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Abstract. In human society, almost any cooperative working context accounts
for different kinds of object, tool, artifact in general, that humans adopt, share and
intelligently exploit so as to support their working activities, in particular social
ones. According to theories in human sciences such as Activity Theory, such enti-
ties have a key role in determining the success or failure of the activities, playing
an essential function in simplifying complex tasks and—more generally—in de-
signing solutions that scale with activity complexity. Analogously to the human
case, we claim that also (cognitive) multi-agent systems (MAS) could greatly
benefit from the definition and systematic exploitation of a suitable notion of
working environment, composed by different sorts of artifacts, dynamically con-
structed, shared and used by agents to support their working activities. Along
this line, in this paper we describe a programming model called A&A (Agents
and Artifacts), which aims at directly modelling and engineering such aspects in
the context of cognitive MAS. Besides the conceptual framework, we present
the current state of prototyping technologies implementing A&A principles—
CARTAGO platform in particular—, and show how they can be integrated with
existing cognitive MAS programming frameworks, adopting the Jason program-
ming platform as the reference case.

1 Introduction

“Artifacts play a critical role in almost all human activity [...]. Indeed [...]
the development of artifacts, their use, and then the propagation of knowledge
and skills of the artifacts to subsequent generations of humans are among the
distinctive characteristics of human beings as a specie”, Donald Norman, [9]
“The use of tools is a hallmark of intelligent behaviour. It would be hard to
describe modern human life without mentioning tools of one sort or another”,
Robert Amant, [2]

In their articles, Norman [9] and Amant [2] remark—in different contexts—the funda-
mental role that tools and, more generally, artifacts play in human society. Artifacts and
tools here could be understood as whatever kinds of device explicitly designed and used
by humans so as to mediate and support their activities, especially social. Analogous ob-
servations are found in the work of Agre and Horsewil in their Lifeworld analysis [1],
as well as in the work of Kirsch [6, 7]. Actually, such a perspective is central in theories



developed in the context of human sciences, such as Activity Theory and Distributed
Cognition, and currently taken as a reference by computer science related disciplines
such as CSCW (Computer Supported Cooperative Work) and HCI (Human-Computer
Interaction) [8]. There, a fundamental point is devising out the best kind of artifacts to
populate humans’ fields of works, and to organise them so as to improve as much as
possible the performance of their activities, in particular coordinative ones [17, 7].

Analogously to human society, we think that such a perspective is and will be fun-
damental also in the context of agent societies, and in particular for designing and pro-
gramming complex software systems based on cognitive MAS. Quite provocatively,
analogously to the human case, we think that the next evolution step in the devel-
opment of cognitive MAS will mandatorily require the definition of MAS models
and architectures with agents situated in suitable working environments. There, agents
autonomously—besides speaking to each others—construct, share, and co-operatively
use different kinds of artifact, designed either by MAS designers or by the agent them-
selves, to perform MAS activities. Indeed, this notion of environment is quite differ-
ent with respect to the one traditionally adopted in mainstream cognitive agent theory:
there, the environment is typically conceived as something “out of the MAS”, then not
a subject of design. On the contrary, the notion of “working environment” promotes
MAS environment as an essential part of the MAS to be explicitly designed and fruit-
fully exploited by agents in their working activities.

Along this line, in this paper we introduce and discuss a first programming model
called A&A (Agents and Artifacts) which aims at directly modelling and engineering
working environments in the context of cognitive multi-agent systems. Such a perspec-
tive is strenghtened by recent efforts in AOSE (Agent-Oriented Software Engineer-
ing) that remark the fundamental role of the environment for the engineering of MAS
[18]. The A&A approach can be considered an instance of such approaches, with some
specific peculiarity: (i) abstractions and generality—the aim is to find a basic set of
conceptual abstractions and related theory which, analogously to the agent abstraction,
could be general enough to be the basis to define concrete architectures and program-
ming environments, but specific enough to capture the essential properties of systems;
(ii) cognitive—analogous to designed environments in human society, the properties
of such environment abstractions should be conceived to be suitably and effectively
exploited by cognitive agents, as intelligent constructors / users / manipulators of the
environment. Actually, artifacts can be suitable used to design and program working
environment in MAS with heterogeneous agent types, including agents not necessarily
classified as intelligent or cognitive.

Besides the abstract programming model, in this paper we describe also the concrete
technologies developed to experiment the model: in particular we discuss CARTAGO
technology, a platform for programming and supporting the execution of artifact-based
working environments, developed on top of the Java platform, and its integration with
the Jason agent programming environment.

