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Abstract Research on agent-oriented software engineering (AOSE)
methodologies and multi-agent system (MAS) infrastructures has devel-
oped in the last years along two opposite paths: while AOSE methodolo-
gies have essentially undergone a top-down evolution pushed by contri-
butions from heterogeneous fields like human sciences, MAS infrastruc-
tures have mostly followed a bottom-up path growing from existing and
widespread (typically object-oriented) technologies. This dichotomy has
produced a conceptual gap between the proposed AOSE methodologies
and the agent infrastructures actually available, as well as a technical gap
in the MAS engineering practice, where methodologies are often built ad
hoc out of MAS infrastructures, languages and tools.
This paper proposes a new method for filling the gap between method-
ologies and infrastructures based on the definition and study of the meta-
models of both AOSE methodologies and MAS infrastructures. By allow-
ing structural representation of abstractions to be captured along with
their mutual relations, meta-models make it possible to map design-time
abstractions from AOSE methodologies upon run-time abstractions from
MAS technologies, thus promoting a more coherent and effective prac-
tice in MAS engineering. In order to validate our method, we take an
AOSE methodology, SODA, and show how it can be mapped upon three
different MAS infrastructures using meta-models as mapping guidelines.

1 Introduction

Traditional software engineering (SE) approaches and metaphors fall short when
applied to areas of growing relevance such as electronic commerce, enterprise
resource planning, and mobile computing: such areas, in fact, generally call for
open architectures that may evolve dynamically over time so as to accommodate
new components and meet new requirements. This is probably one of the main
reasons why the agent metaphor and the agent-oriented paradigm are gaining
momentum in these areas. At the same time, such a rapid paradigm shift dropped
? Corresponding author.
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technology behind: while in the past new abstractions used to come from pro-
gramming languages, and were later included in software engineering practice,
now it is often the case that technologies adopted for MAS (multi-agent system)
development and deployment do not support the novel abstractions adopted in
the AOSE (agent-oriented software engineering) analysis and design phases.

Such a gap mainly depends on AOSE methodologies and MAS infrastructures
having evolved along two parallel, yet somehow inverse, paths: a top-down evolu-
tion for AOSE methodologies, a bottom-up path for multi-agent infrastructures.
In fact, on the one side, abstractions and metaphors (models and structures)
from human organisations have been used to analyse, model and design software
systems, leading to methodologies like Gaia [1,2], Tropos [3,4], PASSI [5,6] and
SODA [7,8]. There, modelling agent societies means to identify the global rules
that should drive the expected MAS evolution, and the roles that agents should
play. On the other side, MAS infrastructures have typically evolved out from ex-
isting (mainly, object-oriented) programming languages and development envi-
ronments, “stretching” the agent paradigm on top of more traditional paradigms
and technologies [9]. For instance, infrastructures such as TuCSoN [10,11], TOTA
[12,13] and CArtAgO [14,15] introduce specific agent-oriented abstractions (tu-
ple centres, co-fields, artifacts) to constructively constrain the design and final
architecture of MAS: yet, the imprint of the object-oriented paradigm is still
visible—for instance, in agents taking the form of Java threads. The above gap
can lead to inconsistencies between the design and the implementation of a sys-
tem, as the agent-based concepts and metaphors adopted in the analysis and
design phases can not match the development tools used for system implemen-
tation and deployment, which are often in the stage of academic prototypes.

In this context, this paper is aimed at highlighting some guidelines for cor-
rectly mapping the abstractions adopted by an AOSE methodology onto the
abstractions supported by MAS infrastructures: we assume SODA as a case
study, and discuss how its design abstractions could be mapped onto three MAS
infrastructures—TuCSoN, CArtAgO and TOTA. Accordingly, we first analyse
and compare the meta-models of the SODA methodology and of the chosen in-
frastructures, then exploit them to express both the structural representation of
the elements constituting the actual system, and their relationships [16].

Accordingly, the paper is structured as follows. Section 2 sketches a possible
classification of AOSE methodologies based on their relations with MAS tech-
nologies, and highlights the main advantages of their meta-model representation.
Then, Section 3 discusses the meta-models of the SODA methodology and of the
selected infrastructures, whereas Section 4 presents the mapping of SODA ab-
stractions onto such infrastructures and discusses the key guidelines. Related
work, conclusions and future works are reported in Section 5 and Section 6.

