Traditionally, GLTL is defined to include only AΦ; we consider
the trivial addition of EΦ since the model checking procedure we discuss is based
on such formulae.

The semantics of GLTL is given in terms of infinite paths (called runs) of a
Labeled Transition System (LTS). Runs are infinite sequences of states of the
LTS. The formal definition of GLTL semantics is standard (see, e.g. [7, 6]) and is
omitted. Briefly, the semantics expresses how a run can satisfy a path formula.
A formula Φ is true if Φ is true in the first state of a run. If Φ is p then p is
a proposition that must hold in this state for Φ to be true. If Φ is α then the
transition from the first state to the second state in the run must be labelled
with an element in α for Φ to be true. For ¬p and ¬α, p must be false and the
transition label must not be an element of α respectively to make Φ true. XΦ is
true if Φ is true in the next state of a run, Φ1 ∧Φ2 is true if both Φ1 and Φ2 are
true for a given run. Φ1 U Φ2 is true of a run if Φ1 holds in every state until a
state where Φ2 holds. Φ1 R Φ2 is true of a run if Φ2 holds in every state or until
a state where Φ1 holds. AΦ is true for state s if Φ is true for all runs originating
in s and EΦ is true if Φ is true for some run originating in s.

∧ and ∨ are duals. Similar to ∧ and ∨, U and R are duals (i.e., ¬(φ1 U φ2)
= ¬φ1 R ¬φ2), E and A are duals (i.e., ¬Aψ = E¬ψ), and X is its own dual (i.e.,
¬Xφ = X¬φ). It is easy to see that the standard semantics respects this duality.

To write more legible GLTL formulae, we define the following shorthand
constructs for common GLTL formulas:

Gφ ≡ false R φ

Fφ ≡ true U φ

φ ⇒ ψ ≡ ¬φ ∨ ψ

G is the global temporal quantifier. It is used to describe a property that is
always true along a given path. F is the eventual temporal operator and describes
a property that eventually becomes true along a path. The third shorthand is
the standard logical implication.

Finally, GLTL can be enhanced by allowing terms containing logical variables
to replace propositions. In the next section we describe the encoding of workflow
properties about the expected global behaviors of agent systems in GLTL.

5 Workflows as Property Specifications

Agents and systems of communicating agents are built to provide specific ser-
vices. Often these services are explicitly described by a workflow. Even when
such an explicit definition is lacking, there is an implicit workflow which de-
scribes the anticipated outcome from invoking a service. The standard view of

160 L.R. Pokorny and C.R. Ramakrishnan

a workflow with respect to agents is that the workflow is a specification for the
agent. In contrast, we consider the workflow as a specification of a property that
the agent must exhibit.

Workflows have been directly represented in Transaction Logic [11]. One ap-
proach to showing that an agent system possesses a behavior expressed as a
workflow would be to use Theorem Proving Techniques to show that the Trans-
action Logic representation of the workflow and the agent were equivalent. We
believe a better approach is to express the workflow property in GLTL and use
Logic Programming based model checking to show that the GLTL formula holds
for the EFSA model of the agent system. Also Linear Temporal Logics (LTL)
and their extensions are well suited to represent fairness properties [16]. Fairness
is important in real world systems because there are always certain system con-
ditions that cause failure and fairness properties explicity state the boundries of
such failure.

GLTL is uniquely suited for representing workflow properties and more ex-
pressive than Transaction Logic for temporal properties. Workflows, in essence
are temporal graphs that express sequences of events. Consider a simple work-
flow in which an order is first received and then shipped. The workflow implies
an order to these two events, but no absolute time period between them. This
is precisely the type of property that is easy to describe in GLTL.

To aid in writing properties that are easier to understand, a mechanism
similar to macro replacement in a programming language can be used. In this
mechanism a ”named” formula acts as a replacement for an underlying GCTL*
formula. While GCTL* does not directly support this idea of ”named” formulas,
this can easily be implemented with a macro interpreter in the GCTL* model
checker logic program. Using this mechanism, if we let dependency(φ, ψ) stand
for the GLTL state formula

G(φ ⇒ X(Fψ))

We can write the following GLTL formula to describe the ordering property
expressed in the above workflow as:

A(dependency({received}, {shipped}))
This states that along all paths if a received action occurs it is eventually followed
by a shipped action.

Since the Cougaar agent model described above can crash, this property
would not hold for it. The agent could crash between the received and shipped
actions and never recover. This leads to describing fairness properties for which
GLTL is also well suited. Fairness essentially states that some good result will
always occur providing some condition occurs infinitely often. Paths for which
such a condtion holds are considered fair execution paths. We would like to
have the above received-shipped dependency property hold as long as the agent
recovers from crashes infinitely often (the fairness condition). This can be written
as:

A(GF (recover) ⇒ dependency({received}, {shipped})

Modeling and Verification of Distributed Autonomous Agents 161

Notice that neither the workflow or the above formulas say anything about
what purchase order is received or shipped. Implicit in the workflow is the idea
that the workflow describes the events for a specific purchase order. This can be
handled by parameterizing the received and shipped actions, leading to:

A(GF (recover) ⇒ dependency({received(order1)}, {shipped(order1)})
Finally, the agent system is designed to run multiple instances of the specify-

ing workflow so that we could be interested in properties that express ordering
between workflow instances. For instance, we may want orders to be shipped in
the order they were received. Enhancing GLTL with logical variables allows us
to express these type of properties. We define ordered events(φ, ψ) to stand for
the GLTL formula:

Fφ ∧ Fψ ∧ ¬ψ U φ

which express that φ occurs before ψ. Note that ordered events(φ, ψ) is not as
strong a property as dependency(φ, ψ) defined above. The first indicates that
one occurance of the second event occurs after one occurance of the first event.
The second indicates that an occurance of the second event happens after every
occurance of the first event. We can now express the property that orders are
shipped in the order they are received as:

A(ordered events({received(order(X))}, {received(order(Y))}) ⇒
ordered events({shipped(order(X))}, {shipped(order(Y))}))

This shows that GLTL is a logic that is well suited for specifying global
properties of agent systems either as specifications of workflow properties or
directly as fairness properties. GLTL also allows us to take advantage of logic
programming for verification of these properties.

6 Ongoing Work and Concluding Remarks

Having been able to declaratively model a real world agent architecture as an
EFSA and also express specifications for that system as temporal logic proper-
ties, we are now in a position to apply model checking techniques to verifying
properties of agent systems.

We have been developing and using model checkers for finite and several
classes of infinite systems based on logic programming [19, 12, 5]. We have also
developed a model checker that can verify GLTL properties of labeled transi-
tion systems [18]. This model checker, implemented as a logic program, first
constructs a Büchi automaton from a given GLTL formula, constructs the prod-
uct of the given system model and the automaton, and performs good-cycle
detection, i.e. cycles that meet the acceptance conditions of the automaton, to
complete the model checking. Subsequently, we have also developed a constraint-
based model checker where system models as well as properties are expressed

162 L.R. Pokorny and C.R. Ramakrishnan

using EFSAs [22]. This model checker can be directly used to verify properties
of a Cougaar-based agent system. This model checker can verify certain class of
infinite-state systems called data independent systems: those whose control be-
havior is independent of the domain of the data values. This is especially useful
for the verification of agent systems since many aspects of their behaviors are
data independent. For instance, the behavior of the ordering agent is indepen-
dent of the domain of identifiers associated with different order objects. Thus
we can use a constraint-based model checker to verify properties like the order
of receiving and shipping of a specific order object with or without a fairness
constraint on the agent crashing. It also allows us to check properties about the
ordering of events. There is a complexity price to pay for this added capabil-
ity. Standard model checking of finite-state systems runs in time linear in the
size of the model. The constraint-based model checker in in the worst case ex-
ponential. Our future work will explore the limits and efficiency of using Logic
Programming-based Model Checking to verify global behaviors of procedurally
constructed MAS.

The main limitation of our approach is the representation of the blackboard.
The blackboard is a part of an agent’s state and we have to bound the number of
objects that may be present simultaneously in the blackboard in order to ensure
termination of verification runs.

The main contribution of this paper is the development of a logic-based high-
level model of agent systems built using a procedural framework such as Cougaar.
Since there are many such frameworks being proposed and implemented to ad-
dress providing Web Services, this concept could have significant application. A
secondary contribution of this modeling technique is that it allows us to verify
properties of MAS that are data independent infinite-state systems with finite
control structures.

We want to point out how our work compares to other efforts in the field.
There have been a number of presentations of applying model checking to ver-
ifying properties of MAS including [9, 26], These presentations model MAS in
languages that have a direct translation to a finite-state labelled transition sys-
tem and express properties to be verified in Belief-Desire-Intention (BDI) logics
which can be transformed into propositional LTL properties. Our goal was to
be able to verify properties of MAS developed in a procedural framework like
Cougaar where global behavior is emergent and non-obvious. Also, by modelling
such systems as EFSAs we do not need to limit our model to finite-state systems,
but can consider properties of infinite-state data independent systems. This al-
lows us to verify properties concerned with the general ordering of events. Our
model also allows us to investigate fault tolerance of MAS expressed as GLTL
fairness properties. There is an interesting parallel between Cougaar agents and
BDI agents. Data on the Cougaar blackboard is similar to BDI beliefs, plugin
subscriptions have a similar flavor to BDI desires, and plugins pending execution
are similar BDI intentions. We feel that this similarity should be investigated,
especially since properties expressed in BDI logics can easily be incorporated

Modeling and Verification of Distributed Autonomous Agents 163

into an expansion of GLTL and be directly verified using our model checker. We
see this as an important area for future work.

Among the works presented at DALT 2004, the ones most closely related to
our work are those that deal with temporal logic model checking or logic-based
modeling [25, 21, 4, 24, 10, 14]. Walton [25] defines MAP, a language for defining
multi-agent protocols (in a CCS-like fashion), its translation to Promela, and
proposes the use of the model checker SPIN to verify properties of protocols
written in MAP. Robertson [21] introduces LCC, a language for describing so-
cial norms of distributed processes. Specifications in LCC can then be subject to
simulation or model checking (via MAP). Baldoni et al [4] describe the addition,
to DCaseLP, a framework for converting AUML sequence diagrams to DyLOG
and then verifying the interactions between the diagrams by querying. Vascon-
celos [24] describes a methodology for investigating properties of descriptions
called electronic institutions which define virtual environments in which agents
interact. The state-chart-like notation used to specify electronic institutions are
encoded as facts in a logic program. The constraints on their behavior, called
their norms, which are specified by sets of actions are also represented as facts.
Queries are then described over this intentional database to infer properties
such as the set of feasible actions, feasible norms etc. In contrast, we develop
a model, in terms of a transition relation, for the Cougaar architecture, and
describe how models of individual Cougaar agents can be developed. We then
use model checking techniques we have previously developed to verify temporal
properties of these models.

Chopra at al [10] develop a methodology to build processes from declarative
commitment-based protocol specifications and to enact them in a declarative
manner. The operational semantics of protocols and commitments are specified
using the pi-calculus. Fan et al [14] Gives an operational (transition system)
semantics of a team-oriented agent programming language called MALLET for
specifying teamwork knowledge and behaviors. These works do not address issues
related to verification.

There has also been a considerable amount of work addressing workflows as
specifications. Workflows have been represented in Transaction Logic [8] and
their properties as theorems that satisfy these models [11]. In addition, [13]
presents workflows modeled as UML Activity Diagrams and using LTL model
checking to verify properties of these models. These approaches look at workflows
as the model about which properties are stated. In our work we view the workflow
as specifying global properties for a model of an independently constructed agent
system. There are also a number of efforts to declaratively specify connectivity
of autonomous agents using XML such as BPEL4WS cited earlier. These are
primarily focused on finding and connecting agents that can compose a service,
but they do not provide any method of verifying the behavior of the composition.
What we propose allows the agent designer to use a procedural framework like
Cougaar to build an agent system and gain some assurance about the conditions
under which that system will exhibit expected behaviors.

164 L.R. Pokorny and C.R. Ramakrishnan

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments
and suggestions. The research reported in this paper was supported in part by
NSF grants CCR-9876242, IIS-0072927, CCR-0205376, and CCR-0311512.

References

1. Business process execution language for web sevices (BPEL4WS).
http://www.ibm.com/developerworks/library/ws-bpel/.

2. Cougaar: Cognitive agent architecture. http://www.cougaar.org.
3. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Logic programming for evolving

agents. In Intl. Workshop on Cooperative Information Agents (CIA’03), number
2782 in LNAI, pages 281–297. Springer Verlag, 2003.

4. M. Baldoni et al . Reasoning about communicating agents inside DCaseLP. In
Proceedings of the Workshop on Declarative Agent Languages and Technologies
(DALT’04), LNCS 3476, Springer-Verlag (2005). In this volume.

5. S. Basu, K. N. Kumar, L. R. Pokorny, and C. R. Ramakrishnan. Resource-
constrained model checking of recursive programs. In TACAS, volume 2280 of
LNCS, pages 236–250, 2002.

6. G. Bhat, R. Cleaveland, and A. Groce. Efficient model checking via beuchi tabeau
automata. In Computer Aided Verification (CAV), 2001.

7. G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for
CTL∗. In IEEE Symposium on Logic in Computer Science. IEEE Press, 1995.

8. A. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133:205–265, 1994.

9. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In Second Internatonal Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS), 2003.

10. A. K. Chopra, A. U. Mallya, N. V. Desai, and M. P. Singh. Modeling flexible busi-
ness processes. In Preproceedings of the Workshop on Declarative Agent Languages
and Technologies (DALT), 2004.

11. H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic based
modeling and analysis of workflows. In ACM Symposium on Principles of Database
Systems (PODS), pages 25–33. ACM, 1998.

12. X. Du, C. R. Ramakrishnan, and S. A. Smolka. Tabled resolution + constraints:
A recipe for model checking real-time systems. In IEEE Real Time Systems Sym-
posium (RTSS), Orlando, Florida, 2000.

13. R. Eshuis. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, University of Twente, 2002.

14. X. Fan, J. Yen, M. Miller, and R. Volz. The semantics of MALLET — an agent
teamwork encoding language. In Proceedings of the Workshop on Declarative Agent
Languages and Technologies (DALT’04), LNCS 3476, Springer-Verlag, 2005. In this
volume.

15. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42(4):741–843, 1995.

16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer Verlag, 1991.

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.cougaar.org

Modeling and Verification of Distributed Autonomous Agents 165

17. R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

18. L. R. Pokorny and C. R. Ramakrishnan. Model checking linear temporal logic
using tabled logic programming. In Workshop on Tabling in Parsing and Deduction
(TAPD), 2000.

19. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. L.
Swift, and D. S. Warren. Efficient model checking using tabled resolution. In CAV,
1997.

20. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Seventh Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW), number 1038 in LNAI, pages 42–55. Springer Verlag, 1996.

21. D. Robertson. A lightweight coordination calculus for agent social norms. In
Proceedings of the Workshop on Declarative Agent Languages and Technologies
(DALT’04), LNCS 3476, Springer-Verlag, 2005. In this volume.

22. B. Sarna-Starosta and C. R. Ramakrishnan. Constraint based model checking
of data independent systems. In Intl. Conf. on Formal Engineering Methods
(ICFEM), LNCS, 2003.

23. V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, and F. Ozcan. Het-
erogenous Agent Systems. MIT Press, 2000.

24. W. W. Vasconcelos. Norm verification and analysis of electronic institutions. In
Proceedings of the Workshop on Declarative Agent Languages and Technologies
(DALT’04), LNCS 3476, Springer-Verlag, 2005. In this volume.

25. C. Walton. Model checking agent dialogues. In Proceedings of the Workshop on
Declarative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-
Verlag, 2005. In this volume.

26. M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-
agent systems with MABLE. In First Internatonal Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 952–959. ACM Press,
2002.

Norm Verification and Analysis of Electronic
Institutions

Wamberto W. Vasconcelos

Department of Computing Science, University of Aberdeen,
Aberdeen AB24 3UE, United Kingdom

wvasconcelos@acm.org

Abstract. Electronic institutions are a formalism to define and analyse
protocols among agents with a view to achieving global and individual
goals. In this paper we propose a definition of norms for electronic insti-
tutions and investigate how these norms can be employed for verification
and analysis. We offer automatic means to perform the extraction of sub-
parts of an electronic institution in which norms hold true or can safely
be avoided. These sub-parts can be used to synthesise norm-aware agents
that will pursue or avoid commitments to norms.

1 Introduction

An important aspect in the design of heterogeneous multiagent systems (MAS,
henceforth) concerns the norms that should constrain and influence the be-
haviour of its individual components [1, 2, 3]. Electronic institutions have been
proposed as a formalism to define and analyse protocols among agents with a
view to achieving global and individual goals [4, 5]. In this paper we propose a
definition for norms and a means of using this definition to verify properties of
electronic institutions. We also describe means to help designers analyse an elec-
tronic institution with a view to extracting alternative and restricted versions
of it in which norms are guaranteed to be fulfilled or versions in which norms
will never be adopted. We observe that restricted versions of an electronic insti-
tution can be used to synthesise agents that will either pursue norms or avoid
commitments to norms.

Electronic institutions define virtual environments in which agents interact.
Designers specify their electronic institutions which may become arbitrarily com-
plex. Tools and mechanisms ought to ensure that certain properties of electronic
institutions hold before they can be enacted (i.e. agents interact following the
specified order and kind of messages of an electronic institution). Some such
properties are well-formedness and reachability of all parts of the specification
by agents (i.e., absence of “dead parts” that are never used) [6].

Norms, as defined in this work, provide means to check for additional proper-
ties of electronic institutions. Our norms are of the kind: if agent x says Mx and
agent y says My then agent z is obliged to say Mz. Given an electronic institution
and a set of norms, we want to check if the agents taking part in an enactment

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 166–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Norm Verification and Analysis of Electronic Institutions 167

of it will indeed abide by the norms prescribed and whether the norms will have
any effect on them. We observe that the machinery required for the verification
of such properties can also be used to help designers analyse their specification
with a view to extracting sub-parts of it in which norms are guaranteed to hold
(or, alternatively, sub-parts in which agents will not commit to the norms).

Ours is a formal declarative approach. Declarative formal specifications have
many advantages [7, 8] over procedural notations. We capitalise on the ability
to use the very same specification to check for properties as well as to obtain
execution models of future systems to be devised using the specification [6, 9].
We employ logic programming (in particular, Prolog) [10] to describe all our con-
cepts and proposed functionalities. Although we could have employed “cleaner”
formalisms to represent our concepts and solutions, Prolog is a good compromise
between a detailed implementation and abstract mathematical formulations.

In Section 2 we introduce a lightweight definition of electronic institutions
and a declarative representation for them. In Section 3 we introduce a definition
of norms and explain their incorporation to electronic institutions; we also show
how norms can be used to check if the agents of an electronic institution will ever
commit to a norm and, if they do, whether a norm will eventually be fulfilled.
In Section 4 we show how we can analyse electronic institutions with respect
to norms in order to extract sub-parts in which norms are fulfilled or never
committed to by any agents. We present our conclusions in Section 5, compare
our research with related work and give directions for future research.

2 Lightweight Electronic Institutions

Electronic institutions (e-institutions, for short) can be viewed as a variation of
non-deterministic finite state machines [11]. We present e-institutions here in a
“lightweight” version: those features not essential to our investigation have been
omitted. We refer readers to [4, 5] for a complete description of e-institutions.

Our lightweight e-institutions are defined as sets of scenes related by tran-
sitions. We shall assume the existence of a communication language CL among
the agents of an e-institution as well as a shared ontology which allow them to
interact and understand each other. We first define a scene:

Definition 1. A scene is a tuple S = 〈R,W,w0,Wf ,WA, WE , Θ, λ〉 where

– R = {r1, . . . , rn} is a finite, non-empty set of roles;
– W = {w0, . . . , wm} is a finite, non-empty set of states;
– w0 ∈ W is the initial state;
– Wf ⊆ W is the non-empty set of final states;
– WA is a set of sets WA = {WAr ⊆ W, r ∈ R} where each WAr, r ∈ R, is

the set of access states for role r;
– WE is a set of sets WE = {WE r ⊆ W, r ∈ R} where each WE r, r ∈ R, is

the set of exit states for role r;
– Θ ⊆ W × W is a set of directed edges;
– λ : Θ �→ CL is a labelling function associating edges to messages in the

agreed language CL.

168 W.W. Vasconcelos

A scene is a protocol specified as a finite state machine where the states represent
the different stages of the conversation and the directed edges connecting the
states are labelled with messages of the communication language. A scene has a
single initial state (non-reachable from any other state) and a set of final states
representing the different possible endings of the conversation. There should be
no edges connecting a final state to any other state. Because we aim at modelling
multi-agent conversations whose set of participants may dynamically vary, scenes
allow agents to join or leave at particular states during an ongoing conversation,
depending on their role1. For this purpose, we differentiate for each role the sets
of access and exit states.

To illustrate this definition, in Figure 1 we provide a simple example of a
scene for an agora room in which an agent willing to acquire goods interacts
with a number of agents intending to sell such goods. This agora scene has
been simplified – no auctions or negotiations are contemplated. The buyer
announces the
goods it wants
to purchase,
collects the
offers from
sellers (if any)
and chooses the
best (cheapest)
of them. The
simplicity of
this scene is
deliberate, in

seller
request(B:buyer,all:seller,buy(Item))

inform(B:buyer,S:seller,accept(Item,Price))

nil

inform(B:buyer,S:seller,reject(Item,Price))

offer(S:seller,B:buyer,sell(Item,Price))inform(B:buyer,S:seller,reject(Item,Price))

niloffer(S:seller,B:buyer,sell(Item,Price))

1
w0

buyer
seller

w3
buyer
seller

w2
seller

w

Fig. 1. Simple Agora Room Scene

order to make the ensuing discussion and examples more accessible. A more
friendly visual rendition of the formal definition is employed in the figure. Two
roles, buyer and seller, are defined. The initial state w0 is denoted by a thicker
circle (top left state of scene); the only final state, w3, is represented by a pair
of concentric circles (bottom left state). Access states are marked with a “�”
pointing towards the state with a box containing the roles of the agents that
are allowed to enter the scene at that point. Exit states are marked with a “�”
pointing away from the state, with a box containing the roles of the agents that
may leave the scene at that point. The edges are labelled with the messages to
be sent/received at each stage of the scene. A special label “nil” has been used
to denote edges that can be followed without any action/event.

We now provide a definition for e-institutions:

Definition 2. An e-institution is the tuple E = 〈SC, T,S0,SΩ , E, λE〉 where
– SC = {S1, . . . ,Sn} is a finite, non-empty set of scenes;

1 Roles in e-institutions are more than labels: they help designers abstract from in-
dividual agents thus defining a pattern of behaviour that any agent adopting that
role ought to conform to. Moreover, all agents with the same role are guaranteed the
same rights, duties and opportunities [4].

Norm Verification and Analysis of Electronic Institutions 169

– T = {t1, . . . , tm} is a finite, non-empty set of transitions;
– S0 ∈ SC is the root scene;
– SΩ ∈ SC is the output scene;
– E = EI∪EO is a set of arcs such that EI ⊆ WES×T is a set of edges from all

exit states WES of every scene S to some transition T , and EO ⊆ T ×WAS

is a set of edges connecting all transitions to an access state WAS of some
scene S;

– λE : E �→ p(x1, . . . , xk) maps each arc to a predicate representing the arc’s
constraints.

Transitions are special connections between scenes through which agents
move, possibly changing roles and synchronising with other agents. We illustrate
the definition above with an example comprising a complete virtual agoric
market. This e-institution has more components than the above scene: before
agents can take part in the agora they have to be admitted; after the agora room
scene is finished,
buyers and sellers
must proceed to
settle their debts.
In Figure 2 we
show a graphic
rendition of an
e-institution for
our market. The

DepartureAdmission

1 1.1

SettlementAgora
Room

2 2.1 3 5 5.1

4 4.1

3.1

t1

t2 t3

t4

t5

Fig. 2. E-Institution for Simple Agoric Market

scenes are shown in the boxes with rounded edges. The root scene is repre-
sented as a thicker box and the output scene as a double box. Transitions are
represented as triangles. The arcs connect exit states of scenes to transitions,
and transitions to access states. The labels of the arcs have been represented
as numbers. The same e-institution is, of course, amenable to different visual
renditions.

The predicates p(x1, . . . , xk) labelling the arcs, shown above as numbers,
typically represent constraints on roles that agents ought to have to move into a
transition, how the role changes as the agent moves out of the transition, as well
as the number of agents that are allowed to move through the transition and
whether they should synchronise their moving through it. In the Agoric Market
above, the arc label 3 is:

p3(x, y) ← id(x) ∧ role(y) ∧ y ∈ {seller , buyer} ∧ 〈x, y〉 ∈ Ags (3)

that is, transition t3 is restricted to those agents x whose role y is either seller or
buyer – information on such agents is recorded in the set Ags. The complementary
arc label 3.1 leaving transition t3 is:

p3.1(x, z) ← 〈x, y〉 ∈ Ags ∧ y/z ∈ {seller/receiver , buyer/payer} (3.1)

that is, those agents 〈x, y〉 ∈ Ags that moved into t3 may move out of the
transition provided they change their roles: seller agents in the Agora Room
scene should become receiver agents in the Settlement scene, buyer agents
should become payer agents.

170 W.W. Vasconcelos

2.1 Representing E-Institutions

We have represented our e-institutions in a logical formalism [6] implemented in
Prolog [10], making them computer-processable. We show in Figure 3 our Prolog
representation for the agora room scene graphically depicted in Figure 1 above.

roles(agora,[buyer,seller]).
states(agora,[w0,w1,w2,w3]).
initial state(agora,w0).
final states(agora,[w3]).
access states(agora,buyer,[w0]).
access states(agora,seller,[w0,w2]).
exit states(agora,buyer,[w3]).
exit states(agora,seller,[w1,w3]).
theta(agora,[w0,request(B:buyer,all:seller,buy(I)),w1]).
theta(agora,[w1,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora,[w1,nil,w2]).
theta(agora,[w2,offer(S:seller,B:buyer,sell(I,P)),w2]).
theta(agora,[w2,inform(B:buyer,S:seller,accept(I,P)),w3]).
theta(agora,[w2,inform(B:buyer,S:seller,reject(I,P)),w3]).
theta(agora,[w2,nil,w3]).
theta(agora,[w3,inform(B:buyer,S:seller,reject(I,P)),w3]).

Fig. 3. Representation of Agora Room Scene

Each component of the formal definition has its corresponding representation.
Since many scenes may coexist within one e-institution, the components are
parameterised by a scene name (first parameter). The Θ and λ components of
the definition are represented together in theta/2, where the second argument
holds a list containing the directed edge as the first and third elements of the
list and the label as the second element.

Any scene can be conveniently and economically described in this fashion.
E-institutions are collections of scenes in this format, plus the extra compo-
nents of the tuple comprising its formal definition. In Figure 4 we present a
Prolog representation for the agora market e-institution. Of particular impor-
tance are the arcs connecting scenes to transitions and vice-versa. In definition 2
arcs E are defined as the
union of two sets E =
EI ∪ EO, EI connecting
(exit states of) scenes to
transitions, and EO con-
necting transitions to (ac-
cess states of) scenes. We
represent the EI arcs as
arc/3 facts: its first argu-
ment is a list which holds
a scene and one of its exit

scenes([admission,agora,settlement,departure]).
transitions([t1,t2,t3,t4,t5]).
root scene(admission). output scene(departure).
arc([admission,w3],p1,t1). arc(t1,p1.1,[departure,w0]).
arc([admission,w3],p2,t2). arc(t2,p2.1,[agora,w0]).

arc(t2,p2.1,[agora,w2]).
arc([agora,w3],p3,t3). arc(t3,p3.1,[settlement,w0]).
arc([agora,w1],p4,t4). arc(t4,p4.1,[departure,w0]).
arc([agora,w3],p4,t4).
arc([settlement,w3],p5,t5). arc(t5,p5.1,[departure,w0]).

Fig. 4. Representation of E-Institution

states, the second argument holds the predicate (constraint) pi which enables
the arc, and the third argument is the destination transition. For simplicity, we
choose to represent the arcs of EO also as arc/3 facts, but with different argu-
ments: the first argument holds the transition, the second argument holds the
constraint that enables the arc, and the third argument holds (as a list) a scene
and one of its access states.

Norm Verification and Analysis of Electronic Institutions 171

3 Norms in E-Institutions

We adopt a pragmatic notion of norm as the prescription of a set of actions that
an agent is obliged to carry out during its participation in an e-institution enact-
ment. In our definition below, the actions contemplated by our norms concern
utterances that agents ought to issue, that is, messages that ought to be sent2.

As identical utterances in different contexts (e.g., saying “yes” to a waiter
serving you more wine and saying “yes” to a police officer asking if you committed
a crime) serve very different purposes and cause rather disparate obligations,
our actions will be uniquely identified as the pair (S, γ) where S is a scene
and γ ∈ CL is an illocution from the agreed communication language [4]. The
complete set of actions of an e-institution is given by the union of all utterances
labelling the edges of each of its scenes [12]. Formally, given an e-institution
E = 〈SC , T,S0,SΩ , E, λE〉, then ActionsE , its set of actions, is defined as

{

(S, γ)
∣
∣
∣
∣
S ∈ SC ,S = 〈R,W,w0,Wf ,WA,WE , Θ, λ〉,
(w,w′) ∈ Θ, λ((w,w′)) = γ

}

That is, all labels λ((w,w′)) = γ on edges (w,w′) ∈ Θ of each one of its scenes
S ∈ SC .

Our norms are defined as two finite sets of actions, one the set of precon-
ditions, that is what causes the norm to be triggered, and the other the set of
actions that agents are obliged to perform:

Definition 3. A norm is the pair N E = 〈Pre,Obls〉 where:
– Pre ⊆ ActionsE is the set of actions which must be performed (the precondi-

tions) in order for the norm to be triggered.
– Obls ⊆ ActionsE is the set of actions that agents are obliged to perform after

the norm has been triggered.

This definition is a simplification of that introduced in [13] – in particular
we have dropped the boolean expression over variables. Another distinct fea-
ture of our formulation is the implicit logical operators in our norms: a norm
N E = 〈Pre,Obls〉 where Pre = {aPre

1 , . . . , aPre
n } and Obls = {aObls

1 , . . . , aObls
m }

is, implicitly, (aPre
1 ∧ · · · ∧ aPre

n) → (aObls
1 ∧ · · · ∧ aObls

m).
Our norms represent the preconditions that ought to hold (i.e., the Pre ac-

tions) in order for the obligations (i.e., the Obls actions) to become in effect. By
removing additional constraints (i.e., boolean expressions over variables) we can
provide, as we shall see below, a useful suite of automatic checks on e-institutions
and their norms. It is possible, however, to enhance both the syntax of norms and
the automatic checks to accommodate constraints over variables, as we depict
in [12].

2 Other actions, such as manipulating data structures, updating internal beliefs, or
moving the arm of a robot, can easily be accommodated if we associate a message
(sent to an administrative agent) reporting that the action has been performed.

172 W.W. Vasconcelos

Designers associate a possibly empty set of norms NE = {NE
0 , . . . , NE

m} to
their e-institutions. For the pair 〈E ,NE〉 we introduce the term normatised e-
institituion. We show in Figure 5 below a sample norm for our e-institution of
Figure 2. The norm prescribes the implications of an agent B playing the role

〈 {(agora, inform(B : buyer , S : seller , accept(Item,Price)))}
{(settlement , inform(B : payer , S : receiver , pay(Price)))}

〉

Fig. 5. A Sample Norm

of a buyer in the agora scene and sending a message to an agent S playing the
role of a seller: the message informs that B accepts the offered Price for Item.
If this holds then agent B is obliged to pay and should send a message in scene
settlement informing S that Price will have been paid. We show our sample norm
above represented in Prolog in Figure 6. We use the term norm(Name,Pre,Obls)

norm(n1,[(agora,inform(B:buyer,S:seller,accept(Item,Price)))],
[(settlement,inform(B:payer,S:receiver,pay(Price)))]).

Fig. 6. Sample Norm in Prolog

to represent our norms in Prolog, where Name is a label to identify the norm,
Pre and Obls are lists of pairs (Scene,Illocution) storing the actions of the
preconditions and obligations, respectively.

3.1 Norm Verification of E-Institutions

An initial test designers need to perform is the well-formedness of a set of norms.
This is straightforward: all we need to do is to check if the actions in the sets
Pre and Obls of every N E

i appear as labels on the edges of a scene in E . We also
need to check if all scenes referred to indeed have been defined in E .

A more useful check concerns the feasibility of a norm, that is, given an e-
institution we want to know if the Pre actions of a norm will ever take place and
if its Obls obligation actions will ever be fulfilled. We can verify this property
by checking for paths within the scenes and transitions of an e-institution, thus
trying to find at least one path connecting the initial state of the root scene to
a final state of the output scene in which the actions of a norm appear as labels.
The order of actions in norms is not important in our approach3: as long as the
action takes place (i.e., there is a label in a path) then we can tick the action
off as being performable.

We show in Figure 7 a straightforward implementation of this approach.

3 We are aware that in some situations the order of actions is essential. In [12] we
put forth a more expressive definition of norms in which the order of events is taken
into account. Our functionalities could be enhanced to account for the ordering of
actions since the dialogues are followed in the order that they take place.

Norm Verification and Analysis of Electronic Institutions 173

1 feasible actions(,[]).
2 feasible actions(Path,Actions):-
3 Path = [(Scene,State)|],
4 theta(Scene,[State,M,NewState]),
5 \+ member((Scene,NewState),Path),
6 member((Scene,M),Actions),
7 delete(Actions,(Scene,M),RestActions),
8 feasible actions([(Scene,NewState)|Path],RestActions).
9 feasible actions(Path,Actions):-

10 Path = [(Scene,State)|],
11 theta(Scene,[State,M,NewState]),
12 \+ member((Scene,NewState),Path),
13 \+ member((Scene,M),Actions),
14 feasible actions([(Scene,NewState)|Path],Actions).
15 feasible actions(Path,Actions):-
16 Path = [(Scene,State)|],
17 arc([Scene,State], ,Transition),
18 arc(Transition,[NewScene,NewState]),
19 feasible actions([(NewScene,NewState)|Path],Actions).

Fig. 7. Program to Check Feasibility of Actions

Predicate feasible actions/2 builds a path in its first argument and gradu-
ally removes from the list of actions in its second argument those elements it
finds labelling edges within the scenes of the e-institution. The path in the first
argument is required to avoid loops. Line 1 shows the condition for success-
ful termination: the list of actions is empty (and the contents of the path are
irrelevant).

Clause 2 (lines 2–8) addresses the case when a Θ edge is to be followed but
whose associated λ label is an illocution in one of the actions – in this case the
matching action is removed (via built-in predicate delete/3) from the list of
actions and the remaining actions are recursively examined. Clause 3 (lines 9–
14) exploits a similar situation, but the illocution labelling the Θ edge does not
occur in the list of actions – in this case, feasible actions/2 simply updates
the path and carries on examining the list of actions. Finally, clause 4 (lines
15–19) follows a transition from one scene to a new scene, carrying on the check
for feasibility into the new scene.

Termination is guaranteed: either the program stops at line 1, when all actions
are removed from the list Actions (2nd argument of feasible actions/2) or
the program terminates because it cannot find an alternative path (all paths are
recorded in the 1st argument of feasible actions/2) in which the actions in
Actions may take place. Correctness is also guaranteed: if at least one action
is not found in any of the dialogues of an institution, then the program fails –
no new edges can be found and the list Actions is not empty, causing a failure.
On the other hand, if the given list of actions is to be found in dialogues of the
institution, clause 2–8 will remove each of them, one at a time.

The fragment of code above must be used twice for each norm: once to
check the Pre actions and another time to check for the Obls actions. An initial
value ought to be assigned to the path consisting of the root scene and its
initial state. A top-level definition of the check for the feasibility of a norm

174 W.W. Vasconcelos

is shown in Figure 8. Predicate feasible/1 takes as its only parameter the
name of a norm and returns “yes” if that norm is feasible or “no” otherwise.
It works by retrieving the
definition of Norm (line
2), the root scene (line 3)
and its initial state (line
4), then calling predicate
feasible actions for
the action list Pre and
Obls. Only if both Pre
and Obls are feasible is

1 feasible(Norm):-
2 norm(Norm,Pre,Obls),
3 root scene(Scene),
4 initial state(Scene,State),
5 feasible actions([(Scene,State)],Pre),
6 feasible actions([(Scene,State)],Obls).

Fig. 8. Predicate to Check Feasibility of Norms

that Norm is considered feasible.
Although the code above always terminates, its complexity is exponential in

the worst case, as it tries all possible paths. This complexity can be reduced,
however, via simple heuristics such as checking for all actions of each scene, using
the scenes’ definitions to control the checking loop. For instance, if we check for
all actions of a norm that should take place in a certain scene and we find that
at least one of them is not found, then we can stop the verification as the norm
is unfeasible.

We envisage two likely scenarios for norm verification. In the first scenario
designers willing to create norms for an existing e-institution can verify if these
new norms are feasible: designers may alter and change norms until they achieve
feasibility. In the second scenario designers in possession of a norm which cap-
tures a desirable property of agents and their illocutions may “tinker” with an
e-institution until it complies with the norm. The same feasibility verification
can thus lead to changes in the norm, in the e-institution or in both, depending
on the designers’ intention.

If we consider our actions to be ordered, then the code above has to reflect
this. The execution control should be guided by the list of actions to be searched
in the dialogues: for each action, check that it takes place in a dialogue, in the
order they appear in the list Actions.

4 Norm Analysis of E-Institutions

Normatised e-institutions provide a hitherto unexplored approach to the analysis
and engineering of multiagent systems: designers manipulate the normatised e-
institution with a view to extracting sub-portions of it. These sub-portions are
guaranteed to avoid or indeed cause specific obligations on those agents taking
part in the original e-institution. The more limited e-institution(s) can be used as
a guideline to synthesise agents which conform to the specification (as introduced
in [6, 9]) but have restricted forms of behaviour.

Clearly, the removal of parts of an e-institution is a difficult and error-prone
task and designers need support to perform it. We propose the use of meta-
programming [14, 15] to help designers analyse and manipulate e-institutions
with a view to extracting sub-portions of it in which certain properties hold. A

Norm Verification and Analysis of Electronic Institutions 175

meta-program is a program whose data denotes another (object) program, both
of which are in the same language.

We have designed a meta-interpreter, shown in Figure 9, to build a list with
those portions of the original e-institution used to compute a result. Predicate
meta/3 builds in its third argument a list with the components of the e-institution
that were used in the proof of its first argument. The second argument is a tem-
porary list with the components used so
far in the proof and is initially assigned
the empty list.

The first clause (lines 1–3) caters for
a conjunction of goals (G,Gs) and recur-
sively builds its list of goals used in the
proof of G and uses it to build the list
of goals of Gs. The second clause (lines
4–6) addresses the built-in predicates,
those goals G that satisfy the built-in test
system/1. The third clause (lines 7–10)
handles user-defined predicates: a clause
from the program is selected via the
clause/2 built-in (line 8) whose head
matches G and its body is returned in
Body. The goal G is then used to update
(line 9) the list EITmp containing the por-
tions of the e-institution used so far –
predicate update/3 defined in lines 1–14
inserts G as the head of its third argu-
ment if it is a collectable goal and does

1 meta((G,Gs),TmpEI,EI):-
2 meta(G,TmpEI,NewTmpEI),
3 meta(Gs,NewTmpEI,EI).
4 meta(G,EI,EI):-
5 system(G),
6 call(G).
7 meta(G,EITmp,EI):-
8 clause(G,Body),
9 update(EITmp,G,NewEITmp),

10 meta(Body,NewEITmp,EI).

11 update(EI,G,[G|EI]):-
12 collectable(G),
13 \+ member(G,EI).
14 update(EI, ,EI).