The remainder of the paper is organised as follows. First, we provide a description
of the basic concepts and principles of A&A (Section 3), by introducing an abstract
model embedding such principles (Section 3.3). Then, we briefly present the current
models and technologies that have been developed for concretely prototyping MAS



Fig. 1. (Left) Abstract representation of an artifact. (Right) Abstract representation of a working
environment with two workspaces, with some artifacts of different kinds inside.

applications in the A&A perspective (Section 4), focussing on CARTAGO in particular.
In Section 5 we discuss the issue concerning the integration of CARTAGO with existing
MAS programming platforms, taking Jason as a case study. Finally, we conclude the
paper with some final remarks, and sketch some future line of work (Section 6).

2 Related Works

Actually, the basic notion of artifact has been already introduced and published in previ-
ous papers [15, 11, 12], and the same applies for the first version of CARTAGO technol-
ogy [16, 14]. On the one side—besides purely conceptual papers such as [11]—papers
such as [15, 12] can be considered first steps introducing the concept of artifact for pro-
gramming MAS, without having a reference programming model defined here—called
A&A—and related functioning technologies, i.e. CARTAGO, that can be integrated to
existing platforms. In particular, in [15] the first model of artifact is implemented on
top of ReSpecT tuple centres [10]. On the other side, the artifact programming model
and its implementation in CARTAGO technologies has been substantially evolved with
respect to the one described in [16]. In particular, the basic model of usage-interface
and operation instructions presented in [16, 14] is quite simple and is not able to prop-
erly take into account the possibility to have the concurrent execution of operations
on the same artifact (the interested reader is forwarded to the paper for the details).
Such a model has been completely revised, and this new version—which substantially
changes the approach used by MAS programmers to program artifact operations and
behaviour—is described in detail in this work. Besides this, the work published in [16]
is more oriented on the environment / infrastructure level: in this paper instead, besides
describing in detail CARTAGO, we focus more on the A&A programming model and
CARTAGO is described as an existing functioning technology supporting such a model.
Finally, in this is paper—as a new important contribution—a first concrete working ex-
ample of integration with an existing MAS programming platform—that is Jason—is
described.



3 A&A Programming Model Building Blocks

3.1 Artifacts and Workspaces

A working environment in A&A is defined as the part of the MAS that is designed and
programmed by MAS programmers and dynamically instantiated and used by agents to
support their working activities. A working environment is conceived as a dynamic set
of artifacts, organised in workspaces. Workspaces are the logical containers of artifacts,
useful to define the topology of the working environment. A workspace provides a
notion of locality for agents: an agent can participate to one or multiple workspaces,
and can work with those artifacts belonging to such workspaces only. This concept can
be used to define the distribution model of an application at an abstract level: a working
environment—which corresponds to a (possibly distributed) application or MAS—can
account for one or multiple workspaces, and an individual workspace can be either
mapped onto a single node of the network or spread among multiple nodes.

The notion of artifact is the core abstraction of the programming model: it is meant
to represent any passive entity belonging to the working environment—hence existing
outside the agent mind—that is created, shared & used (and eventually disposed) by
agents to carry on their activities, in particular social ones. An artifact (type) is typically
meant to be explicitly designed by MAS engineers so as to encapsulate some kind of
function, here synonym of “intended purpose”. More on this notion can be found in
[15].

An abstract representation of an artifact is shown in Fig. 1 and it is very similar to
artifacts as found in human society: artifact function—and related artifact behaviour—
is partitioned in a set of operations, which agents can trigger by acting on artifact usage
interface. The usage interface provides all the controls that make it possible for an agent
to interact with an artifact, triggering and controlling the execution of operations and
perceiving observable events generated by the artifact itself, as a result of operation
execution and evolution of its state. Such a model strictly mimics the way in which
humans use their artifacts: a simple example is the coffee machine, whose usage inter-
face includes suitable controls—such as the buttons—and means to make (part of) the
machine behaviour observable—such as displays—and to collect the results produced
by the machine—such as the coffee can.

Analogously to the human case, in A&A each artifact type can be equipped by the
artifact programmer with a manual composed essentially by the function description—
as the formal description of the purpose intended by the designer—, the usage inter-
face description—as the formal description of artifact usage interface and observable
states—, and finally the operating instructions—as the formal description of how to
properly use the artifact so as to exploit its functionalities. Usage interface description
is just a description of the controls—analogously to the description of which buttons
and displays the coffee machine has—, while operating instructions describe the usage
protocols, to exploit such controls. Such a manual is meant to be essential for creating
open systems with intelligent agents that dynamically discover and select which kind of
artifacts could be useful for their work, and then can use them effectively even if they
have not pre-programmed by MAS programmers for the purpose.



