
The A&A Programming Model and Technology
for Developing Agent Environments in MAS

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

DEIS, Alma Mater Studiorum – Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,mirko.viroli,andrea.omicini}@unibo.it

Abstract. In human society, almost any cooperative working context
accounts for different kinds of object, tool, artifact in general, that hu-
mans adopt, share and intelligently exploit so as to support their working
activities, in particular social ones. According to theories in human sci-
ences, such entities have a key role in determining the success or failure
of the activities, playing an essential function in simplifying complex
tasks and—more generally—in designing solutions that scale with ac-
tivity complexity. Analogously to the human case, we claim that also
(cognitive) multi-agent systems (MAS) could greatly benefit from the
definition and systematic exploitation of a suitable notion of working
environment, composed by different sorts of artifacts, dynamically con-
structed, shared and used by agents to support their working activities.
Along this line, in this paper we introduce and discuss a programming
model called A&A (Agents and Artifacts), which aims at directly mod-
elling and engineering such aspects in the context of cognitive MAS.
Besides the conceptual framework, we present the current state of proto-
typing technologies implementing A&A principles—CARTAGO platform
in particular—, and show how they can be integrated with existing cog-
nitive MAS programming frameworks, adopting the Jason programming
platform as the reference case.

1 Introduction

“Artifacts play a critical role in almost all human activity [...]. Indeed
[...] the development of artifacts, their use, and then the propagation of
knowledge and skills of the artifacts to subsequent generations of humans
are among the distinctive characteristics of human beings as a specie”,
Donald Norman, [8]
“The use of tools is a hallmark of intelligent behaviour. It would be hard
to describe modern human life without mentioning tools of one sort or
another”, Robert Amant, [2]

In their articles, Norman [8] and Amant [2] remark—in different contexts—
the fundamental role that tools and, more generally, artifacts play in human
society. Artifacts and tools here could be understood as whatever kinds of device

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 89–106, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 A. Ricci, M. Viroli, and A. Omicini

explicitly designed and used by humans so as to mediate and support their
activities, especially social. Analogous observations are found in the work of
Agre and Horswill in their Lifeworld analysis [1], as well as in the work of
Kirsch [5,6]. Actually, such a perspective is central in theories developed in the
context of human sciences, such as Activity Theory and Distributed Cognition,
and currently taken as a reference by computer science related disciplines such as
CSCW (Computer Supported Cooperative Work) and HCI (Human-Computer
Interaction) [7]. There, a fundamental point is devising out the best kind of
artifacts to populate humans’ fields of works, and to organise them so as to
improve as much as possible the performance of their activities, in particular
coordinative ones [13,6].

Analogously to human society, we think that such a perspective is and will
be fundamental also in the context of agent societies, and in particular for de-
signing and programming complex software systems based on cognitive MAS.
Quite provocatively, analogously to the human case, we think that the next
evolution step in the development of cognitive MAS will mandatorily require
the definition of MAS models and architectures with agents situated in suitable
working environments. There, agents autonomously—besides speaking to each
others—construct, share, and co-operatively use different kinds of artifact, de-
signed either by MAS designers or by the agent themselves, to perform MAS
activities. Indeed, this notion of environment is quite different with respect to
the one traditionally adopted in mainstream cognitive agent theory: there, the
environment is typically conceived as something “out of the MAS”, then not a
subject of design. On the contrary, the notion of “working environment” pro-
motes MAS environment as an essential part of the MAS to be explicitly designed
and fruitfully exploited by agents in their working activities.

Along this line, in this paper we introduce and discuss a first programming
model called A&A (Agents and Artifacts) which aims at directly modelling and en-
gineering working environments in the context of cognitive multi-agent systems.
Such a perspective is strenghtened by recent efforts in AOSE (Agent-Oriented
Software Engineering) that remark the fundamental role of the environment for
the engineering of MAS [14]. The A&A approach can be considered an instance
of such approaches, with some specific peculiarity: (i) abstractions and general-
ity—the aim is to find a basic set of conceptual abstractions and related theory
which, analogously to the agent abstraction, could be general enough to be the ba-
sis to define concrete architectures and programming environments, but specific
enough to capture the essential properties of systems; (ii) cognitive—analogous to
designed environment in human society, the properties of such environment ab-
stractions should be conceived to be suitably and effectively exploited by cognitive
agents, as intelligent constructors / users / manipulators of the environment.

Besides the abstract programming model, in this paper we describe also the
concrete technologies developed to experiment the model: in particular we dis-
cuss CARTAGO technology, a platform for programming and supporting the
execution of artifact-based working environments, developed on top of the Java
platform, and its integration with the Jason agent programming environment.

The A&A Programming Model and Technology 91

The basic notion of artifact has been already introduced and published else-
where [11,9,10], and the same applies for the first version of CARTAGO technology
[12]. On the one side, besided purely conceptual papers such as [9], papers such
as [11,10] can be considered first steps introducing the concept of artifact for pro-
gramming MAS, without having a reference programming model defined here—
called A&A—and related functioning technologies, i.e. CARTAGO, that can be in-
tegrated to existing platform. On the other side, the artifact programming model
and its implementation in CARTAGO technologies has been substantially evolved
with respect to the most recent one, described in [12]. In particular, the basic model
of usage-interface and operation presented in [12] is quite simple and is not able
to properly take into account the possibility to have the concurrent execution of
operations on an artifact (the interested reader is forwarded to the paper for the
details). Such a model has been completely revised, and this new version—which
substantially change the way a MAS programmers can adopt to program artifact
operations and behaviour—is described in detail in this work. Besides this, the
work published in [12] is more oriented on the environment / infrastructure level:
in this paper instead, besides describing in detail CARTAGO, we focus more on the
A&A programming model and CARTAGO is described as an existing functioning
technology supporting such a model.