15 collectable(roles(,)).
16 collectable(states(,)).

. . .

Fig. 9. Program to Collect Portions of
E-Institution

not yet appear in the list. The body of the clause is recursively used with the
updated result (line 10).

The collectable goals defined via the collectable/1 predicate (lines 15 on-
wards) are all those used in the definition of an e-institution, such as roles/2,
states/2, and so on. These are the goals required to completely define an e-
institution and are the ones that should be collected during the execution of the
meta-interpreter. If a goal is not collectable, then the second clause of update/3
returns the same input e-institution.

4.1 Norm-Based Extraction

In order to extract sub-parts of the e-institution that make up a coher-
ent whole, we ought to make sure an agent can join it and find its way
from an initial state of the root scene to a final state of the output
scene.

We have designed a program which captures the behaviours of a generic agent
within an e-institution. This program is shown in Figure 10: predicate loop/1
(lines 1–4) gathers information and makes an initial call to its auxiliary loop/2
(lines 5–19) predicate. Predicate loop/1 has only one argument Ag, an agent

176 W.W. Vasconcelos

1 loop(Ag):-
2 root scene(Scene), initial state(Scene,State),
3 role scenes(Scene,Roles), member(Role,Roles),
4 loop([Scene,State,Role,nil],Ag).
5 loop([(Scene,State, ,)|],):-
6 output scene(Scene),
7 final states(Scene,States),
8 member(State,States).
9 loop(Path,Ag):-

10 Path = [(Scene,State,Role,)|],
11 theta(Scene,[State,M,NewState]),
12 illocution(Role,Ag,M,AcM),
13 \+ member((Scene,State,Role,AcM),Path),
14 loop([(Scene,NewState,Role,AcM)|Path],Ag).
15 loop(Path,Ag):-
16 Path = [(Scene,State,Role,)|],
17 arc([Scene,State], ,Tr), arc(Tr, ,[NewScene,NewState]),
18 roles(NewScene,Roles), member(Role,Roles),
19 loop([(NewScene,NewState,Role,nil)|Path],Ag).

20 illocution(Role,Ag,M,M):-
21 M =.. [,Ag:Role, ,] ; M =.. [, ,Ag:Role,].
22 illocution(, , ,nil).

Fig. 10. Generic E-Institituion Agent

identifier. It obtains the initial state in the root scene (line 2), then selects a role
(line 3) from the possible roles of the root scene. It then makes an initial call to
its auxiliary predicate loop/2 which defines a loop.

The first argument of predicate loop/2 is a list of tuples
(Scene,State,Role, Illocution) storing a path an agent can follow
within the e-institution and the second argument is the unique identification
of the agent. The first clause (lines 5–8) captures the termination condition
when a final state of the output scene is reached. The second clause (lines 9–14)
addresses Θ edges within a scene, making sure that the new state and message
are not part of the current path built. Finally, the third clause (lines 15–19)
caters for transitions between two scenes: the transitions out of the current
scene and into the new scene are followed in line 13, a role is picked for the new
scene (line 14) and the loop carries on recursively.

The second clause of predicate loop/2 makes use of an auxiliary predicate
illocution/4 (lines 20–22). This predicate obtains in its fourth argument the
actual message sent or received by an agent incorporating role Role: it may send
the message (first case of line 21), receive the message (second case of line 21)
or none of them (line 22 – a “nil” illocution is returned), depending on whether
its role matches the one specified in the λ label.

We can put our meta-interpreter above to use in order obtain the parts of an
e-institution that guarantee that a norm will hold, by using the query

?- meta((loop(ag1),feasible(n1)),[],EI).
asking for the portions EI of the e-institution in which both loop(ag1) and
feasible(n1) hold, that is, the subparts of the e-institution required for an

Norm Verification and Analysis of Electronic Institutions 177

agent to find its way into and out of it and such that norm n1 (defined in Fig. 6)
holds.

If we use the query above with the definitions of Figures 3 and 4, then we
obtain in EI the parts of the e-institution definition required to prove that norm
n1 is feasible, that is, the portions of the e-institution required to allow an agent
to correctly navigate its way into and out of it and, in addition to that, the parts
ensure that the norm has both its preconditions and obligations fulfilled. We
show in Figures 11 and 12 the visual rendition of the fragments of, respectively,

3
buyer
seller

request(B:buyer,all:seller,buy(Item))

inform(B:buyer,S:seller,accept(Item,Price))

offer(S:seller,B:buyer,sell(Item,Price))

offer(S:seller,B:buyer,sell(Item,Price))

w

w0
buyer
seller

w2
seller

w1 seller

Fig. 11. Portion of Agora Room Scene

the agora scene and the agoric market e-institution obtained with the query
above. The scene fragment shows the edges and labels that should be followed

DepartureAdmission SettlementAgora
Room

2 2.1 3 5 5.13.1t2 t3 t5

Fig. 12. Portion of Agoric Market E-Institution

by agents in order for the pre-conditions of the norm to hold. The fragment of
the e-institution shows those scenes that ought to take place in order for the
obligations to be fulfilled – the alternative paths that bypass the agora room are
eliminated.

Alternatively, we can obtain the portions of an e-institution that allow
agents to join in and leave, but avoiding the conditions that would bind them
to a norm. In order to do that, we ought to get hold of a proper portion of
the e-institution (i.e.
one that allows an
agent join in and leave
it) and in which the
pre-conditions of the
norm does not hold.
The auxiliary definition
of Figure 13 captures
the conditions when a

1 untriggered(Norm):-
2 norm(Norm,Pre,Obls),
3 root scene(Scene),
4 initial state(Scene,State),
5 \+ feasible actions([(Scene,State)],Pre).

Fig. 13. Test for Untriggered Norms

norm cannot be triggered. The definition is similar to that in Figure 8, but here
the feasible actions/2 predicate is used in its negated form. Moreover, only

178 W.W. Vasconcelos

the preconditions of the norm are tested: an untriggered norm is one whose
preconditions do not occur in the e-institution.

The query below obtains the portions of the e-institution that allow an agent
to join in and leave it, but avoids triggering the norm by causing its precondi-
tions:

?- meta((loop(ag1),untriggered(n1)),[],EI).

that is, it obtains in EI the parts of the e-institution used to allow agent ag1
to navigate it but these parts do not trigger the preconditions of norm n1. If
we use the query above with the e-institution of Figures 3 and 4, then we get
the fragments shown in Figures 14 and 15 (represented in their visual form).

1 seller
request(B:buyer,all:seller,buy(Item))

nil

inform(B:buyer,S:seller,reject(Item,Price))

offer(S:seller,B:buyer,sell(Item,Price))inform(B:buyer,S:seller,reject(Item,Price))

niloffer(S:seller,B:buyer,sell(Item,Price))

ww0
buyer
seller

w3
buyer
seller

w2
seller

Fig. 14. Another Portion of the Agora Room Scene

Figure 14 shows the agora scene but the edge labelled with the message that

4.14

2.12
Room
Agora

Admission Departure

4t

2t

Fig. 15. Another Portion of the E-Institution

would trigger norm n1 has been removed. This fragment of the agora scene
becomes part of the e-institution depicted in Figure 12. We have obtained only
those parts used to go from the root scene to the output scene via one of the
many existing paths.

Our formalisation of e-institutions exploits non-determinism to represent the
many different behaviours agents are allowed to have. When an e-institution is
analysed using our queries above, only one path in and out of the e-institution
is actually pursued. We can, however, exhaustively examine all paths obtaining
all sub-parts of the e-institution in which a norm is fulfilled or avoided. Our
approach allows any combination of any number of norms to be fulfilled and/or
avoided.

4.2 Norm-Aware Synthesis of Agents

In [6, 9] we have shown how we can synthesise simple agents conforming to
a given specified e-institution. We have also shown how these simple agents

Norm Verification and Analysis of Electronic Institutions 179

can be further customised into more sophisticated software. We notice that the
restricted e-institutions obtained via our approach explained above can be used
to synthesise agents – these agents will correctly follow the e-institution but will
pursue paths in which norms can be triggered (and fulfilled) or paths in which
norms cannot be triggered.

We envisage a scenario in which an initial normatised e-institution is manipu-
lated using the approach described above, giving rise to a number of alternative
e-institutions. Each of these alternative e-institutions is fully compatible with
the original one but they offer particular “views” in which norms are fulfilled or
avoided. The alternative e-institutions can be used to synthesise agents that will
adopt norm-avoiding or norm-fulfilling behaviour.

This approach is depicted in the diagram of Figure 16 below: an initial
e-institution E is used to extract (simple arrow) a repertoire of e-institutions
E ′

i each of which has particular features of avoiding or fulfilling norms. Each
of these extracted e-
institutions is used to
synthesise agents Π[i]

(double arrows). The
synthesised initial agents
are then customised dif-
ferently as Π[i,j] (triple
arrows). The customised
agents can take part in

E ′
1

�� Π[1]
��� Π[1,1]

��� · · ·

E
�������� ��

��������� E ′
2

�� Π[2]
��� Π[2,1]

��� · · ·

· · ·

Fig. 16. Extraction, Synthesis & Customisation

an enactment of e-institution E as they will be in full compliance with it, but
the agent will be adverse to particular norms or eager to fulfil them.

5 Conclusions, Related Work and Directions of Research

We have presented a formal definition of norms and shown how norms can be
incorporated in electronic institutions and employed to verify properties both of
norms and electronic institutions. We have also introduced automatic means to
obtain portions of an e-institution in which norms are guaranteed to hold and
portions in which norms can be safely avoided.

Clearly, not all kinds of norms can be represented in our approach. In par-
ticular, we focus on utterances: the only events we consider are those of issuing
messages. Additional events associated to, for instance, sensors or data struc-
tures, although important in many applications of multiagent systems, are not
considered in our approach. Directed norms (i.e., norms between two people
[3]) are captured via the roles of those agents sending (and receiving) messages.
Ours is a less expressive notion of norms and we are aware that there are limi-
tations on what we can represent with this notion. However, alternative (more
expressive) definitions of norms will inevitably require more sophisticated (and
computationally expensive) mechanisms to verify properties.

The scenario we contemplate is one in which an electronic institution is
endowed with a layer of administrative (or institutional) agents, the governor

180 W.W. Vasconcelos

agents. These agents work as proxies of heterogeneous (external) agents that will
join in in the enactment of the institution. The governor agents guarantee that
the external agents will follow the specifications of the institution, sending the
appropriate messages in the prescribed order. The governor agents, plus a team
of other administrative agents, form a social layer to the institution [16]. Issues
of trust and sincerity are confined to the communication between the governor
agent and its external agent. Various mechanisms can be put in place to prevent
these issues from spreading to other parts of the institution. For instance, if an
external agent refuses to send a message it is required to within a certain period,
then its governor agent takes over and sends an appropriate exception message
(contemplated by the scene’s protocol).

Electronic institutions provide an ideal scenario within which alternative def-
initions and formalisations of norms can be proposed and studied. In [13] we find
an early account of norms relating illocutions of an e-institution. In [17] we find
a first-order logic formulation of norms for e-institutions: an institution conforms
to a set of norms if it is a logical model for them.

Our work is an adaptation and extension of [13] but our approach differs
in that we do not explictly employ any deontic notions of obligations [1]. Our
norms are of the form Pre → Obls, that is, if Pre holds then Obls ought to hold.
The components of Pre and Obls are utterances, that is, messages the agents
participating in the e-institution send. This more pragmatic definition fits in
naturally with the view of e-institutions as a specification of virtual environments
which can be checked for properties and then used for synthesising agents [6, 9].

We represent e-institutions in a non-deterministic fashion: all possible be-
haviours of agents that will perform within it are captured. However, this feature
causes an exponential number of possibilities to be considered when verifying
and analysing e-institutions – the behaviours of the agents are paths of a non-
deterministic finite-state machine. The functionalities described in this paper
all have the same undesirable property: in the worst case, their computational
complexity is exponential as they have to consider all possible behaviours.

Rather than extracting a complete e-institution as explained in Section 4.1,
we can offer a similar functionality that collects just a single path (or a set of
paths) that agents may follow in order to fulfil a norm or avoid it. Such a path
can be supplied (in various alternative formats) to heterogenous agents wanting
to join the e-institution or to institutional agents looking over the enactment of
an e-institution. The paths provide an agenda to help agents deliberate when
given choices of behaviour.

We would like to include prohibitions in our norms as a set of actions that
ought not to take place in an e-institution. Prohibitions would allow norms and
e-institutions to be checked for consistency: an agent cannot be obliged to per-
form an action and simultaneously be prohibited from doing it. Furthermore, we
have explored in [12] a more expressive notion of norms in which the ordering of
the events is taken into account and there can be arbitrary constraints on the
variables of our illocutions. Ideally this richer formalisation should be accompa-
nied by algorithms and tools to verify properties and perform distinct analyses

Norm Verification and Analysis of Electronic Institutions 181

in electronic institutions. We are currently working on means to automate the
verification and analysis of these more expressive norms.

Acknowledgements. Thanks to J. Rodŕıguez-Aguillar and M. Esteva for their
comments and suggestions, and to Seumas Simpson for proofreading earlier ver-
sions of this document. Thanks are also due to the anonymous reviewers whose
comments helped improving this paper. Any remaining mistakes are the author’s
responsibility only.

References

1. Dignum, F.: Autonomous Agents with Norms. Artificial Intelligence and Law 7
(1999) 69–79

2. López y López, F., Luck, M., d’Inverno, M.: Constraining Autonomy Through
Norms. In: Proceedings of the 1st Int’l Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), ACM Press (2002)

3. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)

4. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
Formal Specification of Electronic Institutions. Volume 1991 of LNAI. Springer-
Verlag (2001)

5. Rodŕıguez-Aguilar, J. A.: On the Design and Construction of Agent-mediated
Electronic Institutions. PhD thesis, IIIA-CSIC, Spain (2001)

6. Vasconcelos, W.W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,
M.: Rapid Prototyping of Large Multi-Agent Systems through Logic Programming.
Annals of Mathematics and Artificial Intelligence 41 (2004) 135–169

7. Fuchs, N.E.: Specifications are (Preferably) Executable. Software Engineering
Journal (1992) 323–334

8. Lloyd, J.W.: Practical Advantages of Declarative Programming. In: Joint Confer-
ence on Declarative Programming, GULP-PRODE’94. (1994) Invited Paper.

9. Vasconcelos, W.W., Sierra, C., Esteva, M.: An Approach to Rapid Prototyping
of Large Multi-Agent Systems. In: Proc. 17th IEEE Int’l Conf. on Automated
Software Engineering (ASE 2002), Edinburgh, UK, IEEE Computer Society, U.S.A
(2002) 13–22

10. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages and Computation. 2nd edn. Addison-Wesley, U.S.A (2001)

12. Esteva, M., Vasconcelos, W., Sierra, C., Rodŕıguez-Aguilar, J.A.: Verifying Norm
Consistency in Electronic Institutions. In: Proc. AAAI-04 Workshop on Agent
Organizations: Theory and Practice, San Jose, California, U.S.A., AAAI Press
(2004)

13. Esteva, M., Padget, J., Sierra, C.: Formalizing a Language for Institutions and
Norms. Volume 2333 of LNAI. Springer-Verlag (2001)

14. Hill, P.M., Gallagher, J.: Meta-Programming in Logic Progamming. In: Hand-
book of Logic in Artificial Intelligence and Logic Programming. Volume 5., Oxford
University Press (1998) 421–498

15. Sterling, L.S., Beer, R.D.: Meta-Interpreters for Expert System Construction.
Journal of Logic Programming 6 (1989) 163–178

182 W.W. Vasconcelos

16. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: an Agent-
Based Middleware for Electronic Institutions. In: Proc. 3rd Int’l Joint Conf. on
Autonomous Agents & Multi-Agent Systems (AAMAS), New York, U.S.A., ACM
Press (2004)

17. Ibrahim, I.K., Kotsis, G., Schwinger, W.: Mapping Abstractions of Norms in Elec-
tronic Institutions. In: 12th. Int’l Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprise (WETICE’03), Linz, Austria, IEEE Computer
Society (2003)

A Lightweight Coordination Calculus for
Agent Systems

David Robertson

Informatics, University of Edinburgh, UK

Abstract. The concept of a social norm is used in multi-agent systems to specify
behaviours required of agents interacting in a given social context. We describe a
method for specifying a class of social norms that is more compact than existing
methods without loss of generality and permits simple but powerful mechanisms
for analysis and deployment. We explain the method and how to compute with it.
Specifically, we show how it relates to a well known system for enforcing social
norms - the ISLANDER system - and compare it to performative languages.

1 Introduction: A Broad View of Social Norms

The Internet raises the prospect of engineering large scale systems that are not engi-
neered in the traditional way, by tightly integrating modest numbers of components
familiar to a single design team, but are assembled opportunistically from components
built by disparate design teams. Ideally such systems would make it easy for new com-
ponents to be designed and deployed in competition with existing components, allowing
large systems to evolve through competitive design and service provision. That requires
standardisation of the languages used for description of the interfaces between com-
ponents - hence Web service specification efforts such as DAML-S (in the Semantic
Web community) and performative-based message passing protocols such as FIPA-
ACL and KQML (in the agent systems community). Although helpful these are, in
themselves, insufficient to coordinate groups of disparate components in a way that al-
lows substantial autonomy for individual agents while maintaining the basic rules of
social interaction appropriate to particular coordinated tasks. This is especially difficult
in unbounded, distributed systems (like the Internet) because coordination depends on
each component “being aware” of the state of play in its interaction with others when
performing a shared task and being able to continue that interaction in a way likely to
be acceptable to those others. This is the broad sense in which “social norm” is used
in this paper, recognising that it possesses more specific connotations for part of the
multi-agent systems community.

Solving coordination problems requires some description of the focus of coordina-
tion. One way of doing this is by the use of policy languages (e.g. [1]). By enforcing
appropriate policies we may provide a safe envelope of operation within which services
operate. This is useful but not the same as specifying more directly the interactions
required between services. For this it has been more natural to use concepts from tem-
poral reasoning to represent the required behaviours of individual services (e.g. [2]);
shared models for coordinating services (e.g. [3]) or the process of composing services

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 183–197, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

184 D. Robertson

(e.g. [4, 5]). As recognised in earlier studies on conversation policies [6] the constraints
on interaction between agents often are more “fine grained” than those anticipated in
standard performative languages like FIPA-ACL. One solution to this problem is the
concept of an electronic institution [7, 8] to which we return in the next section.

In what follows we shall present an approach to coordination that we intend to be
consistent with the views described above but which is also comparatively lightweight
to use. The language we shall present is intended to be understood by programmers
(since this is the one skill common to most engineers of multi-agent systems) but is also
declarative (in the sense that it can be understood independently of a specific execution
architecture). It also contains as few operators as possible - the idea being to make this
a core language for interaction. A consequence of this decision is that some of the con-
ceptual notions that are important to coordination (such as commitment and sanction)
do not feature explicitly in the language but must be constructed by assembling the
protocol in an appropriate way. In other words, if you want to enforce something like
commitment using our approach then you must write a definition in which failure to
commit breaks the protocol.

We begin, in Section 2, by summarising the concept of social norms as we un-
derstand it using the Islander system as an example. In Section 3 we introduce the
Lightweight Coordination Calculus (LCC) which is a process calculus for specifying
multi-agent coordination. A basic example of its use is in Section 4. LCC is a compar-
atively simple but flexible language and can be supplied with a straightforward method
for constraining the behaviour of an individual agent in a collaboration, as described
in Section 5. It is then possible to construct simple, general-purpose mechanisms for
multi-agent coordination that harness this method (see Section 6). LCC is intended as a
practical, executable specification language and has been used for a variety of purposes
which we summarise in Section 7. Finally, in Section 8 we return to mainstream perfor-
mative languages and show how LCC may be used to describe the coordination aspects
of those types of system.

2 Islander: A Means of Enforcing Social Norms

The Islander system [8] is sketched here as an example of a traditional means of enforc-
ing social norms. In this section we introduce the approach and main representational
features of Islander. In Section 3 we shall return to these when introducing the LCC
notation. The framework for describing agent interactions in Islander relies upon a (fi-
nite) set of state identifiers representing the possible stages in the interaction. Agents
operating within this framework must be allocated roles and may enter or leave states
depending on the illocutions (via message passing) that they have performed. In order
to structure the description, states are grouped into scenes. An institution is then defined
by a set of scenes and a set of connections between scenes with constraints determining
whether agents may move across these connections. A scene is defined as a collection of
the following sets: roles; state identifiers; an initial state identifier; final state identifiers;
access state identifiers for each role; exit state identifiers for each role; and cardinality
constraints on agents per role. A social norm for an agent is defined by an antecedent
(defined as a list of scene-illocution pairs) and a consequent (the predicates obliged to

A Lightweight Coordination Calculus for Agent Systems 185

be true if the antecedent illocutions have taken place). This thumbnail sketch of the
main components of an institution model suffices to give the reader an overview of the
approach. Later we shall revisit these components in more detail.

This sort of state transition model has been shown to be adequate for constraining
multi-agent dialogue in situations, such as auctions, where social norms are essential
for reliable behaviour. It also permits a style for enforcement of the model during de-
ployment, in which the state-based model of interaction is used to check that the agents
involved do indeed conform to the model. It suffers, however, from two weaknesses.
The first weakness is its reliance on representing the entire model of interaction as a
single (albeit structured) state transition model. This makes enforcement of the model
difficult except via some form of representation of the global state of the interaction as
it applies to the group of agents involved in it.

Thus far, the only solutions to this problem have been to maintain a single institution
model with which all agents must synchronise or to have synchronised distribution of a
single model. Both these solutions undermine the distributed nature of the computation
by enforcing centralised control over interactions between agents. The second weakness
(related to the first) is that its focus on global state of multi-agent interaction makes it
difficult to disentangle the specification of constraints on individual agent processes
contributing to that state. This is of practical importance because all current efforts
on large scale agent deployment via standardised Web services (e.g. DAML-S) use
process models specific to individual agents. The relevance of LCC to the modelling
and deployment of semantic web services has previously been argued in [9, 10]. In
the current paper we concentrate on the related but separable issue of its relevance
to multi-agent coordination. The system described in the remainder of this paper is a
process calculus that can be used to describe social norms as complex as those of state-
based systems such as Islander, with the advantage that these can be deployed without
requiring centralised control.

3 LCC Syntax

LCC borrows the notion of role from institution based systems, as described in the pre-
vious section but reinterprets this as a form of typing on a process in a process calculus.
Process calculi have been used before to specify social norms (see for example [7])
but LCC is, to our knowledge, the first to be used directly in computation for multi-
agent systems. Following [11] we understand that “following a social law corresponds
to choosing strategies within the set of lawful behaviours allowed by the law”. The
clauses of LCC describe the lawful behaviours for agents undertaking roles in a collab-
orative interaction. For each individual agent, following a social law means obeying the
message passing sequence stipulated by the clause it currently is using, and deciding
how it satisfies any constraints associated with the messages it sends or receives. Thus,
the most basic behaviours in LCC are to send or receive messages, where sending a
message may be conditional on satisfying a constraint and receiving a message may
imply constraints on the agent accepting it. The choice of constraint language depends
on the constraint solvers used, although the LCC constraints used in current implemen-
tations are in first order predicate calculus. More complex behaviours are specified using

186 D. Robertson

the connectives then, or and par for sequence, choice and parallelisation respectively.
A set of such behavioural clauses specifies the message passing behaviour expected
of a social norm. We refer to this as the interaction framework. Its syntax is given in
Figure 1.

Framework := {Clause, . . .}
Clause := Agent :: Def
Agent := a(Type, Id)

Def := Agent | Message | Def then Def | Def or Def | Def par Def |
null ← C
Message := M ⇒ Agent | M ⇒ Agent ← C | M ⇐ Agent | M ⇐Agent ← C

C := Term | C ∧ C | C ∨ C
Type := Term

M := Term

Where null denotes an event which does not involve message passing; Term is a structured term
in Prolog syntax and Id is either a variable or a unique identifier for the agent. The operators ←, ∧
and ∨ are the normal logical connectives for implication, conjunction and disjunction. M ⇒ A
denotes that a message, M , is sent out to agent A. M ⇐ A denotes that a message, M , from
agent A is received. The implication operator dominates the message operators, so for example
M ⇒ Agent ← C is scoped as (M ⇒ Agent) ← C

Fig. 1. Syntax of LCC interaction framework

Although LCC looks different to state-based systems like Islander it provides all the
representational features we saw in Section 2. These are:

Role and scene identification: These are described by the agent type definition (Type
in Figure 1) which permits any structured term to be used to describe the agent type,
hence this structure could include the agent’s scene and role.

Initial state: Although LCC does not require a single initial state we can choose to have
one of the clauses (an instance of Clause in Figure 1) determine the scene and role of
the agent that initiates the interaction.

Final and exit states: Although states are not labelled in LCC each agent can determine
its current position in the interaction protocol by using the definition of protocol closure
described in Figure 3.

Movement between states: Each agent moves between states by following its clause in
the protocol. LCC allows changes of scene/role and recursion over scenes/roles (recall
that states and roles are described in LCC using structured terms so these can be used
to describe recursive orderings).

Access to protocol for agents: Agents can access a protocol by selecting an appropriate
clause. The means of distributing protocols described in Section 6 allow agents hitherto

A Lightweight Coordination Calculus for Agent Systems 187

unaware of a protocol to be “invited into” an interaction, so LCC-enabled agents may
either initiate interaction or reactively join interactions.

Constraints on individual agents: Constraints can be applied to sending messages,
accepting messages and to change of scene/role (see use of C in Figure 3). In order
to keep the LCC language simple there is no special notation in LCC for representing
temporal constraints (such as timeouts or temporal prohibitions) so one must construct
these from normal first-order expressions.

Constraints on groups of agents: Although LCC clauses are used by individual agents
it is easy to “thread” information through a group of interacting agents via arguments in
the structured terms defining each agent’s type (Type in Figure 1). Constraints relevant
to the group (such as cardinality constraints on the set of agents participating in an in-
teraction) can then be checked by constraints on the individual agents. Simple temporal
constraints (such as timeouts or prohibition periods) can be handled similarly, although
there is the perennial issue of what a time interval means if communicated between
agents on different processors with different clocks.

In Section 7 we describe aspects of LCC that go beyond current abilities of systems
such as Islander. First we give an illustrative example of LCC in use.

4 Example LCC Interaction Framework

Figure 2 shows an example of a protocol in LCC for a basic multi-agent auction. There
are two initial roles - a bidder and an auctioneer - with the auctioneer’s role changing
during the interaction between that of a caller of bids and a vendor collecting offers from
bidders (notice the use of mutual recursion between auctioneer and vendor in clauses 2
and 4). The list of bidders known to the auctioneer (the variable named S in clauses 1
to 4) is assumed to be fixed throughout the auction but it is straightforward to extend
the protocol to allow new bidders to join - for example we could add a clause for an
introductory bidder that would ask for entry to the auction and then become a bidder;
then extend clause 4 to allow acceptance of an invitation to bid.

The point of Figure 2 is not to describe an optimal auction protocol but to give the
reader a flavour of what it is like to describe protocols in LCC. For those familiar with
logic programming the style of description should be reassuringly familiar, since each
clause of the protocol can be read similarly to a Horn clause with the “head” of the
clause being the agent role and the “body” being the definition of its behaviour when
discharging that role. Our preliminary efforts at teaching this language to first year
postgraduate students encourages us to believe that teaching LCC as a form of declar-
ative programming language is comparable in difficulty to teaching other declarative
languages, such as Prolog. LCC is, however, a language for coordinating distributed
processes (which we could not do using a straightforward rule based model of com-
putation - we need to include asynchronous roles and message passing) so forms of
debugging and analysis appropriate to asynchronous systems also are required to sup-
port LCC engineers. For example, model checking has been performed for a variant of
LCC [10], analogous to model checking applied to systems like Islander [12]. A more

188 D. Robertson

The role of an auctioneer, A, is performed by performing the role of an auctioneer for an item, X ,
with a set of bidders, S, at initial reserve price, R, and an initial empty list, [], of bids. The con-
straint item(X, R) determines the initial reserve price for the item and the constraint bidders(S)
determines the set of bidding agents.

a(auctioneer, A) :: a(auctioneer(X, S, R, []), A) ← item(X, R) ∧ bidders(S) (1)

An auctioneer is first a caller for bids and then becomes a vendor.

a(auctioneer(X, S, R, Bids), A) :: a(caller(X, S, R), A) then
a(vendor(X, S, R, Bids), A)

(2)

A caller recurses through the list, S, of bidders, sending each an invitation to bid.

a(caller(X, S, R), A) ::

(
invite bid(X, R) ⇒ a(bidder, B) ← S = [B|Sr] then
a(caller(X, Sr, R), A)

)

or null ← S = []
(3)

A vendor receives a bid which is added to its current collection of bids, C, to give the updated
set, Cn. It then does one of the following: sells to the highest bidder if there is one at the current
reserve price; continues as a vendor if not all of the bids are collected; reverts to being an auc-
tioneer if all the bids are in but there is no highest bidder or the highest bid exceeds the current
reserve.

a(vendor(X, S, R, C), A) :: add bid(Bb, Vb, C, Cn) ← bid(X, Vb) ⇐ a(bidder, Bb)
then⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎝sold(X, Vs) ⇒ a(bidder, Bs) ← all bid(S, Cn) ∧
highest bid(Cn, Bs, Vs) ∧ Vs = R

⎞

⎠ or

(a(vendor(X, S, R, Cn), A) ← not(all bid(S, Cn))) or⎛

⎝a(auctioneer(X, S, R, []), A) ← all bid(S, Cn) ∧
not(highest bid(Cn,))

⎞

⎠ or

⎛

⎝a(auctioneer(X, S, Rn, []), A) ← all bid(S, Cn) ∧
highest bid(Cn, Rn) ∧ Rn > R

⎞

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

A bidder receives an invitation to bid from an auctioneer agent; then sends a bid to that agent (in
its role as vendor); then either receives a message informing it that the item has been sold to it or
it reverts to being a bidder again.

a(bidder, B) :: invite bid(X, R) ⇐ a(auctioneer(X, , ,), A) then
bid(X, Vb) ⇒ a(vendor(X, , ,), A) ← bid at(X, R, Vb) then
(sold(X, Vs) ⇐ a(vendor(X, , ,), A) or a(bidder, B))

(5)

Fig. 2. LCC framework for an auction example

A Lightweight Coordination Calculus for Agent Systems 189

extensive discussion of the relationship between mechanism design and distributed pro-
tocols appears in [13].

Although analytical techniques like model checking help support engineers, a sim-
ple and predictable computational model of the behaviour of protocols in deployment
is fundamental to good engineering. In the next two sections we describe this model
for LCC, beginning in Section 5 with the most basic computational step of accessing
and updating the protocol; then in Section 6 showing how this is harnessed to provide
flexible styles of multi-agent coordination.

5 Clause Expansion

To enable an agent to conform to a LCC protocol it is necessary to supply it with a way
of unpacking any protocol it receives; finding the next moves that it is permitted to take;
and recording the new state of dialogue. There are many ways of doing this but perhaps
the most elegant way is by applying rewrite rules to expand the dialogue state. In this
section we describe an expansion algorithm, showing in Section 6 how to use it with a
selection of coordination systems.

The mechanism described below for coordinating agents using LCC assumes some
means by which messages may be sent to a message exchange system and some means
by which messages may be read from that system. The means of transmitting messages
is not prescribed by LCC so this could be done using any appropriate distributed com-
munication infrastructure. LCC does, however, make the following assumptions related
to the format of messages:

– A message must contain (at least) the following information, which can be encoded
and decoded by the sending and receiving mechanisms attached to each agent:
• An identifier, I , for the social interaction to which the message belongs. This

identifier must be unique and is chosen by the agent initiating the social inter-
action.

• A unique identifier, A, for the agent intended to receive the message.
• The role, R, assumed of the agent with identifier A with respect to the message.
• The message content, M , in the syntax defined in Section 3.
• The protocol, P , for continuing the social interaction. This consists of: a set, C,

of LCC clauses defining the dialogue framework (see Section 3); and a set, K,
of axioms defining any common knowledge assumed during the social inter-
action. This provides a way of preserving information context as the protocol
moves between agents. It also allows the common knowledge to be adapted
during an interaction, so agents may add information for others to use, although
we shall not be discussing this facility in the current paper.

– The agent must have a mechanism for satisfying any constraints associated with
its clause in the dialogue framework. Where these can be satisfied from common
knowledge (the set K above) it is possible to supply standard constraint solvers
with the protocol. Otherwise, this is the responsibility of the agent.

Given these assumptions about message format, the basic operation an agent must
perform when interacting via LCC is to decide what its next steps for its role in the

190 D. Robertson

interaction should be, using the protocol information carried with the message it ob-
tains from some other agent. Recall that the behaviour of an agent in a given role is
determined by the appropriate LCC clause. Figure 3 gives a set of rewrite rules that are
applied to give an expansion of a LCC clause Ci in terms of protocol P in response to
the set of received messages, Mi, producing: a new LCC clause Cn; an output message
set On and remaining unprocessed messages Mn (a subset of Mi). These are produced
by applying the protocol rewrite rules above exhaustively to produce the sequence:

〈Ci
Mi,Mi+1,P,Oi−−−−−−−−−→ Ci+1, . . . , Cn−1

Mn−1,Mn,P,On−−−−−−−−−−→ Cn〉
We refer to the rewritten clause, Cn, as an expansion of the original clause, Ci. In

the next section this basic expansion method is used for multi-agent coordination.

6 Coordination Mechanisms

Figure 4 depicts two methods of distributed coordination using LCC. Both use the
clause expansion mechanism given in Section 5, the only difference between them be-
ing in the way the state of the interaction is preserved during interactions. In both cases
there are two distinct (but interacting) uses of the LCC clauses. The first is the general
protocol, which one might understand intuitively as the script for the whole interaction.
The second is the set of specific clauses for each interacting agent (each copied from
the general protocol and then progressively instantiated as described below) that store
the state of that agent’s interaction with respect to the general protocol. For simplic-
ity, the diagrams of Figure 4 depict an interchange between only two agents (Agent 1
and Agent 2), with a message (Message 1) being sent from Agent 1 to Agent 2 and
another message (Message 2) being returned in response. We describe below the first
coordination mechanism in detail, then explain the second as a special case of the first.

Method 1 of Figure 4 depicts an instance of the coordination method described in
detail as follows (from the point of view of Agent 2 in the diagram):

– An agent with unique identifier, A, retrieves a message of the form (I,M,R,A,P)
where: I is a unique identifier for the coordination; M is the message; R the role
assumed of the agent when receiving the message; A the agent’s unique iden-
tifier; and P the attached protocol consisting of a set of clauses, C, and a set
of axioms, K, describing common knowledge. The message is added to the set
of messages currently under consideration by the agent - giving the message set
Mi.

– The agent checks its internal store of dialogue clauses to see if it already has
a clause, Ci, indexed under coordination identifier I . If so, it selects it. If not
it makes a copy of Ci as an element of C, thus determining its part of the dia-
logue.

– The rewrite rules of Figure 3 are applied to give an expansion, Cn, of Ci in terms
of protocol P in response to the set of received messages, Mi, producing: a new di-
alogue clause Cn; an output message set On and remaining unprocessed messages
Mn (a subset of Mi).

A Lightweight Coordination Calculus for Agent Systems 191

The following ten rules define a single expansion of a clause. Full expansion of a clause is
achieved through exhaustive application of these rules. Rewrite 1 (below) expands a protocol
clause with head A and body B by expanding B to give a new body, E. The other nine rewrites
concern the operators in the clause body. A choice operator is expanded by expanding either side,
provided the other is not already closed (rewrites 2 and 3). A sequence operator is expanded by
expanding the first term of the sequence or, if that is closed, expanding the next term (rewrites 4
and 5). A parallel operator expands on both sides (rewrite 6). A message matching an element
of the current set of received messages, Mi, expands to a closed message if the constraint, C,
attached to that message is satisfied (rewrite 7). A message sent out expands similarly (rewrite 8).
A null event can be closed if the constraint associated with it can be satisfied (rewrite 9). An agent
role can be expanded by finding a clause in the protocol with a head matching that role and body
B - the role being expanded with that body (rewrite 10).

A :: B
Mi,Mo,P,O−−−−−−−−→ A :: E if B

Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E if ¬closed(A2) ∧

A1
Mi,Mo,P,O−−−−−−−−→ E

A1 or A2
Mi,Mo,P,O−−−−−−−−→ E if ¬closed(A1) ∧

A2
Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ E then A2 if A1

Mi,Mo,P,O−−−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−−−→ A1 then E if closed(A1) ∧A2

Mi,Mo,P,O−−−−−−−−→ E

A1 par A2
Mi,Mo,P,O1∪O2−−−−−−−−−−−→ E1 par E2 if A1

Mi,Mn,P,O1−−−−−−−−→ E1 ∧
A2

Mn,Mo,P,O2−−−−−−−−−→ E2

C ← M ⇐ A
Mi,Mi−{M ⇐ A},P,∅−−−−−−−−−−−−−−→ c(M ⇐ A) if (M ⇐ A) ∈ Mi ∧ satisfy(C)

M ⇒ A ← C
Mi,Mo,P,{M ⇒ A}−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(C)

null ← C
Mi,Mo,P,∅−−−−−−−→ c(null) if satisfied(C)

a(R, I) ← C
Mi,Mo,P,∅−−−−−−−→ a(R, I) :: B if clause(P, a(R, I) :: B) ∧

satisfied(C)

A protocol term is decided to be closed, meaning that it has been covered by the preceding
interaction, as follows:

closed(c(X))
closed(A or B) ← closed(A) ∨ closed(B)
closed(A then B) ← closed(A) ∧ closed(B)
closed(A par B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

satisfied(C) is true if C can be solved from the agent’s current state of knowledge.
satisfy(C) is true if the agent’s state of knowledge can be made such that C is satisfied.
clause(P, X) is true if clause X appears in the dialogue framework of protocol P , as defined in
Figure 1.

Fig. 3. Rewrite rules for expansion of a protocol clause

192 D. Robertson

Method 1: LCC clauses distributed with protocol (carried with message); used and retained on
appropriate agent.

LCC protocol

Agent 2Agent 1
Clause

LCC protocol

Message 2

Message 1

Method 2: LCC clauses distributed with protocol (carried with message); used by appropriate
agent but stored with protocol.

LCC protocol

Agent 2Agent 1

Clause

Clause store

LCC protocol

Clause store

Message 1

Message 2

Fig. 4. Two methods of coordination

– The agent’s original clause, Ci, is then replaced in P by Cn to produce the new
protocol, Pn.

– The agent can then send the messages in set On, each accompanied by a copy of
the new protocol Pn.

In Method 1 the clauses determining the behaviours of the interacting agents are
distributed among the agents as the protocol is passed between them - these are the
clauses named Ci in the algorithm above. The state of the interaction is described by
the set of these distributed clauses. Notice that each agent must retain only the clause
(or clauses if it has multiple roles) appropriate to it. Agents do not need to retain the
whole protocol because this is passed with the message, so will return to the agent if
other messages arrive as part of the appropriate interaction.

Method 1 is comparatively lightweight because it requires only that an agent can
perform clause expansion, as described in Section 5, and that it can store its own copies
of LCC clauses. It is possible, however, to place even less burden on individual agents
if we have interactions that are linear, in the sense that (regardless of how many agents
interact) at any given time exactly one agent alters the state of the interaction. An ex-
ample of a linear interaction is a dialogue between two agents where each agent takes

A Lightweight Coordination Calculus for Agent Systems 193

alternate turn in the interaction. An example of a non-linear interaction is an auction
involving a broadcast call for bids (like the one in Figure 2). When the interaction is
linear then we can store agents’ clauses (named Ci in the algorithm above) with the
message rather than with the agent. This is the “Clause store” depicted in the lower
diagram of Figure 4. Agents then look up their clauses from this clause store, and the
state of the whole interaction is preserved by the message as it passes between agents.