It’s worth remarking here the similarities and differences between the artifact ab-
straction and the general notion of service. On the one side, artifacts can be seen indeed
as a natural way to implement services, without the need to agentify them as typically
happens in service-based agent approaches. On the other side, typically services are
conceived as a purely architectural concept: here instead, artifacts are meant to be the
basic building block complimentary to the agent abstraction defining a new extended
agent programming model. Then, typically a service can be designed and implemented
on top of multiple artifacts and agents.

3.2 Agent Bodies

In this overall picture, nothing is said about the specific (cognitive) model of the agent:
actually A&A is meant to be orthogonal to this aspect: agents are simply conceived as
autonomous entities executing some kinds of working activity, either individually or
collectively—typically in order to achieve some individual or social goal, or to fulfill
some individual or social task. Such activities—from an abstract point of view—are
seen as the execution of sequences of actions, which according to the A&A model can
be roughly classified as: (i) internal actions, (ii) communicative actions, involving direct
communications with one or more agents through some kind of ACL, and (iii) pragmat-
ical actions, as interactions within the working environment that concern construction,
sharing, and use of artifacts.

Despite of their specific model / architecture, in order to execute actions over an
artifact and perceive observable events, agents must be situated in the working environ-
ment: for this purpose, the notion of agent body is introduced. The agent body functions
as the medium through which the agent mind—i.e. the part that is designed and pro-
grammed according to a certain kind of cognitive model / architecture—can sense and
affect a working environment. Agent bodies are essential to decouple—for engineering
purposes—the agent mind from the working environment in which the agent is situated,
so as to be able to use A&A with different kinds of programming model for the agent
mind, including both intelligent agent and reactive / mobile / general agent models.

3.3 The Agent Programming Interface

In this subsection we provide an abstract description of the basic interface available to
agent minds to play inside a working environment. In the abstract model, each artifact
is instance of some artifact type, which is the template specified by MAS programmers,
defining artifact structure and behaviour. Each artifact instance has a unique logical
name and a unique identifier, denoted in the following by AID. The logical name is given
by the programmer, while the identifier is chose by the system. Also workspaces have
a logic name and are identified by a unique workspace identifier, denoted by WspID.

Agent bodies are meant to contain effectors to perform actions upon the working
environment, and a dynamic set of sensors to collect stimuli from the working environ-
ment. Different types and number of sensors can be attached to an agent body, each one
identified by its own sensor identifier, denoted by SID.

The interface accounts for a (minimal) set of primitives that can be grouped as
follows:



Artifacts construction, discovery and disposal

– createArtifact(Name,TypeID,Conf,WspID) — to create a new artifact called Name,
of type TypeID, with a starting configuration represented by Conf, in the workspace
identified by WsdID.

– getArtifactID(Name,WspID):AID — to get the identifier of an existing artifact, given
its name

– disposeArtifact(AID) — to dispose an existing artifact

Workspace construction, discovery and disposal

– createWorkspace(Name) — to create a new workspace called Name in the working
space

– getWorkspaceID(Name):WspID — to get the identifier of an existing workspace,
given its logical name

– disposeWorkspace(WspID) — to dispose an existing workspace

Artifact use and observation

– execOp(AID,Op(Name,Params),SID) — to trigger the execution of an operation on
an artifact given its identifier AID, specifying operation name and parameters, and
the sensor, identified by SID, to collect corresponding events (if any) as generated
by the artifact

– sense(SID,Filter,Timeout):Perception — to actively perceive a possible observable
event collected by the sensor SID, applying some kind of filter Filter, for a timeframe
of maximum Timeout time units;

– focus(AID,SID) — to start observing persistently an artifact identified by AID, col-
lecting all the possible observable events generated by the artifact on the sensor
identified by SID;

– unfocus(AID,ID) — to stop observing an artifact, previously focussed by a focus
action.

Artifact inspection

– getFD(AID):FD — to retrieve the function description representation of a specific
artifact;

– getOI(AID):OI — to retrieve the operating instructions representation of a specific
artifact;

– getObsState(AID):ObsState — to retrieve the observable state representation of a
specific artifact.

Sensors management

– linkSensor(SensorType):SID — to link a new sensor of type SensorType to the
agent body, getting an identifier of it;

– unlinkSensor(SID) — to unlink a previously linked sensor from the agent body.

The primitives are modelled as actions available to the agent mind to pilot the agent
body and, at the end, to play inside the working environment. All actions are meant
to be atomic, i.e. executed as atomic steps of the agent activity, and in general can



succeed—eventually with a result information—or fail. Note that this abstract model is
meant to be as much as possible orthogonal to the model(s) adopted for defining agent
mind at the agent level. This should make it easier to integrate A&A concrete models
and technologies with existing agent technologies—as described in Section 5.