The remainder of the paper is organised as follows. First, we provide a descrip-
tion of the basic concepts and principles of A&A (Section 2), by introducing an
abstract model embedding such principles (Section 2.3). Then, we briefly present
the current models and technologies that have been developed for concretely pro-
totyping MAS applications in the A&A perspective (Section 3)—among which
the one called CARTAGO—and discuss the issue of integration of such technolo-
gies with existing cognitive MAS programming platform, adopting Jason as our
reference case study. Finally, we conclude the paper with some final remarks,
and sketch some future line of work (Section 4).

2 Programming Model Building Blocks

2.1 Artifacts and Workspaces

A working environment in A&A is defined as the part of the MAS that is de-
signed and dynamically constructed and used by agents to support their working
activities. MAS programmers design and define the types of artifacts that agents
will dynamically instantiate and cooperatively use.

A working environment is conceived as a dynamic set of artifacts, organised in
workspaces. Workspaces are the logical containers of artifacts, useful to define the
topology of the working environment. A workspace provides a notion of locality
for agents: an agent can work only with artifacts belonging to the workspace
where it is playing, but can be conceptually situated in multiple workspaces at
the same time, possibly distributed on different Internet nodes. This concept can
be used to define the distribution model of an application at an abstract level: a
working environment—which corresponds to a possibly distributed application

92 A. Ricci, M. Viroli, and A. Omicini

UI-CNTR-NAME(PARAMS)

UI-CNTR-NAME(PARAMS)

...

OBSPROPNAME(CONTENT)

OBSPROPNAME(CONTENT)

...

USAGE
INTERFACE

ARTIFACT
MANUAL

OBSERVABLE
EVENTS
GENERATION
EVNAME(CONTENT)

OPERATION X

LINK
INTERFACE

OPERATION Y

OBSERVABLE
PROPERTIES

CONTROL PANEL

Fig. 1. (Left) Abstract representation of an artifact. (Right) Abstract representation
of a working environment with two workspaces, with some artifacts of different kinds
inside.

or MAS—can account for one or multiple workspaces, possibly spread among
multiple network (Internet) nodes.

Current model does not explicitly take into the account security and organ-
isation issues: for examples roles that can be defined in a workspace and the
possible permits related to roles. These aspects are part of future work: we plan
to adopt RBAC-like approach as a basic organisation and security model, as we
did for the TuCSoN coordination model [15].

The notion of artifact is the core abstraction of the programming model:
it is meant to represent any entity belonging to the working environment—
hence existing outside the agent mind—that is created, shared & used (and
eventually disposed) by agents to carry on their activities, in particular social
ones. So, an artifact (type) is typically meant to be explicitly designed by MAS
engineers so as to encapsulate some kind of function, here synonym of “intended
purpose”. An abstract representation of an artifact is shown in Fig. 1 and it
is very similar to artifacts as found in human society. The functionality of an
artifact is structured in terms of operations, whose execution can be triggered
by agents through artifact usage interface. Analogously to usage interface of
artifacts in our world (think, for example, of a coffee machine), an artifact usage
interface in A&A is composed of a set of commands or controls that agents can use
to trigger and control operation execution (such as the control panel of a coffee
machine), each one identified by a label (typically equals to the operation name
to be triggered) and a list of input parameters. The usage interface can change
dynamically, according to state of the artifact; in other words, it is possible
to design artifacts that expose a different usage interface according to their
functioning stage. Besides the control to act, the usage interface might contain
also a set of observable properties (think of the coffee machine display); that is,
properties whose dynamic values can be observed by agents without necessarily
interacting with (or operating upon) the artifact.

The execution of an operation upon an artifact can result both in changing
the artifact’s inner (i.e., non-observable) state, and in the generation of a stream
of observable events that can be perceived by agents that are using or simply

The A&A Programming Model and Technology 93

observing the artifact. Such a model strictly mimics the way in which humans
use their artifacts: a simple example is the coffee machine, whose usage interface
includes suitable controls—such as the buttons—and means to make (part of)
the machine behaviour observable—such as displays—and to collect the results
produced by the machine—such as the coffee can. It’s worth remarking here
the differences between observable properties and observable events. The former
are dynamic and persistent attributes that belong to an artifact and that can
be observed by agents without interacting with it (i.e. without using the ui-
controls). Like the display of a coffee machine. The latter are non-persistent
information, as signals carrying also an information content. Like the sound
emitted by a coffee machine when the coffee is ready.

Artifacts can embed complex functionalities: accordingly, operations executed
can be complex and an articulated operation model is provided for this purpose.
Generally speaking, operation execution can be conceived as a process (from a
conceptual point of view) combining the execution of possibly multiple atomic
guarded operation steps. Multiple operations can be in execution upon an ar-
tifact by interleaving the execution of the operation steps. In order to avoid
interferences, during the execution of a single operation step, the usage inter-
face is disabled. This approach, in the overall, makes it possible to support the
execution of multiple operations concurrently on the artifact, keeping mutual
exclusion in artifact state access.

Analogously to artifacts in the human case, in A&A each artifact is meant to
be equipped with a manual describing the artifact’s function (i.e., its intended
purpose), the artifact’s usage interface (i.e., the observable “shape” of the arti-
fact), and artifact’s operating instructions (i.e., usage protocols or simply how
to correctly use the artifact so as to take advantage of all its functionalities). A
manual is meant to be inspected and used at runtime by agents, in particular in-
telligent agents, for reasoning about how to select and use artifacts so as to best
achieve their goals. Accordingly, suitable formal languages and ontologies could
be defined for manual description. Currently, no specific commitments towards
specific technologies have as yet been made, as this is part of ongoing work.