2 AOSE Methodologies: Technologies & Meta-models

MAS are a powerful paradigm for the implementation of complex computational
systems: the aim of AOSE is to effectively support the path from (an agent-
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oriented) design to (an agent-based) deployment of the system. This is why
methodologies (and respective notations) have become central in AOSE research
as a key tool in the MAS analysis, design and development process.

Among the current methodologies, some are rooted in artificial intelligence
(AI), others emerge as an extension of object-oriented (OO) methodologies, fur-
ther try to merge the two approaches in some original way; finally, others are not
directly derived by previous approaches. So, an important classification criterion
is to distinguish methodologies that are neutral with respect to the implemen-
tation technologies (technology-neutral methodologies, or simply neutral ones in
the following), from those that are bound to specific infrastructures (technology-
biased methodologies, or simply biased ones in the following)—usually, due to
the choice of developing a CASE tool for supporting rapid prototyping and code
generation [17,18]. The first category includes methodologies like Gaia [1,2],
MESSAGE [19,20], INGENIAS [21], and SODA [7,8]: they all aim at guiding
the designer from the requirement analysis phase down to the design phase, yet
with no assumptions on the implementation and deployment phases—probably,
because of the lack of a recognised standard language and infrastructure that
could natively support agent-oriented concepts. Among biased methodologies,
Tropos [3,4] and PASSI [5,6] are both tied to the JADE [22,23] infrastructure,
and come with a set of development support tools.

Since there is currently no widely-acknowledged standard infrastructure for
MAS implementation, it is unclear whether committing to an infrastructure
at methodological level may be better or worse than opting for technological
neutrality. In fact, even though neutral methodologies suffer from a deeper gap
with respect to the underlying technology, their models are general enough to
be potentially implemented over any infrastructure by just providing suitable
guidelines for mapping methodology abstractions onto infrastructure ones.

Apart from the technology neutrality matter, however, all AOSE methodolo-
gies introduce some basic abstractions (agents, roles, behaviour, ontology, . . . )
organised in a set of independent – but strongly correlated – models and phases.
The relationships between such entities and the models can then be expressed by
means of a meta-model [24,25], which becomes the key tool to compare method-
ologies with each other, identify families of (related) methodologies, and check
the consistency of a methodology when planning extensions or modifications.
So, a well-defined meta-model should address several different methodological
aspects—for instance, the process to be followed, the work products to be gen-
erated, who is responsible for each process phase (analysts, designers, . . . ), etc.

Meta-models are also an important guide for integrating different method-
ologies avoiding several errors [24], such as assuming that differences of concern
exist when none exists, or assuming similarity of concern because of a com-
mon use of terms—despite a different semantics. In the same way, infrastructure
meta-models associate each methodology concept to some suitable infrastruc-
tural abstraction. So, we expect that studying and comparing methodologies
with infrastructures in terms of meta-models makes it possible to provide guide-
lines for mapping the design model of a methodology onto its implementation.
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3 Meta-models for the Case Study

In the following we first introduce and analyse the meta-models of of the SODA
methodology (Subsection 3.1) and of the three selected infrastructures—TuCSoN
(Subsection 3.2), CArtAgO (Subsection 3.3), and TOTA (Subsection 3.4).

Then (Section 4) we discuss the guidelines for mapping the SODA concepts
and metaphors onto such infrastructures, based on their meta-models.

3.1 SODA

SODA (Societies in Open and Distributed Agent spaces) [7,8,26,27] is an agent-
oriented methodology for the analysis and design of agent-based systems. Since
the original version [7], SODA has always focused on inter-agent issues, like the
engineering of agent societies and the environment for MAS: in this perspective,
it has recently been reformulated according to the A&A meta-model [28,29,30],
where artifacts take the form of computational devices that populate the agent
environment, and provide some kind of function or service used by agents [28].
Agents are used to model individual activities, while artifacts shape the MAS en-
vironment [29]. More generally, artifacts make it easier to enrich the MAS design
with social and organisational structures, as well as with complex security mod-
els: roles, permissions, policies, commitments, and the like can be represented
explicitly as first-class entities, and encapsulated within suitable artifacts. Many
sorts of artifacts are supported by SODA, even if in the meta-model we refer to
them simply as “artifact” without specify their typology. In particular, artifacts
used to mediate between individual agents and the MAS are called individual
artifacts, whereas social artifacts build up agent societies, and environmental
artifacts mediate between the MAS and an external resource [29].