3.4 The Artifact Programming Interface

Besides the API to use artifacts, a programming model for defining artifact types is
given. An artifact type or template defines the structure and behaviour of artifact in-
stances of such a type.

For some extent, an artifact type is quite similar to the notion of class in Object-
Oriented Programming, with artifacts analogous to objects, and to the notion of monitor,
as defined in concurrent programming. As in the case of objects, instance variables
(or fields) define the artifact inner state and working machinery hidden to agent users.
The behaviour is structured in a set of operations, which define–in the overall—artifact
function. An operation encapsulates the computational and interaction behaviour—such
as the update of the internal state and the generation of observable events—so as to
provide some kinds of functionality. Operations execution is triggered and controlled
by acting on the controls which are part of the artifact usage interface.

In order to enforce mutual exclusion in updating artifact state on the one side—as
in the case of monitors—and allow for concurrent operations execution on the other
side, artifact operations can be composed by one or multiple operation steps, which are
meant to be executed atomically. At a given time only one operation (step) can be in
execution: multiple operations can be executed concurrently by interleaving their steps,
and also the same operation can have multiple calls that are executed concurrently. For
each step a guard can be defined, which specifies when the step—once it has been
triggered in the context of an operation—can actually be executed. Guards represent
the condition that must be satisfied, as a predicate over the artifact state, to execute
a step. So, an operation (step) is first triggered when an agent executes an execOp
action, then it is actually executed when the guard is satisfied. A step can trigger other
steps. An operation is considered completed when there are no more triggered steps
whose execution is pending. In the overall, this model makes it possible to design a
complex articulated operation, that—for instance—can be controlled by using different
controls in different times in the user interface before being completed, or—as another
example—would need the execution of other operations to complete.

Besides the analogies with classes and monitors, it’s worth remarking here the
strong, in particular for what concerns the interaction model: by virtue of agent au-
tonomy, artifact operation (step) execution does not involve any control flow from the
invoker agent to the invoked artifact, since it is not a method or function call like in
object-oriented programming. In other words, the execution of an execOp action for the
agent over an artifact is never blocking: the concrete execution of operations (steps) is
served not by a thread of control of the agent.

The usage interface of an artifact can change according to artifact observable state,
exposing different sets of operations according to the specific functioning state of the
artifact. The notion of observable state is adopted to structure the behaviour of an arti-
fact in a set of labelled states, that can be recognised (observed) by the artifact users.



For each artifact type a finite set of labelled observable states can be defined. Each
artifact instance has a current observable state, whose value can change dynamically,
during artifact functioning. For each observable state a different usage interface can be
defined: this feature makes it possible to set the appropriate usage interface according
to the functioning stage of the artifact. Dynamically, an agent can trigger the execution
of an operation on an artifact if and only if the operation is (in that moment) part of the
usage interface; if the operation is not part the usage interface, the agent action fails.
It’s worth remarking that such observable state notion can be used only when necessary:
typically simple artifacts have a single implicit observable state, which needs not to be
explicitly specified.

Finally, analogously to the agent API, some primitives are available to program
artifact behaviour:

– genEvent(EventType, { Content }) — to generate an event of type EventType, possi-
bly carrying an information content given by Content. The event is made observable
to the agent that triggered the operation where the primitive is used, and to all the
agents focussing (observing) the artifact.

– setObservableState(StateID) — to set current observable state of the artifact to be
StateID.

The abstract model will be more clear by considering concrete examples provided in
next section, describing first technologies implementing such a programming model.

4 Prototyping Technologies: CARTAGO

Starting from the A&A abstract model, some technologies have been developed, with the
objective to have concrete frameworks for prototyping MAS-based applications engi-
neered upon A&A basic abstractions, and for being integrated with existing agent tech-
nologies extended with the A&A support. A fist one is is called CARTAGO (Common
ARtifact Infrastructure for AGent Open environment), and it is a platform for program-
ming and running artifact-based working environment. A second one is called simpA
(simple A&A programming environment), and it is platform extending CARTAGO
with a support for defining and running agents (MAS) besides the working environ-
ments. While CARTAGO is meant to be integrated with existing (cognitive) agent mod-
els and technologies as a seamless support to define and create artifact-based working
environments, simpA can be exploited alone to develop full-fledged applications en-
gineered in terms of agents, artifacts and workspace. For lack of space, in this paper
simpA is not described: the interested reader can refer to simpA web site1. Both tech-
nologies are based on Java and are available as open-source projects freely download-
able from the project web sites2.

CARTAGO has been already introduced in previous papers [16, 14], and its model
and technology—briefly described in the following—have been substantially evolved
since such first steps.