Finally, as a principle of composition, artifacts can be linked together, in
order to enable artifact–artifact interaction. This is realised through link in-
terfaces, which are analogous to interfaces of artifacts in the human case (e.g.
linking/connecting/plugging the earphones into an MP3 player, or using the re-
mote control with a TV). In the overall link interfaces serve two purposes: on the
one side, to explicitly define a principle of composability for artifacts, enabling
the ruled construction of articulated and complex artifacts by means of simpler
ones; on the other side, to realise distributed (composed) artifacts, by linking
artifacts belonging to different workspaces.

2.2 Agent Bodies

In this overall picture, nothing is said about the specific cognitive model of the
agent: actually A&A is meant to be orthogonal to this aspect: agents are sim-
ply conceived as autonomous entities executing some kind of working activities,

94 A. Ricci, M. Viroli, and A. Omicini

either individually or collectively—typically in order to achieve some individual
or social goal, or to fulfill some individual or social task. Such activities—from
an abstract point of view—are seen as the execution of sequences of actions,
which according to the A&A model can be roughly classified as: (i) internal ac-
tions, (ii) communicative actions, involving direct communications with one or
more agents through some kind of ACL, and (iii) pragmatical actions, as in-
teractions within working environments that concern construction, sharing, and
use of artifacts.

Despite of their specific cognitive model / architecture, in order to execute ac-
tions over the artifact and perceive observable events, agents must be situated in
a working environment: for this purpose, the notion of agent body is introduced.
The agent body functions as the medium through which the agent mind—i.e.
those parts that are designed and programmed according to a certain kind of cog-
nitive model / architecture—can sense and affect a working environment. Such a
notion is essential to decouple—for engineering purposes—the agent mind from
the working environment in which the agent is situated, so as to be able to use
A&A with different kinds of programming models for agent mind.

Agent bodies contain effectors to perform actions upon the working environ-
ment, and a dynamic set of sensors to collect stimuli from the working environ-
ment. Sensors in particular play here a fundamental role, that of perceptual mem-
ory, whose functionality accounts for keeping track of stimuli arrived from the
environment, possibly applying filters and specific kinds of “buffering” policy. Ac-
cording to the specific interaction modality adopted for using and observing arti-
facts, as described later in this section, it might be useful to provide agents with
basic internal actions for managing and inspecting sensors, as a kind of private
memory. In particular, it could be useful for an agent to organise in a flexible way
the perception of observable events, possibly generated by multiple different arti-
facts that an agent can be using for different, even concurrent, activities.

2.3 The Agent Programming Interface

In this subsection we provide an abstract description of the basic interface avail-
able to agent minds to play inside a working environment. Such an interface
accounts for three basic groups of actions: (i) join and leave workspaces; (ii) use
an artifact by acting on its usage interface and perceive observable events gen-
erated by artifacts; (iii) observe an artifact. Table 1 provides a synthetic view
of the set of actions, grouped into the three main groups; as for the syntax, a
pseudo-code first-order logic-like syntax is adopted, while semantics is described
informally. Atoms AName, WName and SName are used to represent a unique name
(identifier) for respectively artifact instances, workspaces and sensors. Following
the semantics adopted in the cognitive agent-oriented programming approaches
considered here, an action consists in the atomic execution of a statement which
can result in changing the agent’s state and/or interacting with the agent’s en-
vironment, and can succeed or fail.

The first group of actions (labelled 1–2) are useful for managing a work-
ing session inside a workspace. Intuitively, join makes it possible to “enter” a

The A&A Programming Model and Technology 95

Table 1. Basic set of actions to interact with A&A work environments. + is used for
optional parameters, ? for input parameters.

(1) joinWorkspace(WName,+Node)

(2) quitWorkspace

(3) use(AName,UIControlName(Params),+SName,+Timeout,+Filter)

(4) sense(SName,?Perception,+Filter,+Timeout)

(5) focus(AName,SName,+Filter)

(6) stopFocussing(AName)

(7) observeProperty(AName,PropertyName,?Property)

workspace, whose name is specified as a parameter and quit to leave the cur-
rent workspace. Since workspaces are meant to be distributed over a network,
optionally the node where the workspace resides can be specified.

The second group of actions (labelled 3–4) concerns the use of artifacts. In
particular use action accounts for using the artifact identified by AName, by
acting on the UIControl usage-interface control, specifying some Params pa-
rameters, and optionally specifying a sensor SName to be used to collect the
events generated by the artifact, a filter Filter and a timeout Timeout. The
action succeeds if the specified artifact exists and its usage interface actually
has the specified control, and as a result the related operation is triggered for
execution. Then, if a sensor has been specified, every observable event subse-
quently generated by the artifact, as effect of the operation execution, is made
observable to the agent as a stimulus artifact_event(AName,Event) collected
in the sensor. The filter can be used to specify which kinds of events the agent
is interested in perceiving. If the usage interface of the artifact is disabled when
executing the action, for instance because the artifact is executing an operation
(step), then the agent action is suspended until the usage interface is enabled
again; the timeout specifies how long the agent can wait before considering the
action as failed. Then, a sense action is provided to inspect the content of a
sensor (i.e. the perceptual memory), so that the agent can become aware of any
new percepts. In particular, the action succeeds if within Timeout time an event
(stimulous) matching the specified filter Filter is found in the specified sensor
SName. In that case, Perception is bound with such event. Both the timeout
and the filter can be omitted. The same sensor can be used for collecting events
of different usage interactions, possibly with different artifacts. It’s worth re-
marking that the execution (and completion) of the use action is completely
asynchronous with respect to the execution of the operation by the artifact and
to the possible consequent generation of events. It is synchronous however with
respect to the presence of the specified ui-control in the usage interface: if the ac-
tion succeeds, then it means that such ui-control was part of the usage interface,

96 A. Ricci, M. Viroli, and A. Omicini

that it has been “pressed” and that the related operation has been triggered for
being executed (as soon as its guard is satisfied).