SODA is organised in two phases, each structured in two sub-phases: the
Analysis phase, which is composed of the Requirements Analysis and the Anal-
ysis steps, and the Design phase, which is composed of the Architectural Design
and the Detailed Design steps. The meta-model that represents the abstract
entities adopted by SODA is depicted in Figure 1.

Requirement Analysis. Several abstract entities are introduced for require-
ment modelling (see Figure 1 “requirement analysis” part): in particular, re-
quirement and actor are used for modelling the customers’ requirements and
the requirement sources, respectively, while the external-environment notion is
used as a container of the legacy-systems that represent the legacy resources of
the environment. The relationships between requirements and legacy systems
are then modelled in terms of suitable relation entities.

Analysis. The Analysis step expresses the abstract requirement represen-
tation in terms of more concrete entities such as tasks and functions (see Fig-
ure 1, “analysis” part). Tasks are activities requiring one or more competences,
while functions are reactive activities aimed at supporting tasks. The relations
highlighted in the previous step are now the starting point for the definition of
dependencies (interactions, constraints, etc.) among the abstract entities. The
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Figure 1. SODA Meta-model

structure of the environment is also modelled in terms of topologies, i.e. topologi-
cal constraints over the environment. Topologies are often derived from functions,
but can also constrain / affect task achievement.

Architectural Design. The main goal of this stage is to assign responsi-
bilities of achieving tasks to roles, and responsibilities of providing functions to
resources (see Figure 1, “architectural design” part). To this end, roles should
be able to perform actions, and resources should be able to execute operations
providing one or more functions. The dependencies identified in the previous
phase become here interactions, i.e. “rules” enabling and bounding the entities’
behaviour. Finally, the topology constraints lead to the definition of workspaces,
i.e. conceptual places structuring the environment.

Detailed Design. Detailed Design is expressed in terms of agents, agent
societies, artifacts and artifact aggregates (see Figure 1 “detailed design” part).
Agents are intended here as autonomous entities able to play several roles, while
societies are defined as the abstractions responsible for a collection of agents. The
resources identified in the previous step are now mapped onto suitable artifacts
(intended as entities providing some services), while aggregates are defined as
the abstractions responsible for a collection of artifacts. The workspaces defined
in the Architectural Design step take now the form of an open set of artifacts
and agents – that is, artifacts can be dynamically added to or removed from
workspaces, as well as agents can dynamically enter (join) or exit workspaces.

287



3.2 TuCSoN

TuCSoN (Tuple Centres Spread Over Networks) [10,11] is an infrastructure pro-
viding services for the communication and coordination of distributed / concur-
rent independent agents: its meta-model is depicted in Figure 2.
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Figure 2. TuCSoN Meta-model

In detail, TuCSoN supports agent communication and coordination via tuple
centres coordination media [31]: these are shared & reactive information spaces,
distributed over the infrastructure nodes. In turn, this inducts a topology over the
network. Agents access tuple centres associatively, by writing (out), reading (rd,
rdp), and consuming (in, inp) tuples – i.e., ordered collections of heterogeneous
information chunks – via the above coordination primitives.

A tuple centre is a tuple space enhanced with the notion of behaviour spec-
ification. More precisely, a tuple centre is a coordination abstraction perceived
by the interacting entities as a standard tuple space [32], but whose behaviour
in response to events can be defined so as to embed the coordination laws.
So, defining a new behaviour for a tuple centre basically amounts at specifying
state transitions in terms of reactions to events [10]. In particular, reactions
are specified in TuCSoN via the ReSpecT (Reaction Specification Language) lan-
guage [30]: a reaction is defined as a set of non-blocking operations [10], and has
a success/failure transactional semantics: a successful reaction may atomically
produce effects on the tuple centre state, a failed reaction yields no result at all.
Typically, a tuple centre contains a set of reactions (reaction spec in Figure 2),
each tied to a specific event: the same event could trigger multiple, different re-
actions. Tuple centres are connected each other through link operations, having
the same form and a similar semantics as TuCSoN coordination primitives, but
invoked by successful reactions rather than by agents [30].

