
CArtAgO: A Framework for Prototyping
Artifact-Based Environments in MAS

Alessandro Ricci, Mirko Viroli, and Andrea Omicini

Alma Mater Studiorum—Università di Bologna
via Venezia 52, 47023 Cesena, Italy

{a.ricci,mirko.viroli,andrea.omicini}@unibo.it

Abstract. This paper describes CArtAgO, a framework for developing
artifact-based working environments for multiagent systems (MAS). The
framework is based on the notion of artifact, as a basic abstraction to
model and engineer objects, resources and tools designed to be used and
manipulated by agents at run-time to support their working activities,
in particular the cooperative ones. CArtAgO enables MAS engineers to
design and develop suitable artifacts, and to extend existing agent plat-
forms with the possibility to create artifact-based working environments,
programming agents to exploit them. In this paper, first the abstract
model and architecture of CArtAgO is described, then a first Java-based
prototype technology is discussed.

1 Introduction

Artifacts have been recently proposed as first-class abstractions to model and
engineer agent working environments in software MAS (multiagent systems) [1].
The background view, shared with other recent approaches in MAS literature—
see [2,3] for a survey—, is that the environment plays a fundamental role in
engineering of MAS. On the one hand, environment is a suitable locus for engi-
neers to embed responsibilities, impacting on MAS design and development; on
the other hand, it is a source of structures and services that agents can suitably
use at run-time to support and improve their activities—both individual and
social ones. The specific notion of working environment is intentionally anal-
ogous to the notion of human cooperative working environments, as they are
studied by disciplines and theories in human science, such as Activity Theory
and Distributed Cognition, and recently adopted also in the context of CSCW
(Computer Supported Cooperative Work) and HCI (Human-Computer Inter-
action) [4,5]. There, a working environment—also referred as field of work—is
such part of the environment explicitly designed to support and realise agent
working activities. Typically, it is modelled as set of objects, tools, more gen-
erally “artifacts”, which are constructed, shared, and either cooperatively (or
competitively) used by humans, so as to mediate and sustain their activities.

Analogously to human society, such a perspective is likely to be fundamental
also in the context of agent societies, in particular for designing and programming

D. Weyns, H.V.D. Parunak, and F. Michel (Eds.): E4MAS 2006, LNAI 4389, pp. 67–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

68 A. Ricci, M. Viroli, and A. Omicini

complex software systems based on MAS. Given that MAS are growing increas-
ingly complex, one may easily foresee that the next step in the evolution of cogni-
tive MAS will require MAS models and architectures to deal with agents situated
within suitable working environments. There, agents would autonomously con-
struct, share, and co-operatively use different kinds of artifact—designed either
by MAS designers or by the agents themselves—to perform MAS activities. It is
worth noticing that such a perspective shares the aims and principles developed
by the research work in Distributed Artificial Intelligence about theories of inter-
action, environments and the role of tools [6,7].

The artifact abstraction is at the heart of this conceptual framework—which
can be referred as A&A (agents and artifacts)—and promotes a methodology
for modelling and engineering working environments, by introducing new con-
cepts and elements that impact on system design, development and run-time
management. Artifacts can be generally conceived as passive, function-oriented
computational entities, explicitly designed to provide some kind of function, and
then to be used by agents to support their individual and collective (social) ac-
tivities [1]. The notion of “function” here refers to the meaning that is generally
used in human sciences such as sociology and anthropology, as well as in some
recent work in AI [7], that is, the purpose for which the object has been designed
for—for an artifact, to support agent activities.

This view directly impacts on the foundation of interaction and activity in
agency: a MAS is conceived as an (open) set of agents that develop their ac-
tivities by (i) computing, (ii) communicating with each other, and (iii) using
and possibly constructing shared artifacts. Artifacts could be either the targets
(outcome) of agent activities, or the tools that agents use as means to support
such activities: as such, they are useful to reduce complexity of task execu-
tion. For instance, coordination artifacts [8] are artifacts providing coordination
functionalities—such as blackboards, tuple spaces or workflow engines.