The third group of actions (labelled 5–7) concerns artifact observation, i.e.
the capability of perceiving artifacts observable events and properties without
directly interacting with them. The focus action can be used to start a con-
tinuous observation of an artifact (intuitively, to focus one’s attention on that
artifact so as to observe any changes that occur in it over time). The action
succeeds if the AName artifact exists, and as an effect every observable event
generated by the artifact (despite the specific operation that caused it, possi-
bly executed by any other agent) is made observable to the agent as a stimulus
artifact_event(AName,Event) collected in the specified sensor. Also for focus,
a filter can be specified in order to select which kinds of event to actually observe.
stopFocussing is used to stop observing the artifact. It’s worth remarking here
the differences between focus and sense actions: sense is an internal action,
since it inspects a sensor (which is considered part of the agent); focus, in-
stead, is external, enabling continuos observation of events that directly cause
belief base update in the first modality, and sensor content update in the sec-
ond modality. Finally observeProperty can be used to inspect the observable
properties of the specified AName artifact, specifying the name PropertyName of
the property to be observed. The action succeeds if the AName artifact exists and
has a property with the specified name, and as result the current value of the
property is bound to Property.

This abstract model is meant to be as much as possible orthogonal to the
model(s) adopted for defining agent mind at the agent level. This should make
it easier to integrate A&A concrete models and technologies with existing agent
technologies—as described in Section 3.2.

2.4 The Artifact Programming Interface

Besides the API to use artifacts, a programming model for defining artifact types
is given: Table 2 shows an abstract description of the main primitives used to
define artifacts behaviour.

An artifact type or template defines the structure and behaviour of artifacts
instances of such a type. For some extent, an artifact type is quite similar to the
notion of class in Object-Oriented Programming, with artifacts analogous to ob-
jects, and to the notion of monitor, as defined in concurrent programming. As in
the case of objects, the structure defines the artifact inner state and working ma-
chinery hidden to agent users. The behaviour is structured in a set of operations,
which define in the overall artifact function. An operation encapsulates the com-
putational and interaction behaviour—such as the update of the internal state and
the generation of observable events—so as to provide some kinds of functionality.
Operations execution is triggered and controlled by acting on the controls which
are part of the artifact usage interface. During the execution of an operation, ob-
servable events (signals) can be generated by using a specific primitive, signal
(label 1 in Table 2), specifying the event content as a labelled tuple.

The A&A Programming Model and Technology 97

Table 2. Basic API available for programming an artifact + is used for optional pa-
rameters, ? for input / output parameters.

(1) signal(Event)

(2) nextStep(OpStep(Params),+Guard(Params))

(3) switchToObsState(StateName)

(4) updateObsProperty(Property)

(5) readObsProperty(?Property)

In order to enforce mutual exclusion in updating artifact state on the one
side and allow for concurrent operations execution on the other side, artifact
operations can be composed by one or multiple operation steps, which are meant
to be executed atomically. At a given time only one operation (step) can be in
execution: multiple operations can be executed concurrently by interleaving their
steps. For each step a guard can be defined, which specifies when the step—once
it has been striggered in the context of an operation—can actually be executed.
Guards represent the condition that must be satisfied, as a predicate over the
artifact state, to execute a step. So, an operation (step) is first triggered by
agent user, the executed when the guard is satisfied. A step can trigger other
steps, by means of the nextStep primitive (label 2 in Table 2), specifying the
operation step to be executed and possibly the guard. An operation is considered
completed when no more steps have been triggered. In the overall, this model
makes it possible to design a complex articulated operation, that—for instance—
can be controlled by using different controls in different times in the user interface
before being completed, or—as another example—would need the execution of
other operations to complete.

Besides the analogies with classes and monitors in object-oriented and concur-
rent programming, it’s worth remarking here the deep difference with respect to
those concepts, in particular for what concerns the interaction model: by virtue
of agent autonomy, artifact operation (step) execution does not involve any con-
trol flow from the invoker agent to the invoked artifact, i.e. is not a method or
function call.

The usage interface of an artifact can change according to artifact observable
state, exposing different sets of operations and observable properties according
to the specific functioning state of the artifact. The notion of observable state
is adopted to structure the behaviour of an artifact in a set of labelled states,
that can be recognised (observed) by the artifact users. For each artifact type
a finite set of labelled observable states can be defined. Each artifact instance
has a current observable state, that can be changed dynamically during artifact
functioning by means of the switchToObsState primitive (label 3 in Table 2,
specifying the label of the target observable state. For each observable state a

98 A. Ricci, M. Viroli, and A. Omicini

different usage interface can be defined: this feature makes it possible to set the
appropriate usage interface according to the functioning stage of the artifact.
Dynamically, an agent can trigger the execution of an operation on an artifact
if and only the operation is (in that moment) part of the usage interface; if
the operation is not part the usage interface, the agent action fails. Observable
properties can be defined as labelled tuple of information that can be observed
by agents without directly using the artifacts. Basic primitives are available as
part of artifact API for updating (updateObsProperty, label 4) and reading
(readObsProperty, label 5) the value of an observable property: also properties
are represented by labelled tuples and their access is meant to be associative.