The Agent Coordination Context (ACC ), introduced in [33] as the concep-
tual place where to set the boundary between the agent and the environment,
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encapsulates the interface enabling agent actions and perceptions inside the envi-
ronment. More precisely, an ACC (i) works as a model for the agent environment,
by describing the environment where an agent can interact, and (ii) enables and
rules the interactions between the agent and the environment, by defining the
space of the admissible agent interactions. The ACC dynamics is characterised
by two basic steps: negotiation and use. In fact, an ACC is meant to be first
negotiated by the agents with the MAS infrastructure, in order to start a work-
ing session inside an organisation. To this end, the agent specifies which roles
to activate: if the agent request is compatible with the (current) organisation
rules, a new ACC is created, configured according to the characteristics of the
specified roles, and is released to the agent for active playing inside the organ-
isation. The agent can then use the ACC to interact with other agents in the
organisation, and with the organisation environment, by performing the actions
and activating the perceptions made possible by the ACC.

3.3 CArtAgO

The abstract architecture of CArtAgO (Common Artifact for Agents Open en-
vironment) [14,15] is composed of three main elements (see Figure 3): (i) agent
bodies – as the entities that make it possible to situate agents inside the working
environment; (ii) artifacts – as the basic building blocks to structure the working
environment; and (iii) workspaces – as the logical containers of artifacts, aimed
at defining the topology of the working environment.
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Figure 3. CArtAgO Meta-model

Agent bodies. The agent body contains effectors to perform actions upon
the working environment, and a dynamic set of sensors to collect events from
the working environment. Agents interact with their working environment by
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“piloting” their bodies: they execute actions to construct, select and use artifacts,
and perceive the observable events generated by artifacts.

Artifacts. Artifacts are the basic bricks managed by CArtAgO: agents use
artifacts by triggering the execution of operations listed in the artifact usage
interface. The execution of an operation typically causes the update of the in-
ternal state of an artifact, and the generation of one or more observable events:
these are then collected by the agent sensors and perceived by means of explicit
sensing actions. In order to support a rational exploitation of artifacts by intelli-
gent agents, each artifact is equipped with a function description, i.e. an explicit
description of the functionalities it provides, and operating instructions, i.e. an
explicit description of how to use the artifact to get its function.

Workspaces. Artifacts are logically located in workspaces, which define the
topology of the working environment. A workspace is an open set of artifacts
and agents: artifacts can be dynamically added to or removed from workspaces
by agents, agents can dynamically enter (join) or exit workspaces. Workspaces
make it possible to structure agents and artifacts organisation & interaction: in
particular, workspaces can function as scopes for event generation and percep-
tion, as well as for artifact access and use. Articulated topologies can be created
via workspace intersection and nesting: in particular, intersection is supported
by allowing the same artifacts and agents to belong to different workspaces.

In addition, CArtAgO also introduces the concept of workplace as an organi-
sational layer on top of workspaces. More precisely, a workplace is the set of roles
and organisational rules being in force in a workspace: there, contracts define the
norms and policies that rule agent access to artifacts and allow the generation of
agent bodies. So, for instance, an agent may or may not be granted permission
to use some artifacts or to execute some specific operations on selected artifacts
depending on the role(s) that the agent is playing inside the workplace [34].

3.4 TOTA

TOTA (Tuples On The Air)[12,13] is a middleware for multi-agent coordina-
tion, in distributed computing scenarios. A meta-model of the infrastructure is
presented in Figure 4. TOTA assumes the presence of a network of possibly mo-
bile nodes, each running a tuple space [31]: each agent is supported by a local
middleware and has only a local (one-hop) perception of its environment. Nodes
are connected only by short-range network links, each holding references to a
(limited) set of neighbour nodes: so, the topology of the network, as determined
by the neighbourhood relations, may be highly dynamic.

In TOTA, tuples are not associated to a specific node (or to a specific data
space) of the network: rather, they are “injected” in the network by an agent
from some node, then autonomously propagate hop-by-hop, diffuse, and evolve
according to specified propagation patterns. Thus, TOTA tuples form a sort
of spatially-distributed data structure, that can be used to acquire contextual
information about the environment and to support the mechanisms required for
stigmergic interaction [35]. More precisely, TOTA distributed tuples T=(C,P,M)