7 Computing with LCC

LCC can be used to tackle a variety of different forms of coordination problem, from
those in which agents’ behaviours are tightly constrained by the protocol to those in
which agents are constrained only in terms of the message sequences they may send.
The difference between these two extremes is made by the number and rigidity of the
constraints included with the protocol. A tightly constrained protocol has many con-
straints, all of which have a precise interpretation determined by the protocol designer
(Figure 2 is an example), in which case the interaction is similar to a traditional dis-
tributed computation with the participating agents acting as processors for the computa-
tion described by the LCC protocol. A loosely constrained protocol has few constraints,
any of which may have an interpretation given to it by the agent designers, in which case
the agents involved may have a greater degree of autonomy within the message passing
framework set by the protocol.

Since constraints attach to messages or roles, it has proved most natural in practice
for those writing LCC protocols to begin by specifying the (unconstrained) sequences
of messages and changes of role for each of the roles in an interaction. Then, once
this skeletal structure is in place, constraints can be added to tighten the protocol in
whatever way suits the application. The form of refinement is similar to the style of
design used in conventional relational and functional programming where a skeletal
control structure often is described as a precursor to detailed design. This is why it is
advantageous for LCC to resemble these kinds of traditional language, despite being
also a process calculus.

Although recent, LCC has been used for a variety of practical purposes:

– In simulation, where we have built simulators for empirical comparison of LCC
protocols under controlled conditions. For example, we have compared the per-
formance of different protocols for resource mediation under varying supply and
demand regimes. The simulators needed for this sort of empirical analysis have
been simple to construct for LCC because we re-use the expansion algorithm of
Section 5 within the simulation harnesses.

– In model checking, where we have written a translator from a variant of LCC (Wal-
ton’s MAP language) to the Promela language which can then be fed into the SPIN
model checker.

– In constraint solving, where we have extended the basic clause expansion mecha-
nism to preserve the ranges of finite-domain constraints on variables. This allows
agents to restrict rather than simply instantiate constraints when interacting, thus
allowing a less rigid interaction.

194 D. Robertson

– To permit human interaction, where we have built a generic user interface (in Tcl-
TK interacting with SICStus Prolog) for accepting, viewing and replying to LCC
messages. This is intended for prototyping to get a feel for the sort of interaction
occurring between agents.

8 LCC and Performative Languages

Although LCC was not intended for direct comparison to performative languages such
as FIPA-ACL or KQML, there is a relationship that may be of practical value. Perfor-
mative languages provide a language for communication between agents that is ori-
ented to the demands of dialogue. They provide ways of describing basic “speech acts”
such as asking for information or telling an agent some new information, via performa-
tive expressions. This is of benefit because an agents receiving a message with content
“wrapped” within performative expressions can have some idea of the role of that mes-
sage in dialogue. Such languages are, however, limited in the extent to which they can
describe dialogue:

– When an agent receives a message this is wrapped only in a single performative, so
it can know for example that the message is a “tell” but it is not given any further
reference to the broader dialogue of which this message may be a part.

– The semantics of performatives is defined (more or less formally depending on the
performative language) in documents describing the language but it is entirely up
to the engineers of individual agents to ensure that they adhere to an appropriate
semantics. Thus, the sender of a performative has no way of helping the recipient
to understand what is meant by it, nor of checking that it was used appropriately.

The remainder of this section shows how LCC overcomes these limitations, offering
comparable precision in description of semantics plus the practical benefit of linking
these more closely to the mechanics of actual agent dialogue.

There are various ways of describing the semantics of performatives but a common
form of description is by defining preconditions and postconditions on the performative
message. Preconditions “indicate the necessary states for an agent to send a perfor-
mative and for the receiver to accept it and successfully process it”. Postconditions
“describe the states of the sender after the successful utterance of a performative, and
of the receiver after the receipt”.

An example of this sort of definition is the tell(A,B,X) performative in KQML
which describes the act of agent A telling agent B some information, X . Below are
the constraints given for this in [14] (ignoring the issue of how the agent knows what
it should be telling another agent about). We use the predicates: k(A,X) to denote that
A knows X; b(A,X) to denote that A believes X; i(A,X) to denote that A intends X
and w(A,X) to denote that A wants X . These correspond to the predicates know, bel,
intend and want in [14].

A Lightweight Coordination Calculus for Agent Systems 195

– Preconditions:
• Agent A believes X and knows that agent B wants to know about X:

b(A,X) ∧
k(A,w(B, k(B,X))) (6)

• Agent B intends to know that B knows X:

i(B, k(B,X)) (7)

– Postconditions:
• Agent A knows that agent B knows that A believes X:

k(A, k(B, b(A,X))) (8)

• Agent B knows that agent A believes X:

k(B, b(A,X)) (9)

These are the basic constraints on tell according to [14]. A more sophisticated set of
constraints (described informally in [14]) would accommodate refusal of a tell message
by the recipient agent (for example by replying with a sorry or error performative).
This allows for more sophisticated dialogue constraints than in expressions 8 and 9
above but is a similar specification task so, to save space, we limit ourselves to the basic
interaction.

A difficulty in practice when constraining the use of performatives such as ’tell’,
above, is in ensuring that the constraints set in the specification of these performatives
actually hold during the course of a dialogue. How, for example, can both agents (A
and B) ensure that B wants to know about X (as preconditions 6 and 7 require)? How
can agent A be sure, after it sent the message tell(A,B,X), that postcondition 9 holds,
since (for instance) its message may by accident never have been delivered to B. Using
LCC we can tackle this problem as follows.

First, it is necessary to define the dialogue associated with the ’tell’ performative. In
order to provide acknowledgement of receipt of this message we require a confirmatory
response from the recipient (B). For this we add a ’heard’ performative. The message
passing framework for the ’tell’ protocol is then as shown in expressions 10 and 11,
with the first clause requiring the agent doing the telling (in role Ta) to tell the recipient
(in role Tb) and await confirmation that the recipient has heard. KQML pre- and post-
conditions 6 and 8 are added to apply the appropriate constraints on Agent A’s beliefs.
The second clause obliges the recipient to receive the information and confirm that it
has heard, again with appropriate constraints 7 and 9.

a(Ta, A) :: tell(X) ⇒ a(Tb, B) ←(
b(A,X) ∧
k(A,w(B, k(B,X)))

)

then

k(A, k(B, b(A,X))) ← heard(X) ⇐ a(Tb, B)

(10)

196 D. Robertson

a(Tb, B) :: i(B, k(B,X)) ← tell(X) ⇐ a(Ta, A) then
heard(X) ⇒ a(Ta, A) ← k(B, b(A,X))

(11)

In the example above we included the constraints imposed on the semantics of a
performative in the definition of the constraints embedded in our dialogue protocol. This
makes them explicit so, if the application demands high reliability, they could be part
of a system of automatic checking or endorsement. This is not intrinsic to traditional
performative languages.

9 Conclusions

LCC is a language for describing social norms as interacting, distributed processes. Al-
though it is comparatively simple in design (comparable to traditional logic program-
ming languages) it is able to represent concepts generally considered to be essential for
representing and reasoning about social norms. A primary aim of LCC (as with other
social norm systems) is to interfere as little as possible with the design and operation of
individual agents. We have coded (separately for Prolog and Java) compact algorithms
for unpacking LCC protocols to yield the illocutions implied by them in whatever is
the current state of interaction (see Section 5). Little more than this is required beyond
a method for parsing incoming and outgoing LCC-enabled messages (on whatever is
the chosen message passing infrastructure) and for satisfying the constraints (if any)
associated with appropriate clauses in the protocol.

LCC protocols are modular in the sense that they can be understood separately from
the agents participating in the interactions they describe and are neutral to the imple-
mentation of those agents. The clauses within an LCC protocol also are modular, so
individual roles within an interaction are easy to identify. This makes it comparatively
straightforward to design different models of coordination for LCC depending on the
demands of the problem. Section 6 describes three such models.

Since LCC is an executable specification language, work continues on both aspects
of the system. On the specification side we have translations from LCC to other more
traditional styles of temporal specification, currently a modal logic and a form of situ-
ation calculus. On the deployment side we are investigating ways of making the LCC
protocols adaptable in ways which preserve the intent of the social norms they describe.
We are also investigating how LCC may be adapted to support workflow in computa-
tional grids.

Acknowledgements

This work is supported under the Advanced Knowledge Technologies Interdisciplinary
Research Collaboration, which is sponsored by the UK Engineering and Physical Sci-
ences Research Council under grant number GR/N15764/01.

A Lightweight Coordination Calculus for Agent Systems 197

References

1. Kagal, L., Finin, T., Joshi, A.: A policy language for pervasive systems. In: Fourth IEEE
International Workshop on Policies for Distributed Systems and Networks. (2003)

2. Decker, K., Pannu, A., Sycara, K., Williamson, M.: Designing behaviors for information
agents. In: Proceedings of the First International Conference on Autonomous Agents. (1997)

3. Giampapa, J., Sycara, K.: Team-oriented agent coordination in the retsina multi-agent sys-
tem. Technical Report CMU-RI-TR-02-34, Robotics Institute, Carnegie Mellon University
(2002)

4. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: Pro-
ceedings of the Eighth International Conference on Knowledge Representation and Reason-
ing. (2002) 482–493

5. Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services described in
daml-s. In: International Conference on Automated Planning and Scheduling. (2003)

6. Greaves, M., Holmback, M., Bradshaw, J.: What is a conversation policy? In Dignum, F.,
Greaves, F., eds.: Issues in Agent Communication. Springer-Verlag (1999) 118–131

7. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Intelligent Agents VIII, Lecture Notes in Artificial Intelligence. Volume 2333. Springer-
Verlag (2002) 348–366

8. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and MultiAgent
Systems. (2002) 1045–1052

9. Robertson, D.: A lightweight method for coordination of agent oriented web services.
In: Proceedings of AAAI Spring Symposium on Semantic Web Services, California, USA
(2004)

10. Walton, C.: Model checking multi-agent web services. In: Proceedings of AAAI Spring
Symposium on Semantic Web Services, California, USA (2004)

11. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Minimality and
simplicity. Artificial Intelligence 119 (2000)

12. Huget, M., Esteva, M., Phelps, S., Sierra, C., Wooldridge, M.: Model checking electronic
institutions. In: Proceedings of ECAI Workshop on Model Checking and Artificial Intelli-
gence, Lyon, France (2002)

13. Monderer, D.,Tennenholtz, M.: Distributed games: From mechanisms to protocols. In: Pro-
ceedings of the Sixth National Conference on Artificial Intelligence. (1999)

14. Labrou, Y., Finin, T.: A semantics approach for KQML: a general purpose communica-
tion language for software agents. In: Third International Conference on Knowledge and
Information Management. (1994)

Enhancing Commitment Machines

Michael Winikoff1, Wei Liu2, and James Harland1

1 RMIT University, Melbourne, Australia
{winikoff, jah}@cs.rmit.edu.au

2 University of Western Australia, Perth, Australia
wei@csse.uwa.edu.au

Abstract. Agent interaction protocols are usually specified in terms of permissi-
ble sequences of messages. This representation is, unfortunately, brittle and does
not allow for flexibility and robustness. The commitment machines framework
of Yolum and Singh aims to provide more flexibility and robustness by defining
interactions in terms of the commitments of agents. In this paper we identify a
number of areas where the commitment machines framework needs improvement
and propose an improved version. In particular we improve the way in which
commitments are discharged and the way in which pre-conditions are specified.

1 Introduction

Communications between software agents are typically regulated by interaction proto-
cols. These include general communication protocols, such as the auction protocol and
the contract net protocol, as well as more specific protocols such as the NetBill pay-
ment protocol [1, 2]. Traditional protocol representations such as Finite State Machines
(FSM), Petri-Nets [3] and AUML sequence diagrams [4, 5] often specify protocols in
terms of legal message sequences. Under such protocol specifications, agent interac-
tions are pre-defined and predictable. However, the inevitable rigidity resulting from
such protocols prevents agents from taking opportunities and handling exceptions in a
highly dynamic and uncertain multi-agent environment.

Yolum and Singh’s Commitment Machines [1] (CMs henceforth) define an interac-
tion protocol in terms of actions that change the state of the system, which consists of
not only the state of the world but also the commitments that agents have made to each
other. It is the commitment made to an interaction partner that motivates an agent to
perform its next action. In other words, an agent acts because it wants to comply with
the protocol and provide the promised outcomes for another party. Actions in CMs not
only change the values of state variables, but also may initiate new commitments and/or
discharge existing commitments. In traditional protocol representations, agents are con-
fined to perform some pre-defined sequence of actions, whereas in CMs, an agent is able
to reason about the next action to be taken in accordance with the dynamics of the en-
vironment and the commitments. This fundamentally changes the process of protocol
specification from a procedural approach (i.e., prescribing how an interaction is to be
executed) to a declarative one (i.e., describing what interaction is to take place) [1].

Using commitments as the rationale for agent interactions allows protocols to be
specified at a higher level, which then generates more flexible and robust interactions

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 198–220, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Enhancing Commitment Machines 199

than pre-defined sequences. For example, in the NetBill protocol (discussed in Section
2), a customer may wish to order goods without first receiving a quotation, or a merchant
may be happy to send goods to a known reliable customer with less rigorous checking
than normal.

In this paper we identify a number of areas where the Commitment Machine frame-
work can be improved. Specifically, we show how the identification of undesirable
states (such as omitting to provide a receipt, or receiving the goods before payment has
been confirmed) can be incorporated into the design process in order to achieve accept-
able outcomes for a wider variety of circumstances than is done in [1, 2]. We also show
how certain anomalies in discharging commitments and in handling pre-conditions can
be remedied.

We demonstrate the operation of the improved framework on some examples. This
is necessarily limited to a small number of illustrative cases, but these suffice to demon-
strate the generality of the improvements.

The paper is organized as follows: in Section 2 we introduce the commitment ma-
chine framework and a detailed example, both based on [1]. In Section 3 we identify
a number of anomalies and issues with the commitment machines framework and in
Section 4 we propose some improvements. In Section 5 we discuss further applications
of the improved framework and in Section 6 we present our conclusions.

2 Background

We briefly introduce the commitment machines framework and the NetBill protocol.
Both are based on the description in [1] and we refer the reader to [1, 2] for further
details.

The key example used in [1] is the NetBill protocol [6]. In this protocol a customer
buys a product from a merchant. To buy a desired product, the protocol begins with a
customer (C) requesting a quote (message 1 in Figure 1) from the merchant (M), fol-
lowed by the merchant sending the quote (message 2). If the customer accepts the quote
(message 3), the merchant proceeds by sending the goods (message 4) and waits for the
customer to pay by sending an electronic payment order (EPO). Note that it is assumed
that the goods cannot be used until the merchant has sent the relevant decryption key,
such as software downloaded from the internet, or sent on a CD. Once the customer
has sent payment (via an EPO in message 5), the merchant will send the decryption key
along with a receipt (message 6). This concludes the NetBill transaction.

As suggested by the name “commitment machine”, a crucial concept is that of com-
mitment. A (social) commitment is an undertaking by one agent (the debtor, x) to an-
other agent (the creditor, y) to bring about a certain property p, written C(x, y, p). A
commitment of the form C(x, y, p) is a base-level commitment. For example, in the
NetBill protocol when the customer sends message 3 and then receives the goods, he or
she has a commitment to pay the merchant, i.e., C(C,M, pay).

When a party is willing to commit only if certain conditions hold (such as another
party making a corresponding commitment), a conditional commitment can be used.
A conditional commitment, denoted CC(x, y, p, q), indicates that agent x is committed
to achieving q for agent y if p becomes true. A conditional commitment is latent – it

200 M. Winikoff, W. Liu, and J. Harland

Customer Merchant

1: Request Quote

2: Present Quote

3: Accept Quote

4: Deliver Goods

5: Send EPO

6: Send Receipt

Fig. 1. Simplified Net Bill Protocol

doesn’t commit x to do anything until p becomes true, at which point the conditional
commitment is transformed to the base-level commitment C(x, y, q). For example, in
the NetBill protocol the customer may insist on his or her commitment to pay being
conditional on the goods being sent, which would be represented as CC(customer,
merchant, goods, pay). Where the identity of the debtor and the creditor are obvious
from the context we shall sometimes write C(p) in place of C(x, y, p) and CC(p � q)
in place of CC(x, y, p, q).

Interactions are specified in the CM framework by defining the roles of the par-
ticipants, the domain-specific fluents (i.e., boolean state variables), the (conditional)
commitments that may arise during the interaction, and the rules for initiating and ter-
minating commitments. Together, they define the preconditions and effects of (com-
municative) actions, and are used to regulate the choices of actions during protocol
execution. The execution of a protocol is driven by the commitments that are in place:
the desire to fulfil these commitments generates an action or actions to achieve them,
which in turn may create new commitments or discharge existing ones. The NetBill
protocol as a CM can be found in Figure 2.

A state in a CM is a triple 〈F,CC, C〉, where F is a set of fluents, CC is a set
of conditional commitments and C is a set of base-level commitments. A final state
is a state that does not have undischarged base-level commitments. A final state may
contain conditional commitments, since they are latent commitments that have not been
activated. Formally, a state in a CM is a final state if C = ∅. Note that a final state in a
CM is one where the interaction may end. However, it is also possible for interaction to
continue from a final state. A protocol run consists of a sequence of actions that results
in a final state.

A commitment machine places constraints on the sequence of agent actions that
constitute the interaction. For example, if an agent has a commitment, then it must at
some point fulfil its commitment1. However, commitment machines do not dictate or
require that agents perform particular actions.

Each commitment machine implicitly defines a corresponding Finite State Machine2

(FSM) where the states of the FSM correspond to the states of the CM and the transi-

1 Commitments can also be discharged in ways other than being fulfilled [1].
2 Actually, a variation of finite state machines, since there is no defined initial state.

Enhancing Commitment Machines 201

Roles: M (merchant), C (customer)
Fluents:

– request (the customer has requested a quote),
– goods (the goods have been delivered to the customer),
– pay (the customer has paid),
– receipt (the merchant has sent the receipt)

Commitments:

– accept = CC(C, M, goods, pay): a commitment by the customer (to the merchant)
to pay once the goods have been delivered.

– promiseGoods = CC(M, C, accept, goods): a commitment by the merchant to send
the goods if the customer accepts. Since accept is itself a commitment this is a nested
commitment: promiseGoods = CC(M, C, CC(C, M, goods, pay), goods).

– promiseReceipt = CC(M, C, pay, receipt): a commitment by the merchant to send
a receipt once the customer has paid.

– offer = promiseGoods ∧ promiseReceipt: an offer is a commitment by the mer-
chant (a) to send the goods if the customer accepts the offer, and (b) to send a receipt
after payment has been made.

Action Effects: the following (communicative) actions are defined:

– sendRequest: this action by the customer makes the fluent request true.
– sendQuote: this action by the merchant creates the two commitments

promiseGoods and promiseReceipt (i.e., offer) and terminates (makes false)
the fluent request.

– sendAccept: this action by the customer creates the commitment accept.
– sendGoods: this action by the merchant makes the fluent goods true and also creates

the commitment promiseReceipt.
– sendEPO: this action by the customer makes the fluent pay true. This action is de-

fined in [1] as having the pre-condition that the goods have been sent.
– sendReceipt: this action by the merchant makes the fluent receipt true. This is de-

fined in [1] as having the pre-condition that payment has been made.

Fig. 2. The NetBill Protocol as a Commitment Machine [1]

tions are defined by the effects of the actions. Figure 4 shows a (partial) view of the
states and transitions corresponding to the CM defined in Figure 2. Final states (those
with no undischarged base-level commitments) are shaded and dotted lines depict ac-
tions that are intended to be prevented by pre-conditions (but see Section 3.4). This
figure is an extension of the figure given in [1, 2]. The table in Figure 3 gives the fluents
and commitments that hold in each state.

3 Properties of CMs

In this section we discuss various properties of CMs as presented in [1, 2] and identify
a number of areas where we propose improvements to the CM framework.

202 M. Winikoff, W. Liu, and J. Harland

No. State
1 -
2 request
3 M: promiseReceipt ∧ promiseGoods
4 M: promiseReceipt ∧ C(goods), C: accept
5 goods, M: promiseReceipt, C: C(pay)
6 goods, pay, M: C(receipt)
7 goods, pay, receipt
8 goods, M: promiseReceipt
9 C: accept
10 pay, M: C(receipt) ∧ promiseGoods
11 pay, receipt, M: promiseGoods
12 goods, receipt
13 goods, M: promiseReceipt, C: accept

Fig. 3. States and associated commitments and fluents

3.1 Explicit Labelling of Undesirable States

The presentation in [1, 2] presents protocols as defining states (in terms of the commit-
ments of the agents and the fluents that hold). A query is then given and the reasoning
module finds possible sequences of actions that lead to the requested state. For exam-
ple, in [2] given the commitment machine defined in Figure 2, the reasoning module
is asked to find sequences of actions that lead to a final state where goods have been
received, payment has been made, and a receipt has been issued.

However, when designing interaction rules it is important to not only ensure that a
desirable final state is possible, but also to ensure that undesirable states are not possible.

In this context when we talk about “desirable” and “undesirable” states we are talk-
ing from the perspective of the designer of the interaction, not from the perspective of
an agent who will take part in the interaction. Roughly speaking, the designer should
consider a state to be desirable if at least one agent desires it and no agents find it
undesirable. A state should be considered undesirable if any agent finds it undesirable.

If an undesirable final state is determined to be possible then this can be fixed by
either adding additional commitments so that the state is no longer final, or by adding
pre-conditions so that the state can not be reached. It is not possible to fix undesirable
final states by merely having the agents be aware of the undesirable state - if a state is
undesirable to one agent, another agent may still perform an action that results in that
state.

For example, in the NetBill protocol the desirable final states are those in which
the goods have been delivered and paid for and a receipt has been given. Undesirable
final states are those where only one or two of these three conditions hold; it is clearly
undesirable to have the goods without payment, to have paid for the goods without
getting a receipt, to have a receipt without payment, or to have paid without the goods
being delivered. The final state where the goods have not been delivered, no payment
has been made, and there is no receipt is acceptable, but not desirable (neutral). In
Figure 4 state 7 is desirable, states 8,11,12 and 13 are undesirable, and states 1,2,3

Enhancing Commitment Machines 203

4

5

M:sendGoods

6

C:sendEPO

7

M:sendReceipt

10

M:sendGoods

11

M:sendReceipt

1

2

C:sendRequest

3

M:sendQuote

8

M:sendGoods

9

C:sendAccept

M:sendQuote

C:sendAccept

C:sendEPO

C:sendEPO

12

M:sendReceipt

13

C:sendAccept

M:sendGoods

M:sendGoods C:sendEPO

Fig. 4. Implied FSM for the NetBill CM (partial), final states are shaded and dotted lines depict
actions that are intended to be prevented by pre-conditions

and 9 are neutral. Note that states 10, 11, 12 and 13 have been added to the machine
discussed in [1, 2]. Note also that states 4,5,6 and 10 have undischarged commitments,
and hence are not final states.

To illustrate why we need to identify and avoid undesirable states we consider an
alternative protocol which seems quite reasonable. This protocol differs from the one
presented in [1, 2] in that we remove the axiom:

Initiates(sendGoods, promiseReceipt, t)

This axiom is not needed in the “normal” expected sequence of actions (depicted in
Figure 1) and it is quite possible that a naı̈ve protocol designer would leave it out of an
initial protocol specification.

Now suppose that the customer does not need a quote (perhaps the customer and
merchant have interacted in the past), and begins the interaction with sendAccept. The
merchant replies to the sendAccept with sendGoods. At this point in the interaction the
customer’s acceptance commitment CC(good � pay) becomes a commitment to pay,

204 M. Winikoff, W. Liu, and J. Harland

C(pay), since the goods have been received. The customer then fulfils their obligation
by paying. At this point we are in a final state — there are no remaining commitments —
and goods have been received and payment made. However, this state is an undesirable
one because the customer has not received a receipt.

The important point is that the omission of the Initiates rule is detected by checking
whether undesirable (final) states are reachable, rather than by only checking whether
desirable ones can be reached. If we had simply taken the variant protocol and asked
for sequences which result in goods being delivered along with payment and a receipt
then the problem would not have been noticed. In other words, the undesirable states
can be used as a check on the interaction rules, which in this case results in the problem
being easily found.

3.2 Failure to Discharge Conditional Commitments

There are anomalies in the rules that govern the discharge of conditional commitments.
These anomalies can, in certain situations, result in conditional commitments not being
discharged when, intuitively, they ought to be.

Consider the following sequence of steps:

1. The customer asks for a quote
2. The merchant replies with a quote. At this point the merchant has promised to send

the goods if the customer accepts, and has promised to send a receipt if the customer
pays.

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends
payment instead of an acceptance.

At this point the merchant becomes committed to sending a receipt, which it does,
resulting in the following final state:

– fluents: pay, receipt
– commitments of merchant: CC(CC(goods � pay) � goods)

The crucial point here is that this is a final state and the merchant is not committed
to sending the goods. The reason is that in order for CC(CC(goods � pay) � goods)
to become C(goods) the commitment CC(goods � pay) must hold: it is not enough
according to the formal framework for pay to hold. This is counter-intuitive because
pay is stronger than CC(goods � pay) in that it discharges the commitment. The
formal framework does recognise this, but only at the top level – the reasoning process
that discharges CC(goods � pay) when pay becomes true is not applied to nested
commitments.

3.3 Commitment Discharge Is Not Symmetrical

The axiom/postulate defining the conditions when a commitment (or conditional com-
mitment) is discharged says that the commitment is discharged when it already exists
and its condition is brought about by an event.

A problem with this is that it is possible to create a commitment C(p) when p already
holds. This commitment will not be discharged unless an event takes place subsequently
which re-initiates p.

Enhancing Commitment Machines 205

For example, consider the following sequence:

1. The customer sends an accept. The customer has now committed to paying if the
goods are received (CC(goods � pay))

2. The merchant sends the goods. Since the goods have been sent, the customer now
is committed to paying (C(pay)).

However, lets consider what happens if the two steps occur in the reverse order:

1. The merchant sends the goods to the customer3

2. The customer sends an accept.

What is the resulting state? When sending the acceptance the customer initiates the
conditional commitment to pay if the goods are received. This conditional commitment,
however, does not become a commitment to pay even though the goods have already
been sent. Consequently, the resulting state has no base-level commitments and so is an
(undesirable) final state (state 13 in Figure 4).

3.4 Pre-condition Mechanism Does Not Prevent Action

A standard view of actions that goes back to STRIPS is that an action definition contains
a pre-condition and a post-condition. The formalization of actions in the CM framework
uses these, but the way in which pre-conditions are handled has a slight problem.

Pre-conditions in a CM are defined by putting conditions on the action effect def-
initions. For example, in [1] the effects of the sendEPO action are defined using the
clause4

Initiates(sendEPO, pay, t) ← HoldsAt(goods, t)

The intended reading in line with traditional pre-conditions is that “the goods must
have been delivered in order for payment to be possible”5 However, what this formal-
ization actually does is limit the effects of sendEPO rather than the action itself. In
the event calculus the causality between sendEPO and pay is captured by the predi-
cate Intiates(sendEPO, pay, t), not by the implication. The implication only places a
condition on when the causality holds, not on when the action may be performed. Thus,
this does not prevent the event sendEPO from occurring if goods is false, it merely
means that if the event sendEPO occurs without goods being true then the fluent pay
does not become true as a result of sendEPO.

From the perspective of the reasoning mechanism, the formalisation of pre-conditions
introduces an additional link from a state back to that state that corresponds to perform-
ing an action whose pre-conditions are not satisfied (see Figure 5).

This is a fairly subtle difference but it does have one significant implication: if we
consider agents that use an implementation of commitment machines to reason about

3 As discussed in [2–example 2], this may be a sensible strategy if the goods are cheap to copy
- e.g., software.

4 Notation has been slightly changed. The actual clause in [1] is:
Initiates(sendEPO(i, m), pay(m), t) ← HoldsAt(goods(i), t).

5 Note that this is the only Initiates clause concerning sendEPO.

206 M. Winikoff, W. Liu, and J. Harland

Action

(preconditions

satisfied)

Action

(preconditions

not satisfied)

Fig. 5. Additional action link created by incorrect formalisation of pre-conditions

what actions to perform, then, for example, a customer agent who has not received the
goods is not prevented from executing the sendEPO action. Although the reasoning
module will, in this case, believe that the effects of payment have not taken place, if the
sendEPO action is executed resulting in credit card details being sent, then in the real
world the action’s execution will have resulted in the undesired effect of payment.

3.5 Communication Mode Assumptions Not Clear

The state space defined by the available events (actions) includes sequences of events
where an event representing an action by an agent (e.g., the merchant) is followed by an
event representing another action by the same agent. This may not be desirable, if the
intention is to define interactions where a message from M to C can only be followed
by a response from C to M .

The point here is that in the CM framework, there is no explicit specification of how
the conversation should be carried out between the two parties, i.e., whether it should
follow a synchronous mode or an asynchronous mode. Were the synchronous commu-
nication mode clearly specified, the action sendReceipt by the Merchant would have
been prevented in state 8 as the actors for the incoming and outgoing arc are the same.

However, there are situations where consecutive actions from the same agent are de-
sirable. A typical CM state that may result in multiple actions from the same agent (or
simultaneous actions from multiple agents) would have more than one base level com-
mitment. See Section 4 for an example of a state with multiple base level commitments
(state 10 in Figure 9).

A related issue is that the axioms allow an agent to perform actions that have no
effect. For example, in the state where a request has been sent, sending another request
has no effect on the state. In the FSMs that we show these arcs from a state S to itself
have been elided.

We do not address these issues in this paper; we will return to them in subsequent
work.

4 Proposed Extended CM Model

In this section we propose an extended CM model which addresses some of the concerns
discussed in the previous section.

Enhancing Commitment Machines 207

4.1 Labelling Undesirable States

This isn’t a change to the model so much as an extension and a change to how it is
used (the methodology). As part of developing the commitment machine the designer
indicates which states are undesirable (bad), which are desirable (good) and which are
acceptable but not desirable (neutral). Indicating the desirability of states can be done by
specifying conditions. For example, one could specify that all final states which satisfy
pay ∧ ¬receipt are undesirable.

The indication of good/bad states is specific to a particular interaction and the pref-
erences of the parties involved. For example, in [2–example 2] where the goods are
cheap to copy, the merchant may not consider state 8 in Figure 4, which has goods but
not pay or receipt, to be a bad state.

The desirability of states, particularly of those states that are undesirable, is then
used to perform safety checking.

4.2 Issues with Commitment Discharge

We now present a revised axiomatisation that remedies both anomalies associated with
commitment discharge (Sections 3.2 and 3.3). We first consider the issue discussed
in Section 3.2. Our proposed solution involves treating certain commitments as being
“implied”. For example, if pay is true, then any commitment of the form CC(X � pay)
that occurs as a condition can be treated as having implicitly held (and been discharged).

We introduce predicates Implied and Subsumes which capture when a commit-
ment (base or conditional) holds implicitly or is subsumed by a condition. These are
used in the rules that govern commitment dynamics. When checking whether a condi-
tion p holds, we also check whether it is implied or subsumed6.

In [2], fluents are initiated directly by an action through the initiates axioms (e.g.
Initiates(sendGood, goods, t)). On the other hand, commitments, both base-level and
conditional, are created through the Create axioms. The Create axioms then initiate the
commitments when the action happens according to the first axiom in Figure 6. How-
ever, this does not adequately distinguish commitments from other fluents. In particular,
it makes no difference if we remove the first axiom in Figure 6 and replace all the Cre-
ate axioms with Initiates axioms. In other words, according to the original commitment
axioms and protocol specification, we can use initiates axioms for not only the flu-
ents, but also all commitments. Such specifications dictate the action effects regardless
of the current state of the world. However, an action should only initiate a base level
commitment when the committed fluent is not already true, or when the premises but
not the conclusion of a conditional commitment are true. An action should only initi-
ate a conditional commitment when neither its premises nor conclusion are true. The
axioms in Figure 6 fail to address this, which results in the asymmetrical discharge of
commitments (Section 3.3).

In order to make commitment discharge symmetrical (Section 3.3) we de-couple
intended causation from actual causation: instead of stating that an action initiates a

6 Implied(p, t) checks whether p is implied at time t and is used to check whether a condition
(implicitly) holds at the current time. Subsumes(p, p′) checks whether p subsumes p′ and is
used to check whether an event would cause a condition to (implicitly) hold.

208 M. Winikoff, W. Liu, and J. Harland

Initiates(e, C(x, y, p), t) ← Happens(e, t) ∧ Create(e, x, C(x, y, p))
Initiates(e, CC(x, y, p, q), t) ← Happens(e, t) ∧ Create(e, x, CC(x, y, p, q))

Terminates(e, C(x, y, p), t) ← Happens(e, t) ∧ Discharge(e, x, C(x, y, p))
Discharge(e, x, C(x, y, p)) ← HoldsAt(C(x, y, p), t) ∧ Happens(e, t) ∧
Initiates(e, p, t)

Initiates(e, C(x, y, p), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t) ∧
Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Initiates(e, p, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Initiates(e, q, t)

Fig. 6. Commitment Machine Axiom 2,3,8,9,10 from [2]

commitment (e.g., Initiates(sendGoods, promiseReceipt, t)), we state that the ac-
tion is intended to cause the initiation of the commitment (e.g., Causes(sendGoods,
promiseReceipt)). We then link the two notions by defining Initiates in terms of
Causes. When p is a fluent (not a commitment) then an event Initiates the fluent p
exactly when it Causes it. However, for a base level commitment C(p) even though
Causes(e,C(p)), the event e will not make C(p) true if p already holds. Similarly, for
Causes(e,CC(p � q)), if p holds then e will create C(q), not CC(p � q), and if q
holds then e will have no effect. The rules in Figure 7 realise these cases and Figure 8
illustrates the additional commitment discharge and creation rules. Note that the axioms
of figure 7 have been implemented and can be found in the appendix.

We then have the following action effect rules for the NetBill CM (the roles, fluents
and commitments remain unchanged):

Causes(sendRequest, request)
Causes(sendQuote, offer)
Causes(sendAccept, accept)
Causes(sendGoods, goods)
Causes(sendGoods, promiseReceipt)
Causes(sendEPO, pay)
Causes(sendReceipt, receipt)
Terminates(sendQuote, request, t)

We now explain how the revised axiomatisation and rules address the two commit-
ment discharge anomalies. Let us begin with the first anomaly (Section 3.2). Consider
the following sequence of steps:

1. The customer asks for a quote
2. The merchant replies with a quote. At this point the merchant has promised to send

the goods if the customer accepts, and has promised to send a receipt if the customer
pays.

Enhancing Commitment Machines 209

Implied(p, t) ← HoldsAt(p, t)
Implied(C(x, y, p), t) ← Implied(p, t)
Implied(CC(x, y, p, q), t) ← Implied(q, t)
Implied(CC(x, y, p, q), t) ← Implied(C(x, y, q), t)

Subsumes(p, p)
Subsumes(p, C(x, y, p′)) ← Subsumes(p, p′)
Subsumes(p, CC(x, y, q, p′)) ← Subsumes(p, p′)
Subsumes(C(x, y, p), CC(x, y, q, p′)) ← Subsumes(p, p′)

Happens(e, t) ← AgentTry(a, e, t) ∧ Precond(e, p) ∧ HoldsAt(p, t)

Initiates(e, p, t) ← Happens(e, t) ∧ Causes(e, p) ∧ isF luent(p)
Initiates(e, C(x, y, p), t) ← Causes(e, C(x, y, p))∧Happens(e, t)∧¬Implied(p, t)
Initiates(e, C(x, y, p), t) ← Causes(e, CC(x, y, q, p)) ∧ Happens(e, t) ∧
Implied(q, t)∧

¬Implied(p, t)
Initiates(e, CC(x, y, p, q), t) ← Causes(e, CC(x, y, p, q)) ∧ Happens(e, t)∧

¬Implied(q, t) ∧ ¬Implied(p, t)
Initiates(e, C(x, y, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(p′, p) ∧ Initiates(e, p′, t)
Terminates(e, C(x, y, p), t) ← HoldsAt(C(x, y, p), t) ∧ Happens(e, t) ∧
Subsumes(p′, p)

∧Initiates(e, p′, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(q′, q) ∧ Initiates(e, q′, t)
Terminates(e, CC(x, y, p, q), t) ← HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t)∧

Subsumes(p′, p) ∧ Initiates(e, p′, t)

Fig. 7. Revised Commitment Machine Framework

3. The customer, misunderstanding the protocol perhaps, decides to accept but sends
payment instead of an acceptance.

Unlike previously, the payment causes the merchant to become committed to sending
the goods (as well as a receipt). Through the postulate

Implied(CC(x, y, p, q), t) ← Implied(q, t),
the fact that the pay fluent holds indicates that the conditional commitment CC(goods
� pay) implicitly holds7 at the same time. This implied conditional commitment dis-
charges the promiseGoods (CC(CC(goods � pay) � goods)) conditional com-
mitment and creates the base level commitment C(goods). Once the commitments
C(goods) and C(receipt) are discharged we are in a desirable final state.

7 More precisely, it could be considered to hold: there is no actual commitment, because it has
been discharged, since pay is true.

210 M. Winikoff, W. Liu, and J. Harland

-

C(p) p

+C(p)

+p

+p

+C(p)

-

C(p� q)

p,C(q)

p

+
C
(
p
�
q
)

+p

+p

+

C

(

p

� q
)

q

+q

p,q

+q

+q

+C(p� q)

old

new

Fig. 8. Additional Commitment Transition Rules for base level commitment (left) and conditional
commitment (right)

Consider now the second anomaly (non-symmetric commitment discharge, Section
3.3). Using the new predicate Causes, a conditional commitment is resolved to a base
level commitment if the premise is already true using the clause

Initiates(e, C(x, y, p), t) ←
Causes(e, CC(x, y, q, p)) ∧ Happens(e, t) ∧ Implied(q, t) ∧ ¬Implied(p, t)

Consider the transition from state 8 to state 13, where the customer accepts af-
ter the goods have been sent. The customer’s sendAccept is meant to cause accept
(CC(goods � pay)), but because goods already holds, sending the acceptance actually
creates the (base level) commitment C(pay).

Figure 9 shows (part of) the state machine implicitly defined by the revised Net-
Bill protocol and CM axiomatisation. The differences are in states 10, 11 and 13.
Whereas previously state 10 had pay, C(receipt) and promiseGoods, now it has
pay, C(receipt) and C(goods). As a result state 11 now includes a commitment to
send the goods and is no longer a final state. State 13, which previously had goods,
promiseReceipt and accept now has goods, C(pay) and promiseReceipt which is
actually state 5, therefore state 13 no longer exists, and performing sendAccept in state
8 leads to state 5. As before, final states are shaded. Also, dotted lines indicate actions
that are affected by pre-conditions. Note that once pre-conditions are fixed (in the next
sub-section) states 10, 11 and 12 will no longer be reachable. Note also that the result-
ing interaction space maintains the flexible interaction that is characteristic of the CM
framework.

4.3 Issues with Pre-conditions

As discussed in Section 3.4 trying to capture pre-conditions by adding conditions to
Initiates clauses does not work.

Our proposed solution is to extend the agents with a proper notion of pre-condition
that specifies when actions should not be performable (as opposed to preventing the

Enhancing Commitment Machines 211

4

5

M:sendGoods

6

C:sendEPO

7

M:sendReceipt

10

M:sendGoods

11

M:sendReceipt

M:sendGoods

1

2

C:sendRequest

3

M:sendQuote

8

M:sendGoods9

C:sendAccept

M:sendQuote

C:sendAccept

C:sendEPO

C:sendAccept

C:sendEPO

12

M:sendReceipt

M:sendGoods

C:sendEPO

Fig. 9. Revised Transitions in example (partial), final states are shaded and dotted lines depict
actions that are affected by pre-conditions

effects of the action from being caused). In the NetBill example we have the pre-
conditions Precond(sendEPO, goods) and Precond(sendReceipt, pay).