3 Prototyping Technologies

Starting from the A&A abstract model, we developed some first concrete tech-
nologies, with the objective to have concrete frameworks for prototyping MAS-
based applications engineered upon A&A basic abstractions, and for being
integrated with existing agent technologies extended with the A&A support.

A primary technology is called CARTAGO (Common ARtifact Infrastructure
for AGent Open environment), which is a framework providing essentially the
capability to define new artifacts type, suitable API for agents to work with arti-
facts and workspaces, and a runtime supporting the existence and dynamic man-
agement of working environments. Another technology is called simpA (simple
A&A programming environment), a framework extending CARTAGO with a sup-
port for defining and running agents (MAS) besides the working environments.
While CARTAGO is meant to be integrated with existing (cognitive) agent mod-
els and technologies as a seamless support to define and create artifact-based
working environments, simpA can be exploited alone to develop full-fledged ap-
plications engineered in terms of agents, artifacts and workspace. For lack of
space, in this paper simpA is not described: the interested reader can refer to
simpA web site1. Both technologies are based on Java and are available as open-
source projects freely downloadable from the project web sites2.

3.1 CARTAGO Overview

The CARTAGO architecture implements quite faithfully the abstract model de-
scribed in Section 2.3. Pragmatically, we chose Java as the programming lan-
guage to implement and map the programming model elements, adopting choices
that would favour rapid prototyping, reusing as much as possible the support
given by the Java Object-Oriented framework. In the following we briefly
describe the three main parts of CARTAGO:

– API for creating and interacting with artifact-based working environments —
These API are meant to extend the existing basic set of agent actions with

1 http://www.alice.unibo.it/simpa
2 http://www.alice.unibo.it/cartago

http://www.alice.unibo.it/simpa
http://www.alice.unibo.it/cartago

The A&A Programming Model and Technology 99

new ones, abstractly described in Section 2.3, essentially for creating and
disposing artifacts, interacting with them through their usage interface—by
executing operation and perceiving artifact observable states and events—
reading artifact function description and operating instructions, managing
sensors, and so on.

– API for defining artifact types — These API allow MAS programmers to de-
velop new types of artifacts. An artifact type can be defined by extending the
basic Artifact class provided in the API: at runtime, artifacts instances are
instances of this class. Artifact structure (internal state) is defined in terms of
instance fields of the class. Operations and operations steps body is defined by
methods tagged by @OPERATION and @OPSTEP, where the operation (step) name
and parameters are mapped onto the name and the parameter of the meth-
ods3. Guards are represented by boolean method annotated with the @GUARD

annotation. Methods representing operations / operation steps have no re-
turn argument—a return argument would be meaningless in the A&A model.
Observable events—which are the means to make agents perceive operation
results—can be generated in the body of an operation by primitives of the
kind signal, available as protected methods of the artifact. Events are col-
lected by agent body sensors as stimuli, and then perceived by agents through
sense action. Artifact function description and operating instructions, as well
as the list of the observable states, can be explicitly declared through the
@ARTIFACT MANUAL annotation preceding the artifact class declaration.

A simple example of artifact definition is shown in Fig. 2: a simple type
MyArtifact is defined, with an internal variable m and two operations, op1 and
op2, the former composed by two steps, the first one coinciding the first of the
operation and the second one, opStepA with guard canExecA triggered by the
first step by means of the nextStep CARTAGO primitive. The operation op1

initialized the variable to 1 and then completes only when the variable value
reaches the value 3, a condition that triggers the execution of the second step
which generates the observable event maxReached. Each time the operation
op2 is executed, the variable is incremented and an observable event newValue
generated. More complex and useful examples can be found in CARTAGO
distribution.

– Runtime environment and related tools — This is the part actually responsi-
ble of the life-cycle management of working environments at runtime. Con-
ceptually, it is the virtual machine where artifacts and agent bodies are
instantiated and managed that is responsible of executing operations on ar-
tifacts and collecting and routing observable events generated by artifacts
(see Fig. 3 for an abstract representation of a MAS application running on
top of CARTAGO). Some tools are also made available in CARTAGO for on-
line inspection of working environment state, in particular artifact state, and
above the observation of artifact behaviour, in terms operation executed and
events generated.

3 Annotations have been introduced with the 5.0 version of Java.

100 A. Ricci, M. Viroli, and A. Omicini

import alice.cartago.*;

class MyArtifact extends Artifact {
private int m;

@OPERATION void op1(){
m=1;
nextStep("opStepA", "canExecA");

}
@OPERATION void op2(){
m++;
signal("newValue",m);

}
@GUARD boolean canExecA(){
return m == 3;

}
@OPSTEP void opStepA(){
signal("maxReached");
m = 1;

}
}

...
ArtifactId id =

createArtifact("myArtifact", MyArtifact.class);
SensorId sid =

linkSensor(new DefaultSensor());

use(id, new Op("op1"));

while (true){
use(id, new Op("op2"),sid);
Perception p = sense(sid);
if (p.getLabel().equals("maxReached")){

break;
}

}
...

Fig. 2. (Left) A simple type of artifact, with two operations, op1 and op2, the former
composed by two steps, the first one coinciding the beginning of the operation and
the second one, opStepA with guard canExecA triggered by the first step. (Right) A
Java fragment using CARTAGO API to create an artifact, link a sensor, execute the
op1 operation and then repeatedly execute the op2 operation until a maxReached event
is observed. createArtifact and linkSensor are auxiliary actions part of the Java
CARTAGO implementation.