290



TOTA

Topology

Neighborough inducts

Network

Agent

NODE

runs

Content

TupleSpace runs

Tuple injects/senses

*

*

*

*

stored
executes

MigrationPropagation Rule

affects

*

*

*

*
accesses

inducts

The propagation rule could 
induct a tuple migrat ion from 
one node to another

Event

*

*

Maintance Rule

*

*

*

*
accesses

affec ts

triggers

occurs
*

*

Figure 4. TOTA Meta-model

are characterised by a content C, a propagation rule P, and a maintenance rule
M: the content C is an ordered set of typed fields representing the information
carried by the tuple, the propagation rule P determines how the tuple propagates
across the network (called “migration” in the Figure 4) and how the tuple content
should change while the tuple is propagated; finally, the maintenance rule M
determines how a tuple distributed structure should react to events occurring
in the environment. Specifying the tuple propagation rule includes determining
the “scope” of the tuple and how such propagation is affected by the presence or
absence of other tuples in the system. In turn, events handled by the maintenance
rule can range from simple time alarms, to changes in the network structure:
the latter kind of events is of fundamental importance to preserve a coherent
structure of the environment properties represented by tuple fields.

4 From SODA to Infrastructures

This section presents some guidelines for mapping SODA design-level abstrac-
tions onto the infrastructural abstractions of TuCSoN (Subsection 4.1), CArtAgO
(Subsection 4.2) and TOTA (Subsection 4.3): the abstractions used in SODA
analysis phase are left aside, as they would be too high-level with respect to
infrastructures. Among the many MAS infrastructures available in literature,
we choose TuCSoN and TOTA because interaction – and coordination, in par-
ticular – is at the core of both infrastructures, in the same way as in SODA. In
addition, both infrastructures are not FIPA-compliant, and here we meant to
explore such a sort of infrastructures. Finally we choose CArtAgO because it is
the only infrastructure that natively supports the concepts of artifacts.

Such infrastructures are then compared so as to evaluate their support to
SODA abstractions (Subsection 4.4).
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4.1 TuCSoN & SODA

Since SODA is defined on top of the A&A meta-model, the first step is to define
how agents and artifacts can be represented as TuCSoN abstractions.

Mapping the agent notion is straightforward, given TuCSoN native support
for this concept: so there is a one-to-one mapping between SODA agent abstrac-
tion and TuCSoN one. However, the concept of agent action, explicitly considered
in the SODA meta-model, is more or less reduced to the notion of coordination
primitives, as performed by agents.

Mapping the artifact notion, instead, is less obvious, as SODA defines three
different artifact types – social, individual and environmental artifacts – each
requiring its own mapping. With respect to this issue, TuCSoN tuple centres
can be seen as a special case of social artifacts: they mediate and govern agent
interaction by encapsulating the laws of agent coordination. Such coordination
laws, expressed in terms of reactions to interaction events, are well suited to
map SODA interactions – i.e., the rules that enable and bound the entities’
behaviour. In turn, the notion of individual artifact can be mapped onto the
TuCSoN ACC concept, since its purpose is precisely to represent the interface of
an agent towards the environment [36]. In fact, agents ask for an ACC specifying
the roles to be activated: the ACC is then negotiated with the infrastructure as
the agent joins the MAS organisation. If the negotiation is successful, the ACC
is created and released to the agent, which, henceforth, exploits it to access the
MAS services: the ACC redirects the agent invocations to the other artifacts in
the environment. Finally, the environmental artifact is not natively supported
by TuCSoN, so it must be developed if/when needed. Also, the notion of artifact
operation is reduced here to the notion of tuple centre operation, and has not
the generality required. Given that, link operations through tuple centres are
the way in which TuCSoN “artifacts” are somehow composed.

Widening the view, the organisation concept provided by TuCSoN is well
suited to represent SODA societies, in the same way as the TuCSoN role concept
can well represent the SODA role notion. From the topological viewpoint, the
SODA notion of workspace may be mapped onto the TuCSoN node concept,
which, indeed, represents an open set of agents, tuple centres and ACCs; as a
consequent step, TuCSoN network can be used to map SODA environments. On
the other hand, workspace connection, as introduced by SODA, has no mapping
in TuCSoN, so it should be developed ad hoc when needed.

4.2 CArtAgO & SODA

CArtAgO and SODA share the same root in the A&A meta-model: so, quite
expectedly, CArtAgO abstractions can easily support all SODA concepts. In par-
ticular, CArtAgO provides the artifact notion as a first-class abstraction, which
can be used and easily specialised in social and environmental artifacts according
to the developer’s needs. Therefore, unlike TuCSoN, the SODA notion of arti-
fact operation is directly mapped onto the operation abstractions supported by
CArtAgO; the same holds for SODA agent action. Moreover, individual artifacts
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can be more specifically mapped on CArtAgO agent body abstraction, instead of
using the generic artifact notion.