We then need to de-couple an agent wanting to perform an action from the action
actually occurring. This can be done by using a new predicate AgentTry(a, e, t) to
indicate that an agent a wants to perform an action e at time t. If the pre-conditions of
the action e hold8 at time t then this will imply that the event e happens.

8 This assumes that p does not involve commitments. If it does then replace HoldsAt(p, t) with
Implied(p, t).

212 M. Winikoff, W. Liu, and J. Harland

Happens(e, t) ← AgentTry(a, e, t) ∧ Precond(e, p) ∧ HoldsAt(p, t)

Note that the definition of the interaction cannot prevent an agent from performing
an action (any more than it can force an agent to honour its commitments). However, it
can specify when an action should not be performed, and detect violations, in the same
way that violations of commitments are detected.

5 Applications

Having proposed an improvement to the commitment machine framework, let us see
how it works on another example of mutual commitment. This simple (and unrealistic)
example is intended to show how the improved framework sharpens the interactions
between the agents.

The example involves two roles, called “me” and “you”. The two roles are friends
who would like to negotiate with the outcome that both of them get an outrageous
haircut for the last day of classes. It is highly undesirable that only one person have
the haircut. There are two fluents (yourscut and minecut) representing who has had
the haircut. We define two commitments: Dare which is the conditional commitment
CC(you, me, Ok, yourscut), i.e., the commitment from you to me that if I agree
(Ok) then you will get your hair cut;9 and Ok, which is the conditional commitment
CC(me, you, yourscut,minecut), i.e., the commitment from me to you that if you get
a haircut then I will get a haircut. There are four actions: cutme (which makes the fluent
minecut true), cutyou (which makes the fluent yourscut true), Offer (which you can use
to make Dare true), and Accept (which I can use to make Ok true). The actions of me
cutting my hair (cutme) and you cutting your hair (cutyou) have the precondition that
I (respectively you) have a commitment to do so (C(me, you, minecut), respectively
C(you, me, yourscut)).

Figure 10 shows the complete finite state machine corresponding to this CM, de-
rived using the old axioms, whereas Figure 11 shows the complete finite state machine
derived using the new axioms. It should be immediately clear that the new axioms yield
a much simpler behaviour that correctly reflects the intentions of this very simple ex-
ample.

Note also the symmetry of Figure 11, reflecting that the order in which the Offer and
Accept messages are sent is immaterial. Hence changing Dare to CC(me, you, Ok,
minecut) and Ok to CC(you, me, minecut, yourscut) will result in the same ma-
chine, except for the relabelling of me to you and vice-versa throughout.

On the other hand, using the old axioms (Figure 10), even this very simple example
has anomalies. For example, consider the following sequence:

– accept from state 1 to state 25: CC(me, you, yourscut,minecut)

9 This is the agent equivalent of “I will if you will”.

Enhancing Commitment Machines 213

3

4

cutyou 24

offer

19

offer 22

accept

5

cutme

7

8

cutyou16

offer

9

offer14

accept

cutme

10

accept

6

cutme

cutyou

11

cutme

13

offer

accept

12

offer

cutyou

accept

cutyou

cutyou

accept

cutme

15

offer

cutme

accept

cutme

accept

cutyou

20

accept

cutme

cutyou

cutme

21

offer

cutyou

cutme

accept

23

offer

cutme

accept

cutme

accept

cutyou

1

2

offer

25

accept

accept

offer

17

accept

accept

18

offer

accept

26

offer

accept

Fig. 10. Complete Finite State Machine for Haircut Example (old axioms)

214 M. Winikoff, W. Liu, and J. Harland

3 4
cutyou

5
cutme

1

2

offer

6

accept

accept

offer

1 -
2 Dare = CC(you, me, CC(me, you, yourscut, minecut), yourscut)
3 C(you, me, yourscut), Ok = CC(me, you, yourscut, minecut)
4 yourscut, C(me, you, minecut)
5 yourscut, minecut
6 Ok = CC(me, you, yourscut, minecut)

Fig. 11. Complete Finite State Machine for Haircut Example (new axioms)

– offer to state 26: CC(me, you, yourscut,minecut),
CC(you, me,CC(me, you, yourscut,minecut), yourscut)

– accept (again) to state 3: CC(me, you, yourscut,minecut),
C(you, me, yourscut)

– cutyou to state 4: yourscut, C(me, you, minecut)

– accept (again) to state 22: yourscut, C(me, you, minecut),
CC(me, you, yourscut, minecut)

– offer (again) to state 23: yourscut, C(me, you, minecut), CC(me, you, yourscut,
minecut), CC(you, me,CC(me, you, yourscut,minecut), yourscut)

– accept (again) to state 20: yourscut, C(me, you, minecut),
CC(me, you, yourscut,minecut),C(you, me, yourscut)

– cutme to state 11: yourscut, C(you, me, yourscut),minecut

– cutyou (again) to state 5, which is a final state.

Because of anomalies with commitment creation and discharge, the action of accept-
ing can be performed four times along this path, leading each time to a distinct state.
Further, in order to fulfil the commitments, you have to cut you hair twice, which is
counter-intuitive.

Enhancing Commitment Machines 215

Note also the lack of symmetry in Figure 10. This reflects the fact that the
order in which the commitments are expressed is not immaterial (i.e. that Dare is
defined in terms of Ok means that the Offer and Accept actions are not entirely
symmetric).

Let us now turn to the Net Bill example. Figure 12 shows the complete state machine
for the interaction using the old axioms. This figure is not meant to be readable, but il-
lustrates the size of the space and its complexity. By contrast, Figure 13 shows the same
interaction, but using the new axioms10. The old axioms generate many more states
(166 compared with 16) because of the discharge anomalies. For example, consider the
following sequence of actions and resulting states:

1. sendQuote: results in the state with the two commitments promiseGoods and promis-
eReceipt.

CC(accept � goods), CC(pay � receipt)
2. sendAccept: creates the commitment accept, which results in promiseGoods being

transformed into the commitment to send the goods.

CC(goods � pay), C(goods),CC(pay � receipt)
3. sendQuote: creates the two commitments promiseGoods and promiseReceipts. The

latter makes no difference (since it already holds), but the former is re-introduced,
even though it is redundant.

CC(goods � pay), C(goods), CC(pay � receipt),CC(accept � goods)

6 Conclusion

We analyzed the reasoning process of commitment machines and identified several
anomalies in the current reasoning mechanism. We then indicated how these anomalies
could be remedied, giving detailed rules for fixing the anomalies involving commitment
discharge and pre-conditions.

The aim of this work is to make agent interactions more flexible and robust. There
is a range of other work that has similar aims.

The work of Fornara and Colombetti [7] also uses commitments, but they use them
to define the meanings of speech acts, rather than defining protocols in terms of their
effects on commitments.

Kumar et al. [8] model interaction in terms of landmarks that need to be reached.
They use the framework of joint intention theory to formalise both landmarks and
speech acts. Given the complexity of the multi-modal logics used, implementation
would seem to be a challenge, and no details of an implementation appear to be avail-
able. Baldoni et. al. [9] also use a multi-modal logic to formalise interaction, in their
case within the DCaseLP environment using the DyLOG language.

10 Note that the numbering of states has changed, since this figure was automatically generated.

216 M. Winikoff, W. Liu, and J. Harland

5

6

sendQuote

8

sendGoods

7

sendRequest

145

sendGoods

150

sendAccept

sendAccept

sendQuote

sendGoods

9

sendQuote

139

sendEPO

147

sendAccept

10

sendRequest

142

sendEPO

144

sendAccept

sendGoods

sendGoods

sendQuote

11

sendAccept

124

sendEPO

sendGoods

12

sendQuote

133

sendEPO

13

sendRequest

143

sendEPO

sendAccept

sendGoods

sendGoods

sendAccept

sendQuote

14

sendEPO

15

sendQuote

109

sendReceipt

127

sendGoods

134

sendAccept

16

sendRequest

111

sendReceipt

131

sendAccept

136

sendGoods

sendEPO

sendEPO

sendQuote

17

sendAccept

sendReceipt

sendGoods

18

sendQuote

20

sendGoods

59

sendReceipt

sendEPO

19

sendRequest

112

sendReceipt

119

sendGoods

sendAccept

sendEPO

sendEPO

sendAccept

sendQuote

sendGoods

58

sendReceipt

21

sendQuote

108

sendReceipt

121

sendAccept

sendEPO

22

sendRequest

117

sendReceipt

118

sendAccept

sendGoods

sendEPO

sendGoods

sendQuote

23

sendAccept

116

sendReceipt

sendEPO

sendGoods

24

sendQuote

74

sendReceipt

sendEPO 25

sendRequest

115

sendReceipt

sendAccept

sendGoods

sendEPO

sendEPO

sendGoods

sendAccept

sendQuote

26

sendReceipt

27

sendQuote

30

sendGoods

sendAccept

sendEPO

28

sendRequest

68

sendGoods

75

sendAccept

110

sendEPO sendReceipt

sendReceipt

sendQuote

29

sendAccept

sendGoods

45

sendEPO

sendQuote

sendGoods

sendReceipt

77

sendEPO

31

sendQuote

70

sendAccept

92

sendEPO

sendReceipt

32

sendRequest

sendGoods

sendAccept

102

sendEPO

sendReceipt

sendAccept

sendGoods

sendQuote

33

sendEPO

sendReceipt

34

sendQuote

48

sendGoods

78

sendAccept

66

sendReceipt

35

sendRequest

100

sendGoods

sendEPO

114

sendAccept

103

sendReceipt

sendEPO

sendQuote

36

sendAccept

sendGoods

sendReceipt

37

sendQuote

39

sendGoods

sendReceipt

sendEPO

38

sendRequest

80

sendGoodssendEPO

sendReceipt

sendAccept

sendAccept

sendQuote

sendGoods

sendEPO

sendReceipt

40

sendQuote

82

sendAccept

sendEPO

sendReceipt

41

sendRequest

sendGoods

85

sendAccept

sendEPO

sendReceipt

sendEPO

sendGoods

sendQuote

42

sendAccept sendReceipt

sendGoods

43

sendQuote

sendReceipt

sendEPO

44

sendRequest sendGoods

sendAccept

sendEPO sendReceipt

sendReceipt

sendGoods

sendAccept

sendQuote

sendEPO

46

sendQuote

sendGoods

sendAccept

sendReceipt

47

sendRequest

sendGoods

sendEPO

sendReceipt

sendAccept

sendAccept

sendEPO

sendQuote

sendGoods

sendReceipt

sendQuote

49

sendAccept

sendEPO

95

sendReceipt

sendGoods

50

sendQuote

sendEPO

94

sendReceipt

51

sendRequest

sendGoods

sendEPO

sendAccept

113

sendReceipt

sendEPO

sendAccept

sendGoods

sendQuote

52

sendReceipt

55

sendGoods

56

sendQuote

sendReceipt

sendEPO

57

sendRequest

67

sendAccept

sendGoods

sendEPO

sendReceipt

sendGoods

sendEPO

sendAccept

sendQuote

sendReceipt

sendGoods

sendQuote

sendAccept

sendEPO

sendGoods

sendQuote

60

sendEPO sendAccept

61

sendQuote

63

sendGoods

62

sendRequest

sendAccept

sendEPO

sendReceipt

89

sendGoods

sendEPO

sendAccept

sendQuote

sendReceipt

sendGoods

sendRequest

sendQuote

sendGoods

76

sendEPO

88

sendReceipt

sendRequest

sendQuote

69

sendAccept

96

sendEPO

107

sendReceipt

sendGoods

sendRequest

71

sendQuote

sendEPO

106

sendReceipt

sendGoods

sendQuote

sendEPO

105

sendReceipt

sendGoods

72

sendRequestsendAcceptsendEPO

104

sendReceipt

sendAccept

sendGoods

sendEPO

sendQuote

73

sendReceipt

sendGoods

sendQuote

sendAccept

sendEPO

sendQuote

sendGoods

sendEPO

sendQuote

sendRequest

sendGoods

sendEPO

86

sendReceipt

sendQuote

sendRequest

79

sendAccept

87

sendReceipt

sendGoods

sendQuote

sendGoods

sendReceipt

sendAccept

sendQuote

sendGoods

sendReceipt

sendEPO

sendQuote

sendEPO

sendRequest

sendGoods

sendReceipt

sendRequest

sendQuote

81

sendAccept

sendEPO

sendReceiptsendGoods

sendRequest

83

sendQuote

sendEPO

sendReceipt

sendGoods

sendQuote

sendEPO

sendReceipt

sendGoods

84

sendRequestsendAccept

sendEPO sendReceipt

sendEPO

sendGoods

sendAccept

sendReceipt

sendQuote

sendRequest

sendQuote

sendEPO

sendGoods

sendReceipt

sendQuote

sendGoods

sendRequest

sendEPO

sendRequest

sendQuote

sendAccept

sendGoods

sendQuote

sendRequest

sendGoods

sendEPO

sendQuote

sendGoods

93

sendAccept

sendReceipt

sendGoods

sendQuote

sendEPO

sendReceipt

sendQuote

sendRequest

97

sendAcceptsendGoods

99

sendReceipt

sendQuote

sendGoods

sendRequest

sendEPO

98

sendReceipt

sendQuote

sendRequest

sendEPO

101

sendAccept

sendReceipt

sendRequest

sendQuote

sendGoods

sendEPO

sendReceipt

sendRequest

sendQuote

sendAccept

sendGoods

sendReceipt

sendGoods

sendQuote

sendRequestsendAcceptsendEPO

sendGoods

sendQuote

sendEPO

sendGoods

sendQuote

sendRequest

sendEPO

sendQuote

sendGoods

sendAccept

sendRequestsendEPO

sendGoods

sendQuote

sendAccept

sendEPO

sendAccept

sendQuote

sendGoods

sendRequest

sendQuote

sendAccept

sendGoods

sendReceipt

sendQuote

sendAccept

sendRequest

sendGoods

sendQuote

sendRequest

sendGoods

sendAccept

sendEPO

sendRequest

sendQuote

sendEPO

sendGoods

sendReceipt

sendRequest

sendQuote

sendGoods

sendAccept

sendEPO

sendGoods

sendQuote

sendAccept

sendEPO

sendQuote

sendGoods

sendAccept

sendRequest

sendEPO

sendRequest

sendQuote

sendReceipt

sendGoods

132

sendEPO sendRequest

sendQuote

sendReceipt

120

sendAccept

138

sendEPO

sendReceipt

sendGoods

sendRequest

122

sendQuote

sendEPO

sendGoods

sendReceipt

sendQuotesendEPO

sendReceipt

sendAccept

sendGoods

123

sendRequest

sendEPO

sendGoods

sendAccept

sendReceipt

sendQuote

sendEPO

125

sendQuote

sendGoods

sendAccept

sendReceipt

126

sendRequest

sendAccept

sendGoods

sendEPO

sendReceipt

sendAccept

sendEPO

sendQuote

sendGoods

sendReceipt

sendQuote

128

sendAccept

sendEPO

sendReceipt

sendGoods

129

sendQuote

sendEPO

sendReceipt

sendGoods

130

sendRequestsendAccept sendEPO

sendReceipt

sendAccept

sendGoods

sendEPO

sendQuote

sendReceipt

sendRequest

sendQuote

sendReceipt

sendGoods

sendEPO

sendQuote

sendReceipt

sendRequest

135

sendAccept

sendGoods

sendQuote

sendReceipt

sendGoods

sendAccept

sendQuote

sendGoods

sendReceipt

sendEPO

sendQuote

sendReceipt

sendGoods

sendEPO

sendRequest

sendQuote

sendRequest

137

sendAccept

sendEPO

sendReceipt

sendGoods

sendRequest

sendQuote

sendEPO

sendReceipt

sendQuote

sendGoods

sendRequest

141

sendAccept

sendReceipt

sendQuote

sendGoods

140

sendAccept sendReceipt

sendGoods

sendQuote

sendEPO

sendReceipt

sendGoods

sendQuote

sendEPO

sendRequest

sendReceipt

sendRequest

sendQuote

sendAccept

sendGoods

sendReceipt

sendRequest

sendQuote

sendReceipt

sendAccept

sendGoods

sendRequest

sendQuote

sendEPO

sendGoods

sendRequest

sendQuote

sendEPO

146

sendAccept

sendEPO

sendGoods

sendRequest

148

sendQuote

sendGoods

sendEPO

sendQuote

sendEPO

sendAccept

sendGoods

149

sendRequest

sendGoods

sendAccept

sendEPO

sendQuote

sendRequest

sendQuote

sendGoods

154

sendGoods

sendEPO

155

sendQuote

sendEPO

sendGoods

156

sendRequest

157

sendAccept

sendGoods

sendEPO

sendAccept

sendQuote

sendEPO

sendGoods

sendRequest

sendQuote

1

2

sendRequest

3

sendQuote

158

sendGoods

166

sendAccept

sendQuote

151

sendGoods

163

sendAccept

sendAccept

4

sendRequest sendGoods

sendAccept

sendQuote

sendGoods

sendGoods

sendAccept

53

sendQuote

sendEPO

sendAccept

sendGoods

sendEPO

54

sendRequest sendReceipt

sendGoods

sendEPO

sendAccept

sendReceipt

sendQuote

sendEPO

64

sendQuote

91

sendAccept

sendReceipt

sendAccept

sendEPO

65

sendRequest

sendGoods

sendReceipt

sendEPO

sendAccept

sendGoods

sendQuote

sendReceipt

sendAccept

sendGoods

sendQuote

sendEPO

sendRequest

sendQuote

90

sendAccept

sendReceipt

sendGoods

sendEPO

sendQuote

sendRequest

sendReceipt

sendGoods

sendEPO

sendQuote

sendReceipt

sendGoods

sendQuote

sendEPO

sendGoods

sendQuote

sendAccept

sendGoods

sendQuote

sendRequest

sendEPO

sendQuote

sendGoods

sendRequest

sendAccept

sendAccept

sendQuote

sendRequest

sendGoods

sendGoods

sendAccept

sendRequest

sendQuote

sendEPO

sendEPO

152

sendQuote

160

sendAccept

sendEPO

sendAccept

153

sendRequest sendGoods

sendEPO

sendAccept

sendGoods

sendQuote

sendEPO

sendRequest

sendQuote

159

sendAccept

sendEPO

sendGoods

sendRequest

161

sendQuote

sendGoods

sendEPO

sendQuote

sendEPO

sendGoods

sendAccept

162

sendRequest

sendGoods

sendEPO

sendAccept

sendQuote

sendGoods

164

sendQuote

sendGoods

sendAccept

165

sendRequest

sendAccept

sendGoods

sendQuote

sendGoods

sendRequest

sendQuote

Fig. 12. Complete Finite State Machine for Net Bill using Old Axioms. This figure is not intended
to be readable, but to illustrate the size and complexity of the interaction space

Hutchison and Winikoff [10] use belief-desire-intention agents and realise inter-
action using goal-triggered plans, where a given goal may have many plans that can
achieve it. This work is more implementation-oriented, but is not particularly well

Enhancing Commitment Machines 217

5

6

sendQuote

8

sendGoods

sendRequest

7

sendGoods

sendRequest

10

sendEPO

sendQuote

9

sendEPO

sendQuote

12

sendReceipt

sendRequest

11

sendReceipt

1

2

sendRequest

3

sendQuote

14

sendGoods

16

sendAccept sendQuote

13

sendGoods

15

sendAccept

sendAccept

4

sendRequest sendGoods

sendAccept

sendQuote

sendGoods

sendRequest sendQuote

sendAccept

sendEPO

sendQuote

sendAccept

sendEPO

sendRequest

sendQuote

sendGoods

sendQuote

sendGoods

sendRequest

Fig. 13. Complete Finite State Machine for Net Bill using New Axioms, final states are shaded

developed. It provides a set of guidelines for a human to follow when designing and
implementing agent interaction, rather than a formally specified interaction mechanism.

Küngas and Matskin [11] use linear logic to formalise negotiation. Their approach
has been implemented, but it is not clear whether it generalises to types of interaction
other than negotiation.

Chopra et. al. [12] formalise the commitment machine framework using the π cal-
culus. However, their formalisation is based on the axioms of [13] and suffers from the
shortcomings discussed in this paper.

There are a number of papers in these proceedings that are concerned with verifying
agent interactions in various ways [14, 15].

There are a number of areas for future work including extending the CM framework
to deal with protocols involving open numbers of participants (1 − N) such as auction
protocols.

218 M. Winikoff, W. Liu, and J. Harland

One area where we believe that commitment machines could be simplified concerns
pre-conditions. In a sense pre-conditions and commitments are dual: the former state
that a certain action must not be performed (under the prescribed conditions) whereas
the latter state that a certain state must be brought about. It may be that the commit-
ment machines framework could be simplified by merging the two concepts into a
more generalised form of commitment. Specifically, pre-conditions could be replaced
by commitments to avoid certain actions. These avoidance commitments, might be bet-
ter termed prohibitions. A prohibition of the form P(x, a) would state that agent x is
prohibited from performing action a. A conditional prohibition of the form CP(x, a, p)
would state that agent x is prohibited from performing action a if p holds. For example,
a merchant could have a conditional prohibition against sending a receipt if payment
has not been made: CP(M, sendReceipt,¬pay). Prohibitions are more flexible than
pre-conditions in that they can vary over time.

An additional issue in the CM framework concerns the termination of interactions. If
an interaction reaches a state where there are no base-level commitments, but there are
conditional commitments, then an agent, A, might decide that it wants to consider the
interaction finished, and delete any record of it from its memory. However, after A drops
the interaction, agent B might act in a way that changes a conditional commitment to
a base-level commitment. The underlying issue is that a final state is only final in the
sense that the interaction could end in that state, a final state does not require that the
interaction must end there. As a result, an agent cannot consider the interaction to be
completed if it could be continued.

Another area for future work would be applying our changes to the presentation of
commitment machines in [13, 16]. Whereas the presentation of commitment machines
in [1, 2] uses the event calculus to formalise commitment machines, the presentation of
[13, 16] defines a process for compiling a commitment machine to a finite state machine.

Finally, the reasoning that each agent performs when deciding which action to do
needs to be specified in more detail. The reasoning could resemble a form of game
playing where an agent wants to ensure that states that it considers undesirable cannot be
reached by other agents’ actions while trying to achieve states that it considers desirable.

Acknowledgements

We would like to acknowledge the support of Agent Oriented Software and of the
Australian Research Council under grant LP0218928. We would also like to thank the
anonymous reviewers and Min Xu for their comments.

References

1. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proceedings of the 1st Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS). (2002) 527–534

2. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Computational Logic in Multi-Agent Systems 42 (2004) 227–253

Enhancing Commitment Machines 219

3. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag (1985) ISBN 0-387-13723-8.

4. Huget, M.P., Odell, J., Haugen, Ø., Nodine, M.M., Cranefield, S., Levy, R., Padgham., L.:
Fipa modeling: Interaction diagrams. On http://www.auml.org under “Working Docu-
ments” (2003) FIPA Working Draft (version 2003-07-02).

5. Odell, J., Parunak, H., Bauer, B.: Extending UML for agents. In: Proceedings of the Agent-
Oriented Information Systems Workshop at the 17th National conference on Artificial Intel-
ligence. (2000)

6. Sirbu, M.A.: Credits and debits on the internet. In Huhns, M.N., Singh, M.P., eds.:
Readings in Agents. Morgan Kaufman (1998) 299–305 (Reprinted from IEEE Spectrum,
1997).

7. Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent
communication language. In: Proceeding of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, ACM Press (2002)
535 – 542

8. Kumar, S., Huber, M.J., Cohen, P.R.: Representing and executing protocols as joint ac-
tions. In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, ACM Press (2002) 543 – 550

9. Baldoni, M., Baroglio, C., Gungui, I., Martelli, A., Martelli, M., Mascardi, V., Patti, V., Schi-
fanella, C.: Reasoning about agents’ interaction protocols inside DCaseLP. In Proceedings
of the Workshop on Declarative Agent Languages and Technologies (DALT’04), LNCS 3476,
Springer-Verlag (2005). In this volume.

10. Hutchison, J., Winikoff, M.: Flexibility and robustness in agent interaction protocols.
In: Workshop on Challenges in Open Agent Systems at the First International Joint Con-
ference on Autonomous Agents and Multi-Agents Systems, Bologna, Italy, ACM Press
(2002)

11. Küngas, P., Matskin, M.: Partial deduction for linear logic — the symbolic negotiation per-
spective. In Proceedings of the Workshop on Declarative Agent Languages and Technologies
(DALT’04), LNCS 3476, Springer-Verlag (2005). In this volume.

12. Chopra, A.K., Mallya, A.U., Desai, N.V., Singh, M.P.: Modeling flexible business processes.
In Leite, J., Omicini, A., Torroni, P., Yolum, P., eds.: Preproceedings of Declarative Agent
Languages and Technologies. (2004) 93–108

13. Yolum, P., Singh, M.: Commitment machines. In Meyer, J.J.C., Tambe, M., eds.: Agent
Theories, Architectures, and Languages (ATAL). Volume 2333 of Lecture Notes in Computer
Science., Springer (2002) 235–247

14. Vasconcelos, W.W.: Norm verification and analysis of electronic institutions. In Proceedings
of the Workshop on Declarative Agent Languages and Technologies (DALT’04), LNCS 3476,
Springer-Verlag (2005). In this volume.

15. Walton, C.D.: Model checking agent dialogues. In Proceedings of the Workshop on Declar-
ative Agent Languages and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005).
In this volume.

16. Yolum, P., Singh, M.: Synthesizing finite state machines for communication protocols.
Technical Report TR-2001-06, North Carolina State University (2001) Available from http:
//www.csc.ncsu.edu/research/tech-reports/README.html.

220 M. Winikoff, W. Liu, and J. Harland

A Source Code for the Implemented Axioms

The complete source code is available from http://www.cs.rmit.edu.au/∼winikoff/CM

New Axioms

implied(P,T) :- holdsAt(P,T).
implied(c(_,_,P),T) :- implied(P,T).
implied(cc(_,_,_,Q),T) :- implied(Q,T).
implied(cc(X,Y,_P,Q),T) :- implied(c(X,Y,Q),T).

subsumes(P,P).
subsumes(P,c(_,_,PP)) :- subsumes(P,PP).
subsumes(P,cc(_,_,_,PP)) :- subsumes(P,PP).
subsumes(c(X,Y,P),cc(X,Y,_Q,PP)) :- subsumes(P,PP).

happens(E,T) :- isAction(E), precond(E,P), holdsAt(P,T).

initiates(E,P,T) :- happens(E,T), isFluent(P), causes(E,P).
initiates(E,c(X,Y,P),T) :- causes(E,c(X,Y,P)),

happens(E,T), \+(implied(P,T)).
initiates(E,c(X,Y,P),T) :- causes(E,cc(X,Y,Q,P)),

happens(E,T), implied(Q,T), \+(implied(P,T)).
initiates(E,cc(X,Y,P,Q),T) :- causes(E,cc(X,Y,P,Q)),

happens(E,T), \+(implied(Q,T)), \+(implied(P,T)).
initiates(E,c(X,Y,Q),T) :- holdsAt(cc(X,Y,P,Q),T), happens(E,T),

subsumes(PP,P), initiates(E,PP,T).

terminates(E,c(X,Y,P),T) :- holdsAt(c(X,Y,P),T), happens(E,T),
subsumes(PP,P), initiates(E,PP,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), subsumes(QP,Q), initiates(E,QP,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), subsumes(PP,P), initiates(E,PP,T).

Old Axioms

initiates(E,P,T) :- happens(E,T), causes(E,P).
initiates(E,c(X,Y,Q),T) :- holdsAt(cc(X,Y,P,Q),T), happens(E,T),

initiates(E,P,T).

terminates(E,c(X,Y,P),T) :- holdsAt(c(X,Y,P),T), happens(E,T),
initiates(E,P,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), initiates(E,Q,T).

terminates(E,cc(X,Y,P,Q), T) :- holdsAt(cc(X,Y,P,Q),T),
happens(E,T), initiates(E,P,T).

A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks

Alexander Artikis1, Lloyd Kamara2, Jeremy Pitt2, and Marek Sergot1

1 Department of Computing, SW7 2BZ,
2 Electrical & Electronic Engineering Department, SW7 2BT,

Imperial College, London
a.artikis@acm.org, {l.kamara, j.pitt, m.sergot}@imperial.ac.uk

Abstract. Ad hoc networks may be viewed as computational systems
whose members may fail to, or choose not to, comply with the rules
governing their behaviour. We are investigating to what extent ad hoc
networks can usefully be described in terms of permissions, obligations
and other more complex normative relations, based on our previous work
on specifying and modelling open agent societies. We now propose to
employ our existing framework for the management of ad hoc networks,
exploiting the similarities between open agent societies and ad hoc net-
works viewed at the application level. We also discuss the prospects of
modelling ad hoc networks at the physical level in similar terms. We
demonstrate the framework by constructing an executable specification,
in the event calculus, of a common type of protocol used to regulate the
control of access to shared resources in ad hoc networks.

1 Introduction

Ad Hoc Network (AHN) is a term used to describe a transient association of
network nodes which inter-operate largely independently of any fixed support in-
frastructure [17]. An AHN is typically based on wireless technology and may be
short-lived, supporting spontaneous rather than long-term interoperation [18].
Such a network may be formed, for example, by the devices of the participants
in a workshop or project meeting (for sharing and co-authoring documents); by
consumers entering and leaving an 802.11 wireless hot spot covering a shopping
mall (for buying/selling goods C2C-style by matching potential buyers and sell-
ers); or by emergency or disaster relief workers, where the usual static support
infrastructure is unavailable.

An AHN may be visualised as a continuously changing graph [17]: connection
and disconnection may be controlled by the physical proximity of the nodes or,
it may be controlled by the nodes’ continued willingness to cooperate for the
formation, and maintenance, of a cohesive (but potentially transient) community.
An issue that typically needs to be addressed when managing and maintaining
an AHN is that of resource sharing: the participating nodes compete over a
set of limited resources such as bandwidth and power (for example, battery

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 221–238, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

222 A. Artikis et al.

consumption). Often AHNs are specifically set up for sharing a resource such as
broadband Internet access, processor cycles, file storage, or a document in the
project meeting example mentioned above. In all cases the limited resources are
controlled by the participants of a network.

Due to its inherently transient nature, an AHN needs to be ‘adaptable’,
that is, it should be able to deal with ‘exceptions’. The aim of our present
research is to investigate to what extent adaptability can be enhanced by view-
ing AHNs as instances of norm-governed systems. We want to examine this
question both at the application level and at the physical level. At the ap-
plication level, an AHN can be viewed as an open agent society [1–3], that
is, a computational (agent) community exhibiting the following characteris-
tics:

– Members are programmed by different parties — moreover, there is no direct
access to a member’s internal state and so we can only make inferences about
that state.

– Members do not necessarily share a notion of global utility — they may fail
to, or even choose not to, conform to the community specifications in order
to achieve their individual goals.

– The members’ behaviour and interactions cannot be predicted in advance.

In previous work [1–3] we presented a theoretical framework for specifying
open agent societies in terms of concepts stemming from the study of legal and
social systems. The behaviour of the members of an open agent society is regu-
lated by rules expressing their permissions, obligations and other more complex
normative relations that may exist between them [10]. Software tools enable for-
mal specifications of these rules to be executed and analysed in various ways. We
propose to use this framework for the management of AHNs. In this paper we
focus on the issue of resource sharing and employ the theoretical framework to
specify a common family of protocols for controlling access to shared resources.

We believe that there may also be value in viewing an AHN as an instance of
a norm-governed system at the physical level. This is because it is possible, even
likely, that system components will fail to behave as they ought to behave — not
from wilfulness or to seek advantage over others but simply because of the inher-
ently transient nature of the AHN. It is therefore meaningful to speak of system
components failing to comply with their obligations, of permitted/forbidden ac-
tions, and even of ‘sanctions’ (though clearly not of ‘punishments’). A secondary
aim of our research is to investigate to what extent the methods we have previ-
ously used to model open agent societies can be applied to this new setting.

The remainder of this paper is divided into three main parts. First, we review
a line of research on resource sharing, namely floor control protocols. Second, we
present a specification of a protocol for resource sharing in norm-governed AHNs.
The presentation of the protocol specification includes a description of the rele-
vant parts of the theoretical framework mentioned above. Third, we summarise
the presented work and outline directions for current and future research.

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 223

2 Floor Control Protocols

In the fields of Collaborative Multimedia Computing (CMC) and Computer-
Supported Co-operative Work (CSCW), the term floor control denotes a service
guaranteeing that at any given moment only a designated set of users (subjects)
may simultaneously work with or on the same objects (shared resources), thus
creating a temporary exclusivity for access on such resources [5].

“[. . . F]loor control lets users attain exclusive control over a shared re-
source by being granted the floor, extending the traditional notion as the
“right to speak” [20] to the multimodality of data formats in networked
multimedia systems. We understand floor control as a technology to im-
plement group coordination, but use both terms synonymously in this
paper.” [7, p.18]

Sharing a resource may be achieved by executing Floor Control Protocols (FCPs)
and Session Control Protocols (SCPs). FCPs prescribe ways for mutually exclu-
sive access to shared resources amongst the subjects. A number of properties of
such protocols have been identified [5,6]: safety (each floor request is eventually
serviced), fairness (no subject ‘starves’, each floor request is serviced based on
a common metric), and so on. SCPs prescribe ways for, amongst other things,
joining a FCP (or session), withdrawing from a session, inviting to join a session,
determining the resources to be shared, and determining the policy of a session,
that is, the ways in which a floor may be requested or granted. Example policies
are chair-designated (an elected participant is the arbiter over the usage of spe-
cific floors), election (participants vote on the next subject holding the floor),
and lottery scheduling (floor assignment operates on a probabilistic basis).

It is our assumption that the abstractions of floor control and session control
are applicable to the issue of resource sharing in AHNs. Clarifying what ‘being
granted the floor’ or ‘holding the floor’ implies is one of the aims of the formal-
isation presented in later sections. The concept of session control (or conference
management [23]) is applicable to the formation of an AHN, and to the man-
agement and maintenance of such a network in general. In this paper, however,
we will focus on the issue of floor control, assuming that an AHN and a FCP
within that network have already been established. The issue of session control
will be addressed elsewhere.

We will present a specification of a simple chaired Floor Control Proto-
col (cFCP). (We apologise for the unfortunate mixed metaphor.) The chair-
designated policy was chosen simply to provide a concrete example of a FCP —
we could have equally chosen an election, or some other policy type. Moreover,
we have intentionally omitted to address several of the design issues set out in
the literature on FCPs (for instance, that a protocol should provide mutually
exclusive resource access in ‘real-time’ [5,6]). Our point here is to illustrate that,
in settings in which subjects (or other system members) may fail to behave as
they ought to behave, any protocol specification for resource sharing (following
a chair-designated, lottery scheduling or any other policy type, stemming from
the CSCW, CMC, or any other research field) needs to express what a member

224 A. Artikis et al.

Fig. 1. A two-role chaired floor control protocol

is permitted to do, obliged to do, and, possibly, additional normative relations
that may exist between them.

Two factors that characterise a FCP are [7]: (i) the mechanism and node
topology that determine the ways in which floor information (for instance, floor
requests, the status of the floor, and so on) is communicated amongst the par-
ticipants, and (ii) the policy followed in the protocol. Factor (i) is the major
design decision for a group coordination protocol and determines, amongst other
things, which policies are established in a protocol. We adopt a high-level view
of FCPs: we specify the rules prescribing the ways in which a floor is requested
and granted without making any explicit assumptions about the node topology
and distribution of floor information in general.

3 A Protocol for Resource Sharing in Ad Hoc Networks

In this section we present a chaired Floor Control Protocol (cFCP). For sim-
plicity, we present a cFCP specification concerning a single resource, a single
floor (associated with the resource), and a single chair, that is, a distinguished
participant determining which other participant is actually given the floor. In
this setting, the allocation of several resources in an AHN may be performed by
several parallel executions of FCPs (following a chair-designated, election or any
other policy type). Our cFCP specification includes the following roles:

– Subject, the role of designated participants performing the following actions:
request floor (requesting the floor from the chair), release floor (releasing
the floor), and manipulate resource (physically manipulating the resource).
Sometimes we will refer to the subject holding the floor as a ‘holder’.

– Chair, the controller for the floor, that is, the participant performing the
following actions: assign floor (assigning the floor for a particular time pe-
riod to a subject), extend assignment (extending the time for which the floor
may be held), and revoke floor (revoking the floor from the holder).

The floor can be in one of the following states: (i) granted, denoting that a sub-
ject has been given exclusive access to the resource by the chair, or (ii) free,

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 225

denoting that no subject currently holds the floor. In both cases, the floor may
or may not be requested by a subject (for example, the floor may be granted to
subject S ′ and requested by subject S ′′ at the same time). We make the follow-
ing comments concerning our cFCP specification. First, there are no time-outs
(deadlines) prescribing when a request should be issued, a floor should be as-
signed, or an assignment should be extended. Second, there is no termination
condition signalling the end of the protocol. There is no particular difficulty
in including timeouts and termination conditions in the formalisation but it
lengthens the presentation and is omitted here for simplicity. See [2, 3] for ex-
ample formalisations of deadlines and termination conditions in the context of
protocol specifications.

Figure 1 provides an informal presentation of the possible interactions be-
tween the entities of a cFCP, that is, the subjects S1, . . . , Sn, the chair C, and
the resource. The actions of our protocol specification may be classified into
two categories: (i) communicative actions and, (ii) physical actions. The first
category includes the request floor action whereas the second category includes
the assign floor , extend assignment , release floor , revoke floor , and manipulate
resource actions1). Consider an example in which the shared resource is hard disk
space. In this setting, the action of assigning the floor could be realised as creat-
ing an account on the file server so that the holder can manipulate the resource,
that is, store files.

4 An Event Calculus Specification

In previous work we employed three action languages with direct routes to im-
plementation to express protocol specifications:

1. The Event Calculus (EC) [13], a formal, intuitive and well-studied action
language (see [2] for an EC specification of a contract-net protocol).

2. The C+ language [9], a formalism with explicit transition systems semantics
(see [3] for a C+ specification of a dispute resolution protocol).

3. The (C+)++ language [25], an extended form of C+ specifically designed
for modelling the normative and institutional aspects of multi-agent systems
(see [25] for a (C+)++ specification of a resource sharing protocol).

Each formalism has its advantages and disadvantages (see [1, Section 6.12] for
a discussion about the utility of C+, (C+)++ and EC on protocol specifica-
tion). In this paper we will use EC because an EC implementation (in terms
of logic programming) has proved to be more efficient than a C+ or (C+)++

implementation (in terms of the Causal Calculator, a software tool supporting
computational tasks regarding the C+ language) for the provision of ‘run-time
services’ (a description of such services is presented in Section 6).

1 The following convention is adopted in the figures of this paper: physical actions
are represented by an underlined letter (for example, (b)) whereas communicative
actions are represented with no underlining (for example, (a)).

226 A. Artikis et al.

Table 1. Main Predicates of the Event Calculus

Predicate Meaning

happens(Act ,T) Action Act occurs at time T

initially(F =V) The value of fluent F is V at time 0

holdsAt(F =V ,T) The value of fluent F is V at time T

initiates(Act ,F =V ,T) The occurrence of action Act at time T
initiates a period of time for which
the value of fluent F is V

terminates(Act ,F =V ,T) The occurrence of action Act at time T
terminates a period of time for which
the value of fluent F is V

First, we briefly present EC. Second, we specify the social constraints (or
protocol rules) governing the behaviour of the cFCP participants. We maintain
the standard and long established distinction between physical capability, insti-
tutionalised power and permission (see, for instance, [11, 15] for illustrations of
this distinction). Accordingly, our specification of social constraints expresses: (i)
the externally observable physical capabilities, (ii) institutional powers, and (iii)
permissions and obligations of the cFCP participants; in addition, it expresses
(iv) the sanctions and enforcement policies that deal with the performance of
forbidden actions and non-compliance with obligations.