Fig. 3. Abstract representation of a MAS application exploiting CARTAGO

The A&A Programming Model and Technology 101

Further details about CARTAGO API and architecture, along with complete
examples, can be found on the web site.

3.2 Integration with Existing MAS Programming Environments

As mentioned previously, an important aspect of A&A and of technologies such
as CARTAGO is the possibility of integration with existing cognitive MAS archi-
tectures and models / languages / platforms, so as to extend them to create and
work with artifact-based environments.

Actually, most available agent programming models and platforms for devel-
oping general-purpose applications—such as Jason, 3APL, Jadex, JACK, and
others surveied in [3]—lack a true notion of environment, and when such a notion
is accounted for, it is typically modelled and implemented in terms of low-level
interfaces to the hosting VM or OS environment, or by considering a general
monolithic abstraction of “Environment” and of “Event”. This is perfectly rea-
sonable according to the notion of environment as traditionally dealt with in
agent theories. By integrating these platforms with A&A, the environment no-
tion is seamlessly extended with the capability for cognitive agents written in
existing programming environments to create, share and use artifacts accord-
ing to the specific needs, with MAS designers directly programming artifacts
so as to create the best working environments for supporting agent activities.
Also, existing types of artifact can be reused, especially those providing general
purpose functionalities such as the coordination artifacts. Furthermore, from a
conceptual point of view it would be possible and interesting to build MAS ap-
plications composed by heterogeneous agent societies, made of cognitive agents
programmed with different agent languages or architectures, working together
in the same working environments, and interacting through the same mediating
artifacts—besides communicating by means of the same ACL as usual.

In the following subsection we sketch the first results obtained with a concrete
case, concerning the integration of CARTAGO with the Jason agent-oriented
programming platform.

3.3 A Case Study: Jason Using CARTAGO

Jason is an interpreter written in Java for an extended version of AgentSpeak
[4], a logic-based agent-oriented programming language that is suitable for the
implementation of reactive planning systems according to the BDI architecture.
Jason is taken here is as reference case: analogous considerations can be done
using other platforms such as 3APL or Jadex.

By the integration then, it is possible to create a MAS application com-
posed by a set of Jason agents working inside the same CARTAGO environ-
ment. By default, each Jason agent has an agent body inside the CARTAGO
environment, and his basic set of external actions is extended to include the
basic ones abstractly described in Section 2.3. In particular, a Jason agent
can use an artifact by means of use and perceive artifact events collected
by its sensors through sense action, and so on. In current simple integra-
tion model, percepts that are fetched by sense action are mapped to beliefs

102 A. Ricci, M. Viroli, and A. Omicini

MAS cartagoTest {

infrastructure: Centralised

environment: CartagoEnvironment

agents:
rosa philo.asl;
beppo philo.asl;
pippo philo.asl;
maria philo.asl;
giulia philo.asl;
alfredo waiter.asl;

}

/* TABLE ARTIFACT */

import alice.cartago.*;

public class Table extends Artifact {
private boolean[] chops;

public Table(int nchops){
chops = new boolean[nchops];
for (int i = 0; i<chops.length; i++){

chops[i]=true;
}

}
@OPERATION(

guard = "chopsAvailable"
) void getChops(int lc, int rc){

chops[lc] = chops[rc] = false;
signal("chops_acquired");

}
@GUARD boolean chopsAvailable(int lc,int rc){

return chops[lc] && chops[rc];
}
@OPERATION void releaseChops(int lc, int rc){

chops[lc] = chops[rc] = true;
signal("chops_released");

}
}

Fig. 4. (Left) Definition of a Jason MAS called cartagoTest, composed by five philoso-
pher agents (rosa, beppo, pippo, maria, giulia) and a waiter agent (alfredo), sharing
a CARTAGO environment.(Right) Definition of the Table artifact type

of the type artifact event(Type,SensorId,ArtifactId,EventTime), while excep-
tions regarding timeouts elapsed during sense actions to beliefs of the kind
sensing timeout(SensorID).

Hello Philosophers! As a simple integration example, we consider the case
“Hello philosophers” used here with analogous function of the “Hello world”
example for traditional programming languages.

The example refers to the well-known problem introduced by Dijkstra in the
context of concurrent programming to check the expressiveness of mechanisms
and abstractions introduced to coordinate set of cooperating / competing com-
puting agents. Briefly, the problem is about a set of N philosophers (typically 5)
sharing N chopsticks for eating spaghetti, sitting at a round table (so each philoso-
pher share her left and right chopsticks with a friend philosopher on the left and
one on the right). The goal of each philosopher is to live a joyful life, interleaving
thinking activity, for which they actually do not need any resources, to eating ac-
tivity, for which they need to take and use both the chopsticks. The goal of the
overall philosophers society is to share the chopsticks fruitfully, and coordinate
the access to shared resources so as to avoid forms of deadlock or starvation of
individual philosophers—e.g. when all philosophers have one chopstick each. The
social constraint of the society is that a chopstick cannot be used simultaneously
by more than one philosopher.

The problem can be solved indeed in many different ways. By adopting the
A&A perspective, it is natural to model the philosophers as cooperative agents

The A&A Programming Model and Technology 103

/* WAITER AGENT */

!live.
+!live : true
<- .print("Hello world!") ;

.print("Preparing the table...") ;
createArtifact(myTable,"Table",[5]);
.print("The table is ready.") ;
.print("Assigning the chopsticks");
.send("rosa",tell,

chops_assigned(myTable,0,1));
.send("beppo",tell,

chops_assigned(myTable,1,2));
.send("pippo",tell,

chops_assigned(myTable,2,3));
.send("maria",tell,

chops_assigned(myTable,3,4));
.send("giulia",tell,

chops_assigned(myTable,4,0));
.print("Good luck.").