In this paper we introduce and discuss CArtAgO (Common “Artifacts for
Agents” Open framework), a framework for prototyping MAS applications with
artifact-based working environments. Essentially, CArtAgO provides (i) the API
to define any useful kind of artifacts, (ii) the API to be exploited by agents
(agent programmers) for interacting with working environments populated by
artifacts—in particular to instantiate, use, manipulate artifacts—, and (iii) a
run-time environment supporting the existence and dynamic management of
working environments. CArtAgO does not introduce any specific model or ar-
chitecture for agents and agent societies: the framework is meant to be inte-
grated and used with existing agent platforms, possibly characterised by hetero-
geneous kinds of agent architectures. From a conceptual point of view, CArtAgO
makes it possible to build MAS composed by heterogeneous agent societies,
made of reactive and cognitive agents programmed with different agent lan-
guages or architectures, sharing the same working environments, and interact-
ing through suitable mediating artifacts—besides communicating via ACL as
usual.

CArtAgO: A Framework for Prototyping Artifact-Based Environments 69

The rest of the paper is organised as follows: first, we describe the abstract
model and architecture of CArtAgO (Sect. 2), focusing in particular on the core
of API introduced by the framework (Sect. 3); then, we describe a first concrete
implementation prototype (Sect. 4) developed in Java, implementing the core
part of the abstract model previously defined.

2 CArtAgO Abstract Model and Architecture

In this section we describe the basic elements and structure of CArtAgO work-
ing environments, by taking as a reference the abstract architecture schema
described in [3] and depicted in Fig. 1, useful to understand CArtAgO with re-
spect to the other approaches. Accordingly, the abstract architecture of CArtAgO
(and of CArtAgO working environments) is composed by three main building
blocks (see Fig. 2): (i) agent bodies—as the entities that make is possible to sit-
uate agents inside the working environment; (ii) artifacts—as the basic building
blocks to structure the working environment; and (iii) workspaces—as the logical
containers of artifacts, useful to define the topology of the working environment.

Agent Middleware /
Infrastructures Environment Middlewares

/ Infrastructures

Operating Systems, Virtual Machines & Other Middlewares

Hardware & Network

Action
Perception

M
AS

 A
pp

lic
at

io
n

Ph
ys

ica
l

Su
pp

or
t

Application EnvironmentApplication Agents

Ex
ec

ut
io

n
Pl

at
fo

rm

Physical World

SW
Deployment

Context

MAS
Middleware

Layer

HW
Deployment

Context

Application
Specific

Logic

Fig. 1. Abstract representation of MAS layers with environment-based supports as de-
picted in [3]. Rectangles represent S/W and H/W tiers of the application at different
levels. Agents are expressed as circles, environment abstractions as boxes. Arrows from
agents to environment abstractions represent actions, dashed arrows in the opposite
direction represent perceptions. Arrows between agents represent direct agent commu-
nications, while arrows between environment abstractions represent intra-environment
interactions. Vertical lines represent the infrastructure supporting a concept at the
MAS application level.

70 A. Ricci, M. Viroli, and A. Omicini

Agent Framworks /

Middlewares

CARTAGO

M
A

S

A
p

p
lic

a
ti
o

n

Artifact-based working

environments

Application Agents

E
x
e
c
u
ti
o

n

P
la

tf
o

rm

MAS

Middleware

Layer

Application

Specific

Logic

workflow

engine
blackboard

shared

kb

map

Any

OS

JVM

OS

JVM

workspaces

artifacts

agent

bodies

Fig. 2. MAS layers adopting CArtAgO support. Application environments are modelled
in terms of artifact-based working environments. The CArtAgO middleware manage the
life-cycle of working environments, composed by artifacts grouped in workspaces. Agent
bodies are used to situate agents inside the working environments, executing actions
upon artifact and perceiving artifacts observable state and events.

2.1 Agent Bodies

Agent bodies are what actually enable the coupling between an agent (mind)
and a CArtAgO working environment. For each agent aiming at working inside
a CArtAgO environment, an agent body is created. The agent body contains
effectors to perform actions upon the working environment, and a dynamic set
of sensors to collect stimuli from the working environment. The agent body is
meant to be controlled by the agent, which actually plays the role of the “pilot”
of the body. For the purpose, the agent body exposes a controlling interface that
the agent mind could suitably exploit to interact with the environment.

By piloting their agent bodies, agents can interact with their working environ-
ment, executing actions provided for artifact construction, selection and usage,
and perceiving observable events generated from such artifacts. Differently from
the approach typically adopted in traditional agent architectures and more simi-
larly to active perception [9], here perception is modelled as an intentional action
referred as sensing. More precisely, environment observable events—generated by
artifacts—are collected as stimuli by sensors which are part of the agent body.
An agent can dynamically and flexibly link and unlink to its body different kinds
of sensor, with different functionalities, such as buffering, filtering, ordering, and
managing priorities. So, in CArtAgO sensing is the internal action that agents ex-
ecute on their sensors to become aware (perceive) of the stimuli collected by the
sensors. Stimuli typically concern observable events generated by artifacts.