1 http://www.alice.unibo.it/projects/simpa
2 http://www.alice.unibo.it/projects/cartago



The CARTAGO architecture implements quite faithfully the abstract model de-
scribed in Section 3.3. Pragmatically, we chose Java as the programming language to
implement and map the programming model elements, adopting choices that would
favour rapid prototyping, reusing as much as possible the support given by the Java
object-oriented platform. CARTAGO is composed by three main parts:

– API for creating and interacting with artifact-based working environments — This
API is meant to extend the existing basic set of agent actions with new ones, ab-
stractly described in Section 3.3, essentially for creating and disposing artifacts,
interacting with them through their usage interface—by executing operation and
perceiving artifact observable states and events—reading artifact function descrip-
tion and operating instructions, managing sensors, and so on.

– API for defining artifact types — This API allows MAS programmers to develop
new types of artifacts. An artifact type can be defined by extending the basic
Artifact class provided in the API: at runtime, artifacts instances are instances
of this class. Artifact structure (internal state) is defined in terms of instance fields
of the class. Operations and operations steps body is defined by methods tagged
by @OPERATION and @OPSTEP3. Guards are represented by boolean method an-
notated with the @GUARD annotation. Methods representing operations / operation
steps have no return argument—a return argument would be meaningless in the
A&A model. Observable events—which are the means to make agents perceive op-
eration results—can be generated in the body of an operation by primitives of the
kind genEvent, available as protected methods of the artifact. Events are collected
by agent body sensors as stimuli, and then perceived by agents through sense ac-
tion. Artifact function description and operating instructions, as well as the list of
the observable states, can be explicitly declared through the @ARTIFACT MANUAL

annotation preceding the artifact class declaration.
A simple example of artifact definition is shown in Fig. 2: a simple type
MyArtifact is defined, with an internal variable m and two operations, op1 and
op2, the former composed by two steps, a first one—triggered when the execOp ac-
tion is invoked—and a second one—opStepA—triggered by the first with the invo-
cation of the nextOp primitive and executed when the guard canExecA is true. The
operation op1 initialized the variable to 1 and then completes only when the vari-
able value reaches the value 3, a condition that triggers the execution of the second
step which generates the observable event maxReached. Each time the operation
op2 is executed, the variable is incremented and an observable event newValue
generated. More complex and useful examples can be found in CARTAGO distri-
bution.

– Runtime environment and related tools — This is the part actually responsible of
the life-cycle management of working environments at runtime. Conceptually, it is
the virtual machine where artifacts and agent bodies are instantiated and managed
that is responsible of executing operations on artifacts and collecting and routing
observable events generated by artifacts. Some tools are also made available in
CARTAGO for online inspection of working environment state, in particular arti-

3 Annotations have been introduced with the 5.0 version of Java.



import alice.cartago.*;

class MyArtifact extends Artifact {
private int m;

public MyArtifact(){
}

@OPERATION void op1(){
m=1;
nextStep("opStepA", "canExecA");

}
@OPERATION void op2(){

m++;
genEvent("newValue",m);

}
@GUARD boolean canExecA(){

return m == 3;
}
@OPSTEP void opStepA(){

genEvent("maxReached");
m = 1;

}
}

...
ArtifactId id =
createArtifact("myArtifact",

"MyArtifact");
SensorId sid =
linkSensor(new DefaultSensor());

execOp(id, new Op("op1"),sid);

while (true){
execOp(id, new Op("op2"),sid);
Perception p = sense(sid);
if (p.getType().equals("maxReached")){
break;

}
}
...

Fig. 2. (Left) A simple type of artifact, with two operations, op1 and op2, the former composed
by two steps, a first one—triggered when the execOp action is invoked—and a second one—
opStepA—triggered by the first with the invocation of the nextOp primitive and executed
when the guard canExecA is true. (Right) A Java fragment using CARTAGO API to create an
artifact, link a sensor, execute the op1 operation and then repeatedly execute the op2
operation until a maxReached event is observed.

fact state, and above the observation of artifact behaviour, in terms operation exe-
cuted and events generated.

The support for workspaces is still under development at the time of writing, and will be
part of next CARTAGO release. Further details about CARTAGO API and architecture,
along with complete examples, can be found on the web site.