4.1 The Event Calculus

The Event Calculus (EC), introduced by Kowalski and Sergot [13], is a formalism
for representing and reasoning about actions or events and their effects in a logic
programming framework. In this section we briefly describe the version of the
EC that we employ. EC is based on a many-sorted first-order predicate calculus.
For the version used here, the underlying time model is linear and it may include
real numbers or integers. Where F is a fluent (a property that is allowed to have
different values at different points in time), the term F =V denotes that fluent
F has value V . Boolean fluents are a special case in which the possible values
are true and false. Informally, F =V holds at a particular time-point if F =V
has been initiated by an action at some earlier time-point, and not terminated
by another action in the meantime.

An action description in EC includes axioms that define, amongst other
things, the action occurrences (with the use of happens predicates), the effects of
actions (with the use of initiates and terminates predicates), and the values of the
fluents (with the use of initially and holdsAt predicates). Table 1 summarises the
main EC predicates. Variables (starting with an upper-case letter) are assumed
to be universally quantified unless otherwise indicated. Predicates, function sym-
bols and constants start with a lower-case letter. The domain-independent def-
initions of the EC predicates are presented in the Appendix. In the following
sections we present an EC action description expressing our cFCP specification.

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 227

4.2 Physical Capability

Table 2 displays a number of the fluents of the EC action description expressing
the cFCP specification. The utility of these fluents will be explained during the
presentation of the protocol specification. This section presents the specification
of the externally observable physical capabilities of the cFCP participants. The
second column of Table 3 presents the conditions that, when satisfied, enable the
participants to perform the actions displayed in the first column of this table.
We will refer to these conditions as expressing ‘physical capability’ though the
term ‘practical possibility’ might have been employed instead. (In Table 3, C
represents an agent occupying the role of the chair and S represents an agent
occupying the role of the subject.)

Table 2. Main Fluents of the cFCP Specification

Fluent Domain Textual Description

requested(S ,T) boolean subject S requested the floor at time T

status {free, granted(S ,T)} the status of the floor: status = free
denotes that the floor is free whereas
status = granted(S ,T) denotes that the
floor is granted to subject S until time T

best candidate agent identifiers the best candidate for the floor

can(Ag ,Act) boolean agent Ag is capable of performing Act

pow(Ag ,Act) boolean agent Ag is empowered to perform Act

per(Ag ,Act) boolean agent Ag is permitted to perform Act

obl(Ag ,Act) boolean agent Ag is obliged to perform Act

sanction(Ag) ∗ the sanctions of agent Ag

The chair is capable of assigning the floor to a subject if and only if the
floor is free (see Table 3). The performance of such an action always changes the
status of the floor as follows:

initiates(assign floor(C,S), status= granted(S, T ′), T) ←
role of(C, chair), role of(S, subject),
holdsAt(status= free, T), (T ′ := T + 5)

(1)

After assigning the floor to a subject S at time T , the floor is considered granted
until some future time (say T +5). The first two conditions of axiom (1) refer to
the roles of the participants. We assume (in this version) that the participants of
a cFCP do not change roles during the execution of a protocol, and so role of is
treated as an ordinary predicate and not as a time-varying fluent. Notice that the
practical capability condition is included here as part of the initiates specification.
There are other possible treatments of the practical capability conditions but we
do not have space for discussion of alternative treatments here.

228 A. Artikis et al.

Table 3. Physical Capability and Institutional Power in the cFCP

Action can pow

assign floor(C ,S) status = free –

extend assignment(C ,S) status = granted(S ,T) –

revoke floor(C) status = granted(S ,T) –

release floor(S) status = granted(S ,T) –

manipulate resource(S) status = granted(S ,T) –

request floor(S ,C) � not requested(S ,T)

Note also that the chair can assign the floor to a subject that has never
requested it. In some systems, this type of behaviour may be considered ‘unde-
sirable’ or ‘wrong’. Section 4.4 presents how ‘undesirable’ behaviour in the cFCP
is specified by means of the concept of permitted action.

If an assignment concerns a subject that has requested the floor, represented
by the requested fluent (see Table 2), then this request is considered serviced,
that is, the associated requested fluent no longer holds:

initiates(assign floor(C,S), requested(S, T ′)= false, T) ←
role of(C, chair),
holdsAt(status= free, T),
holdsAt(requested(S, T ′)= true, T)

(2)

The chair can extend the assignment of the floor to a subject S if and only if S
is holding the floor. Moreover, extending the assignment of the floor changes its
status as follows:

initiates(extend assignment(C,S), status= granted(S, T ′′), T) ←
role of(C, chair),
holdsAt(status= granted(S, T ′), T), (T ′′ := T ′ + 5)

(3)

In other words, if the floor was granted to S until time T ′, after the extension
it will be granted until time T ′ + 5. Note that the chair is capable of extending
the floor even if the holder has not requested such an extension.

A subject S can release the floor if and only if S is the holder (irrespective
of whether or not the allocated time for the floor has ended). Releasing the floor
changes its status as follows:

initiates(release floor(S), status= free, T) ←
holdsAt(status= granted(S, T ′), T)

(4)

In a similar manner we express when an agent is capable of performing the
remaining physical actions of the protocol as well as the effects of these actions.

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 229

In this example cFCP there is only one communicative action, that of re-
questing the floor. We have specified that a subject is always physically capable
of communicating a request for the floor to the chair. For the specification of the
effects of this action, it is important to distinguish between the act of (‘success-
fully’) issuing a request and the act by means of which that request is issued.
Communicating a request for the floor, by means of sending a message of a
particular form via a TCP/IP socket connection, for example, is not necessarily
‘successful’, in the sense that the request is eligible to honoured by the chair. It
is only if the request is communicated by an agent with the institutional power
to make the request that it will be ‘successful’. An account of institutional power
is presented in the following section.

4.3 Institutional Power

The term institutional (or ‘institutionalised’) power refers to the characteristic
feature of organisations/institutions — legal, formal, or informal — whereby
designated agents, often when acting in specific roles, are empowered, by the
institution, to create or modify facts of special significance in that institution —
institutional facts — usually by performing a specified kind of act. Searle [24],
for example, has distinguished between brute facts and institutional facts. Being
in physical possession of an object is an example of a brute fact (it can be
observed); being the owner of that object is an institutional fact.

According to the account given by Jones and Sergot [11], institutional power
can be seen as a special case of a more general phenomenon whereby an action,
or a state of affairs, A — because of the rules and conventions of an institution —
counts, in that institution, as an action or state of affairs B (such as when sending
a letter with a particular form of words counts as making an offer, or banging the
table with a wooden mallet counts as declaring a meeting closed).

In some circumstances it is unnecessary to isolate and name all instances of
the acts by means of which agents exercise their institutional powers. It is conve-
nient to say, for example, that ‘the subject S requested the floor from the chair
C’ and let the context disambiguate whether we mean by this that S performed
an action, such as sending a message of a particular form via a TCP/IP socket
connection, by means of which the request for the floor is signalled, or whether S
actually issued a request, in the sense that this request is eligible to be honoured
by C. We disambiguate in these circumstances by attaching the label ‘valid’ to
act descriptions. We say that an action is valid at a point in time if and only if
the agent that performed that action had the institutional power (or just ‘power’
or ‘was empowered’) to perform it at that point in time. So, when we say that
‘the subject S requested the floor from the chair C’ we mean, by convention,
merely that S signalled its intention to request the floor; this act did not nec-
essarily constitute the request eligible to be honoured. In order to say that a
request is eligible to be honoured, we say that the action ‘subject S requested
the floor’ was valid : not only did S signal its intention to request the floor, but
also S had the institutional power to make the request. Similarly, invalid is used
to indicate lack of institutional power: when we say that the action ‘subject S

230 A. Artikis et al.

requested the floor’ is invalid we mean that S signalled its intention to request
it but did not have the institutional power to do so at that time (and so the
attempt to make the request eligible to be serviced was not successful).

We express the institutional power to request the floor as follows:

holdsAt(pow(S, request floor(S,C))= true, T) ←
role of(C, chair), role of(S, subject),
not holdsAt(requested(S, T ′)= true, T)

(5)

Axiom (5) expresses that a subject S is empowered to request the floor from the
chair C if S has no pending valid requests. not represents negation by failure [4].

The existence of a valid request is recorded with the use of the requested
fluent:

initiates(request floor(S,C), requested(S, T)= true, T) ←
holdsAt(pow(S, request floor(S,C))= true, T)

(6)

There is no corresponding fluent for invalid requests.

4.4 Permission and Obligation

Now we specify which of the cFCP acts are permitted or obligatory. Behaviour
which does not comply with the specification is regarded as ‘undesirable’. Such
behaviour is not necessarily wilful. When an AHN member performs a non-
permitted act or fails to perform an obligatory act, it could be deliberate, as
when an agent (at the application level) seeks to gain an unfair advantage, but
it could also be unintentional, and it could even be unavoidable, due to network
conditions outside that member’s control.

The definitions of permitted actions are application-specific. It is worth not-
ing that there is no fixed relationship between powers and permissions. In some
computational societies an agent is permitted to perform an action if that agent
is empowered to perform that action. In general, however, an agent can be em-
powered to perform an action without being permitted to perform it (perhaps
temporarily). The specification of obligations is also application-specific. It is
important, however, to maintain the consistency of the specification of permis-
sions and obligations: an agent should not be forbidden and obliged to perform
the same action at the same time.

Table 4 displays the conditions that, when satisfied, oblige or simply permit
the cFCP participants to perform an action. (In this table, CurrentTime rep-
resents the time that the presented conditions are evaluated.) There are other
possible specifications of permitted and obligatory actions. The presented ones
were chosen simply to provide a concrete illustration of cFCP.

The chair is permitted and obliged to assign the floor to a subject S provided
that: (i) the floor is free, and (ii) S is the best candidate for the floor (see Table
4). The procedure calculating the best candidate for the floor at each point in
time is application-specific. For the sake of this example, the best candidate is
defined to be the one with the earliest (valid) request. In more realistic scenarios

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 231

Table 4. Permission and Obligation in the cFCP

Action per obl

assign floor(C ,S) status = free, status = free,
best candidate =S best candidate =S

extend assignment(C ,S) status = granted(S ,T), status = granted(S ,T),
best candidate =S best candidate =S

revoke floor(C) status = granted(S ,T), status = granted(S ,T),
CurrentTime ≥ T , CurrentTime ≥ T ,
best candidate �= S best candidate =S ′,

S �= S ′

release floor(S) � status = granted(S ,T),
CurrentTime ≥ T ,
best candidate =S ′,

S �= S ′

manipulate resource(S) status = granted(S ,T), ⊥
CurrentTime < T

request floor(S ,C) � ⊥

the calculation of the best candidate would consider additional factors such as
how urgent the request is, how many times the requesting subject had the floor
in the past, and so on2. There is no difficulty in expressing such definitions in
the formalism employed here. Indeed, the availability of the full power of logic
programming is one of the main attractions of employing EC as the temporal
formalism.

According to the above specification of permission, when the floor is free the
chair is only permitted to assign it to the best candidate (if any). At the same
time, however, the chair is capable of assigning it to any subject participating
in the cFCP (see Table 3).

The chair is permitted to revoke the floor if: (i) the floor is currently granted
to a subject, (ii) the allocated time for the floor has ended, and (iii) the subject
holding the floor is currently not the best candidate for the floor. Note that the
chair can revoke the floor even if the allocated time for the floor has not ended
or if the subject holding the floor is currently the best candidate for it.

The chair is permitted to revoke the floor (after the allocated time for the
holder has ended) even if there is no subject requesting the floor. If there is a
subject requesting the floor, however, and that subject is the best candidate,
then the chair is not only permitted, but obliged to revoke the floor:

holdsAt(obl(C, revoke floor(C))= true, T) ←
role of(C, chair),
holdsAt(status= granted(S, T ′), T), (T ≥ T ′),
holdsAt(best candidate= S′, T), (S �= S′)

(7)

2 The best candidate is picked from the set of subjects having pending (valid) requests,
not from the set of all subjects participating in a cFCP.

232 A. Artikis et al.

We have chosen to specify that a subject is always permitted to release the floor,
although releasing the floor is not always physically possible. Alternatively, we
could have specified that the permission to release the floor coincides with the
physical capability to do so. In this example, we might guess that the alternatives
are equivalent, in the sense that they produce protocols that always have the
same outcome. This is a hypothesis that can be tested. One aim of the work pre-
sented here is to provide computational tools to support the automated testing
of such hypotheses.

A subject S is permitted to manipulate the resource if S is holding the floor
and the allocated time for it has not ended. Permitted or not, S is never obliged
to manipulate the resource. Similarly, a subject is never obliged to request the
floor — it is always permitted, however, to do so.

4.5 Sanction

Sanctions and enforcement policies are a means of dealing with ‘undesirable’
behaviour. In the cFCP, we want to reduce or eliminate the following types of
‘undesirable’ behaviour:
– the chair extending the assignment of, and revoking the floor when being

forbidden to do so, and
– non-compliance with the obligation to assign, revoke and release the floor.

One possible enforcement strategy is to try to devise additional controls (phys-
ical or institutional) that will force agents to comply with their obligations or
prevent them from performing forbidden actions. When competing for hard disk
space, for example, a forbidden revocation of the floor may be physically blocked,
in the sense that it is not possible to delete the holder’s account on the file server.
The general strategy of designing mechanisms to force compliance and eliminate
non-permitted behaviour is what Jones and Sergot [10] referred to as regimen-
tation. Regimentation devices have often been employed in order to eliminate
‘undesirable’ behaviour in computational systems. Interagents [21], for example,
enforce the rules of the FishMarket auction house to the buyer and seller agents.
Sentinels [12] monitor and, when necessary, modify some aspects of the agent
interactions in order to provide ‘exception handling’ services. Controllers [16]
enforce the ‘law-governed interaction’ coordination mechanism in open agent
societies. (Lomuscio and Sergot [14] show how it is possible to determine for-
mally whether the introduction of a controller does have the intended effect of
eliminating unwanted system behaviour.) It has been argued [10], however, that
regimentation is rarely desirable (it results in a rigid system that may discour-
age agents from entering it [19]), and not always practical. The practicality of
regimentation devices is even more questionable when considering AHNs, due
to the transient nature of these networks. In any case, violations may still occur
even when regimenting a computational system (consider, for instance, a faulty
regimentation device). For all of these reasons, we have to allow for sanctioning
and not rely exclusively on regimentation mechanisms.

For the present example, we employ an additive fluent, sanction(Ag), to
express each participant’s sanctions (see Table 2): initially, the value of this

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 233

fluent is equal to zero and it is incremented every time a participant exhibits
the type of ‘undesirable’ behaviour mentioned above. Consider the following
example: the chair is sanctioned if it assigns the floor to a subject S while it is
obliged to assign the floor to another subject S′:

initiates(assign floor(C,S), sanction(C)= V ′, T) ←
role of(S, subject),
holdsAt(obl(C, assign floor(C,S′))= true, T), (S �= S′),
holdsAt(sanction(C)= V, T), (V ′ := V + 1)

(8)

According to axiom (8), every time the chair C fails to comply with its obligation
to assign the floor the value of the associated sanction(C) fluent is incremented
by one. Similarly, we update the value of sanction(Ag) when the remaining
participants exhibit ‘undesirable’ behaviour. We would ordinarily also include a
means for decreasing the value of a sanction(Ag) fluent, for instance if Ag has
not performed forbidden (‘undesirable’) actions for a specified period of time.
We have omitted the details for simplicity of the presentation.

One way of discouraging the performance of forbidden actions and non-
compliance with obligations (at the application level) is by penalising this type
of behaviour. We specify the following penalties for the aforementioned sanctions
(the presented specification is but one of the possible approaches, chosen here
merely to provide a concrete illustration). Consider the following example:

holdsAt(pow(S, request floor(S,C))= true, T) ←
role of(C, chair), role of(S, subject),
not holdsAt(requested(S, T ′)= true, T),
holdsAt(sanction(S)= V, T), (V < 5)

(5′)

The above formalisation is a modification of the axiom expressing the power to
request the floor (that is, axiom (5)), in the sense that it considers the sanctions
associated with a subject S: when the value of sanction(S) is greater or equal
to five (say) then S is no longer empowered to request the floor. One may argue
that once that happens, S is no longer an ‘effective’ participant of the protocol,
in the sense that S may no longer ‘successfully’ request the floor. It may be the
case, however, that the chair does not abide by the protocol rules and assigns
(and even extends the assignment of) the floor to S, even though S has not
‘successfully’ requested the floor.

We anticipate applications in which agents participate in a Session Control
Protocol (SCP) before taking part in a cFCP in order to acquire a set of roles that
they will occupy while being part of that cFCP. Given the value of sanction(C),
a chair C may be:

– suspended, that is, C is temporarily disqualified from acting as a chair in
future cFCPs. More precisely, C may not ‘effectively’ participate, for a spec-
ified period, in a SCP and, therefore, may not acquire the role of the chair.

– banned, that is, C is permanently disqualified from acting as a chair.

234 A. Artikis et al.

Fig. 2. A three-role chaired floor control protocol

Being deprived of the role of the chair means, in this example, being deprived of
the permission and, more importantly, the physical capability to assign, extend
the assignment of, and revoke the floor. Alternatively, a sanctioned chair may be
suspended or banned from acting as a subject in future FCPs (not necessarily
chaired-designated ones), thus not being able to compete for, and access other
shared resources in an AHN. The axiomatisation of the penalties associated
with a sanctioned chair and a detailed discussion about SCPs in general will be
presented elsewhere (see, however, [2, Section 3.2], [1, Section 4.5]) for a brief
presentation of role-assignment in open agent societies).

At the physical level, where the members of the AHN are network devices, the
question of imposing penalties clearly does not arise. There is a possible role for
‘sanctions’ nevertheless. In the present example, the value of the sanction(Ag)
fluent can be seen as a measure of Ag ’s ‘reliability’. When the value of that fluent
passes the specified threshold, floor assigning capabilities (say) may be suspended
(and usually passed to another network member) not as a ‘punishment’ but as a
way of adapting the network organisation. To what extent this view gives useful
insights in practice is a topic of our current research.

5 A Few Notes on cFCP

In the FCP literature, a cFCP usually includes a third role, that of the Floor
Control Server (FCS) [23]. Figure 2 provides an informal presentation of the
possible interactions between the entities of a three-role cFCP. In such a setting,
only the FCS can physically manipulate the resource. A subject holding the floor
may only request from the FCS to manipulate the resource, describing the type
of manipulation M — it is up to the FCS whether this request will be honoured
or not. The chair still assigns, extends the assignment of, and revokes the floor.
These actions, however, are now communicative ones, they are multi-casted to
the holder and the FCS. Similarly, releasing the floor is now a communicative
action, multi-casted to the chair and the FCS.

In order to illustrate the difference between the two-role and three-role cFCP,
we outline the physical capabilities and institutional powers associated with a

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 235

holder in each setting. In a two-role cFCP, a holder S has the physical capability
to manipulate the shared resource. In a three-role cFCP, a holder S has the
institutional power to request (from the FCS) to manipulate the shared resource.
Unlike the two-role setting, in a three-role cFCP a holder may not succeed in
manipulating the shared resource (for example, if the FCS disregards S’s valid
requests for manipulation of the resource, thus not complying with the protocol
rules). Developing a complete specification of a three-role cFCP and comparing
that with a specification of a two-role cFCP is another topic of our current
research.

6 Discussion

We have presented a specification of a simple protocol for resource sharing in
norm-governed AHNs. The specification of norm-governed computational sys-
tems has been the focus of several studies stemming from various research fields.
A few examples are [8, 16, 21, 26–28]. Generally, work on the specification of
norm-governed computational systems does not explicitly represent the institu-
tional powers of the member agents. This is one key difference between our work
and related approaches in the literature: our specification of social constraints
explicitly represents the institutional powers of the agents, differentiates between
institutional power, permission, physical capability and sanction, and employs
formalisms with a declarative semantics and clear routes to implementation to
express these concepts. (A detailed comparison between our work and related
approaches in the literature can be found in [1, Section 4.10].)

The cFCP specification is expressed as a logic program and is therefore di-
rectly executable providing a clear route to (prototype) implementations. In
previous work [2] we presented ways of executing an EC action description ex-
pressing a protocol specification. The cFCP executable specification may inform
the agents’ decision-making at run-time, for example, by allowing the powers,
permissions, obligations, and sanctions current at any time to be determined.

At design-time, agents may wish to prove various properties of the protocol
specification in order to decide whether or not they should participate in the
protocol. Such properties may include, for instance, that a protocol specification
is ‘safe’ and ‘fair’ (see Section 2), that no agent is forbidden and obliged to
perform an action at the same time, non-compliance with the obligation to assign
the floor always leads to a sanction, and so on. We have been experimenting [3,25]
with the use of various techniques (for example, planning query computation and
model checking) to prove properties of a protocol specification expressed in the
C+ language. (Our theoretical framework for specifying norm-governed systems
is not dependent on any particular action language or temporal structure.) We
aim to investigate the feasibility and practicality of the application of some of the
aforementioned techniques to an EC-formalised protocol specification in order
to prove properties of such a specification.

Sadighi and Sergot [22] argue that when dealing with resource access control
in heterogeneous computational systems in which ‘undesirable’ behaviour may

236 A. Artikis et al.

arise (such as AHNs), the concepts of permission and prohibition are inadequate
and need to be extended with that of entitlement : “entitlement to access a
resource means not only that the access is permitted but also that the controller
of the resource is obliged to grant the access when it is requested” [22]. We are
currently working towards a treatment of this and related senses of ‘entitlement’
as they arise in the context of our cFCP specification (entitlement is concept
that arises naturally in a three-role cFCP). More precisely, we are identifying the
conditions in which a subject holding the floor can be said to be ‘entitled’ to it,
and what the consequences are, and the circumstances in which it is meaningful
to say that a subject not holding the floor is ‘entitled’/not ‘entitled’ to it, and
what the consequences are.

We believe that viewing AHNs as instances of norm-governed systems en-
hances their ‘adaptability’ both at the application level and at the physical
level. By specifying the permissions, obligations, entitlements, and other more
complex normative relations that may exist between the members of an AHN,
one may precisely identify ‘undesirable’ behaviour, such as performance of for-
bidden actions and non-compliance with obligations, and, therefore, introduce
enforcement strategies in order to adapt to such behaviour. To what extent this
view gives useful insights in practice remains to be investigated.

Acknowledgements

This work has been supported by the EPSRC project “Theory and Technology
of Norm-Governed Self-Organising Networks” (GR/S74911/01).

References

1. A. Artikis. Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, University of London, November 2003. Retrieved April 8,
2004, from http://www.doc.ic.ac.uk/∼aartikis/publications/artikis-phd.
pdf, also available from the author.

2. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In Proceedings of Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pages 1053–1062. ACM Press, 2002.

3. A. Artikis, M. Sergot, and J. Pitt. An executable specification of an argumentation
protocol. In Proceedings of International Conference on Artificial Intelligence and
Law (ICAIL), pages 1–11. ACM Press, 2003.

4. K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, 1978.

5. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Design issues for floor control pro-
tocols. In Proceedings of Symposium on Electronic Imaging: Multimedia and Net-
working, volume 2417, pages 305–316. IS&T/SPIE, 1995.

6. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for multimedia confer-
encing and collaboration. Multimedia Systems, 5(1):23–38, 1997.

A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks 237

7. H.-P. Dommel and J. J. Garcia-Luna-Aceves. Efficacy of floor control protocols
in distributed multimedia collaboration. Cluster Computing Journal, Special issue
on Multimedia Collaborative Environments, 2(1):17–33, 1999.

8. M. Esteva, J. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. Arcos. On the formal
specifications of electronic institutions. In F. Dignum and C. Sierra, editors, Agent
Mediated Electronic Commerce, LNAI 1991, pages 126–147. Springer, 2001.

9. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

10. A. Jones and M. Sergot. On the characterisation of law and computer systems: the
normative systems perspective. In Deontic Logic in Computer Science: Normative
System Specification, pages 275–307. J. Wiley and Sons, 1993.

11. A. Jones and M. Sergot. A formal characterisation of institutionalised power.
Journal of the IGPL, 4(3):429–445, 1996.

12. M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: the case
of agent death. Journal of Autonomous Agents and Munti-Agent Systems, 7(1–
2):179–189, 2003.

13. R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–96, 1986.

14. A. Lomuscio and M. Sergot. A formulation of violation, error recovery, and en-
forcement in the bit transmission problem. Journal of Applied Logic, 2:93–116,
2004.

15. D. Makinson. On the formal representation of rights relations. Journal of Philo-
sophical Logic, 15:403–425, 1986.

16. N. Minsky and V. Ungureanu. Law-governed interaction: a coordination and con-
trol mechanism for heterogeneous distributed systems. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 9(3):273–305, 2000.

17. A. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal reasoning about
mobile communications. In Proceedings of Workshop on Software Specification and
Design, pages 25–33. IEEE Computer Society, 1998.

18. C. Perkins. Ad Hoc Networking, chapter 1. Addison Wesley Professional, 2001.
19. H. Prakken. Formalising Robert’s rules of order. Technical Report 12, GMD –

German National Research Center for Information Technology, 1998.
20. H. Robert. Robert’s Rules of Order: The Standard Guide to Parliamentary Proce-

dure. Bantam Books, 1986.
21. J. Rodriguez-Aguilar, F. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards

a test-bed for trading agents in electronic auction markets. AI Communications,
11(1):5–19, 1998.

22. B. Sadighi and M. Sergot. Contractual access control. In Proceedings of Workshop
on Security Protocols, 2002.

23. H. Schulzrinne. Requirements for floor control protocol. Internet Engineering
Task Force, January 2004. Retrieved April 8, 2004, from http://www.ietf.org/

internet-drafts/draft-ietf-xcon-floor-control-req-00.txt.
24. J. Searle. What is a speech act? In A. Martinich, editor, Philosophy of Language,

pages 130–140. Oxford University Press, third edition, 1996.
25. M. Sergot. Modelling unreliable and untrustworthy agent behaviour. In Proceed-

ings of Workshop on Monitoring, Security, and Rescue Techniques in Multiagent
Systems (MSRAS), Advances in Soft Computing. Springer-Verlag, 2004.

26. M. Singh. A social semantics for agent communication languages. In F. Dignum
and M. Greaves, editors, Issues in Agent Communication, LNCS 1916, pages 31–45.
Springer, 2000.

238 A. Artikis et al.

27. W. Vasconcelos. Norm verification and analysis of electronic institutions. In
J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors, This Volume. 2005.

28. M. Winikoff, W. Liu, and J. Harland. Enhancing commitment machines. In
J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors, This Volume. 2005.

Appendix: The Event Calculus

The domain-independent definition of the holdsAt predicate is as follows:

holdsAt(F =V, T) ←
initially(F =V),
not broken(F =V, 0, T)

(9)

holdsAt(F =V, T) ←
happens(Act, T ′),
T ′ < T,
initiates(Act, F =V, T ′),
not broken(F =V, T ′, T)

(10)

According to axiom (9) a fluent holds at time T if it held initially (time 0) and
has not been ‘broken’ in the meantime, that is, terminated between times 0 and
T . Axiom (10) specifies that a fluent holds at a time T if it was initiated at
some earlier time T ′ and has not been terminated between T ′ and T . not rep-
resents negation by failure. The domain-independent predicate broken is defined
as follows:

broken(F = V, T1, T3) ←
happens(Act, T2),
T1 ≤ T2, T2 < T3,
terminates(Act, F =V, T2)

(11)

F =V is ‘broken’ between T1 and T3 if an event takes place in that interval that
terminates F = V . A fluent cannot have more than one value at any time. The
following domain-independent axiom captures this feature:

terminates(Act, F = V, T) ←
initiates(Act, F =V ′, T),
V �= V ′

(12)

Axiom (12) states that if an action Act initiates F = V ′ then Act also terminates
F =V , for all other possible values V of the fluent F . We do not insist that a
fluent must have a value at every time-point. In this version of EC, therefore,
there is a difference between initiating a Boolean fluent F = false and terminating
F = true: the first implies, but is not implied by, the second.

We make two further comments regarding this version of EC. First, the
domain-independent EC axioms, that is, axioms (9)–(12), specify that a fluent
does not hold at the time that was initiated but holds at the time it was termi-
nated. Second, in addition to their domain-independent definitions, the holdsAt
and terminates predicates may be defined in a domain-dependent manner (see,
for example, axioms (5) and (7)). The happens, initially and initiates predicates
are defined only in a domain-dependent manner.

Intensional Programming for Agent Communication�

Vasu S. Alagar, Joey Paquet, and Kaiyu Wan

Department of Computer Science,
Concordia University,

Montreal, Quebec H3G 1M8, Canada
{alagar,paquet,ky wan}@cs.concordia.ca

Abstract. This article investigates the intensional programming paradigm for
agent communication by introducing context as a first class object in the inten-
sional programming language Lucid. For the language thus extended, a calculus
of contexts and a logic of contexts are provided. The paper gives definitions, syn-
tax, and operators for context, and introduces an operational semantics for eval-
uating expressions in extended Lucid. It is shown that the extended Lucid lan-
guage, called Agent Intensional Programming Language(AIPL), has the general-
ity and the expressiveness for being an Agent Communication Language(ACL).

Keywords: Intensional Programming, Context, Lucid, Agent Communication
Language, KQML performatives, FIPA.

1 Introduction

The goal of this paper is the investigation of Intensional Programming for agent commu-
nication by introducing contexts as a first class object in the intensional programming
language Lucid [12]. We provide a calculus of contexts, and introduce the semantics
of contexts as values in the language to add the expressive power required to write
non-trivial application programs. We demonstrate that Lucid, extended with contexts,
has the generality and the expressibility for being an Agent Communication Language
(ACL) [5]. We also briefly discuss an implementation framework for agent-based dis-
tributed programs written in the extended Lucid.

Intensional programming is a powerful and expressive paradigm based on Inten-
sional Logic. The notion of context is implicit in intensional programs, i.e., contexts
are not ubiquitous in programs, as in most other declarative or procedural languages.
Intension, expressed as Lucid programs, can be interpreted to yield values (its exten-
sion) using demand-driven eduction [12]. In this way, intensional programming allows
a cleaner and more declarative way of programming without loss of accuracy of inter-
preting the meaning of programs. Moreover, intensional programming deals with infi-
nite entities which can be any ordinary data values such as a stream of numbers, a tree
of strings, multidimensional streams, etc. These infinite entities are first class objects in

� This work is supported by grants from Natural Sciences and Engineering Research Council,
Canada.

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 239–255, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

240 V.S. Alagar, J. Paquet, and K. Wan

Lucid and functions can be applied to these infinite entities. Information and their com-
putation can be abstracted and expressed declaratively, while providing the support for
their interpretation in different streams. Such a setting seems quite suitable to hide the
internal details of agents while providing them the choice to communicate their internal
states, if necessary, for cooperative problem solving in a community of agents. Inten-
sional programming is also suitable for applications which describe the behaviour of
systems whose state is changing with time, space, and other physical phenomena or ex-
ternal interaction in multidimensional formats. Agent communication where intensions
of agents have to be conveyed is clearly one such application.

The notion of context was introduced by McCarthy and later used by Guha [7] as
a means of expressing assumptions made by natural language expressions in Artificial
Intelligence (AI). Hence, a formula, which is an expression combining a sentence in AI
with contexts, can express the exact meaning of the natural language expression. The
major distinction between contexts in AI and in intensional programming is that in the
former case they are rich objects that are not completely expressible and in the later case
they are implicitly expressible, i.e., one can write Lucid expressions whose evaluation
is context-dependent, but where the context is not explicitly manipulated. In extended
Lucid we add the possibility to explicitly manipulate contexts, and introduce contexts
as first class objects. That is, contexts can be declared, assigned values, used in expres-
sions, and passed as function parameters. In this paper we give the syntax for declaring
contexts, and a partial list of operators for combining contexts into complex expres-
sions. A full discussion on the syntax and semantics of the extended language appears
in [1]. The ACL that we introduce in this paper uses context expressions in messages
exchanged between communicating agents. The structure of message is similar to the
structure of performatives in KQML [4].

The paper is organized as follows: In Section 2 we review briefly the intensional
programming paradigm. Section 3 discusses the basic operators of Lucid and illustrates
the style of programming and evaluation in Lucid with simple examples. In Section 4
we discuss software agents and communication language for agents as standardized by
FIPA [5]. We discuss the extended Lucid language for agent communication as well.
The GIPSY [9], which provides a platform for implementation of extended Lucid is
briefly discussed in Section 5.

2 Intensional Programming Paradigm

Intensional Logic came into being from research in natural language understanding.
According to Carnap, the real meaning of a natural language expression whose truth-
value depends on the context in which it is uttered is its intension. The extension of that
expression is its actual truth-value in the different possible contexts of utterance [10],
i.e., the different possible worlds into which this expression can be evaluated. Hence the
statement “It is snowing” has meaning in itself (its intension), and its valuation in par-
ticular contexts (i.e., its extention) will depend on each particular context of evaluation,
which includes the exact time and space when the statement is uttered.

Basically, intensional logics add dimensions to logical expressions, and non-inten-
sional logics can be viewed as constant in all possible dimensions, i.e., their valuation

Intensional Programming for Agent Communication 241

does not vary according to their context of utterance. Intensional operators are defined
to navigate in the context space. In order to navigate, some dimension tags (or indexes)
are required to provide placeholders along dimensions. These dimension tags, along
with the dimension names they belong to, are used to define the context for evaluating
intensional expressions. For example, we can have an expression:

E : the average temperature for this month here is greater than 0◦C .

This expression is intensional because the truth value of this expression depends on
the context in which it is evaluated. The two intensional operators in this expression are
this month and here, which refer respectively to the time and space dimension. If we
“freeze” the space context to the city of Montreal, we will get the yearly temperature at
this space context, for an entire particular year (data is freely given by the authors). So
along the time dimension throughout a particular year, we have the following valuation
for the above expression, with T and F respectively standing for true and false, where
the time dimension tags are the months of the year :

E ′ =
Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
F F F F T T T T T F F F

So the intension is the expression E itself, and a part of its extension related to this
particular year is depicted in the above table. According to Carnap, we are restricting the
possible world of intensional evaluation to Montreal, and extending it over the months
of a particular year. Furthermore, the intension of E can be evaluated to include the
spatial dimension, in contrast with the preceding, where space was made constant to
Montreal. Doing so, we extend the possible world of evaluation to the different cities in
Canada, and still evaluate throughout the months of a particular year. The extension of
the expression varies according to the different cities and months. Hence, we have the
following valuation for the same expression :

E ′′ =

Ja Fe Mr Ap Ma Jn Jl Au Se Oc No De
Montreal F F F F T T T T T F F F

Ottawa F F F T T T T T T F F F
Toronto F F T T T T T T T T F F

Vancouver F T T T T T T T T T T T

The Lucid intensional programming language retains two aspects from intensional
logic: first, at the syntactic level, are context-switching operators, called intensional
operators ; second, at the semantic level, is the use of possible worlds semantics [10].

3 Lucid

Lucid was invented as a tagged-token dataflow language by William Wadge and Edward
Ashcroft [12]. In the original version of Lucid, the basic intensional operators were first,
next, and fby. The following is the definition of three popular operators of the original
Lucid [10]:

242 V.S. Alagar, J. Paquet, and K. Wan

Definition 1. If X = (x0, x1, . . . , xi , . . .) and Y = (y0, y1, . . . , yi , . . .), then

(1) first X def= (x0, x0, . . . , x0, . . .)
(2) next X def= (x1, x2, . . . , xi+1, . . .)
(3) X fby Y def= (x0, y0, y1, . . . , yi−1, . . .)

Clearly, analogues can be made to list operations, where first corresponds to hd,
next corresponds to tl, and fby corresponds to cons.

Lucid has eventually gone through several generalization steps and has evolved into
a multidimensional intensional programming language which enables functions and di-
mensions as first-class values [10]. To support this, two basic intensional operators are
added, which are used respectively for intensional navigation (@) and for querying the
current context of evaluation of the program (#). Doing this, the Lucid language went
apart from its dataflow nature to the more general intensional programming paradigm
(often referred to as multidimensional indexical paradigm).

The following example 1 is to extract a value from the stream representing the nat-
ural numbers, beginning from the ubiquitous number 42. We arbitrarily pick the third
value of the stream, which is assigned tag number two (indexes starting at 0). We also
set the stream’s variance in the d dimension.

Example 1.
N @.d 2
where

dimension d;
N = 42 fby.d (N+1);

end;

Intuitively, we can expect the program to return the value 44. To see how the pro-
gram is evaluated, we rewrite it in terms of the basic @ and # intensional operators as
shown in Example 2. The translation rules used for the rewriting of the program are
presented in [10]. It is also interesting to note that Lucid forms a family of languages,
and that we have identified a generic form (the one presented in this paper) into which
all the other languages can be syntactically translated without loss of meaning.

Example 2.
N @.d 2
where

dimension d;
N = if (#.d <= 0) then 42

else (N+1) @.d (#.d-1);
end;

The implementation technique of evaluation for Lucid programs is an interpreted
mode called eduction. Eduction can be described as tagged-token demand-driven data-
flow, in which data elements (tokens) are computed on demand following a dataflow

Intensional Programming for Agent Communication 243

network defined in Lucid. Data elements flow in the normal flow direction (from pro-
ducer to consumer) and demands flow in the reverse order, both being tagged with their
current context of evaluation.

Evaluation takes place by generating successive demands for the appropriate values
of N in different contexts, until the final computation can be affected. The demand for
N @.d 2 generates a demand for N @.d 1 which in turn generates a demand for
N @.d 0. The definition of the program explicitly states that the value of N @.d 0
is 42. Once this is found, the successive addition operations are made on the demand
results, as required by the equation N = 42 fby.d N+1, giving a final result of 44.
The examples can be clearly understood from the syntax and semantics of Lucid, whose
in-depth descriptions are shown in Section 4.4.

Lucid has been extended in several ways. Its variants have been used to specify
3D spreadsheets, real-time systems using Lustre (a variant of Lucid), database systems
and GLU (Granular Lucid) run-time system which illustrates how the multidimensional
structure of a problem expressed in Lucid can be harnessed to produce efficient parallel
implementations of problems. Currently, we are in the process of implementing the
GIPSY (General Intensional Programming System), which is an investigation platform
(compiler, run-time environment, etc) for all members of the Lucid family of intensional
programming languages [9].

4 Agent Communication in Intensional Programming Language

Software agents, according to Chen et al [2], are personalized, continuously running and
semi-autonomous, driven by a set of beliefs, desires, and intentions (BDI). Agent tech-
nology is being standardized by FIPA [5] with the goal of seamlessly integrating their
architectures and languages with various commercial application systems such as net-
work management, E-commerce, and mobile computing [2]. In such applications agents
should have capabilities to exchange complex objects, their intentions, shared plans,
specific strategies, business and security policies. An Agent Communication Language
(ACL) must be declarative and have a small number of primitives that are necessary to
construct the structures required for achieving the above capabilities.

4.1 KQML and FIPA Languages

An ACL must support interoperability in an agent community while providing the free-
dom for an agent to hide or reveal its internal details to other agents. The two existing
ACLs are Knowledge Query and Manipulation Language (KQML) [4] and the FIPA [5]
communication language. The FIPA language includes the basic concepts of KQML,
yet they have slightly different semantics. We summarize below the major points of
contrasts between KQML and FIPA ACL, from the work of Labrou, Finin, and Peng [8].