Composition of artifacts can also be easily realised, thanks to the linkability
property [29] natively supported by CArtAgO artifacts to scale up with envi-
ronment complexity. So, an artifact can be conceived and implemented as a
composition of linked, possibly non-distributed, artifacts – or, conversely, a set
of linked artifacts, scattered through a number of different physical locations,
can be seen altogether as a single distributed artifact.

In addition, SODA organisational structure, which is defined in terms of
roles and societies, can be easily translated on CArtAgO roles and workplaces.
This makes it possible to capture SODA interaction concept in a straightforward
way: in fact, interactions in SODA are aimed at enabling and constraining agent
behaviour, which is precisely what the workplace rules and contract do – a
CArtAgO agent may or may not have the permission to use some artifacts or
to execute some specific operations on some specific artifacts depending on the
role(s) that the agent itself is playing inside the workplace.

Finally, CArtAgO workspace concept can be directly used to map SODA
workspace concept, in the same way as CArtAgO workspace nesting supports
SODA workspace connection. The CArtAgO abstractions of node, network and
topology can be used to represent the SODA environment, too.

4.3 TOTA & SODA

TOTA provides a native support to the agent concept, while the artifact concept
is supported only in the case of social artifacts. So, SODA agents can be directly
mapped onto TOTA agents, while social artifacts are mapped onto TOTA tu-
ple spaces. Unlike tuple centres, tuple spaces provide only a fixed coordination
service: so, they are unable to support the SODA interaction concept. However,
SODA social rules can be mapped onto the maintenance rule and the propagation
rule associated to TOTA distributed tuples, exploiting the fact that propaga-
tion rules determine how tuples propagate through the network, and mainte-
nance rules determine how the tuple distributed structure reacts to environment
events. Of course, this mapping is less straightforward than in TuCSoN (whose
reactions map SODA interaction concept directly): indeed, a set of many tuples
must be used to describe a single SODA interaction – each tuple representing
one propagation and one maintenance rule. As a side effect of this one-to-many
mapping, maintaining coherency is quite a hard task, and the rules/interaction
mapping can often be very dispersive.

From the topology viewpoint, TOTA node concept maps SODA workspace
concept: each node holds references to a limited set of neighbour nodes, and
neighbourhood relations express the network topology. Such inter-node relations
can be exploited also to provide an abstraction for mapping the SODA workspace
connection concept. Finally, the TOTA network concept maps the SODA envi-
ronment, too. All the others SODA concept are not natively supported by TOTA,
and should therefore be developed in an ad hoc way when needed.
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4.4 Discussion

Table 5 highlights the SODA abstractions that are supported natively from each
of the three infrastructures. The agent and resource abstractions are both omit-
ted – the first because it is explicitly supported by each infrastructure, the latter
for the opposite reason.

Quite expectedly, CArtAgO provides the best support for SODA design ab-
stractions, as they are both rooted in the A&A meta-model: in particular, both
consider the environment as the key element, adopt artifacts as their basic build-
ing blocks for modelling the environment resources, and workspaces for struc-
turing the environment. Moreover, both SODA and CArtAgO support the MAS
organisational structure by explicitly enabling the specification of social rules.

TuCSoN and TOTA, instead, provide support for fewer SODA abstractions:
so, the developer needs to implement by himself the abstractions which are not
supported by the infrastructure natively. In particular, none of the two infras-
tructures supports environmental artifacts, while both support social artifacts:
this is not surprising, since they take both inspiration from coordination models,
where interaction is typically mediated by some coordination media [31] (like a
tuple space or a tuple centre) that could be easily seen as a special case of social
artifact. Individual artifacts, in their turn, find their counterpart only in TuC-
SoN – namely, in the ACC abstraction. Moreover, SODA interaction abstraction,
which represents the rules that enable and shape the agent behaviour, can be
expressed directly by TuCSoN reactions, and indirectly via TOTA maintenance
and propagation rules. Finally, as far as the organisational structure of the MAS
is concerned, TuCSoN provides explicit abstractions such as organisation, role
and ACC; on the other hand, TOTA does not provide any support for this is-
sue yet, so the developer must provide for managing the MAS organisations on
his/her own.