5 Integration with Existing MAS Programming Frameworks

As mentioned previously, an important aspect of A&A and of technologies such as
CARTAGO is the possibility of integration with existing cognitive MAS architectures
and models / languages / platforms, so as to extend them to create and work with
artifact-based environments. Actually, most available agent programming models and
platforms for developing general-purpose applications—such as Jason, 3APL, Jadex,
JACK, and others surveied in [3]—do not directly provide high-level rich abstractions
to model and design the notion of environment, in particular environment as a set of
suitably resources available to agents. When such a notion is accounted for, it is typi-
cally modelled and implemented in terms of low-level interfaces to the hosting VM or
OS environment, or by considering a general monolithic abstraction of “Environment”
and of “Event”. This is perfectly reasonable according to the notion of environment as
traditionally dealt with in agent theories. By integrating these platforms with A&A, the
environment notion is seamlessly extended with the capability for (possibly cognitive)



agents written in existing programming environments to create, share and use articu-
lated working environments, enabling MAS engineers to directly design and program
artifacts so as to create the best working environments for supporting agent activities.
Also, existing types of artifact can be reused, especially those providing general purpose
functionalities, such as coordination artifacts. Generally speaking, from a conceptual
point of view it would be possible and interesting to build MAS applications composed
by heterogeneous agent societies, made of agents programmed with different agent lan-
guages or architectures, working together in the same working environments, and inter-
acting through the same mediating artifacts—besides communicating by means of the
same ACL as usual.

A key component for the integration is played by the agent body, acting as an inter-
face between the agent mind and CARTAGO artifact based working environment. So,
conceptually the integration with any possible MAS programming framework could be
possible in principle by extending the basic set of agent actions with those for accessing
and controlling the agent body.

In the following subsection we consider a concrete case, which concerns the inte-
gration of CARTAGO with the Jason agent-oriented programming platform.

5.1 A Case Study: Jason using CARTAGO

Jason is an interpreter written in Java for an extended version of AgentSpeak [4], a
logic-based agent-oriented programming language that is suitable for the implementa-
tion of reactive planning systems according to the BDI architecture. Jason is taken here
is as reference case: analogous considerations can be done using other platforms such
as 3APL [5] or Jadex [13].

Jason natively supports a general notion of customisable environments—called
“simulated environments”—, which can be programmed by users specifying which
actions are available to agents, their effect, and the perceptions generated. In partic-
ular, a user can provide its own implementation of a simulated environment by defin-
ing a Java class that extends the Jason Environment class, overriding the methods
getPercepts and executeActions, establishing the agent perceptions generated by
the environments and the effects of action execution.

The integration with A&A concepts and CARTAGO technology in particular is then
straightforward—both from a theoretical and pragmatical point of view—though quite
useful. From a theoretical point of view, integrating CARTAGO accounts for extend-
ing the basic set of agents external actions and related perceptions, including the one
listed in Section 3.3. From a pragmatical point of view, this is done simply by defin-
ing a class, called CartagoEnvironment, extending Jason Environment class and
suitably overriding getPerceptions and executeActions methods so as to work
as adapter for exploiting CARTAGO API. The class is not show here for lack of space:
the interested reader can find it on CARTAGO web-site. CartagoEnvironment is a
base class for defining application-specific environments, which specifies in its con-
structor the initial configuration of the working environment when booting the system,
in particular in terms of the initial set of artifacts available to agents.

By the integration then, it is possible to create a MAS application composed by a
set of Jason agents working inside the same CARTAGO environment. By default, each



Jason agent has an agent body inside the CARTAGO environment, and his basic set of
external actions is extended to include the basic ones abstractly described in Section 3.3.
In particular, a Jason agent can create artifacts through createArtifact action, link /
unlink sensors to its body through linkSensor and unlinkSensor, can use an artifact
by means of execOp and perceive artifact events collected by its sensors through sense
action, and so on. Perceptions that are fetched by sense action are mapped to beliefs
of the type artifact perception(Type,SensorId,ArtifactId,EventTime),
while exceptions regarding timeouts elapsed during sense actions to beliefs of the kind
sensing timeout(SensorID).

5.2 Hello Philosophers!

As a simple integration example, we consider the case “Hello philosophers” used here
with analogous function of the “Hello world” example for traditional programming
languages.

The example refers to the well-known problem introduced by Dijkstra in the context
of concurrent programming to check the expressiveness of mechanisms and abstractions
introduced to coordinate set of cooperating / competing computing agents. Briefly, the
problem is about a set of N philosophers (typically 5) sharing N chopsticks for eating
spaghetti, sitting at a round table (so each philosopher share her left and right chopsticks
with a friend philosopher on the left and one on the right). The goal of each philosopher
is to live a joyful life, interleaving thinking activity, for which they actually do not need
any resources, to eating activity, for which they need to take and use both the chopsticks.
The goal of the overall philosophers society is to share the chopsticks fruitfully, and
coordinate the access to shared resources so as to avoid forms of deadlock or starvation
of individual philosophers—e.g. when all philosophers have one chopstick each. The
social constraint of the society is that a chopstick cannot be used simultaneously by
more than one philosopher.