KQML has a predefined set of reserved performatives. It is neither a minimal re-
quired set nor a closed set. That is, an agent may use only those primitives that it needs
in a communication, and a community of agents may agree either to use the union of the
sets of primitives required by each one of them or use some additional performatives
with a consensus on the semantics and protocols for using them. In the latter case, it

244 V.S. Alagar, J. Paquet, and K. Wan

is not clear as to how the agents will construct the additional performatives and how a
semantics can be dynamically worked out. As an example of the former case, a KQML
message representing a query from agent joe about the price of a share of IBM stock
might be encoded as “ask-one” performative in Example 3, and the STOCK-SERVER’s
reply is encoded as “tell” performative in Example 3 [8]:

Example 3. (ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver STOCK-SERVER
:reply-with IBM-STOCK
:language LPROLOG
:ontology NYSE-TICKS)

(tell
:sender STOCK-SERVER
:content (PRICE IBM 14)
:receiver joe
:in-reply-to IBM-STOCK
:language LPROLOG
:ontology NYSE-TICKS)

KQML also provides a small number of performatives that the agents can use to define
meta data. A semantics of KQML in a style similar to Hoare logic is given in [8].

The syntax of the FIPA ACL resembles KQML, however its semantics is formally
given by a quantified multi-modal logic [13]. The communication primitives in FIPA
ACL are called communicative acts (CA), yet they are the same as KQML primitives.

In order to achieve cooperation and interoperability, both KQML and FIPA ACL
need to predefine a set of performatives, which is neither a minimal required set nor a
closed one. This creates a big problem for maintaining and extending the agents to face
the fast evolution of performatives. However, if we design the communication language
from a higher level and in a more abstract way in which the performatives become first
class objects, we will be able to create additional performatives as contextual expres-
sions. In the AIPL, which we discuss next, we define contexts as first class objects and
encapsulate performatives in them. We define operators on contexts, that can be used to
create new contexts from existing contexts. Informally, when an agent A sends a com-
municative act CA x to an agent B , we view x as a collection (may be a sequence) of
objects, where each object is bound to some description on its interpretation, evaluation
criteria, temporal properties, constraints, and any other information that can be encoded
in the language. We view this collection as a context.

4.2 Contexts in AIPL

The approach of using intensional programming for agent communication is to make
a conservative extension of Lucid by introducing context as a first class object in Lu-
cid [1]. In our approach, the name of a performative is considered as an expression,
and the rest of the performative constitute a context which can be understood as a com-
munication context; each field except the name in the message is a micro context. The
communication context will be evaluated by the receiver, by evaluating the expression at
the context obtained by combining the micro contexts. In some cases, the receiver may
combine the communication context with its local context to generate a new context.

Definitions of Contexts in AIPL. In extended Lucid contexts are defined as a subset
of a finite union of relations. Let DIM = {d1, d2, . . . , dn} denote a finite set of
dimension names. With each dimension di , a unique index set Xi and a domain Di

Intensional Programming for Agent Communication 245

are associated. A domain is a non-empty set of values. For instance, a domain may
be N, the set of natural numbers, or R, the set of real numbers, or any arbitrary set of
named objects. Let IND = {X1, . . . ,Xr}, and DOM = {D1,D2, . . . ,Dm} denote
the set of index and domains. There exists functions fdimtoindex : DIM → IND , and
findextodom : IND → DOM , such that every di ∈ DIM to an index set fdimtoindex (di)
in IND , and every Xi ∈ IND is mapped to a domain findextodom(Xi) in DOM .

Definition 2. Consider the relations

Pi = {di} × fdimtoindex (di) 1 ≤ i ≤ n

A context C, given (DIM , fdimtoindex), is a finite subset
of

⋃n
i=1 Pi. The degree of the context C is | ∆ |, where

∆ ⊂ DIM includes the dimensions that appear in C.

A context is written using enumeration syntax. The set enumeration syntax of a context
C is C = {(d , x) | d ∈ ∆, x ∈ fdimtoindex (d)}. We use the syntax [di1 : xj1 , . . . , dik :
xjk] in Lucid to explicitly denote the aggregation of dimension, index pairs. Note that
the dir s need not be distinct, and

C ⊆ ⋃n
i=1 Pi ⊂ DIM × I , I =

⋃m
i=1 Xi

Consequently, every subset of
⋃

i=1,n Pi is a context, but not every subset of DIM × I
is a context. However, if X1 = X2 . . . , = Xn , every subset of DIM × I is a context.
This follows from the fact that fdimtoindex (di) = Xi , i = 1, . . . ,n implies that

∪n
i=1Pi = ∪n

i=1 ({di} × I) = (∪n
i=1{di}) × I = DIM × I

We say a context C is simple (s context), if (di , xi), (dj , xj) ∈ C ⇒ di �= dj .
A simple context C of degree 1 is called a micro (m context) context.

Example 4. Let DIM = {X ,Y ,Z ,U }, DOM = {N, R},
IND = {N, {blue, red}}, fdimtoindex (X) = fdimtoindex (Y) = N,
fdimtoindex (U) = fdimtoindex (Z) =
{blue, red}. Compute P1 = X × N, P2 = Y × N, P3 = Z × {blue, red},
and P4 = U × {blue, red}.
1. C1 = [X : 1.5,Y : red] is not a context.
2. C2 = [Z : blue] is a m context.
3. C3 = [X : 3,Y : 2] is a s context of degree 2.
4. C4 = [X : 3,X : 4,Y : 3,Y : 2,U : blue] is a context of degree

3.

Several functions on contexts are predefined. The basic functions dim and tag are
to extract the set of dimensions and their associate indexes from a set of contexts.

Definition 3. Let M denote a set of m contexts. We define
functions

dimm : M → DIM tagm : M → INDm ,

where INDm =
⋃

m ∈ M tagm (m), such that for m = [x : y] ∈
M, dimm(m) = x, and tagm(m) = y ∈ fdimtoindex (dimm(m)).

246 V.S. Alagar, J. Paquet, and K. Wan

Definition 4. Let S denote a set of contexts. We use functions
dimm and tagm to define the functions dim and tag on a set
of contexts.

dim : S → P DIM tag : S → P IND ,

where IND =
⋃

s ∈ S

⋃
m ∈ s tagm(m) such that for s ∈ S,

dim(s) = {dimm(m) |
m ∈ s}, and tag(s) = {tagm(m) | m ∈ s}.

Example 5. Consider the contexts introduced in Example 4.
An application of dim and tag functions to these contexts
produces the following results:

1. dim and tag are not defined for context C1.
2. dimm(C2) = Z, tagm(C2) = blue.
3. dim(C3) = {X ,Y }, tag(C3) = {3, 2}.
4. dim(C4) = {X ,Y ,U }, tag(C4) = {3, 4, 2, blue}.

In general, a set of contexts may include contexts of different degrees. We use the
syntax Box [∆ | p] to introduce a finite set of contexts in which all contexts are defined
over ∆ ⊆ DIM and have the same degree | ∆ |.
Definition 5. Let ∆ = {di1 , . . . , dik }, where dir ∈ DIM
r = 1, . . . , k, and p is a k-ary predicate defined on the
tuples of the relation Πd ∈∆ fdimtoindex (d). The syntax

Box [∆ | p] = {s | s = [di1 : xi1 , . . . , dik : xik]},
where the tuple (xi1 , . . . , xik), xir ∈ fdimtoindex (dir), r = 1, . . . k
satisfy the predicate p, introduces a set S of contexts
of degree k. For each context s ∈ S the values in tag(s)
satisfy the predicate p.

Example 6. The set of contexts defined by Box [X ,U | x
4 + u

5 ≤ 1],
fdimtoindex (X) = N, and fdimtoindex (U) = N is given by

{[X : 0,U : 0], [X : 0,U : 1], [X : 0,U : 2], [X : 0,U : 3],
[X : 0,U : 4], [X : 0,U : 5], [X : 1,U : 0], [X : 1,U : 1],
[X : 1,U : 2], [X : 1,U : 3], [X : 2,U : 0], [X : 2,U : 1],
[X : 2,U : 2], [X : 3,U : 0], [X : 3,U : 1], [X : 4,U : 0]}

4.3 Context Calculus

We provide a set of operators which can be applied on contexts to produce many kinds
of contexts according to the requirements of different applications. These operators in-
clude: constructor [:], override ⊕ , difference
 , choice | , conjunction � , disjunc-
tion � , undirected range � , directed range ⇀ , projection ↓ , hiding ↑ , substitution
/ , and comparison =, ⊇, ⊆ . The language allows user defined functions on contexts.
The definitions, properties, and examples of these operators are discussed in [1]. The
following are the definitions and examples of some of them. In the following definitions
G denotes a finite set of contexts, and M denotes a set of m contexts.

Intensional Programming for Agent Communication 247

Definition 6. Constructor operator constructs a m context for a
given dimension d, and index t:

[:] : {d} × fdimtoindex (d) → M ,

[d : t] = m ∈ M. Using the set notation and the definitions
for contexts, we construct contexts.

Definition 7. Override operator takes two contexts c1,
c2 ∈ G, and returns a context c ∈ G, which is the
result of the conflict-free union of c1 and c2, as defined
below:

⊕ : G × G → G ,

c = c1 ⊕ c2 = { m | (m ∈ c1 ∧ ¬ m ∈ c2) ∨ m ∈ c2}
Definition 8. Choice operator accepts a finite number of
c1, . . . , ck of contexts and nondeterministically returns one
of the cis. The definition c = c1 | c2 | . . . , | ck implies
that c is one of the ci, where 1 ≤ i ≤ k :

| : G × G × . . . × G → G ,

Definition 9. Hiding operator enables a set of dimensions D to
be applied on a context c ∈ G, and the result removes
all the m contexts in c whose dimensions are in D:

↑ : G × D → G ,

c ↑ D = {c′ | dim(c′) ⊆ dim(c) ∧ dim(c′) ∩ D = ∅}
Definition 10. Projection operator is the result of projecting
a context c on a set of dimensions D to filter only those
pairs in c that match the dimension in set D.

↓ : G × D → G ,

c ↓ D = {c′ | dim(c′) ⊆ dim(c) ∧ dim(c′) ⊆ D}
Example 7. Let c1 = [d : 3, d : 4], c2 = [e : 1, d : 1, f : 2],
c3 = [e : 3, d : 3], ∆ = { e, f }.
Then c1 ⊕ c2 = [d : 1, e : 1, f : 2], c2 | c3 = c2 or c3,

c2 ↑ ∆ = [d : 1], c2 ↓ ∆ = [e : 1, f : 2]

In order to provide a precise meaning for a context expression, we define the prece-
dence rules for all the operators. The precedence rules for the operators are shown as
follows: 1.↓, ↑, /; 2.|; 3.�, �; 4.⊕,
; 5.�, ⇀; 6. =, ⊆, ⊇; (from the highest prece-
dence to the lowest). Parentheses will be used to override this precedence when needed.
Operators having the same precedence will be applied from left to right.

As an illustration, consider the context expression c1 | c2 ⊕ c3 ↑ D . Applying the
precedence rules, this expression is equivalent to (c1 ⊕ (c3 ↑ D)) | (c2 ⊕ (c3 ↑ D)).

248 V.S. Alagar, J. Paquet, and K. Wan

4.4 Syntax and Semantics of Extended Lucid

The abstract syntax of the extended Lucid is defined below:
E ::= id

| E (E1, . . . ,En)
| if E then E ′ else E ′′

| #E
| E @ E′

| [E1 : E′
1, . . . , En : E′

n]
| E where Q

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

The operator @ is the navigation operator, which evaluates an expression E in con-
text E ′, where E ′ is an expression evaluating to a context. The operator # is the context
query operator, operating on the current evaluation context. The non-terminals E and Q
respectively refer to expressions and definitions. The only change applied to the syntax
of the language in order to achieve contexts as first class objects comes in the syntactic
rules presented in bold. The older syntax for the @ operator was of the form: E @ E ′E ′′

where, semantically speaking, E ′ evaluated to a dimension, and E ′′ evaluated to a di-
mension tag (as depicted in its semantic rule presented in Figure 2). In fact, the E ′E ′′

part of this syntactic construct represents a m context , even though E ′ and E ′′ were
evaluated as separate semantic entities, and not to a context. In contrast, the E ′ part of
the new E @ E ′ semantically evaluates to a m context , thus introducing contexts as
first class objects. The syntactic construct [E1 : E ′

1, . . . , En : E ′
n] is representing how

s contexts are syntactically introduced in the language. The E ′ part of the E @ E ′ rule
shall be eventually evaluating to something of this form, as is reflected in the Eat(c) and
Econtext semantic rules. As for the operational semantics of Lucid, the general form
of evaluating in Lucid is as follows: D,P � E : v , which means that in the defini-
tion environment D, and in the evaluation context P , expression E evaluates to v . The
definition environment D retains the definitions of all of the identifiers that appear in
a Lucid program. It is therefore a partial function: D : Id → IdEntry, where Id is
the set of all possible identifiers and IdEntry has five possible kinds of value such as:
Dimensions, Constants, Data Operators, Variables, and Functions [10]. The evaluation
context P , associates a tag to each relevant dimension. It is therefore a partial function:
P : Id → N.

The complete operational semantics is defined in Figure 1 [10]. The rule for the
navigation operator is Eat(c), which corresponds to the syntactic expression E@E ′,
evaluates E in context E ′. The function P ′ = P † [id �→ v ′′] means that P ′(x) is v ′′

if x = id, and P(x) otherwise. For example, the evaluation of the expression E@E1 ⊕
E2
 E3 is done in the following order:

– compute E ′ = E1 ⊕ E2

– compute E ′′ = E ′
 E3

– evaluate E@E ′′.

4.5 Message Structure and Evaluation in AIPL

The syntax of a message in AIPL is 〈E ,E ′〉, where E is the message name and E ′ is a
context. The message name in a Communicative Act CA of FIPA ACL or the name of a

Intensional Programming for Agent Communication 249

performative in KQML is captured in AIPL by E . In an implementation E corresponds
to a function. The context E ′ includes all the information that an agent wants to convey
in an interaction to another agent. Thus, a query from an agent A to an agent B is of
the form 〈EA,E ′

A〉. A response from agent B to agent A will be of the form 〈EB ,E ′′
B 〉,

where E ′′
B will include the reference to the query for which this is a response in addition

to the contexts in which the response should be understood.

Query Evaluation. The operational semantics in extended Lucid is the basis for query
evaluation in AIPL. The query from agent A 〈EA,E ′

A〉 to agent B is evaluated as
follows:

– agent B obtains the context FB = E ′
A ⊕LB , where LB is the local context for B .

– agent B evaluates EA@FB

– agent B constructs the new context E ′′
B that includes the evaluated result and infor-

mation suggesting the context in which it should be interpreted by agent A, and
– sends the response 〈EB ,E ′′

B 〉 to agent A.

Example 8. The query in Example 3 is represented in AIPL as
the expression E @ E ′, E ′ = E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 ⊕ E6.

E @ [E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 ⊕ E6]
where
E = "ask-one";
E1 = [sender : joe];
E2 = [content : (PRICE IBM ?price)];
E3 = [receiver : STOCK-SERVER];
E4 = [reply-with : IBM-STOCK];
E5 = [language: LPROLOG];
E6 = [ontology: NYSE-TICKS];
end

Example 9. The reply in Example 3 is represented in AIPL as
the expression E ′ @ E ′′, E ′′ = E ′

1 ⊕ E ′
2 ⊕ E ′

3 ⊕ E ′
4 ⊕ E ′

5 ⊕ E ′
6.

E’ @ [E1’ ⊕ E2’ ⊕ E3’ ⊕ E4’ ⊕ E5’ ⊕ E6’]
where
E’ = "tell";
E1’ = [sender : STOCK-SERVER];
E2’ = [content : (PRICE IBM 14)];
E3’ = [receiver : joe];
E4’ = [in-reply-to : IBM-STOCK];
E5’ = [language: LPROLOG];
E6’ = [ontology: NYSE-TICKS];
end

The implementation will assure that the local context of B is sufficient to evaluate the
query and respond to A within an acceptable time delay. This is an important issue

250 V.S. Alagar, J. Paquet, and K. Wan

Ecid :
D(id) = (const, c)

D,P � id : c

Eopid :
D(id) = (op, f)

D,P � id : id

Edid :
D(id) = (dim)

D,P � id : id

Efid :
D(id) = (func, idi ,E)

D,P � id : id

Evid :
D(id) = (var,E) D,P � E : v

D,P � id : v

Eop :
D,P � E : id D(id) = (op, f) D,P � Ei : vi

D,P � E(E1, . . . ,En) : f (v1, . . . , vn)

Efct :
D,P � E : id D(id) = (func, idi ,E

′) D,P � E ′[idi ← Ei] : v

D,P � E(E1, . . . ,En) : v

EcT :
D,P � E : true D,P � E ′ : v ′

D,P � if E then E ′ else E ′′ : v ′

EcF :
D,P � E : false D,P � E ′′ : v ′′

D,P � if E then E ′ else E ′′ : v ′′

Etag :
D,P � E : id D(id) = (dim)

D,P � #E : P(id)

Eat(c) :
D,P � E ′ : P ′ D,P ′ � E : v

D,P � E @E ′ : v

Econtext :
D,P � Edj : idj D(idj) = (dim) D,P � Eij : vj v = [idj �→ vj]

D,P � [Ed1 : Ei1 ,Ed2 : Ei2 , . . . ,Edn : Ein] : v

Ew :
D,P � Q : D′,P ′ D′,P ′ � E : v

D,P � E where Q : v

Qdim : D,P � dimension id : D†[id �→ (dim)],P†[id �→ 0]

Qid : D,P � id = E : D†[id �→ (var,E)],P

Qfid : D,P � id(id1, . . . , idn) = E : D†[id �→ (func, idi ,E)],P

QQ :
D,P � Q : D′,P ′ D′,P ′ � Q ′ : D′′,P ′′

D,P � Q Q ′ : D′′,P ′′

Fig. 1. Semantic rules for Lucid

Eat(old) :
D,P � E ′ : id D(id) = (dim) D,P � E ′′ : v ′′ D,P†[id �→ v ′′] � E : v

D,P � E @ E ′ E ′′ : v

Fig. 2. Semantic rule for for the old @ operation

Intensional Programming for Agent Communication 251

because we want the agents to be reactive (responds within acceptable time limits)
while the eduction is allowed to continue. The choice operator helps in achieving such
a goal. For example, the query:

E @ [E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5 | E6 ⊕ E7]
where
E = "ask-one";
E1 = [sender : joe];
E2 = [content : (PRICE IBM ?price)];
E3 = [receiver: STOCK-SERVER];
E4 = [reply-with : IBM-STOCK];
E5 = [language: LPROLOG];
E6 = [language: STANDARD PROLOG];
E7 = [ontology: NYSE-TICKS];
end

gives the receiver, depending on its local context, choose either LPROLOG or STAN-
DARD PROLOG to ensure timeliness. The fields in the performative in Example 3 can
not be dynamically changed in either FIPA or KQML. In our language, we form the
context expression E ′′ = E ′ ↑ {language} ⊕ [language : Java] to dynamically
replace the language requirement and construct a new query. The meaning of the exam-
ples shown in this section can be clearly understood from the semantics of the context
calculus presented in the Section 4.3.

4.6 Semantics of Conversation

In [8], the semantics of KQML performatives is provided in terms of preconditions,
postconditions, and completion conditions. Preconditions, postconditions, and comple-
tion conditions involve action descriptors, such as PROC (A,M) and SENDMSG(A,-
B ,M), and describe states of agents in a language of mental attitudes such as belief,
knowledge, want, and intention. Building on pre- and postcondition semantics they have
devised the conversation policies for agent conversation. Conversation policies describe
both the sequences of KQML performatives and the constraints and dependencies on
the values of the reserved parameters of the performatives involved in the conversa-
tions. The semantics of FIPA ACL is given in the formal language SL, which provides
the modal operators for beliefs (B), desires (D), intentions (persistent goals PG), and
uncertain goals (U). Actions of objects, object descriptions, and propositions can be de-
scribed in the language. Each formula in SL defines a constraint that the sender of the
message must satisfy in order for the sender to conform to the FIPA ACL standard [13].

Our approach to semantics is different from the above two approaches. We have
shown in [11] that a constraint can be represented as a set of contexts. We continue this
method here to represent pre- and postconditions. We introduce special simple contexts
having four dimensions B (Belief), K (Know), W (Want), and I (Intention). The tags
along these dimensions are natural numbers. The domain DB attached to dimension
B is a set of predicates, and the respective domains DK , DW , and DI attached to
the dimensions K , W , and I are sets of expressions. Each performative is bound to a

252 V.S. Alagar, J. Paquet, and K. Wan

context c = [B : i1,K : i2,W : i3, I : i4] over the dimensions B , K , W , I . The
context c is suggested as the precondition to act upon the performative. If a dimension
is not specified in c then it is equivalent to a “don’t care” condition.

We define a dialogue initiated by agent X with agent Y as a pair 〈α, β〉, where α is
sent from X to Y and β is the response from Y to X . The agent X constructs the spe-
cial context PreY (MX) for message MX and sends the pair α = (PreY (MX),MX)
to Y . The agent Y evaluates its local state at PreY (MX). The result of evaluation is a
tuple 〈b1, k1,w1, i1〉. The tuple corresponding to an empty PreY is 〈NONE ,NONE ,-
NONE ,NONE 〉, interpreted as true. That is, the agent X has not indicated any pref-
erence as to when agent Y should evaluate the performative MX . If at least one compo-
nent of the tuple is not NULL, then the special context PreY (MX) is said to be satisfied
at some local state of Y . If all components of the tuple are NULL the context is not
satisfiable at any local state of Y . If the outcome of evaluation is either true or satisfied,
the agent Y will act upon the performative MX . For instance, in Example 8, the agent
X constructs the special context E7 = [I : i4] and attaches it to the performative in a
conversation with Y . The agent Y evaluates DB ×DK ×DW ×DI , the local reposi-
tory on its belief, desire, want and intentions, at the context E7. The result of evaluation
is the tuple 〈NONE ,NONE ,NONE ,PROC (Y ,M)〉, implying that the agent Y has
the intention to process the message M . The semantics of a dialogue initiated by X
with Y is as follows:

1. Agent X creates a special context PreX (MX), the weakest precondition that en-
ables to send a message to agent Y . When PreX (MX) is true in its local state, it
constructs PreY (MX), a precondition based on the information that it shares with
agent Y .

2. Agent X sends α = (PreY (MX) ⊕ MX) to Y .
3. Agent Y disassembles it into the message part M and the special context

PreY (MX). This is done by computing PreY (MX) = α ↓ {B ,K ,W , I }, and
MX = α ↑ {B ,K ,W , I }.

4. Agent Y evaluates its local state at PreY (MX).
5. If satisfied it does the following:

(a) creates the post condition PostY (MX) that satisfies the task completion;
(b) acts upon the message MX ;
(c) composes the reply as a performative MY ;
(d) creates PostX (MY), the special context in which agent X should evaluate

MY ;
(e) composes β = (PostX (MY),MY);
(f) Agent Y sends β to agent X .

6. If NOT satisfied, more than one semantics can be given:
– [1.] Agent Y responds immediately to X : composes an “unable to act” perfor-

mative, constructs the special context 〈NONE ,NONE ,NONE ,NONE 〉, and
sends the pair to agent X .

– [2.] Agent Y delays the evaluation of MX until the instant when the special
context PreY (MX) is either satisfied or not satisfied in its local state.

– [3.] Agent Y abandons the message if the special context PreY (MX) is either
satisfied or not satisfied within a certain amount of time.

Intensional Programming for Agent Communication 253

For the deterministic progress in the system, the first semantics is preferred. Under the
first semantics of dialogue we can define the semantics of a conversation. A sequence
〈(α1, β1); . . . ; (αk , βk), . . . , 〉 of dialogues is a conversation if for every i , i ≥ 1,
there exists at least one local state of X in which the postcondition PostX (MY) in βi

is satisfied. In the language, a conversation can be represented as tuple streams, where
each tuple is a pair of contexts.

5 Conclusion

The Agent Communication Language AIPL that we have introduced in this paper has a
number of advantages:

– In KQML and FIPA, performatives, other than the primitive performatives defined
in the language, can be agreed upon by the community of agents involved in a
collaboration. That is, interoperability is proved. However, performatives are only
static status and not first class objects in the language. As a consequence, performa-
tives can not be changed dynamically, nor can they be used as a vehicle to commu-
nicate local state information of agents. In AIPL, by making context as first class
objects, we have removed the above limitations. In addition, we can define func-
tions on contexts and they can be used as parameters in programs. Thus, we have
enhanced both interoperability and flexibility in agent communication.

– AIPL is declarative and has a formal semantics.
– AIPL uses multidimensional streams of objects, which can be used to represent

plans and conversations in multiple streams.
– Multiple formats of communication can be supported since intensional program-

ming language deals with any kind of ordinary data type. Even the multimedia
streams between agents become feasible.

We create special contexts to provide a semantics for conversation. Performatives
are constructed as context expressions. Contexts may be dynamically changed. Con-
sequently in our approach performatives are not constants, and cannot be assigned a
priori pre- and postconditions. This in turn requires creating dynamically the pre- and
postconditions for performatives constructed by agents. An agent may share its belief,
knowledge, wants, and intentions with those agents it wants to collaborate. However,
an agent may share its resources only partially. Hence forcing agents to reveal their in-
ternal states in conversations is unsafe. The mechanism on which we have designed the
agent communication protocol is known as Publish-Subscribe. An agent publishes what
it wishes to share with other agents. An agent who wants to collaborate with another
agents subscribes to that agent’s publication. The semantics requires this mechanism
to be fulfilled in agent systems. It seems that special contexts in our language have
the same expressive power as the features in MALLET [6], a language for describing
declarative and procedural aspects required for agent teamwork. Moreover, the ability
to modify dynamically the belief, knowledge, wants, and intentions in our language is
similar to the feature of the language in [3] to express dynamically changing goals.
There is certainly some overhead in this approach. However, it is justified for the fol-
lowing reasons:

254 V.S. Alagar, J. Paquet, and K. Wan

– dynamic creation and manipulation of performatives provide flexibility and expres-
siveness for programming agent systems in the language, and

– security policies can be enforced in the language as peer-to-peer agent communi-
cation with no central authority for enforcement.

Lately, we have undertaken the development of the GIPSY, which is designed
as a framework in order to reach for maximal flexibility and generality of applica-
tion [11, 14]. Being a functional language, Lucid programs can be evaluated in par-
allel or distributed execution mode. In such case, in order to augment the granularity of
parallelism, GIPSY programs can be written as hybrid programs, allowing Java func-
tions to be called by the Lucid part of the program. Interestingly, these Java functions
can actually be the implementation of software agents. Then the Lucid part becomes a
declarative specification describing the relationships between agents, implicitly describ-
ing how these agents are collaborating in a distributed execution. The AIPL described
in this paper is then used as a formal ACL in order to achieve transparent contextual
communication between agents. The semantics of the calculus of contexts being in-
trinsic to each agent through the eduction engine embedded in each node, there is no
need to write agents that embed a parser and semantic analyzer and translator for the
ACL primitives that are exchanged between agents at run time. These implementation
issues are to be addressed as part of our ongoing work in GIPSY. Based on this system,
communication between different categories of agents such as interface agent, middle
agent, task agent, and security agent [2] can be used as case studies for AIPL. We
will also investigate the use of AIPL for mobile agents communication and multimedia
communication between agents.

References

1. Alagar, V.S., Paquet, J., Wan, K.: Contexts in Intensional Programming. Technical Report,
Department of Computer Science, Concordia University, Montreal, Canada, April 2004.

2. Alagar, V.S., Holliday, J., Thiyagarajan, P.V., Zhou, B.: Agent Types and Their Formal De-
scriptions. Technical Report, Department of Computer Engineering, Santa Clara University,
Santa Clara, CA, U.S.A., May 2002.

3. van Riemsdijk, M. B., Dastani, M., Dignum, F., Meyer, J.J.: Dynamics of Declarative Goals
in Agent Programming. In: Proceedings of the Workshop on Declarative Agent Languages
and Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this volume.

4. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-
guage. In: Proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM’94), ACM Press, November 1994.

5. FIPA Semantic Language Specification.: FIPA Specification repository, FIPA-specification
identifier XC00008G, September 2000 Foundation for Intelligent Physical Agents, Geneva,
Switzerland.

6. Fan, X., Yen, J, Miller, M., Volz, R.: The Semantics of MALLET - An Agent Teamwork
Encoding Language. In: Proceedings of the Workshop on Declarative Agent Languages and
Technologies (DALT’04), LNCS 3476, Springer-Verlag (2005). In this volume.

7. Guha, R.V.: Contexts: A Formalization and Some Applications. PhD thesis, Stanford Uni-
versity, February 10,1995.

Intensional Programming for Agent Communication 255

8. Labrou, Y., Finin, T., Peng, Y.: Agent Communication Languages: The Current Landscape.
IEEE Journal on Intelligent Agents, Amrch/April 1999, pp. 45-52.

9. Paquet, J., Kropf, P.: The GIPSY Architecture. DCW 2000: 144-153
10. Paquet, J.: Intensional Scientific Programming. Ph.D. Thesis, Departement d’Informatique,

Universite Laval, Quebec, Canada, 1999
11. Wan, K., Alagar, V.S., Paquet, J.: Real Time Reactive Programming Enriched with Context.

ICTAC2004, Guiyang, China, September 2004, Lecture Notes in Computer Science,3407,
Springer-Verlag.

12. Wadge, W.W., Ashcroft, E.A..: Lucid, the dataflow programming language. Academic
Press, 1985

13. Wooldridge, M.: Verifiable Semantics for Agent Communication Languages. In: Proceedings
of the Third International Conference on Multi-Agent Systems (ICMAS’98).

14. Wu, A.H., Paquet, J., Grogono, P.: Design of a compiler framework in the GIPSY system. In
Parallel and Distributed Computing and Systems - PDCS 2003, Marina Del Rey, California,
USA, 2003.

The Logic of Communication Graphs

Eric Pacuit1 and Rohit Parikh2

1 Computer Science Department,
The Graduate Center of CUNY,

365 5th Avenue, New York City, NY 10016
epacuit@cs.gc.cuny.edu

www.cs.gc.cuny.edu/∼epacuit�

2 CS, Math and Philosophy,
Brooklyn College�� and The Graduate Center of CUNY,

365 5th Avenue, New York City, NY 10016
rparikh@gc.cuny.edu

www.sci.brooklyn.cuny.edu/∼rparikh

Abstract. In 1992, Moss and Parikh studied a bimodal logic of knowl-
edge and effort called Topologic. In this current paper, Topologic is ex-
tended to the case of many agents who are assumed to have some private
information at the outset, but may refine their information by acquiring
information possessed by other agents, possibly via yet other agents.

Let us assume that the agents are connected by a communication
graph. In the communication graph, an edge from agent i to agent j
means that agent i can directly receive information from agent j. Agent
i can then refine its own information by learning information that j has,
including information acquired by j from another agent, k. We introduce
a multi-agent modal logic with knowledge modalities and a modality
representing communication among agents. We show that the validities of
Topologic remain valid and that the communication graph is completely
determined by the validities of the resulting logic. Applications of our
logic to current political dilemmas are obvious.

1 Introduction

In [13], Moss and Parikh introduce a bimodal logic intended to formalize reason-
ing about points and sets. This new logic called Topologic can also be understood
as an epistemic logic with an effort modality. Formally, the two modalities are: K
and �. The intended interpretation of Kφ is that φ is known; and the intended
interpretation of �φ is that after some amount of effort φ becomes true. For
example, the formula

φ → �Kφ

� Both authors would like to thank Hans van Ditmarsch and the Knowledge, Games
and Beliefs Group of CUNY for their comments.

�� 2900 Bedford Avenue, Brooklyn, NY 11210. Research of both authors supported
under the PSC-CUNY FRAP program.

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 256–269, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Logic of Communication Graphs 257

means that if φ is true, then after some “work”, Kφ becomes true, i.e., φ is
known. In other words, the formula says that if φ is true, then φ can be known
with some effort. What exactly is meant by “effort” depends on the application.
For example, we may think of effort as meaning taking a measurement, perform-
ing a calculation or observing a computation. In this paper we will think of effort
as meaning consulting some agent’s database of known formulas.

There is a temptation to think that the effort modality can be understood
as (only) a temporal operator, reading �φ as “φ is true some time in the
future”. While there is a connection between the logics of knowledge and time
and logics of knowledge and effort (see [8, 9] and references therein for more
on this topic), following [13] we will assume that such effort leaves the base
facts about the world unchanged. In particular, in any topologic model, if φ
does not contain any modalities, then φ ↔ �φ is valid. Thus, effort will not
change the base facts about the world – it can only change knowledge of these
facts.

The family of logics introduced in [13] and later studied by Dabrowski, Moss
and Parikh, Georgatos, Heinemann, and Weiss ([3, 4, 5, 6, 8, 21]) has a seman-
tics in which the acquisition of knowledge is explicitly represented. Familiar
mathematical structures such as subset spaces, topologies, intersection spaces
and complete lattices of subsets corresponding to natural notions of knowledge
acquisition are attached to standard Kripke structures.

Given a set W , a subset space is a pair 〈W,O〉, where O is a collection of
subsets of W . A point x ∈ W represents a complete description of the world in
which all ground facts are settled, whereas a set U ∈ O represents an observa-
tion. The pair (x,U), called a neighborhood situation, can be thought of as an
actual situation together with an observation made about the situation. Formu-
las are interpreted at neighborhood situations. Thus the knowledge modality K
represents movement within (consistent with) the current observation, while the
effort modality � represents a refining of the current observation.

Formally,

1. x,U |= Kφ iff (∀y ∈ U)(y, U |= φ)
2. x,U |= �φ iff (∃V ∈ O)((x ∈ V ⊆ U) and (x, V |= φ))

[13] provides a sound and complete axiomatization for all subset spaces. In
[4] and [5], Georgatos provides a sound and complete axiomatization for subset
spaces that are topological spaces and complete lattices. Dabrowski, Moss, and
Parikh prove the same result using an embedding into S4 ([3]). [6] provides a
sound and complete axiomatization for treelike spaces, and Weiss ([21]) has pro-
vided a sound and complete axiomatization for intersection-spaces. Interestingly,
it is shown in [21] that an infinite number of axiom schemes are necessary for
any complete axiomatization of intersection spaces. More recently, Heinemann
[8, 9] has looked at subset spaces and logics of knowledge and time, and the
connection between hybrid logic and subset spaces [10, 12].

In this paper, we present a multi-agent topologic in which the effort modal-
ity � is intended to mean communication among agents. In order for any com-
munication to take place, we must assume that the agents understand a com-

258 E. Pacuit and R. Parikh

mon language. Thus we assume a set At of propositional variables, understood
by all the agents, but with only specific agents knowing their actual values at
the start. Letters p, q, etc, will denote elements of At. The agents will have
some information – knowledge of the truth values of some elements of At, but
refine that information by acquiring information possessed by other agents, pos-
sibly via yet other agents. This implies that if agents are restricted in whom
they can communicate with, then this fact will restrict the knowledge they can
acquire.

Consider the current situation with Bush and Porter Goss, the director of
the CIA. If Bush wants some information from a particular CIA operative, say
Bob, he must get this information through Goss. Suppose that φ is a formula
representing the exact whereabouts of Bin Laden, and that Bob, the CIA oper-
ative in charge of maintaining this information knows φ. In particular, KBobφ,
but suppose that at the moment, Bush does not know the exact whereabouts
of Bin Laden (¬KBushφ). Presumably Bush can find out the exact whereabouts
of Bin Laden (�KBushφ) by going through Goss, but of course, we cannot find
out such information (¬�Keφ ∧ ¬�Krφ) since we do not have the appropriate
security clearance. Clearly, then, as a pre-requisite for Bush learning φ, Goss
will also have come to know φ. We can represent this situation by the following
formula:

¬KBushφ ∧ �(KBushφ → KGossφ)

where � is the dual of diamond.
Let A be a set of agents. A communication graph is a directed graph

GA = (A, E) where E ⊆ A×A. Intuitively (i, j) ∈ E means that i can directly
receive information from agent j, but without j knowing this fact. Thus an edge
between i and j in the communication graph represents a one-sided relationship
between i and j. Agent i has access to any piece of information that agent j
knows. We have introduced this ‘one sidedness’ restriction in order to simplify our
semantics, but also because such situations of one sided learning occur naturally.
A common situation that is helpful to keep in mind is accessing a website. We
can think of agent j as creating a website in which everything he currently knows
is available, and if there is an edge between i and j then agent i can access this
website without j being aware that the site is being accessed. Another important
application is spying where one person accesses another’s information without
the latter being aware that information is being leaked. Naturally j may have
been able to access some other agent k’s website and had updated some of her
own information. Therefore, it is important to stress that when i accesses j’s
website, he is accessing j’s current information which may include what k knew
initially.

The assumption that i can access all of j’s information is a significant ideal-
ization from these common situations, but becomes more realistic if we think of
this information as being confined to facts expressible as truth functional com-
binations of some small set of basic propositions. Thus our idealization rests on
two assumptions:

The Logic of Communication Graphs 259

1: All the agents share a common language, and
2: The agents make available all possible pieces of information which they know

and which are expressible in this common language.

2 The Logic of Communication Graphs

In this section we will describe the logic of communication graphs, K(G). The
language will be a multi-agent modal language with a communication modality.
The formula Kiφ will be interpreted as “according to i’s current information,
i knows φ”, and �φ will be interpreted as “after some communications (which
respect the communication graph), φ becomes true”. Thus for example, the
multi-agent version of the formula φ → �Kφ, expressing that if φ is true then
with some effort φ can be known, is

Kjφ → �Kiφ

This formula expresses that if agent j (currently) knows φ, then after some
communication agent i can come to know φ. Let At be a finite set of propositional
variables. A well-formed formula of K(G) has the following syntactic form

φ := p | ¬ψ | φ ∧ ψ | Kiφ | �φ

where p ∈ At. We abbreviate ¬Ki¬φ and ¬�¬φ by Liφ and �φ respectively,
and use the standard abbreviations for the propositional connectives (∨, →, and
⊥). Let LK(G) denote the set of well-formed formulas of K(G). We also define
L0(At), (or simply L0 if At is fixed or understood), to be the set of ground
formulas, i.e., the set of formulas constructed from At using ¬,∧ only.

2.1 Semantics

The semantics presented here combines ideas both from the subset models of [13]
and the history based models of Parikh and Ramanajum (see [16, 17]). Suppose
that G = (A, E) is a fixed communication graph. Given that the agents are
initially given some private information and assumed to communicate according
to the communication graph G, the semantics in this section is intended to
formalize what agents know and may come to know after some communication.

Initially, each agent i knows or is informed (say by nature) of the truth
values of a certain subset Ati of propositional variables, and the Ati as well as
this fact are common knowledge. Thus the other agents know that i knows the
truth values of elements of Ati, but, typically, not what these values actually are.
We do not need to assume that the Ati are disjoint, nor that the Ati together
add up to all of At, although such sub-cases will be of interest. Thus if Ati
and Atj intersect then agents i, j will share information at the very beginning.
Let W be the set of boolean valuations on At. An element v ∈ W is called
a state. We use 1 for the truth value true. Initially each agent i is given a
boolean valuation vi : Ati → {0, 1}. This initial distribution of information

260 E. Pacuit and R. Parikh

among the agents can be represented by a vector v = (v1, . . . , vn). Of course,
since we are modeling knowledge and not belief, these initial boolean valuations
must be compatible. I.e., for each i, j, vi and vj agree on Ati ∩ Atj . Call any
vector of partial boolean valuations v = (v1, . . . , vn) consistent if for each
p ∈ dom(vi)∩dom(vj), vi(p) = vj(p) for all i, j = 1, . . . , n. We shall assume that
only such consistent vectors arise as initial information. All this information is
common knowledge and only the precise values of the vi are private.