/* PHILOSOPHER AGENT */

!live.
+!live : true

<- .print("Hello world! Waiting to know my chopsticks...").

+chops_assigned(Table,C0,C1) : true
<- .print("I know my chopsticks, I can start my activity.");

+my_chopsticks(Table,C0,C1) ;
+wants_to_live_for_another_round.

+wants_to_live_for_another_round : true <- !think.

+!think : not(hungry)
<- .print("Thinking.");

-wants_to_live_for_another_round; +hungry.

+hungry : my_chopsticks(Table,C1,C2) &
not(got_chopsticks(C1,C2)) &
not(chopsticks_requested(C1,C2))

<- .print("Got hungry, try to eat") ;
use(Table,getChops(C1,C2),mySensor);
+chopsticks_requested(C1,C2);
sense(mySensor,8000).

+artifact_event(chops_acquired,mySensor,Table,EventTime) :
chopsticks_requested(C1,C2)

<- .print("Got chopsticks, can eat.");
-chopsticks_requested(C1,C2);
+got_chopsticks(C1,C2); -hungry;
use(Table,releaseChops(C1,C2),mySensor);
sense(mySensor).

+sensing_timeout(mySensor) : chopsticks_requested(C1,C2)
<- .print("Starved, good bye world.");

.myName(Me); .killAgent(Me).

+artifact_event(chops_released,mySensor,Table,_) :
got_chopsticks(C1,C2)

<- .print("Chopsticks released.");
-got_chopsticks(C1,C2);
+wants_to_live_for_another_round.

Fig. 5. Jason implementation of waiter agents (left) and dining philosopher agents
(right)

and the table—managing the set of chopsticks—as the coordination artifact that
agents share and use to perform their (eating) activities. It is easy to encapsulate
in the table artifact the enactment of the social policy that makes it possible to
satisfy both mutual exclusion for the access on the individual chopsticks, and
avoid deadlock situations. Fig. 5 shows the full executable implementation of
the Jason project (available at CARTAGO web site). It accounts for a MAS file
describing the multi-agent system initially composed by a waiter agent called
alfredo, five philo agents called rosa,beppo,pippo,maria,giulia, working inside
a common CARTAGO working environment. An artifact of type Table is dynam-
ically created and exploited by the agents.

A brief description of the components follows. The waiter agent is responsible
for creating a table identified by myTable with 5 chopsticks, and informing all the
other agents which chopsticks should they use. The usage interface of the table
artifact is composed by only two operations, getChops and releaseChops, which
can be used respectively to get two chopsticks from the table and to give them
back. The inner machinery of the table artifact ensures mutual exclusion on the
access on chopsticks (an artifact executes one operation at a time, analogously to
monitors) and deadlock avoidance (by releasing the chopsticks only if both are
available, enqueueing the pending requests). The source code of the philosopher

104 A. Ricci, M. Viroli, and A. Omicini

in is quite intuitive: after receiving the information about the chopsticks to use,
the philosopher starts a life-cycle interleaving thinking and eating. By thinking,
a philosopher gets hungry. The belief to be hungry triggers the plan to eat: first,
if it does not believe to own the chopsticks, then it suitably interacts with table
to get them, by triggering the getChops operation and start observing the table.
Note that the use action is not blocking: instead sense action can (optionally)
block the agent control flow for a certain amount of time, waiting to get some
stimuli on the specified sensor. If no perception are sensed in this amount of
time, an sensing timeout belief is generated, and the philosopher sadly decides
to die for starvation. When a philosopher perceives that the chopsticks have been
acquired, then it can eat. After completing the eating activity, being no longer
hungry, the philosopher releases the chopsticks by executing the releaseChops

operation and starts thinking again.

3.4 Some Remarks

Some considerations are worth remarking. First the example is not meant to be
as complex as real-world MAS working environments, and in particular it is not
robust to possible failures as it should be—in particular to agent failures in giv-
ing back the chopsticks. Despite its simplicity, the example is useful to give an
idea of the basic A&A philosophy in designing systems balancing the responsibil-
ities among agents and artifacts. Simple alternative solutions to this one would
account for having either an agent playing the role of the table, or avoiding a
table and let agents coordinate through suitable conversation protocols.

With respect to the former one, the A&A approach makes it possible to avoid
the need to design and implement parts of the system with “wrapper” agents
though they are clearly not autonomous neither proactive. We think that this
is very important both from a conceptual point of view—avoiding semantic gap
between analysis and then design and implementation—but also a pragmatical
point of view: it is intuitive that artifacts in general, despite specific cases, are en-
tities largely more lightweight than agents: on the one side, artifacts are typically
passive, with simple mechanisms to trigger and execute operations, and possibly
changing the observable state and generating events; on the other side, agents
typically encapsulate one or multiple control flows, and have complex machin-
ery for managing knowledge, selecting pro-actively actions to do, and so on. So,
adopting artifacts and not agents to represent automatised resources and tools
can be effective from the point of view of maintenaince and performance—in us-
ing time and memory resources— in particular to scale with system complexity
in terms of number of agents and artifacts involved.