The problem can be solved indeed in many different ways. By adopting the A&A
perspective, it is natural to model the philosophers as cooperative agents and the table—
managing the set of chopsticks—as the coordination artifact that agents share and use to
perform their (eating) activities. It is quite natural to encapsulate in the table artifact the
enactment of the social policy that makes it possible both to satisfy mutual exclusion
for the access on the individual chopsticks, and—the most challenging part—to avoid
deadlock situations. In particular deadlock is avoided since a chopstick is released to a
philosopher if and only if (when) both the chopsticks required by the agent are available
are available.

Fig. 3 shows the full executable implementation of the Jason project (available
at CARTAGO web site). It accounts for a MAS file describing the multi-agent sys-
tem initially composed by a waiter agent called alfred, five philo agents called
rosa,beppo,pippo,maria,giulia, working inside a common CARTAGO work-
ing environment. An artifact of type Table is dynamically created and exploited by the
agents.

A brief description of the components follows. The waiter agent is responsible
for creating a table identified by myTable with 5 chopsticks, and informing all the
other agents which chopsticks should they use. The usage interface of the table artifact



is composed by only two operations, getChops and releaseChops, which can be
used respectively to get two chopsticks from the table and to give them back. The inner
machinery of the table artifact ensures mutual exclusion on the access on chopsticks
(an artifact executes one operation at a time, analogously to monitors) and deadlock
avoidance (by releasing the chopsticks only if both are available). The source code of
the philosopher is quite intuitive: after receiving the information about the chopsticks
to use, the philosopher starts a life-cycle interleaving thinking and eating. By thinking,
a philosopher gets hungry. The belief to be hungry triggers the plan to eat: first, if
it does not believe to own the chopsticks, then it suitably interacts with table to get
them, by triggering the getChops operation and start observing the table. Note that the
execOp action is not blocking: instead sense action can (optionally) block the agent
control flow for a certain amount of time, waiting to get some stimuli on the specified
sensor. If no perception are sensed in this amount of time, an sensing timeout belief is
generated, and the philosopher sadly dies for starvation. When a philosopher perceives
that the chopsticks have been acquired, then it can eat. After completing the eating
activity, being no longer hungry, the philosopher releases the chopsticks by executing
the releaseChops operation and starts thinking again.

The example, despite being simple, is quite effective in showing the usefulness of
designing suitable coordination artifacts in programming MAS. At a more conceptual
level, it remarks that—analogously to what happens in human working environments—
not always the language and direct communication are the best way to coordinate the
independent activities of individual. There are cases where well-designed coordination
artifacts could be largely more effective, for instance enabling communication and co-
ordination without requiring a strong temporal and spatial coupling between agents.
Conversely, we think that the point is to find a way (models and theories) in MAS to
use language—i.e. direct communication—and artifacts in synergy, as happens in hu-
man contexts. Indeed, we consider this as one of the crucial points that would be worth
investigating in future research on artifacts in MAS.

As a last remark, a different solution with a table artifact providing operations to get
and release chopsticks individually—so with getChop and releaseChop in the usage
interface—could have been used, with a slightly different coordinating policy inside
(based on allowing only N-1 philosophers to have access to chopsticks at a time, if N is
the number of seats): despite of the specific implementation, the important point here is
that you can model such issue with explicit suitable programmed abstraction.

6 Conclusions and Future Works

The fact that the environment can play an important role in designing and programming
MAS is a quite accepted fact [19]: the point is now which kind of reference model we
should adopt and systematically use to conceive and design a “good” environment for
agent activities, so as to create cognitive MAS that suitably exploit such an environment
to perform their individual and social activities.

By drawing inspiration from human cooperative working environments, in this
paper we proposed a general conceptual framework called A&A, which makes it
possible to entail such design in terms of set of suitably designed artifacts, popu-



lating workspaces and constituting—in the overall—the MAS working environment.
Then, we discussed current technologies—among which the prominent one is called
CARTAGO—that make it possible to prototype MAS applications exploiting artifact-
based working environments. Finally, we considered the issue of integration of such
technologies with existing MAS cognitive environments, by adopting as a reference
case the Jason programming platform, towards scenarios in which MAS composed by
intelligent agents—possibly developed with different agent programming languages or
architectures—suitably share and exploit artifact-based working environments to inter-
act and cooperate.

Indeed, in this paper we introduced and described just the basic points concerning
A&A and the notion of artifacts in MAS: several other important points have not being
considered either for lack of space or because theyr still part of the future work. Among
the many others, two main ones are worth to be pointed out here: intelligent use of
artifacts and artifact composition (linkability).