Definition 1. Let At be a finite set of propositional variables and A = {1, . . . , n}
a finite set of agents. Given the distribution of sublanguages At = (At1, . . . ,Atn),
an initial information vector for At is any consistent vector v = (v1, . . . , vn)
of partial boolean valuations such that for each i ∈ A, dom(vi) = Ati.

We assumed that all initial vectors are consistent, although if we were dealing
with beliefs rather than knowledge, then very interesting questions about in-
consistent initial vectors could arise.

We assume that the only communications that take place are about the phys-
ical world. But we do allow agents to learn objective facts which are not atomic,
but may be complex, like p∨ q where p, q ∈ At. Now note that if agent i learned
some literal from agent j, then there is a simple way to update i’s valuation
vi with this new information by just adding the truth value of another proposi-
tional symbol. However, if i learns a more general ground formula from agent j,
then the situation will be more complex. For instance if the agent knows p and
learns q ∨ r then the agent now has three valuations on the set {p, q, r} which
cannot be described in terms of a partial valuation on a subset of At.

Fix a communication graph G and suppose that agent i learns some ground
fact φ from agent j. Of course, there must be an edge from agent i to agent j
in G. This situation will be represented by the tuple (i, j, φ) and will be called a
communication event. Let ΣG be the set of all possible events. Formally,

Definition 2. Let G = (A, EG) be a communication graph. A tuple (i, j, φ),
where φ ∈ L0(At) and (i, j) ∈ EG is called a communication event. Then
ΣG = {(i, j, φ) | φ ∈ L0, (i, j) ∈ EG} is the set of all possible communication
events (given the communication graph G).

Given the set of events ΣG , a history is a finite sequence of events. I.e.,
H ∈ Σ∗

G . The empty history will be denoted ε. The following notions are standard
(see [16, 17] for more information). Given two histories H,H ′, say H H ′ iff
H ′ = HH ′′ for some history H ′′, i.e., H is an initial segment of H ′. Obviously,
 is a partial order. If H is a history, and (i, j, φ) is a communication event,
then H followed by (i, j, φ) will be written H; (i, j, φ). Given a history H, let
λi(H) be i’s local history corresponding to H. I.e., λi(H) is a sequence of events
that i can “see”. Formally, λi maps each event of the form (i, j, φ) to itself, and
maps other events (m, j, ψ) with m �= i to the null character while preserving
the order among events.

Fix a finite set of agents A = {1, . . . , n} and a finite set of propositional
variables At along with subsets (At1, ...,Atn). A communication graph frame

The Logic of Communication Graphs 261

is a pair 〈G,At〉 where G is a communication graph, and At = (At1, ...,Atn) is an
assignment of sub-languages to the agents. A communication graph model
based on a frame 〈G,At〉 is a triple 〈G,At,v〉, where v is a consistent vector of
partial boolean valuations for At.

Now we address two issues. One is that not all histories are legal. For an event
(i, j, φ) to take place after a history H, it must be the case that after H, j knows
φ. Clearly i cannot learn from j something which j did not know. Whether a
history is justified depends not only on the initial valuation, but also on the set
of communications that have taken place prior to each communication in the
history.

The second issue is that the information which an agent learns by “reading”
a formula φ may be more than just the fact that φ is true. For suppose that i
learns p∨ q from j, but j is not connected, directly or indirectly, to anyone who
might know the initial truth value of q. In this case i has learned more than
p∨ q, i has learned p as well. For the only way that j could have known p∨ q is
if j knew p in which case p must be true. Our definition of the semantics below
will address both these issues.

Formulas will be interpreted at pairs (w,H) where w is a state (boolean
valuation) and H is a finite sequence of communication events.

We first introduce the notion of i-equivalence among histories. Intuitively,
two histories are i-equivalent if those communications which i takes active part
in, are the same.

Definition 3. Let w be a state and H a finite history. Define the relation ∼i

as follows: (w,H) ∼i (v,H ′) iff w|Ati
= v|Ati

and λi(H) = λi(H ′).

Before proceeding further, we summarize the uncertainty faced by each of
the agents:

1. Agents may be uncertain about the actual state of the world.
2. Agents may be uncertain about which communications have taken place.

Example: The Valerie Plame Affair: In an earlier version of this paper we
stated that if a formula φ was stable, agent j knew it, and agent i was connected
either directly or indirectly to agent j, then agent i could also come to know φ.
Here a formula φ is said to be stable if for all legal (w,H), (w,H) |=M (φ → �φ).

However, we were mistaken and an abstract example as well as the Valerie
Plame/Judith Miller affair shows why. Suppose that agent i is connected directly
to agent j who is connected directly to agents k,m, both of whom are connected
to r who knows the value of p. Now m reads p, which is true, from r’s website,
and j reads p from m’s website and thus knows not only that p but also Km(p).
Now the formula Km(p) is stable, it will never again become false. But i cannot
know this although i can know p. For just by reading j’s web page, i cannot rule
out the possibility that j learned about p from k.

The way in which this applies to the Plame-Miller affair is that the fact that
Plame was a CIA covert operative was revealed by columnist Robert Novak in
July 2003, possibly endangering her life, and this information seems to have come

262 E. Pacuit and R. Parikh

from Miller who is under a federal sentence for refusing to reveal who leaked the
name of Valerie Plame to Novak. The point here is that while we know what
Miller and Novak knew about Plame, we do not know how they knew it.

To deal with the notion of legal or justified history we introduce a proposi-
tional symbol L which is satisfied only by legal pairs (w,H). (We may also write
L(w,H) to indicate that the pair (w,H) is legal.) Since L can only be defined
in terms of knowledge, and knowledge in turn requires quantification over legal
histories we shall need mutual recursion.
Given a communication graph and the corresponding model M = 〈G,At,v〉,
and pair (w,H), we define the legality of (w,H) and the truth |=M of a formula
as follows:

– w, ε |=M L
– w,H; (i, j, φ) |=M L iff w,H |=M L and w,H |=M Kjφ
– w,H |=M p iff w(p) = 1, where p ∈ At
– w,H |=M ¬φ iff w,H �|=M φ
– w,H |=M φ ∧ ψ iff w,H |=M φ and w,H |=M ψ
– w,H |=M �φ iff ∃H ′, H H ′, L(w,H ′), and w,H ′ |=M φ
– w,H |=M Kiφ iff ∀(v,H ′) if (w,H) ∼i (v,H ′), and L(v,H ′), then v,H ′ |=M

φ

Unless otherwise stated, we will only consider legal pairs (w,H), i.e., pairs (w,H)
such that w,H |= L. We say φ is valid in M, |=M φ if for all (w,H), w,H |=M
φ. φ is valid in the communication graph frame F if φ is valid in all models
based on F .

2.2 Surface Knowledge

Except for each agent’s initial information, one may suspect that all information
acquired by the agent i is just the sum of the φ which i learned from commu-
nications (i, j, φ). But we saw that this is not true. Given the assumption that
both At and the structure of the communication graph are common knowledge,
agents can come to know facts that are not explicitly contained in the commu-
nications.1 We might still be interested in this ‘surface’ knowledge which the
agents acquire.

Define the sets Xi(w,H) as follows:

1. Xi(w, ε) = {v | v|Ati
= w|Ati

}
2. Xi(w,H; (i, j, φ)) = Xi(w,H) ∩ φ̂
3. i �= m then Xi(w,H; (m, j, φ)) = Xi(w,H)

1 Here is an amusing story involving one of us, Parikh. Parikh had published a paper on
pumping lemmas and regular sets jointly with A. Ehrenfeucht and G. Rozenberg. At
some conference someone asked Parikh, where this paper would appear and Parikh
did not remember. At this point Rao Kosaraju of Johns Hopkins who was standing
by said, it was the SIAM Journal of Computing. Parikh then turned to Kosaraju and
said, “you were the referee!” The point was that Kosaraju’s information revealed
the existence of an edge between him and the editor of the SIAM journal.

The Logic of Communication Graphs 263

Intuitively, if Xi(w,H) ⊆ φ̂, then φ is implied (for i) by the sequence of
communications. We first show a preliminary lemma which is needed to show
that at (w,H), agents know at least the formulas implied by Xi(w,H).

Lemma 1. If (w,H) ∼i (v,H ′), then Xi(w,H) = Xi(v,H ′).

Proof. The proof is by induction on λi(H) = λi(H ′). If λi(H) was empty then
H itself might as well be ε, and then we use the fact that Xi(w, ε) = {u | u|Ati

=
w|Ati

} is the same as Xi(v, ε) = {u | u|Ati
= v|Ati

} since w|Ati
= v|Ati

. Otherwise we
use the fact that since λi(H) = λi(H ′), the initial set Xi(w, ε) = Xi(v, ε) went
through exactly the same intersections with various φ̂ when the ground facts φ
were learned by i. Indeed Xi(w,H) depends only on the set of φ which i learned
in H and not on their order. In particular, If (i, j, φ) already occurs in H, then
Xi(w,H; (i, j, φ)) = Xi(w,H). �

Lemma 2. Let M = 〈G,At,v〉 be any communication graph model and φ a
ground formula. If Xi(w,H) ⊆ φ̂, then (w,H) |=M Ki(φ).

Proof. Let M = 〈G,At,v〉 be a communication graph model. Suppose that φ

is a ground formula with Xi(w,H) ⊆ φ̂. Let (v,H ′) ∼i (w,H). We must show
that v,H ′ |=M φ. Since φ is a ground formula, this is equivalent to showing that
v(φ) = 1. Since (w,H) ∼i (v,H ′) by Lemma 1 Xi(v,H ′) = Xi(w,H) ⊆ φ̂. Thus
we need only the following claim.

Claim: If Xi(v,H ′) ⊆ φ̂, then v(φ) = 1.

Proof of claim: The proof is by induction on H ′. If H ′ = ε, then since
Xi(v,H ′) = {y | y|Ati

= v|Ati
} and, of course, v

Ati
= v|Ati

, we have v ∈ Xi(v,H ′) ⊆
φ̂. Hence v(φ) = 1. Suppose that m �= i and H ′ = H1; (m, j, ψ). Then by
construction Xi(v,H ′) = Xi(v,H1), and so, since Xi(v,H1) = Xi(v,H ′) ⊆ φ̂,
by the induction hypothesis we have v(φ) = 1.

Finally suppose that H ′ = H1(i, j, ψ). Then Xi(v,H ′) = Xi(v,H1)∩ ψ̂. Since
we only consider justified state-history pairs, Xj(v,H1) ⊆ ψ̂. Hence, by the
induction hypothesis v(ψ) = 1. Let θ be any formula such that Xi(v,H1) = θ̂
(such a formula must exist since At is finite and so every set of states can be
defined by a formula). By the induction hypothesis since Xi(v,H1) = θ̂, v(θ) = 1.
Hence θ̂ ∩ ψ̂ = Xi(v,H1; (i, j, ψ)) ⊆ φ̂. Since v(θ) = v(ψ) = 1, v(φ) = 1. This
completes the proof of the claim and of the lemma. �

But as we saw, the converse is not true. That is, there are ground formulas
that the agents may come to know that are not explicitly contained in their
communications. Essentially, these are facts that the agents can derive given
their knowledge of the structure of the communication graph and the initial
distribution of facts. The sets Xi(w,H) represent the knowledge which agents
i would acquire after communication if they did not know the structure of the
graph.

264 E. Pacuit and R. Parikh

2.3 Axioms and Decidability

The following axioms and rules are known to be sound and complete with respect
to the set of all subset spaces ([13]). Thus they represent the core set of axioms
and rules for any topologic.

1. All propositional tautologies
2. (p → �p) ∧ (¬p → �¬p), for p ∈ At.
3. �(φ → ψ) → (�φ → �ψ)
4. �φ → φ
5. �φ → ��φ
6. Ki(φ → ψ) → (Kiφ → Kiψ)
7. Kiφ → φ
8. Kiφ → KiKiφ
9. ¬Kiφ → Ki¬Kiφ

10. (Cross axiom) Ki�φ → �Kiφ

We include the following rules: modus ponens, Ki and � necessitation. We
write � φ if φ can be derived from any of the above schemes and rules. The
soundness of axioms 1-9 and the rules are easy to verify also for our framework.

We now show that the cross axiom Ki�φ → �Kiφ is sound. It is easier
to consider it in its contrapositive form: �Liφ → Li�φ. This is interpreted as
follows: if there is a sequence of updates that lead agent i to consider φ possible,
then i already thinks it possible that there is a sequence of updates after which
φ becomes true.

Proposition 1. �Liφ → Li�φ is valid in all communication graph models.

Proof. Let M = 〈G,At,v〉 be a communication graph model and (w,H) any
justified state-history pair. Suppose that w,H |= �Liφ. Then there exists H ′

with H H ′ such that w,H ′ |= Liφ. Hence there is a pair (v,H ′′) such that
(v,H ′) ∼i (w,H ′′) and v,H ′′ |=M φ. Let H ′′′ be any sequence such that λi(H) =
λi(H ′′′) and H ′′′ H ′′. Such a history must exist since H H ′ and H ′ ∼i H ′′.
Since H H ′, λi(H) λi(H ′) = λi(H ′′). Therefore, we need only let H ′′′ be any
initial segment of H ′′ containing λi(H). By definition of L, all initial sequences
of a legal history are legal. Therefore, since v,H ′′ |=M φ, v,H ′′′ |= �φ; and
since H ∼i H ′′′, w,H |=M Li�φ. �

We leave the problem of finding a complete axiomatization for a future paper,
and move to decidability. We show that the satisfiability problem is decidable by
showing that a satisfiable formula has a model of bounded size. The main idea
is to show that for any history H in which an event of the form (i, j, φ) occurs
twice is “equivalent” to another history in which that event only occurs once.
Here “equivalent” means satisfies the same formulas. We first need a definition.
Given any history H, let c(H) be the sequence of events of H generated by the
order: e comes before e′ iff the first occurrence of e in H occurred before the
first occurrence of e′ in H. Thus c(H) is the compressed history obtained from
H by deleting the second and subsequent occurrences of any event. Thus, for
instance, if H = e2e1e2e1e3 then c(H) = e2e1e3.

The Logic of Communication Graphs 265

Definition 4. Let w ∈ W be any state and suppose that H and H ′ are justified
histories (for w). We say that H and H ′ are C-equivalent, written C(H,H ′), iff
c(H) = c(H ′).

Intuitively, for two histories H and H ′, C(H,H ′) holds if their compressed
versions are the same.

Lemma 3. Fix a state w and suppose that H and H ′ are justified histories.
Then

1. If C(H,H ′) and L(w,HH1), then L(w,H ′H1) and C(HH1,H
′H1). In par-

ticular, taking H1 to be empty, L(w,H) iff L(w,H ′).
2. If C(H,H ′) and H ∼i H1 for some i, then there is a legal history H ′

1 such
that C(H1,H

′
1) and H ′ ∼i H ′

1.

Proof. Let w be a state and H and H ′ two justified histories such that C(H,H ′).
To prove part 1, Let H1 be any history such that HH1 is legal. Now the legality
of an event (i, j, φ) in H1 as part of HH1 depended on the fact that j knew φ.
Now every (j,m, ψ) which occurred in H also occurred in H ′ and if it occurred
in H1 as part of HH1 it would also occur in H1 as part of H ′H1. Thus the same
justifications for H1 events are available in both cases and H ′H1 must also be
legal. Clearly, c(HH1) = c(H ′H1). Therefore C(HH1,H

′H1).
For part 2, suppose that H ∼i H1 for some agent i and legal history H1.

Since H ∼i H1, λi(c(H)) = λi(c(H1)). Also, since c(H) = c(H ′), λi(c(H)) =
λi(c(H ′)). Therefore, λi(c(H ′)) = λi(c(H1)).

That is, the sequence of first occurrence of i events in H ′ is the same as the
sequence of first occurrence of i events in H1. Thus, by adding extra i events to
or removing excess i events from H1, a history H ′

1 can be constructed such that
H ′ ∼i H ′

1. Clearly by construction c(H1) = c(H ′
1). �

Corollary 1. 1. Let the relation D between state history pairs be defined by
D((w,H), (w,H ′)) iff C(H,H ′). Then L(w,H) iff L(w,H ′) and D is
a bisimulation.

2. with the same assumptions, for all formulas φ, w,H |= φ iff w,H ′ |= φ.
3. For all formulas φ, w,H |= φ iff w, c(H) |= φ.
4. If H contains (i, j, ψ) and L(w,H) holds, then also L(H; (i, j, ψ)), and for

all φ, (w,H) |= φ iff (w,H; (i, j, ψ)) |= φ

Corollary 2. If a formula φ is satisfiable in some graph model (G,At) then it
is satisfiable in a history in which no communication (i, j, φ) occurs twice.

This last result immediately gives us a decision procedure as we can limit the
length of the history which might satisfy some given formula φ. Now there are
only a finite number of ground formulas φ, thus only a finite number of learnings
(i, j, φ), and hence only a finite number of histories we need to look at. Alas, this
number is quite large and we hope to find a better decision procedure. Note that
if we limited the agents to read only atomic formulas, a very natural restriction,
then the number of possible communications would be smaller and the decision

266 E. Pacuit and R. Parikh

procedure would be faster, and indeed would be in non-deterministic exponential
time. The logic would change as the formulas Ki(p ∨ q) → Ki(p) ∨ Ki(q) would
be valid with such a restriction, but are not valid if non-atomic formulas can be
read from another agent’s website.

We now define a maximal history (relative to some w) as a history in which
all possible (finitely many) communication events have taken place at least once.
If H is a maximal history, then we will have, for all H ′, C(H,HH ′) and hence
for all H ′, all w, φ, w,H |= φ iff w,HH ′ |= φ. In other words, a maximal w,H
satisfies, for all φ, φ ↔ �φ.

Theorem 1. The axiom ��φ → ��φ is valid in Logic of Communication
Graphs.

Proof. Fix w compatible with some history H which satisfies ��φ. Let H ′ be
a maximal history extending H, then w,H ′ satisfies �φ and hence φ and hence
�φ. Since H ′ extends H, w,H satisfies ��φ. �

We strongly suspect that if H and H ′ are maximal histories (relative to w),
then w,H and w,H ′ satisfy the same formulas. In this case, ��φ → ��φ would
be valid. This and other issues related to a complete axiomatization will be left
for another paper.

3 Connection with Communication Graphs

In this section we will investigate the close connection between formulas valid in
a model based on the communication graph and the communication graph. We
will prove that the valid formulas characterize the communication graph.

Theorem 2. Let G = (A, E) be a communication graph. Then (i, j) ∈ E if and
only if, for all l ∈ A such that l �= i and l �= j and all ground formulas φ, the
scheme

Kjφ ∧ ¬Klφ → �(Kiφ ∧ ¬Klφ)

is valid in all communication graph models based on G.

Proof. Suppose that w,H |=M Kjφ ∧ ¬Klφ. Then j knows φ and hence i can
read φ directly from j’s website. l is none the wiser as λl(H) = λl(H; (i, j, φ)).
Therefore, w,H; (i, j, φ) |= Kiφ ∧ ¬Klφ. �

4 Conclusions and Further Work

In this paper we have introduced a logic of knowledge and communication. Com-
munication among agents is restricted by a communication graph, and idealized
in the sense that the agents are unaware when their knowledge base is being
accessed. We have shown that the communication graph is characterized by the
validities of formulas in models based on that communication graph, and that
our logic is decidable.

The Logic of Communication Graphs 267

Related Work: This paper fits in with a growing body of work on social
software ([14]). One of the main goals of the social software research program
is to develop mathematical tools that can be used to study social procedures.
Other work that falls into this category is [17] which studies the semantics of
messages, [2] which studies voting strategies in the presence of knowledge, and
[15] which studies a logic of knowledge with obligation.

Logics of knowledge acquisition through communication have been studied
earlier, starting with [18] and more recently in [1, 11, 19, 7]. In chapter 4 of [11],
Kooi provides an excellent overview of the current state of affairs of these dy-
namic epistemic logics. These logics use PDL style operators to represent an
epistemic update. For example, if !φ is intended to meain a public announce-
ment of φ, then 〈!φ〉Kiφ is intended to mean that after φ is publically announced,
agent i knows φ. From this point of view, the communication modality � can
be understood as existentially quantifying over a sequence of private epistemic
updates. However, there are some important differences between the semantics
presented in this paper and the semantics found in the dynamic epistemic logic
literature. First of all, in our semantics communication is limited by the com-
munication graph. Secondly, we do not consider general epistemic updates as is
common in the literature, but rather study a specific type of epistemic update
and its connection with a communication graph. Most important is the fact that
the history of communications plays a key role in the deninition of knowledge in
this paper. The general approach of dynamic epistemic semantics is to define up-
date operations mapping Kripke structures to other Kripke structures intended
to represent the effect of an epistemic update on the first Kripke structure. For
example, a public announcement of φ selects the submodel of a Kripke structure
in which φ is true at every state. The definition of knowledge after an epistemic
update is the usual definition, i.e., φ is known by i at state w if φ is true in all
states that i considers possible from state w in the updated Kripke structure. A
closer analysis of the similarities and differences between these two approaches
is an interesting topic for further study.

Further Work: We showed that the logic of communication graphs has the
finite model property and so is decidable. Other standard questions such as find-
ing an elegant complete axiomatization will also be studied. Another interesting
extension would be to allow different types of updates, such as lying, conscious
updates (where j is aware that his website is being read), updating to subgroups
(creating common knowledge) and so on.

Another natural extension is to consider situations in which agents have a
preference over which information they will read from another agent’s website.
Thus for example, if one hears that an English Ph.D. student and his advisor
recently had a meeting, then one is justified in assuming that they probably
did not discuss the existence of non-recursive sets, even though the advisor may
conceivably know this fact. I.e., the advisor may have the fact, that there exists
a non-recursive set, on her website, but there is a very good chance that the
Ph.D. student did not ask about this particular fact. Given that this preference
over the formulas under discussion among different groups of agents is common

268 E. Pacuit and R. Parikh

knowledge, each agent can regard some (legal) histories as being more or less
likely than other (legal) histories. From this ordering over histories, we can define
a defeasible knowledge operator for each agent. The operator is defeasible in the
sense that agents may be wrong, i.e., it is after all possible that the English
student and his advisor actually spent the meeting discussing the fact that there
must be a non-recursive set.

Finally we remark that our framework and the logic can be seen as a demon-
stration of the need for cryptographic protocols. Two issues are important here.
The first is that an agent may only want part of its knowledge base to be ac-
cessible by the public. This may be modeled in our framework by restricting
for each agent j the set of formulas that the agent makes available, and so
when i is directly connected to j, i can only update by facts in the accessi-
ble domain. The second issue is that we may not know the exact structure
of the communication graph. For example, if Ann accesses some information
from Bob’s website, but unknown to Ann, Charles is listening in, then the
communication graph has an edge between Charles and Bob, whose presence
is not known to Ann or to Bob. Then clearly as a condition for Ann learn-
ing some information from Bob, Charles must be able to be informed of that
same piece of information. Thus cryptographic protocols essentially intended
to ensure that there are no undesired edges between agents in the commu-
nication graph. Thus, in that version of our model where the entire graph
is not common knowledge, inferring the existence of edges from knowledge
(as the Kosaraju example showed) is yet another, potentially important
extension.

References

1. Baltag, A. and Moss, L., Logics for Epistemic Programs, Knowledge, Rationality,
and Action section of Synthese, 139:2, pgs. 165-224, 2004,

2. Samir Chopra, Eric Pacuit and Rohit Parikh, Knowledge-theoretic Properties of
Strategic Voting, Proceedings of 9th European Conference on Logics in Artifical
Intelligence, Jos Jlio Alferes and Joo Leite editors, Lecture Notes in Artificial
Intelligence, Springer, pgs. 18-30, 2004.

3. Dabrowski, A, Moss, L, and Parikh, R. Topolgical reasoning and the logic of knowl-
edge. Annals of Pure and Applied Logic, 78, (1996), pp. 73 - 110.

4. Georgatos, K, Modal Logics for Topological Spaces. PhD Dissertation. Graduate
School and University Center. City University of New York, 1993.

5. Georgatos, K, Knowledge Theoretic Properties of Topological Spaces. In Knowledge
Representation and Uncertainty. M. Masuch and L. Polos, Eds. Lecture Notes in
Artificial Intelligence, vol. 808, pages 147-159, Springer-Verlag, 1994.

6. Georgatos, K, Knowledge on Treelike Spaces. Studia Logica, 59, (1997), pp. 271 -
231.

7. Gerbrandy, J., Bisimulations on Planet Kripke, Ph.D. dissertation, University of
Amsterdam, 1999.

8. Heinemann, B., Temporal Aspects of the Modal Logic of Subset Spaces, Theoretical
Computer Science, 224(1-2):135-155, 1999.

The Logic of Communication Graphs 269

9. Heinemann, B., Extending Topological Nexttime Logic. In S. D. Goodwin, A.
Trudel, editors, Temporal Representation and Reasoning, TIME-00, Cape Breton,
Nova Scotia, Canada, pages 87-94, IEEE Computer Society Press, Los Alamitos,
CA, 2000.

10. Heinemann, B., A Hybrid Treatment of Evolutionary Sets. In C. A. Coello Coello,
A. de Albornoz, L. E. Sucar, O. Cair Battistutti, editors, MICAI’2002: Advances
in Artificial Intelligence, Mrida, Yucatn, Mexico. Volume 2313 of Lecture Notes in
Artificial Intelligence, pages 204-213, Springer, Berlin, 2002.

11. Kooi, B., Knowledge, Chance, and Change, Ph.D. dissertation, University of
Groningen, 2003.

12. Heinemann, B., A Hybrid Logic of Knowledge Supporting Topological Reasoning.
In Algebraic Methodology and Software Technology, AMAST 2004, Stirling, United
Kingdom. Lecture Notes in Computer Science, Springer, Berlin, 2004. To appear.

13. Moss, L. and Parikh, Topological Reasoning and the Logic of Knowledge, TARK
IV, Ed. Y. Moses, Morgan Kaufmann, 1992.

14. Parikh, R., Social Software, Synthese, 132: 3, Sep 2002, pp. 187-211.
15. Parikh, R., Pacuit, E. and Cogan, E., The logic of knowledge based obligation.

Early version presented at DALT ’04. Forthcoming in Knowledge Rationality and
Action: Special Issue on the Knowledge and Games Workshop, 2005.

16. Parikh, R., and R. Ramanujam “Distributed Processing and the Logic of Knowl-
edge”, in Logics of Programs, Proceedings of a Conference at Brooklyn College,
June 1985, Springer Lecture Notes in Computer Science #193., pp. 256-268.

17. Parikh, R. and Ramanujam, R., A knowledge based semantics of messages, in J.
Logic, Language, and Information, 12, pp. 453 - 467, 2003.

18. Plaza, J., Logics of public communications, Proceedings, 4th International Sympo-
sium on Methodologies for Intelligent Systems, 1989.

19. van Ditmarsch, H., Knowledge Games, Ph.D. dissertation, University of Groningen,
2000.

20. Vickers, S. Topology Via Logic, Cambridge University Press. 1989.
21. Weiss, M. A. and Parikh, R., “Completeness of Certain Bimodal Logics of Subset

Spaces”, Studia Logica, 71:1, pp. 1 - 30, 2002.

J. Leite et al. (Eds.): DALT 2004, LNAI 3476, pp. 270 – 288, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Representational Content and the Reciprocal
Interplay of Agent and Environment

Tibor Bosse1, Catholijn M. Jonker1, and Jan Treur1,2

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

2 Utrecht University, Department of Philosophy,
Heidelberglaan 8, 3584 CS Utrecht

{tbosse, jonker, treur}@cs.vu.nl
 http://www.cs.vu.nl/~{tbosse, jonker, treur}

Abstract. Declarative modelling approaches in principle assume a notion of
representation or representational content for the modelling concepts. The no-
tion of representational content as discussed in literature in cognitive science
and philosophy of mind shows complications as soon as agent and environment
have an intense reciprocal interaction. In such cases an internal agent state is af-
fected by the way in which internal and external aspects are interwoven during
(ongoing) interaction. In this paper it is shown that the classical correlational
approach to representational content is not applicable, but the temporal-
interactivist approach is. As this approach involves more complex temporal re-
lationships, formalisation was used to define specifications of the representa-
tional content more precisely. These specifications have been validated by
automatically checking them on traces generated by a simulation model. More-
over, by mathematical proof it was shown how these specifications are entailed
by the basic local properties.

1 Introduction

Declarative modelling approaches go hand in hand with some assumed notion of
representation or representational content for the modelling concepts. Within cogni-
tive and philosophical literature, classical approaches to representational content are
based on correlations between an agent’s internal state properties and external state
properties. For example, the presence of a horse in the field is correlated to an internal
state property that plays the role of a percept for this horse. One of the critical evalua-
tions of this approach addresses the limitation that it is static: internal state properties
are to be related to single external states, and cannot be related to processes involving
multiple states or events over time. Especially in cases where the agent-environment
interaction takes the form of an extensive reciprocal interplay in which both the agent
and the environment contribute to the process in a mutual dependency, a classical
approach to representational content is insufficient. Some authors even claim that it is
a bad idea to aim for a notion of representation in such cases; e.g., [7; 12]. Therefore
these cases can be considered a serious challenge to declarative methods.

 Representational Content and the Reciprocal Interplay of Agent and Environment 271

As an alternative, within Philosophy of Mind, the interactivist approach [1] is put
forward. In [5] it is shown how a temporal-interactivist approach to representational
content of an internal state property can be formalised based on sets of agent-
environment past and future interaction trajectories or traces.

In this paper it is analysed how some non-classical approaches may be used to de-
fine representational content in the case of an extensive agent-environment interplay.
In particular, for a case study it will be discussed how the temporal-interactivist ap-
proach and second-order approach to representational content can be used. These
alternative notions involve more complex temporal relationships between internal and
external states. Formalisation to define specifications of the representational content
more precisely was used as a means to handle this complexity. This formalisation
provided dynamic properties that can be (and actually have been) formally checked
for given traces of the agent-environment interaction.

In Section 2 the modelling approach is briefly introduced. Section 3 introduces the
case study and the language used to model this case study. In Section 4 a number of
local dynamic properties describing basic mechanisms for the case study are pre-
sented; simulations on the basis of these local dynamic properties are discussed in
Section 5. Section 6 presents global dynamic properties, describing the process as a
whole and larger parts of the process. In Section 7 the interlevel relations between
these nonlocal properties and the local properties are discussed. In Section 8 three
different approaches to representational content are explored and formalised for the
case study. In Section 9 it is shown how these formalisations can be validated against
the simulation model, both by mathematical proof and by automated checks. Section
10 is a discussion.

2 Modelling Approach

To formally specify dynamic properties that express criteria for representational con-
tent from a temporal perspective an expressive language is needed. To this end the
Temporal Trace Language is used as a tool; cf. [4]. In this paper for most of the oc-
curring properties both informal or semi-formal and formal representations are given.
The formal representations are based on the Temporal Trace Language (TTL), which
is briefly defined as follows.

A state ontology is a specification (in order-sorted logic) of a vocabulary, i.e., a
signature. A state for ontology Ont is an assignment of truth-values {true, false} to the
set At(Ont) of ground atoms expressed in terms of Ont. The set of all possible states for
state ontology Ont is denoted by STATES(Ont). The set of state properties
STATPROP(Ont) for state ontology Ont is the set of all propositions over ground atoms
from At(Ont). A fixed time frame T is assumed which is linearly ordered. A trace or
trajectory γ over a state ontology Ont and time frame T is a mapping γ : T →

STATES(Ont), i.e., a sequence of states γt (t ∈ T) in STATES(Ont). The set of all traces
over state ontology Ont is denoted by TRACES(Ont). Depending on the application, the
time frame T may be dense (e.g., the real numbers), or discrete (e.g., the set of inte-
gers or natural numbers or a finite initial segment of the natural numbers), or any

272 T. Bosse, C.M. Jonker, and J. Treur

other form, as long as it has a linear ordering. The set of dynamic properties
DYNPROP(∑) is the set of temporal statements that can be formulated with respect to
traces based on the state ontology Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of the organism (i.e., state
of sensors for external world and body) at time point t is denoted by state(γ, t, input);
analogously, state(γ, t, output), state (γ, t, internal) and state (γ, t, EW) denote the output
state, internal state and external state (of the world, including the physical body) for
the organism.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus (see [11] for an
introduction, and [10] for an example application): state(γ, t, output) |= p denotes that
state property p holds in trace γ at time t in the output state of the organism. Based on
these statements, dynamic properties can be formulated in a formal manner in a sorted
first-order predicate logic with sorts T for time points, Traces for traces and F for
state formulae, using quantifiers over time and the usual first-order logical connec-
tives such as ¬, ∧, ∨, ⇒, ∀, ∃.

To model direct temporal dependencies between two state properties, the simpler
leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form “conjunction of literals” (where a literal is an atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the leads to lan-
guage α →→e, f, g, h β, means:

 If state property α holds for a certain time interval with duration g,
 then after some delay (between e and f) state property β will hold for a certain time interval of length h .

For a precise definition of the leads to format in terms of the language TTL, see
[6]. A specification of dynamic properties in leads to format has as advantages that it
is executable and that it can often easily be depicted graphically. The leads to format
has shown its value especially when temporal or causal relations in the (continuous)
physical world are modelled and simulated in an abstract, non-discrete manner; for
example, the intracellular chemistry of E. coli [3].

3 The Case Study

In this Section the case study will be introduced and the internal state properties and
their dynamics to model this example are presented.

3.1 Introduction of the Case Study

The case study addressed involves the processes to unlock a front door that sticks.
Between the moment that the door is reached and the moment that the door unlocks
the following reciprocal interaction takes place:

! the agent puts rotating pressure on the key,
! the door lock generates resistance in the interplay,
! the agent notices the resistance and increases the rotating pressure,
! the door increases the resistance,

 Representational Content and the Reciprocal Interplay of Agent and Environment 273

! and so on, without any result.
! finally, after noticing the impasse the agent changes the strategy by at the

same time pulling the door and turning the key, which unlocks the door.

This example shows different elements. The first part of the process is described in
terms of Sun’s sub-conceptual level, whereas the last part of the process is viewed in
terms of the conceptual level [12; 13]. For both parts of the process the notion of
representational content will be discussed and formalised.

3.2 State Properties

To model the example the following internal state properties are used:
s1 sensory representation for being at the door
s2(r) sensory representation for resistance r of the lock
p1(p) preparation for the action to turn the key with rotating pressure p (without pulling the

door)
p2 preparation for combined pulling the door and turning the key
c state for having learnt that turning the key should be combined with pulling the door

The interactions between agent and environment are defined by the following sensor
and effector states:
o1 observing being at the door
o2(r) observing resistance r
a1(p) action turn the key with rotating pressure p (without pulling the door)
a2 action turn the key while pulling the door

In addition, the following state properties of the world are used:
arriving_at_door the agent arrives at the door
lock_reaction(r) the lock reacts with resistance r
door_unlocked the door is unlocked
d(mr) resistance threshold mr of the door (indicating that the door will continue to

resist until pressure mr or more is used)
max_p(mp) maximal force on the key that can be exercised by the agent.

4 Local Dynamic Properties

To model the dynamics of the example, the following local properties (in leads to
format) are considered. They describe the basic parts of the process.

LP1 (observation of door)
The first local property LP1 expresses that the world state property arriving_at_door
leads to an observation of being at the door. Formalisation:

arriving_at_door →→ o1

LP2 (observation of resistance)
Local property LP2 expresses that the world state property lock_reaction with resis-
tance r leads to an observation of this resistance r.

lock_reaction(r) →→ o2(r)

274 T. Bosse, C.M. Jonker, and J. Treur

Note that r is a variable here; the specification should be read as a schema for the set
of all instances for r.

LP3 (sensory representation of door)
Local property LP3 expresses that the observation of being at the door leads to a sen-
sory representation for being at the door.

o1 →→ s1

LP4 (sensory representation of resistance)
LP4 expresses that the observation of resistance r of the lock leads to a sensory repre-
sentation for this resistance.

o2(r) →→ s2(r)

LP5 (action preparation initiation)
LP5 expresses that a sensory representation for being at the door leads to a prepara-
tion for the action to turn the key with pressure 1.

s1 →→ p1(1)

LP6 (pressure adaptation)
LP6 expresses the following: if turning the key with a certain pressure p did not suc-
ceed (since the agent received a resistance that equals p), and the agent has not
reached its maximal force (p<mp), and the agent has not learnt anything yet (not c),
then it will increase its pressure.

p1(p) and s2(r) and p=r and p<mp and not c →→ p1(p+1)

LP7 (birth of learning state)
LP7 expresses that, if turning the key with a certain pressure p did not succeed (since
the agent received a resistance that equals p), and the agent has reached the limit of its
force (p≥mp), then it will learn that should perform a different action.

p1(p) and s2(r) and p=r and p≥mp →→ c

LP8 (learning state persistency)
LP8 expresses that the learning state property c persists forever.

c →→ c

LP9 (alternative action preparation)
LP9 expresses that a sensory representation for resistance r of the lock together with
the learning state property lead to a preparation for combined pulling of the door and
turning the key.

c and s2(r) →→ p2

LP10 (action performance)
LP10 expresses that a preparation for the action to turn the key with pressure p (with-
out pulling the door) leads to the actual performance of this action.

p1(p) →→ a1(p)

 Representational Content and the Reciprocal Interplay of Agent and Environment 275

-

lock_reaction(r)

door_unlocked arriving_at_door

p<mr

d(mr)

a2 o2(r)

a1(p)o1

-

p=r, p≥mp

s1

s2(r) p2

 c

p1(p)

LP11 (alternative action performance)
LP11 expresses that a preparation for combined pulling of the door and turning the
key leads to the actual performance of this action.

p2 →→ a2

LP12 (negative effect of action)
LP12 expresses the following property of the world: if the key is turned with a certain
pressure p that is smaller than the maximal resistance of the door (p<mr), and the agent
is not pulling the door simultaneously, then the lock will react with resistance p.

a1(p) and not a2 and d(mr) and p<mr →→ lock_reaction(p)

LP13 (positive effect of action)
LP13 expresses the following property of the world: if the key is turned with a certain
pressure p that at least equals the maximal resistance of the door (p≥mr), then the door
will unlock.

a1(p) and d(mr) and p≥mr →→ door_unlocked

LP14 (positive effect of alternative action)
LP14 expresses the following property of the world: if the agent turns the key, and
simultaneously pulls the door, then the door will unlock.

a2 →→ door_unlocked

Fig. 1. Overview of the simulation model

In Figure 1 an overview of these properties is given in a graphical form. To limit
complexity, local property LP6 is not depicted.

276 T. Bosse, C.M. Jonker, and J. Treur

5 Simulation

A special software environment has been created to enable the simulation of executa-
ble models. Based on an input consisting of dynamic properties in leads to format, the
software environment generates simulation traces. An example of such a trace can be
seen in Figure 2. Time is on the horizontal axis, the state properties are on the vertical
axis. A dark box on top of the line indicates that the property is true during that time
period, and a lighter box below the line indicates that the property is false. This trace
is based on all local properties identified above. In property LP6, the values (0,0,1,5)
have been chosen for the timing parameters e, f, g, and h. In all other properties, the
values (0,0,1,1) have been chosen. As can be seen in Figure 2, the presence of the
agent at the door leads to a corresponding observation result (o1), followed by a sen-
sory representation for being at the door. Next, the agent prepares for turning the key
(initially with pressure 1), and subsequently performs this action. Since this pressure
is insufficient to unlock the door (within this example, the resistant threshold of the
door is 5), the door does not open, but a lock reaction (with resistance 1) occurs in-
stead. As a consequence, the agent observes this resistance, and creates a sensory
representation of it. At this point, the agent prepares to increase the pressure (see local
property LP6), resulting in the action of turning the key with pressure 2. This loop is
being activated once more: the agent even tries to turn the key with pressure 3, but
then reaches the limit of its force (3 in this example, see LP7) and learns that it should
perform a different action. In other words, internal state property c becomes true.