With respect to the latter case, we think that the situation is pretty analogous
to human working environments: not always the language and direct communica-
tion is the best way to coordinate the independent activities of individual. There
are cases where well-designed coordination artifacts could be largely more effec-
tive, for instance enabling communication and coordination without requiring a
strong temporal and spatial coupling between agents. Conversely, we think that
the point is to find a way (models and theories) in MAS to use language—i.e.

The A&A Programming Model and Technology 105

direct communication—and artifacts in synergy, as happen in human contexts.
Indeed, we consider this as one of the crucial points that would be worth inves-
tigating in future research on artifacts in MAS.

4 Conclusions and Future Works

The fact that the environment can play an important role in designing and
programming MAS is now a well-known and accepted fact [16]: the point is now
which kind of reference model we should adopt and systematically use to conceive
and design a “good” environment for agent activities, so as to create cognitive
MAS that suitably exploit such an environment to perform their individual and
social activities. An important point here is abstraction: it is opinion of the
authors that reference models should aim not merely at identifying mechanisms
and/or architectures, but first of all at framing the issue of MAS environment in
terms of new abstractions introduced with respect to the basic agent and MAS
meta-model—and the related theoretical foundation.

By drawing inspiration from human cooperative working environments, in
this paper we propose a general conceptual framework called A&A, which makes
it possible to entail such design in terms of set of suitably designed artifacts,
populating workspaces and constituting in the overall the MAS working envi-
ronment. Then we discuss current technologies—among which the prominent
one is called CARTAGO—that make it possible to prototype MAS applications
exploiting artifact-based working environments. Finally, we consider the issue of
integration of such technologies with existing MAS cognitive environments, by
adopting as a reference case the Jason programming platform, towards scenarios
in which MAS composed by intelligent agents—possibly developed with differ-
ent agent programming languages or architectures—suitably share and exploit
artifact-based working environments to interact and cooperate.

Indeed, in this paper we introduced and described just the basic—and some-
what simplest—points concerning A&A and the notion of artifacts in MAS: sev-
eral other important points have not being considered either for lack of space
or because they are still part of the future work. Among the many others, two
main ones are worth to be pointed out here: artifact composition (linkability)
and intelligent use of artifacts. Concerning this second point in particular, the-
oretical work on models and theories for the cognitive use of artifacts is still
in its infancy. The objective here is to find on the one side suitable languages
and theoretical frameworks to formally describe—in particular— the function
of artifacts, their operating instructions and more generally artifact observable
state, so as to make them useful and effective in agent reasoning; on the other
side, revisiting agent reasoning model and techniques so as to exploit as much
as possible the availability of working environments suitably designed to help
their activities. Existing work on MAS in semantic web and the research work
investigating human and autonomous agents reasoning on (real-world) tools [2]
indeed could provide useful insights to face the problem.

106 A. Ricci, M. Viroli, and A. Omicini

References

1. Agre, P., Horswill, I.: Lifeworld analysis. Journal of Artificial Intelligence Reser-
ach 6, 111–145 (1997)

2. Amant, R.S., Wood, A.B.: Tool use for autonomous agents. In: Veloso, M.M.,
Kambhampati, S. (eds.) AAAI/IAAI 2005 Conference, Pittsburgh, PA, USA, July
9–13, 2005, pp. 184–189. AAAI Press / The MIT Press (2005)

3. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica 30, 33–44 (2006)

4. Bordini, R.H., Hübner, J.F.: BDI agent programming in AgentSpeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006)

5. Kirsh, D.: The intelligent use of space. Artif. Intell. 73(1-2), 31–68 (1995)
6. Kirsh, D.: Distributed cognition, coordination and environment design. In: Euro-

pean conference on Cognitive Science, pp. 1–11 (1999)
7. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer

Interaction. MIT Press, Cambridge (1996)
8. Norman, D.: Cognitive artifacts. In: Carroll, J. (ed.) Designing interaction: Psy-

chology at the human–computer interface, pp. 17–38. Cambridge University Press,
New York (1991)

9. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. Electronic Notes in Theoretical Computer Sciences 150(3), 21–36 (May 29,
2006), In: Proceedings of 1st International Workshop Coordination and Organiza-
tion (CoOrg 2005), COORDINATION 2005, Namur, Belgium, (April 22, 2005)

10. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: AAMAS 2004,
vol. 1, pp. 286–293. ACM, New York (2004)

11. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with Artifacts. In: Bor-
dini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.) PROMAS 2005. LNCS
(LNAI), vol. 3862, pp. 206–221. Springer, Heidelberg (2006)

12. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

13. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer Supported Cooperative Work 5(2/3),
155–200 (1996)

14. Viroli, M., Holvoet, T., Ricci, A., Schelfthout, K., Zambonelli, F.: Infrastructures
for the environment of multiagent systems. Autonomous Agents and Multi-Agent
Systems 14(1), 49–60 (2007)

15. Viroli, M., Omicini, A., Ricci, A.: Infrastructure for RBAC-MAS: An approach
based on Agent Coordination Contexts. Applied Artificial Intelligence 21(4–5),
443–467 (April 2007) Special Issue: State of Applications in AI Research from
AI*IA 2005

16. Weyns, D., Parunak, H.V.D. (eds.): Journal of Autonomous Agents and Multi-
Agent Systems. Special Issue: Environment for Multi-Agent Systems 14(1) (2007)

	Introduction
	Programming Model Building Blocks
	Artifacts and Workspaces
	Agent Bodies
	The Agent Programming Interface
	The Artifact Programming Interface

	Prototyping Technologies
	CARTAGO Overview
	Integration with Existing MAS Programming Environments
	A Case Study: Jason Using CARTAGO
	Some Remarks

	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