SODA TuCSoN CArtAgO TOTA

Role Role Role -

Action Coordination Primitive Action -

Interaction Reaction Specification Rules Maintenance Rule
Reaction Contract Propagation Rule

Operation Tuple Centre Operation Operation -

(Social) Artifact Tuple Centre Artifact Tuple Space, Tuples

(Individual) Artifact ACC Agent Body -

(Environmental) Artifact - Artifact -

Aggregate Linked Tuple Centres Artifact -

Society Organisation Workplace -

Workspace Node Workspace Node

Workspace Connection - Workspace Nesting Neighborough

Figure 5. Abstractions Mapping
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5 Related Work

Model-Driven Architecture [37] (MDA) is another approach for filling the gap
among methodologies and infrastructures: its basic idea is to define first a Plat-
form Independent Model (PIM) and then iteratively make it more and more
platform-specific by a series of transformations, whose endpoint is the Platform
Specific Model (PSM). Current technologies, however, may not fully support
MDA complex transformation rules: for instance, UML, which is one of MDA
foundations, lacks the required precision and formalisation [38].

Further research efforts are being devoted to integrating MDA and AOSE
[38,39]. In [38], for instance, an agent architecture based on the human cognitive
model of planning, the Cognitive Agent Architecture (Cougaar), is integrated
with MDA. The resulting Cougaar MDA defines the models to be used, how
they should be prepared, and the relationships among them. The level of appli-
cation composition is thus elevated from individual components to domain-level
model specifications in order to generate software artifacts. The software ar-
tifacts generation is based on a meta-model: each component is mapped onto
a UML structured component which is then converted into multiple artifacts—
Cougaar/Java code, documentation, and test cases. In [39], Amor et al. show how
the Model Driven Architecture (MDA) can be used to derive agent implemen-
tations from agent-oriented designs, independently from both the methodology
and the concrete agent platform. Their goal is to study how to bridge the gap be-
tween methodologies and infrastructures, so as to cover the whole MAS lifecycle.
Authors show how this problem can be naturally expressed in terms of MDA,
and how MDA mechanisms can be used for defining the mappings. By applying
the MDA ideas, the design model obtained from an agent-oriented methodology
can be considered as a PIM, the target MAS agent platform as the PSM, and
the mappings between the two can be given by the transformations defined for
the selected agent platform. The target models need to be expressed in terms of
their corresponding UML profiles, as indicated by MDA.

Since both methods imply the use of UML, its practical application requires
that the selected AOSE methodology adopts UML or AUML as its notation: if
this is not the case, like for many AOSE methodologies, an additional transfor-
mation from the methodology own notation to UML is necessary. As a result,
the overall application of this approach involves many transformations for each
mapping, and requires a PSM to be defined for each infrastructure.

6 Conclusions and Future Work

In this paper we adopted the SODA methodology as a running example for
mapping the methodological concepts onto infrastructural abstractions in the
case of three main agent infrastructures—TuCSoN, CArtAgO, and TOTA. To this
end, we first studied the agent-oriented methodologies from the point of view of
the connection with the implementation technologies, and classified them into
technology-neutral and technology-biased methodologies.
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Starting from neutral methodologies, that currently seem more appealing be-
cause of their independence from the underlying non-standard technologies, we
then exploited meta-modelling as a tool to formalise the inner structure and the
composing relationships both for the methodology and the selected infrastruc-
tures. Accordingly, we developed and comparatively analysed the meta-models of
the SODA methodology and of CArtAgO, TuCSoN, and TOTA infrastructures,
with double purpose of (a) providing guidelines for bridging the design and
implementation phases, and (b) evaluating the quality of the mapping of SODA
concepts onto infrastructural abstractions in terms of naturalness, clearness, and
directness of the mapping.

Of course, this research is still in its early stage, so a lot of work remains
to do: the next steps will be devoted to develop meta-models for other MAS
infrastructures such as MARS [40], RETSINA [41] and JADE [22,23], and to
study how to map SODA concepts onto these infrastructures. In order to test
our method, we also plan to make the same experiments taking as a base another
neutral methodology, among Gaia [2], MESSAGE [19] or INGENIAS [21].
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19. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodoly for agent-

oriented analysis and design. [42] chapter VIII 203–235
20. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavòn, J., Leal, F., Chainho, P.,
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