Fig. 2. Example simulation trace

Subsequently, the combination of this state property c and state property s2(3) leads

to the preparation for an alternative action: combined pulling of the door and turning
the key. As a result of this preparation, the action is actually performed and the door
is unlocked. After that, to show that the agent has indeed learned something, the trace
continues for a while. At time point 40, the agent again finds itself confronted with a

 Representational Content and the Reciprocal Interplay of Agent and Environment 277

locked door. Again, it starts by trying to turn the key with pressure 1. However, when
this approach turns out not to work, this time the agent shows adapted behaviour. It
does not try to increase the pressure, but immediately switches to the alternative ac-
tion instead.

6 Non-local Dynamic Properties

This section presents dynamic properties for larger parts of the process, i.e., at a
nonlocal level. Within these properties, γ is a variable that stands for an arbitrary
trace.

GP1 (door eventually unlocked)
Global property GP1 expresses that eventually the door will be unlocked.
∀t: state(γ, t, EW) |== arriving_at_door ⇒
 ∃t'≥t: state(γ, t', EW) |== door_unlocked

GP2 (learning occurs)
Global property GP2 expresses that if the maximal resistance of the door is bigger
than the maximal rotation force that the agent can exert, then at some point in time
learning will occur.
∀t: state(γ, t, EW) |== d(mr) ∧
 ∀t: state(γ, t, internal) |== max_p(mp) ∧ mr > mp ⇒
 ∃t’ state(γ, t’, internal) |== c

GP3 (mr > mp ⇒ door eventually unlocked)
Global property GP3 expresses that if the maximal resistance of the door is bigger
than the maximal rotation force that the agent can exert, then at some point in time the
door will be unlocked.
∀t: state(γ, t, EW) |== d(mr) ∧
 ∀t: state(γ, t, internal) |== max_p(mp) ∧ mr > mp ⇒
 ∃t’ state(γ, t’, EW) |== door_unlocked

GP4 (mr ≤ mp ⇒ door eventually unlocked)
Global property GP4 expresses that if the maximal resistance of the door is less than
or equal to the maximal rotation force that the agent can exert, then at some point in
time the door will be unlocked.
∀t: state(γ, t, EW) |== d(mr) ∧
 ∀t: state(γ, t, internal) |== max_p(mp) ∧ mr ≤ mp ⇒
 ∃t’ state(γ, t’, EW) |== door_unlocked

GP3 and GP4 are formulated separately because their proofs differ. Next a number of intermedi-
ate properties are formulated that form a kind of milestones in the process of opening a door and
learning.

M1 (at door ⇒ preparation to turn key)
Intermediate property M1 expresses that after the agent stands at the door the agent
will prepare for turning the key.

278 T. Bosse, C.M. Jonker, and J. Treur

∀t: state(γ, t, EW) |== arriving_at_door ⇒
 ∃t’ > t: state(γ, t’, internal) |== p1(1)

M2 (lock reaction represented)
Intermediate property M2 expresses that a lock reaction will be represented internally.
∀t: state(γ, t, EW) |== lock_reaction(r) ⇒
 ∃t’ > t: state(γ, t’, internal) |== s2(r)

M3 (alternative action)
M3 expresses that if lock resistance is internally represented and the agent has
learned, then at some later point in time the agent will perform the action a2.
∀t: state(γ, t, internal) |== c ∧ state(γ, t, internal) |== s2(r) ⇒
 ∃t’ > t: state(γ, t, ouput) |== a2

M4 (increasing rotation pressure)
M4 expresses that under the condition that agent has not learned c yet, the rotation
pressure that the agent exerts on the key will always reach the minimum of the maxi-
mal resistance of the door and the maximal force that the agent can exert.
∀t, ∀mp, ∀mr, ∀sl

 not state(γ, t, internal) |== c ∧ state(γ, t, EW) |== d(mr) ∧
 state(γ, t, internal) |== max_p(mp) ∧ sl = minimum(mr, mp) ∧

 state(γ, t, EW) |== arriving_at_door ⇒
 ∃t’ > t: state(γ, t’, internal) |== p1(sl) ∧ ∃t” > t’: state(γ, t”, output) |== a1(sl)

Finally, a number of additional properties are needed in order to prove the relations
between the properties.

A1 (maximal force)
Additional property A1 expresses that the maximal rotation force that the agent can
exert on the key is constant.
∃mp ∀t: state(γ, t, internal) |== max_p(mp)

A2 (maximal resistance)
Additional property A2 expresses that the maximal resistance that the door can offer
is constant.
∃mr ∀t: state(γ, t, EW) |== d(mr)

A3 (Closed World Assumption)
The second order property that is commonly known as the Closed World Assumption
expresses that at any point in time a state property that is not implied by a specifica-
tion to be true is false. Let Th be the set of all local properties LP1-LP14.
∀P∈At(ONT) ∀t: not Th |-- state(γ, t) |== P ⇒ state(γ, t) |== not P

7 Interlevel Relations

This section outlines the interlevel connections between dynamic properties at differ-
ent levels, varying from dynamic properties at the local level of basic parts of the
process to dynamic properties at the global level of the overall process. The following

 Representational Content and the Reciprocal Interplay of Agent and Environment 279

interlevel relations between local dynamic properties and non-local dynamic proper-
ties can be identified.

GP3 & GP4 ⇒ GP1
M2 & M4 & LP7 & LP12 ⇒ GP2
M2 & M3 & M4 & LP7 & LP14 ⇒ GP3
M4 & LP13 ⇒ GP4
LP1 & LP3 & LP5 ⇒ M1
LP2 & LP4 ⇒ M2
LP8 & LP9 & LP11 ⇒ M3
M1 & M2 & LP6 & LP10 & LP12 & A1 & A2 & A3 ⇒ M4

The proofs of M1, M2, M3, and GP1 are rather straightforward and left out. A proof
sketch of the other properties is provided.
Property M4 can be proved by induction. The induction step is

∀t: state(γ, t, output) |== a1(p) ∧ p < sl ⇒
 ∃t1> t, ∃t2 > t1 :
 state(γ, t1, internal) |== p1(p+1) ∧ state(γ, t2, output) |== a1(p+1)

The induction base is given by properties M1 and LP10, providing p1(1), and a1(1).
The induction step is proved along the following lines.

• “not a2” holds at all times during which “not c” holds.

This is proved on the basis of “not c” and A3. A3 states that if a2 cannot be derived
from the specification at a certain point in time, then “not a2” holds at that time. So
pick any point in time at which “not c” holds and try to prove a2 from all local proper-
ties and the additional assumptions A1, A2, and A3. If a2 can be proven, it is due to
LP11. The condition of LP11 is p2. The only way to prove p2 is through LP9. The
conditions of LP9 are c and s2(r). The condition c is in direct contradiction with “not
c”. In the above the temporal elements of the proof were not mentioned. To complete
this proof these elements do play a role, for example, c cannot change its truth more
than once. It starts out false and remains false until (by application of LP7) it becomes
true. Once c is true, it remains true by application of LP8. Therefore, as long as “not
c” holds, “not a2” also holds (and even a bit longer).

• a1(p) holds
In proving the induction step, the condition is assumed. Thus a1(p) holds.

• d(mr) holds
Direct from A2.

• p < mr
This is true, since p < sl and sl is the minimum of mp and mr.

• lock_reaction(p) holds.
All conditions of LP12 hold (i.e., a1(p), not a2, d(mr), p < mr), thus LP12 can be ap-
plied, which makes sure that lock_reaction(p) holds some time later.

• s2(p) holds
Based on lock_reaction(p), M2 can be applied, thus some time later s2(p) will hold.

• p1(p+1) holds at some time point t1 later than the chosen time t.

280 T. Bosse, C.M. Jonker, and J. Treur

By application of LP6 some time later (call this time point t1) p1(p+1) will hold . Note
that the conditions of LP6 are met: p < mp holds, since p < sl, and sl the minimum of mp

and mr.
• a1(p+1) holds at some time t2 later than t1.

This is proved by applying LP10 with p+1. This proves that the induction step holds.
Now assuming that the antecedent of M4 holds, implies that subsequently (over

time) LP1, LP3, LP5 and LP10 can be applied. In that manner, from arriving at the
door, an observation of that fact is derived, leading to an internal representation
thereof (s1), leading to an internal state in which p1(1) holds, leading to an output state
in which a1(1) holds. Therefore, all circumstances hold for the induction step to be
applicable. Application of the induction step leads to the conclusion that at some point
in time p1(sl) holds in the internal state and some time later again a1(sl) holds in the
output state. Thus proving the conclusion of M4 under the assumption that the ante-
cedent of M4 holds. This concludes the proof by induction of M4.

Property GP2 can be proved as follows. Since mr > mp, sl = mp. Applying M4 gives
us ∃t’: state(γ, t’, output) |== a1(mp). By application of LP12, we get some time later
lock_reaction(mp), application of M2 gives us, some time later again, s2(mp). Finally,
application of LP7 provides us with the learned c.

The proof of Property GP3 follows the following subsequent time points of inter-
est: application of M4 gives a time point t1 such that p1(mp) holds, application of M2
give a time t2 such that s2(mp) holds, application of LP7 gives a time t3 such that c
holds, application of M3 gives a time t4 such that a2 holds, application of LP14 gives
a time t5 such that door_unlocked holds.

The proof of property GP4 is rather short, by application of M4 at a certain time t1
a1(mr) will hold, by application of LP13 a later time t2 exist at which door_unlocked
holds. All proofs can be worked out in more details by using the timing parameters of
the local properties involved.

8 Representational Content

In the literature on Philosophy of Mind different types of approaches to representa-
tional content of an internal state property have been put forward, for example the
correlational, interactivist, relational specification and second-order representation
approach; cf. [8], pp. 191-193, 200-202, [1]. These approaches have in common that
the occurrence of the internal state property at a specific point in time is related to the
occurrence of other state properties, at the same or at different time points. The “other
state properties” can be of three types:

A. external world state properties, independent of the agent
B. the agent’s sensor state and effector state properties, i.e., the agent’s interac-

tion state properties (interactivist approach)
C. internal state properties of the agent (higher-order representation)

Furthermore, the type of relationships can be (1) purely functional one-to-one corre-
spondences, (e.g., the correlational approach), or (2) they can involve more complex
relationships with a number of states at different points in time in the past or future,

 Representational Content and the Reciprocal Interplay of Agent and Environment 281

(e.g., the interactivist approach). So, six types of approaches to representational con-
tent are distinguished, that can be indicated by codings such as A1, A2, and so on.
Below, examples are given.

8.1 Correlational Approach

According to the Correlational approach, the representational content of a certain
internal state is given by a one-to-one correlation to another (in principle external)
state property: type A1. Such an external state property may exist backward as well as
forward in time. Hence, for the current example, the representational content for in-
ternal state property s1 can be defined as world state property arriving_at_door, by look-
ing backward in time. Intuitively, this is a correct definition, since for all possible
situations where the agent has s1, it was indeed physically present at the door, and
conversely. Likewise, the representational content for internal state property p2 can be
defined as action property a2, by looking forward in time, or, rather, as world state
property door_unlocked. However, for many other internal state properties the represen-
tational content cannot be defined adequately according to the correlational approach.
In these cases, reference should not be made to one single state in the past or in the
future, but to a temporal sequence of inputs or output state properties, which is not
considered to adequately fit in the correlational approach. An overview for the content
of all internal state properties according to the correlational approach (if any), is given
in Table 1. These relationships can easily be specified in the language TTL.

Table 1. Correlational approach

Internal state property Content (backward) Content (forward)
s1 arriving_at_door lock_reaction(1)
s2(r) lock_reaction(r) impossible
p1(1) arriving_at_door lock_reaction(1)
p1(2) impossible lock_reaction(2)
p2 impossible door_unlocked
c impossible impossible

8.2 Temporal-Interactivist Approach

The temporal-interactivist approach [1; 5] relates the occurrence of internal state
properties to sets of past and future interaction traces: type B. This can be done in the
form of functional one-to-one correspondences (type B1), or by involving more com-
plex relationships over time (type B2). In this paper the focus is on the more advanced
case, i.e., the B2 type. As an example, consider the internal state property c. The rep-
resentational content of c is defined in a semantic manner by the pair of sets of past
interaction traces and future interaction traces (here InteractionOnt denotes the input
and output state ontology and IntOnt the internal state ontology; γ≤t

InteractionOnt denotes the
trace γ up to t, with states restricted to the interaction states):

PITRACES(c) = { γ≤t
InteractionOnt | t ∈ T, state(γ , t, IntOnt) |= c}

FITRACES(c) = { γ≥t
InteractionOnt | t ∈ T, state(γ, t, IntOnt) |= c }

282 T. Bosse, C.M. Jonker, and J. Treur

Here the first set, PITRACES(c), contains all past interaction traces for which sequence
of time points exists such that at these time points first o1 occurs, next a1(1), next
o2(1), next a1(2), next o2(2), next a1(3), and next o2(3). For this example, a learning
phase of 3 trials has been chosen. The second set, FITRACES(c), contains all future
interaction traces for which no o2(r) occurs, or o2(r) occurs and after this a2 occurs.

An overview for the representational content of all internal state properties accord-
ing to the temporal-interactivist approach is given, in an informal notation, in Table 2.

Table 2. Temporal-interactivist approach (semantic description)

I.s.p. Content (backward) Content (forward)
s1 o1 a1(1)
s2(r) o2(r) if c (defined by o1, …,

o2(3)), then a2
p1(1) o1 a1(1)
p1(2) o1, a1(1), o2(1) a1(2)
p1(3) o1, a1(1), o2(1), a1(2), o2(2) a1(3)
p2 o1, a1(1), o2(1), a1(2), o2(2), a1(3), o2(3) a2
c o1, a1(1), o2(1), a1(2), o2(2), a1(3), o2(3) if o2(r), then a2

Table 3. Temporal-interactivist approach (syntactic description, backward)

I.s.p. Content (backward)
s1 is_followed_by(γ, o1, input, s1, internal)

& is_preceded_by(γ, s1, internal, o1, input)
s2(r) is_followed_by(γ, o2(r), input, s2(r), internal)

& is_preceded by(γ, s2(r), internal, o2(r), input)
p1(1) is_followed_by(γ, o1, input, p1(1), internal)

& is_preceded by(γ, p1(1), internal, o1, input)
p1(2) ∀t1,t2,t3 [t1≤t2≤t3 & state(γ, t1, input) |== o1 &

 interplay_up_to(γ, t2, t3,1) & not [∃t11,t12,t17 [t11≤t12≤t17≤t3 &
 state(γ, t11, input) |== o1 & interplay_up_to(γ, t12, t17,3)]]
 ⇒ ∃t4 ≥ t3 state(γ, t4, internal) |== p1(2)]
& ∀t4 [state(γ, t4, internal) |== p1(2) ⇒ ∃t1,t2,t3 t1≤t2≤t3≤t4 &
 state(γ, t1, input) |== o1 & interplay_up_to(γ, t2, t3,1)]

p1(3) ∀t1,t2,t5 [t1≤t2≤t5 & state(γ, t1, input) |== o1 &
 interplay_up_to(γ, t2, t5, 2) ⇒ ∃t6 ≥ t5 state(γ, t6, internal) |== p1(3)]
& ∀t6 [state(γ, t6, internal) |== p1(3) ⇒ ∃t1,t2,t5 t1≤t2≤t5≤t6
 & state(γ, t1, input) |== o1 & interplay_up_to(γ, t2, t5,2)]

p2 ∀t1,t2,t7 [t1≤t2≤t7 & state(γ, t1, input) |== o1 &
 interplay_up_to(γ, t2, t7,3) ⇒ ∃t8 ≥ t7 state(γ, t8, internal) |== p2]
& ∀t8 [state(γ, t8, internal) |== p2 ⇒ ∃t1,t2,t7 t1≤t2≤t7≤t8 &
 state(γ, t1, input) |== o1 & interplay_up_to(γ, t2, t7,3)]

C ∀t1,t2,t7 [t1≤t2≤t7 & state(γ, t1, input) |== o1 &
 interplay_up_to(γ, t2, t7,3) ⇒ ∃t8 ≥ t7 state(γ, t8, internal) |== c]
& ∀t8 [state(γ, t8, internal) |== c ⇒ ∃t1,t2,t7 t1≤t2≤t7≤t8 &
 state(γ, t1, input) |== o1 & interplay_up_to(γ, t2, t7,3)]

 Representational Content and the Reciprocal Interplay of Agent and Environment 283

Note that these relationships are defined at a semantic level, and are thus of type B2a.
Different interaction state properties, separated by commas, should be read as the
temporal sequence of these states. Again, a learning phase of 3 trials has been chosen.
In order to obtain a description at a syntactic level, the relationships given in Table 2
are characterised by formulae in a specific language, TTL in our case. Thus, the rep-
resentational content of a certain internal state is then defined by specifying a formal
temporal relation of the internal state property to sensor and action states in the past
and future. A number of such formal temporal relations are given in Table 3. Because
of space limitations, only the backward content is shown.

Within Table 3, the following abstractions are used:

is_followed_by(γ, X, I1, Y, I2) ≡

 ∀t1: state(γ, t1, I1) |== X ⇒ ∃t2 ≥ t1: state(γ, t2, I2) |== Y

This expresses that X is always followed by Y.

is_preceded by(γ, Y, I1, X, I2) ≡
 ∀t1: state(γ, t2, I1) |== Y ⇒ ∃t1 ≤ t2: state(γ, t1, I2) |== X

This expresses that Y is always preceded by X. These abstractions can be used like
is_preceded_by(γ, s1, internal, o1, input), is_followed_by(γ, o2(1), input, s2(1), internal), et cet-
era. The next abstraction describes that the interplay between agent and environment
in which the agent increases pressure and the environment increases resistance is
performed up to a certain level of pressure.

interplay_up_to(γ, t1, t2, 1) ≡ t1≤ t2 &

 state(γ, t1, output) |== a1(1) & state(γ, t2, input) |== o2(1)

interplay_up_to(γ, t1, t4, 2) ≡ ∃t2, t3 [t1 ≤ t2 ≤ t3 ≤ t4]

 interplay_up_to(γ, t1, t2, 1) &

 state(γ, t3, output) |== a1(2) & state(γ, t4, input) |== o2(2)

interplay_up_to(γ, t1, t6, 3) ≡ ∃t4, t5 [t1 ≤ t4 ≤ t5 ≤ t6]

 interplay_up_to(γ, t1, t4, 2) &

 state(γ, t5, output) |== a1(3) & state(γ, t6, input) |== o2(3)

8.3 Second-Order Representation

In approaches to representational content of type C, internal state properties are re-
lated to other internal state properties. For example, in Sun’s dual approach to cogni-
tion [12; 13], conceptual level state properties are related to subconceptual level state
properties:

On this view, high-level conceptual, symbolic representation is rooted, or grounded, in low-level
behavior (comportment) from which it obtains its meanings and for which it provides support
and explanations. The rootedness/groundedness is guaranteed by the way high-level representa-
tion is produced: It is, in the main, extracted out of low-level behavioral structures. (Sun, 2000).

284 T. Bosse, C.M. Jonker, and J. Treur

Two possibilities arise: either the other internal state properties are not considered
to be representational (this seems to be Sun’s position), or they are themselves
considered representations of something else. In the latter case, which is explored
here, the conceptual level state properties become second-order representations:
representations of representations. In the main example of this paper, the internal
state property c can be considered to be at the conceptual level, whereas the other,
s and p properties are considered subconceptual. Then, in the spirit of [12], the
representational content of c can be defined in terms of the other internal state
properties as shown below. However, keep in mind that this approach only makes
sense if the low-level internal state properties are considered to be representa-
tional already.

Backward: c will occur if in the past once s1 occurred, then p1(1), then s2(1), then
p1(2), then s2(2), then p1(3), then s2(3), and conversely. Formally:

∀t1,t2,t3,t4,t5,t6,t7 [t1≤t2≤t3≤t4≤t5≤t6≤t7

 & state(γ, t1, internal) |== s1

 & state(γ, t2, internal) |== p1(1) & state(γ, t3, internal) |== s2(1)

 & state(γ, t4, internal) |== p1(2) & state(γ, t5, internal) |== s2(2)

 & state(γ, t6, internal) |== p1(3) & state(γ, t7, internal) |== s2(3)

 ⇒ ∃t8 ≥ t7 state(γ, t8, internal) |== c] &

∀t8 [state(γ, t8, internal) |== c ⇒
 ∃t1,t2,t3,t4,t5,t6,t7 t1≤t2≤t3≤t4≤t5≤t6≤t7≤t8

 & state(γ, t1, internal) |== s1

 & state(γ, t2, internal) |== p1(1) & state(γ, t3, internal) |== s2(1)

 & state(γ, t4, internal) |== p1(2) & state(γ, t5, internal) |== s2(2)

 & state(γ, t6, internal) |== p1(3) & state(γ, t7, internal) |== s2(3)]

Forward: if c occurs, then in the future, if s2(r) occurs, then p2 will occur. Formally:

∀t1 [state(γ, t1, internal) |== c ⇒

 ∀t2 ≥ t1 [state(γ, t2, internal) |== s2(r) ⇒

 ∃t3 ≥ t2 state(γ, t3, internal) |== p2]]

9 Validation

A large variety of techniques exist for (automated) verification of relevant properties
of complex systems, for examples see [9; 14; 16] and the references in these papers.
In the current research, the specifications of representational content have been vali-
dated in two ways: (1) by relating them to the local dynamic properties by mathemati-
cal proof, and (2) by automatically checking them for the simulated traces.

An example of the former is as follows. Consider the formula that presents the
backward representational content for internal state property c in Table 3. Consider
first the direction from observations to c. Given o1, o2(1), o2(2), and o2(3) at the differ-
ent subsequent time points the proof obligation is c. Given o1, by applying (in this
order) LP3, LP5 we obtain p1(1) which we need to derive from the given o2(1) using
LP4, s2(1) and by application of LP6 on p1(1) and s2(1) we obtain p1(2). Given o2(2),

 Representational Content and the Reciprocal Interplay of Agent and Environment 285

by application of LP4 we obtain s2(2) and on the basis of p1(2) LP6 is again applicable
resolving into p1(3). Given o2(3), apply LP4 to obtain s2(3), and using p1(3) LP7 is
applicable and c is obtained. These dependencies are graphically represented in Figure
3. The reverse direction again depends on property A3 and all local properties.

In addition to the software described in Section 5, other software has been devel-
oped that takes traces and formally specified properties as input and checks whether a
property holds for a trace. Using automatic checks of this kind, many of the properties
presented in this paper have been checked against a number of generated traces as
depicted in Figure 2. In particular, the global properties GP1, GP2, GP3, and GP4,
and the intermediate properties M1, M2, M3, and M4 have been checked, and all
turned out to hold for the given traces. Furthermore, all properties for representational
content denoted in Table 3 have been checked. The duration of these checks varied
from one second to a couple of minutes, depending on the complexity of the formula
(in particular, the amount of time points). Success of these checks would validate our
choice for the representational content (according to the temporal-interactivist ap-
proach) of the internal state properties s1, s2(r), p1(1), p1(2), p1(3), p2, and c. However,
note that these checks are only an empirical validation, they are no exhaustive proof
as, e.g., model checking is. Currently, the possibilities are explored to combine TTL
with existing model checking techniques.

Fig. 3. Proof Tree

Although they are not exhaustive, even the empirical checks mentioned above have

already proved their value. Initially, one of these checks did not succeed. It turned out
that the backward representational content defined for p1(2) was not correctly chosen.
At that time, it was defined as follows:

∀t1,t2,t3 [t1≤t2≤t3 & state(γ, t1, input) |== o1 &

 interplay_up_to(γ, t2, t3, 1)

 ⇒ ∃t4 ≥ t3 state(γ, t4, internal) |== p1(2)]

& ∀t4 [state(γ, t4, internal) |== p1(2) ⇒ ∃t1,t2,t3 t1≤t2≤t3≤t4 &

 state(γ, t1, input) |== o1 & interplay_up_to(γ, t2, t3, 1)]

According to the above notation, the sequential occurrence of the state properties o1,
a1(1), and o2(1) always implies that state property p1(2) will occur. However, a close
examination of Figure 2 reveals that this is not always the case. Whenever the agent
has learned, it will not increase its pressure on the key anymore. As a result, the extra

o1
LP3, LP5

p1(1)

o2(1)
LP4

s2(1) o2(2)
LP4

s2(2)

LP6

p1(2)
LP6

p1(3)

o2(3)
LP4

s2(3)
LP7

c

286 T. Bosse, C.M. Jonker, and J. Treur

condition not c had to be added to the representational content. All the other checks
concerning the properties of Table 3 did succeed immediately.

10 Discussion

The classical correlational approach to representational content requires a one-to-one
correspondence between an internal state property of an agent and one external world
state property. For embodied agents that have an extensive reciprocal interaction with
their environment, this classical correlational approach does not suffice. In particular,
an internal state in such an agent does not depend on just one state property of the
external world, but is affected both by external aspects of the world and by internal
aspects of the agent itself and the way in which these aspects are interwoven during
the (ongoing) interaction process.

Given this problem, it is under debate among several authors whether adequate al-
ternative notions of representational content exist for such an embodied agent’s inter-
nal states. Some authors claim that for at least part of the internal states it makes no
sense to consider them as conceptual or as having representational content; e.g., [2; 7;
11]. Other authors claim that some notions of representational content can be defined,
but these strongly deviate from the classical correlational approach; e.g., [1; 5; 8].

Given the above considerations, the case of an intensive agent-environment inter-
action is a challenge for declarative approaches in the sense that internal states de-
pending on such an interaction have no simple-to-define representational content. The
formally defined and validated representation relations presented in this paper show
how it is still possible to obtain a declarative perspective also for such a case. It is
shown how formal methods allow to address the temporal structure entailed by suit-
able representation relations in these cases in a manageable declarative form.

More specifically, in this paper, for some notions of representational content it was
explored in a case study how they work out, and, especially, how the temporal struc-
ture can be handled by formalisation. The processes of the case study have been for-
malised by identifying executable local dynamic properties for the basic dynamics.
On the basis of these local properties a simulation model has been made. The formal-
ised specifications of the representational content of the internal state properties have
been validated by automatically checking them on the traces generated by the simula-
tion model. Moreover, by mathematical proof it was shown how these specifications
are entailed by the basic local properties. This shows that the internal state properties
indeed fulfil the representational content specification.

The use of the temporal trace language TTL has a number of practical advantages.
In the first place, it offers a welldefined language to formulate relevant dynamic rela-
tions in practical domains, with first order logic expressivity and semantics. Further-
more, it has the possibility of explicit reference to time points and time durations that
enables modelling of the dynamics of continuous real-time phenomena, such as sen-
sory and neural activity patterns in relation to mental properties. These features go
beyond the expressive power available in standard linear or branching time temporal
logics, such as LTL and CTL.

 Representational Content and the Reciprocal Interplay of Agent and Environment 287

Moreover, the possibility to quantify over traces allows for specification of more
complex adaptive behaviours. As within most temporal logics, reactiveness and pro-
activeness properties are specified. In addition, in TTL also properties expressing
different types of adaptive behaviour can be expressed. For example a property such
as “exercise improves skill”, which is a relative property in the sense that it involves
the comparison of two alternatives for the history. Another property of this type is
trust monotony: “the better the experiences with something or someone, the higher the
trust”. This type of relative property can be expressed in our language, whereas in
standard forms of temporal logic different alternative histories cannot be compared.
For an excellent review of standard temporal logics, see [15].

Note that, in addition to simulated traces, the TTL checking software is also able to
take other (e.g., empirical) traces as input, enabling the validation of the representa-
tional content of internal states in real-world situations.

References

1. Bickhard, M.H., Representational Content in Humans and Machines. Journal of Experi-
mental and Theoretical Artificial Intelligence, 5, 1993, pp. 285-333.

2. Clark, A., Being There: Putting Brain, Body and World Together Again. MIT Press, 1997.
3. Jonker, C.M., Snoep, J.L., Treur, J., Westerhoff, H.V., and Wijngaards, W.C.A., BDI-

Modelling of Intracellular Dynamics. In: A.B. Williams and K. Decker (eds.), Proc. of the
First International Workshop on Bioinformatics and Multi-Agent Systems, BIXMAS'02,
2002, pp. 15-23.

4. Jonker, C.M. and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Infor-
mation Systems, vol. 11, 2002, pp. 51-92.

5. Jonker, C.M., and Treur, J., A Temporal-Interactivist Perspective on the Dynamics of
Mental States. Cognitive Systems Research Journal, vol.4, 2003, pp.137-155.

6. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
vol. 4(3), 2003, pp. 191-210.

7. Keijzer, F., Representation in Dynamical and Embodied Cognition. Cognitive Systems Re-
search Journal, vol. 3, 2002, pp. 275-288.

8. Kim, J., Philosophy of Mind. Westview Press, 1996.
9. Pokorny, L.R. and Ramakrishnan, C.R., Modeling and Verification of Distributed

Autonomous Agents using Logic Programming. Proc. of the Second International Work-
shop on Declarative Agent Languages and Technologies, DALT’04. Lecture Notes in Arti-
ficial Intelligence, Springer Verlag, 2005 (this volume).

10. Pozos Parra, P., Nayak, A., Demolombe, R., Theories of Intentions in the Framework of
Situation Calculus. Proc. of the Second International Workshop on Declarative Agent
Languages and Technologies, DALT’04. Lecture Notes in Artificial Intelligence, Springer
Verlag, 2005 (this volume).

11. Reiter, R., Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

12. Sun, R., Symbol grounding: a new look at an old idea. Philosophical Psychology, Vol.13,
No.2, 2000, pp.149-172.

13. Sun, R., Duality of the Mind. Lawrence Erlbaum Associates, 2002.

288 T. Bosse, C.M. Jonker, and J. Treur

14. Vasconcelos, W.W., Norm Verification and Analysis of Electronic Institutions. Proc. of
the Second International Workshop on Declarative Agent Languages and Technologies,
DALT’04. Lecture Notes in Artificial Intelligence, Springer Verlag, 2005 (this volume).

15. Vardi, M.Y., Branching vs. Linear Time: Final Showdown. Proceedings of TACAS 2001 -
Tools and Algorithms for the Construction and Analysis of Systems. Genova, Italy, April
2-6, 2001. Lecture Notes in Computer Science, Volume 2031. New York, NY: Springer-
Verlag, 2001, pp. 1-22.

16. Walton, C., Model Checking Agent Dialogues. Proc. of the Second International Work-
shop on Declarative Agent Languages and Technologies, DALT’04. Lecture Notes in Arti-
ficial Intelligence, Springer Verlag, 2005 (this volume).

Author Index

Alagar, Vasu S. 239
Artikis, Alexander 221

Baldoni, Matteo 112
Baroglio, Cristina 112
Bosse, Tibor 270
Bracciali, Andrea 53

Dastani, Mehdi 1
Demolombe, Robert 19
Dignum, Frank 1

Fan, Xiaocong 69

Gungui, Ivana 112

Harland, James 198

Jonker, Catholijn M. 270

Kamara, Lloyd 221
Küngas, Peep 35

Liu, Wei 198

Mancarella, Paolo 53
Martelli, Alberto 112
Martelli, Maurizio 112
Mascardi, Viviana 112
Matskin, Mihhail 35
Meyer, John-Jules Ch. 1
Miller, Michael S. 69

Nayak, Abhaya 19

Pacuit, Eric 256
Pan, Yu 92
Paquet, Joey 239
Parikh, Rohit 256
Patti, Viviana 112
Pitt, Jeremy 221
Pokorny, L. Robert 148
Pontelli, Enrico 92
Pozos-Parra, Pilar 19

Ramakrishnan, C.R. 148
Robertson, David 183

Schifanella, Claudio 112
Sergot, Marek 221
Son, Tran Cao 92
Stathis, Kostas 53

Toni, Francesca 53
Treur, Jan 270
Tu, Phan Huy 92

van Riemsdijk, M. Birna 1
Vasconcelos, Wamberto W. 166
Volz, Richard A. 69

Walton, Christopher D. 132
Wan, Kaiyu 239
Winikoff, Michael 198

Yen, John 69

Author Index

Alagar, Vasu S. 239
Artikis, Alexander 221

Baldoni, Matteo 112
Baroglio, Cristina 112
Bosse, Tibor 270
Bracciali, Andrea 53

Dastani, Mehdi 1
Demolombe, Robert 19
Dignum, Frank 1

Fan, Xiaocong 69

Gungui, Ivana 112

Harland, James 198

Jonker, Catholijn M. 270

Kamara, Lloyd 221
Küngas, Peep 35

Liu, Wei 198

Mancarella, Paolo 53
Martelli, Alberto 112
Martelli, Maurizio 112
Mascardi, Viviana 112
Matskin, Mihhail 35
Meyer, John-Jules Ch. 1
Miller, Michael S. 69

Nayak, Abhaya 19

Pacuit, Eric 256
Pan, Yu 92
Paquet, Joey 239
Parikh, Rohit 256
Patti, Viviana 112
Pitt, Jeremy 221
Pokorny, L. Robert 148
Pontelli, Enrico 92
Pozos-Parra, Pilar 19

Ramakrishnan, C.R. 148
Robertson, David 183

Schifanella, Claudio 112
Sergot, Marek 221
Son, Tran Cao 92
Stathis, Kostas 53

Toni, Francesca 53
Treur, Jan 270
Tu, Phan Huy 92

van Riemsdijk, M. Birna 1
Vasconcelos, Wamberto W. 166
Volz, Richard A. 69

Walton, Christopher D. 132
Wan, Kaiyu 239
Winikoff, Michael 198

Yen, John 69

	Frontmatter
	Preface
	Organisation
	Table of Contents
	Dynamics of Declarative Goals in Agent Programming
	Introduction
	Preliminaries
	Goal Dropping
	Blind Commitment
	Failure Condition
	Other Strategies

	Goal Adoption
	Internal and External Motivations for Goal Adoption
	Subgoal Adoption

	Conclusion and Future Research

	Theories of Intentions in the Framework of Situation Calculus
	Introduction
	Situation Calculus
	Dynamic Worlds
	Dynamic Beliefs
	Dynamic Generalised Beliefs
	Dynamic Goals
	Dynamic Intentions

	Intention Theories
	Consistency Properties
	Automated Reasoning

	A Planning Application
	Conclusion

	Partial Deduction for Linear Logic — The Symbolic Negotiation Perspective
	Introduction
	Linear Logic
	Basics of Partial Deduction
	Basic Definitions
	PD Steps
	Derivation and PD

	Soundness and Completeness of PD in HLL
	PD Steps as Inference Figures in HLL
	Soundness and Completeness

	Application of PD to Symbolic Negotiation
	Partial Deduction Strategies
	Selection Criteria
	Stopping Criteria

	Related Work
	Conclusions

	On Modelling Multi-agent Systems Declaratively
	Introduction
	Preliminaries
	Semantics of a Multi-agent System
	Fully Transparent Multi-agent Systems
	Partially Transparent Multi-agent Systems

	Properties
	Individual Agents
	Multi-agent Systems
	Agents in Multi-agent Systems

	A Concrete Multi-agent Semantics
	Single Agent Language and Semantics
	Multi-agent Semantics
	Fully Transparent Multi-agent System Operational Semantics

	Related Work
	Conclusions

	The Semantics of MALLET – An Agent Teamwork Encoding Language
	Introduction
	Syntax
	Preparation
	Operational Semantics
	Semantics of Beliefs, Goals and Intentions in MALLET
	Failures in MALLET
	Transition System

	CAST--An Agent Architecture Realizing MALLET
	Comparison and Discussion
	Conclusion

	Construction of an Agent-Based Framework for Evolutionary Biology: A Progress Report
	Introduction
	The ΦLOG Project
	The ΦLOG Language
	The ΦLOG Agent Infrastructure
	Related Work

	SystemOverview
	Service Description and Management
	Service Description
	Service Management

	ΦLOG Compiler
	Syntax Analysis
	Type Checking
	Operations Identification and Abstract Plan Assembly

	Configuration Component
	DAML-PDDL Translator
	Generating the Situation Calculus Theory and the ConGolog Program

	Planning and Execution Monitoring Module
	Planning
	Execution Monitoring

	Conclusions and FutureWork

	Reasoning About Agents’ Interaction Protocols Inside DCaseLP
	Introduction
	The DCaseLP Environment
	Interaction Protocols in DyLOG
	DyLOG in Brief

	Integrating DyLOG into DCaseLP to Reason About Communicating Agents
	Generating and Executing Jess Agents That Adhere to the AUML Protocols
	Conclusions and Related Work
	Acknowledgement
	References

	Model Checking Agent Dialogues
	Introduction
	The MAP Language
	Model Checking MAP
	Results and Conclusions

	Modeling and Verification of Distributed Autonomous Agents Using Logic Programming
	Introduction
	Cougaar, an Implementation Architecture for Distributed Autonomous Agents
	A Declarative Model of the Cougaar Architecture
	A Model of Cougaar's Generic Sevices
	Modeling Specific Cougaar Agents

	Linear Temporal Logic
	Workflows as Property Specifications
	Ongoing Work and Concluding Remarks

	Norm Verification and Analysis of Electronic Institutions
	Introduction
	Lightweight Electronic Institutions
	Representing E-Institutions

	Norms in E-Institutions
	Norm Verification of E-Institutions

	Norm Analysis of E-Institutions
	Norm-Based Extraction
	Norm-Aware Synthesis of Agents

	Conclusions, Related Work and Directions of Research

	A Lightweight Coordination Calculus for Agent Systems
	Introduction: A Broad View of Social Norms
	Islander: A Means of Enforcing Social Norms
	LCC Syntax
	Example LCC Interaction Framework
	Clause Expansion
	Coordination Mechanisms
	Computing with LCC
	LCC and Performative Languages
	Conclusions
	Acknowledgements
	References

	Enhancing Commitment Machines
	Introduction
	Background
	Properties of CMs
	Explicit Labelling of Undesirable States
	Failure to Discharge Conditional Commitments
	Commitment Discharge Is Not Symmetrical
	Pre-condition Mechanism Does Not Prevent Action
	Communication Mode Assumptions Not Clear

	Proposed Extended CM Model
	Labelling Undesirable States
	Issues with Commitment Discharge
	Issues with Pre-conditions
	Applications

	Conclusion
	Acknowledgements
	References
	A Source Code for the Implemented Axioms

	A Protocol for Resource Sharing in Norm-Governed Ad Hoc Networks
	Introduction
	Floor Control Protocols
	A Protocol for Resource Sharing in Ad Hoc Networks
	An Event Calculus Specification
	The Event Calculus
	Physical Capability
	Institutional Power
	Permission and Obligation
	Sanction

	A Few Notes on cFCP
	Discussion
	Acknowledgements
	References

	Intensional Programming for Agent Communication
	Introduction
	Intensional Programming Paradigm
	Lucid
	Agent Communication in Intensional Programming Language
	KQML and FIPA Languages
	Contexts in AIPL
	Context Calculus
	Syntax and Semantics of Extended Lucid
	Message Structure and Evaluation in AIPL
	Semantics of Conversation

	Conclusion
	References

	The Logic of Communication Graphs
	Introduction
	The Logic of Communication Graphs
	Semantics
	Surface Knowledge
	Axioms and Decidability

	Connection with Communication Graphs
	Conclusions and Further Work
	References

	Representational Content and the Reciprocal Interplay of Agent and Environment
	Introduction
	Modelling Approach
	The Case Study
	Introduction of the Case Study
	State Properties

	Local Dynamic Properties
	Simulation
	Non-local Dynamic Properties
	Interlevel Relations
	Representational Content
	Correlational Approach
	Temporal-Interactivist Approach
	Second-Order Representation

	Validation
	Discussion
	References

	Author Index