About the former point, the theoretical work on models and theories for the cogni-
tive use of artifacts is still in its infancy. The objective here is to find on the one side
suitable languages and theoretical frameworks to formally describe—in particular— the
function of artifacts, their operating instructions and more generally artifact observable
state, so as to make them useful and effective in agent reasoning; on the other side,
revisiting agent reasoning model and techniques so as to exploit as much as possible
the availability of working environments suitably designed to help their activities. Ex-
isting work on MAS in semantic web and the research work investigating human and
autonomous agents reasoning on (real-world) tools [2] indeed could provide useful in-
sights to face the problem.

For the latter point, introducing principles and models for artifact composition is
essential if we aim at applying A&A to large complex systems. Again, human work-
ing environments are a great source of inspiration. In our society, most of the artifacts
and tools in our working environments have been designed to be composable with other
artifacts, to create more complex articulated artifacts. So, intuitively, besides a usage in-
terface that is meant to be exploited by artifact cognitive users, artifacts can be equipped
by an other kind of interface, a sort of link interface, which would make it possible to
link the artifact with other ones, for I/O interactions. It is clear that the properties of
such a linking interface are in principle different from the properties of the usage in-
terface. Also for this issue, existing literature—in particular in the context of CSCW
[17]—will provide useful insights to investigate the problem.
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MAS cartagoTest {

infrastructure: Centralised

environment: CartagoEnvironment

agents:
rosa philo.asl;
beppo philo.asl;
pippo philo.asl;
maria philo.asl;
giulia philo.asl;
alfred waiter.asl;

}

/* TABLE ARTIFACT */

import alice.cartago.*;

public class Table extends Artifact {
private boolean[] chops;

public Table(int nchops){
chops = new boolean[nchops];
for (int i = 0; i<chops.length; i++){
chops[i]=true;

}
}
@OPERATION(
guard = "chopsAvailable"

) void getChops(int lc, int rc){
chops[lc] = chops[rc] = false;
genEvent("chops_acquired");

}
@GUARD boolean chopsAvailable(int lc,int rc){

return chops[lc] && chops[rc];
}
@OPERATION void releaseChops(int lc, int rc){

chops[lc] = chops[rc] = true;
}

}

Fig. 3. (Left) Definition of a Jason MAS called cartagoTest, composed by five philosopher
agents—rosa, beppo, pippo, maria, giulia—and a waiter agent—alfred—, running
on top of a CARTAGO environment, implemented by CartagoEnvironment.(Right) Defini-
tion of the Table artifact type.

/* WAITER AGENT */

!live.
+!live : true
<- .print("Hello world!") ;

.print("Preparing the table...") ;
createArtifact(myTable,"Table",[5]);
.print("The table is ready.") ;
.print("Assigning the chopsticks");
.send("rosa",tell,

chops_assigned(myTable,0,1));
.send("beppo",tell,

chops_assigned(myTable,1,2));
.send("pippo",tell,

chops_assigned(myTable,2,3));
.send("maria",tell,

chops_assigned(myTable,3,4));
.send("giulia",tell,

chops_assigned(myTable,4,0));
.print("Good luck.").

/* PHILOSOPHER AGENT */

!live.
+!live : true
<- .print("Hello world! Waiting to know my chopsticks...").

+chops_assigned(Table,C0,C1) : true
<- .print("I know my chopsticks, I can start my activity.");

+my_chopsticks(Table,C0,C1) ;
+wants_to_live_for_another_round.

+wants_to_live_for_another_round : true <- !think.

+!think : not(hungry)
<- .print("Thinking.");

-wants_to_live_for_another_round; +hungry.

+hungry : my_chopsticks(Table,C1,C2) &
not(got_chopsticks(C1,C2)) &
not(chopsticks_requested(C1,C2))

<- .print("Got hungry, try to eat") ;
execOp(Table,getChops(C1,C2),mySensor);
+chopsticks_requested(C1,C2);
sense(mySensor,8000).

+artifact_perception(chops_acquired,mySensor,Table,EventTime) :
chopsticks_requested(C1,C2)

<- .print("Got chopsticks, can eat.");
-chopsticks_requested(C1,C2);
+got_chopsticks(C1,C2); -hungry;
execOp(Table,releaseChops(C1,C2),mySensor);
sense(mySensor).

+sensing_timeout(mySensor) : chopsticks_requested(C1,C2)
<- .print("Starved, good bye world.");

.myName(Me); .killAgent(Me).

+artifact_perception(chops_released,mySensor,Table,_) :
got_chopsticks(C1,C2)

<- .print("Chopsticks released.");
-got_chopsticks(C1,C2);
+wants_to_live_for_another_round.

Fig. 4. Jason implementation of waiter agents (left) and dining philosopher agents (right).