CArtAgO: A Framework for Prototyping Artifact-Based Environments 71

2.2 Artifacts

Artifacts are the basic bricks managed by CArtAgO framework. Each artifact has
a logic name specified by the artifact creator at instantiation-time, and an id,
released by the framework, to univocally identify the artifact. The logic name
is an agile way for agents to refer and speak about (shared) artifacts, while
the id is required to identify artifacts when executing actions on them. The
full name of an artifact includes also the name of the workspace(s) where it is
logically located. Since an artifact can be located in multiple workspaces, the
same artifact can be referenced by multiple full names.

Usage Interface & Observable Events. Analogously to artifacts in our so-
ciety, the basic model which characterises the interaction between agents and
artifacts is based on a notion of use and observation. Agents can use an artifact
by triggering the execution of operations listed in the artifact usage interface.
An operation is characterised by a name and a set of typed parameters. The
execution of an operation typically causes the update of the internal state of
an artifact, and possibly the generation of one or multiple observable events—
including error conditions— that can be possibly collected by agents sensor as
they are generated, and perceived by agents through explicit sensing actions.

The usage interface of an artifact can change according to artifact observable
state, exposing different sets of operations according to the specific functioning
state of the artifact. The notion of observable state is adopted to structure the
functioning behaviour of an artifact in a set of labelled states, which can be
recognised (observed) by the artifact users. For each artifact type a finite set of
labelled observable states can be defined. For each concrete instance, the notion
of current observable state is defined, and its value can change dynamically,
during artifact functioning. Then, for each observable state a different usage
interface can be defined. This feature makes it possible to structure the overall
usage interface of an artifact, providing the right interface according to the
functioning stage of the artifact. In other words, an artifact can expose different
set of operations according to its observable state.

Dynamically, an agent can trigger the execution of an operation on an artifact
if and only if the operation is (currently) part of the usage interface; if the
operation does not belong to the usage interface, the agent action fails.

Function Description and Operating Instructions. In order to support a
rational exploitation of artifacts by intelligent agents, each artifact is equipped
with a function description, i.e. an explicit description of the functionalities it
provides, and operating instructions, i.e. an explicit description of how to use the
artifact to get its function—for instance in terms of the usage protocols that the
artifact support. These descriptions are meant to be useful for cognitive agents
that—by suitably inspecting and interpreting them—can (i) dynamically reason
about which artifacts can be selected to support their activities, and (ii) get in-
structions to support activity execution, making it easier to set up plans and to
reason about the expectation of using an artifacts. We consider such issues of
foremost importance, at the core of the notion of computational environments

72 A. Ricci, M. Viroli, and A. Omicini

designed to support the activities of agents—in particular cognitive / ratio-
nal agents. Actually, research on these aspects—in particular on formal models
and languages that can be used to specify function description and operating
instructions, and their injection in existing agent reasoning architectures (such
as BDI)—is still to be fully developed: we forward the interested reader to [10]
for the first results.

In CArtAgO, we provide a minimal enabling support to such issues, by mod-
elling function description and operating instructions as flat strings, specified by
artifact designers and dynamically inspectable (observable) by agents through
suitable actions. Currently, there is no predefined syntax and semantics for such
information (see future work for comments on this point).

2.3 Workspaces

Artifacts are logically located within workspaces, which can be used to define the
topology of the working environment. A workspace can be defined as an open
set of artifacts and agents creating and using them: artifacts can be dynamically
added to or removed from workspaces, agents can dynamically enter (join) or
exit workspaces. The same artifact can belong to multiple workspaces.

In CArtAgO, each workspace is created by specifying a logic name and is univo-
cally identified by an id. By defining a topology of the environment, workspaces
make it possible to structure agents and artifacts organisation and interaction,
in particular functioning as scopes for event generation and perception, and ar-
tifact access and use. On the one side, a necessary condition for an agent to use
an artifact is that it must exist in a workspace where the agent is located. On
the other side, events generated by the artifacts of a workspace can be observed
only by agents belonging to the same workspace.

Intersection and nesting of workspaces are supported to make it possible to
create articulated topologies. In particular, intersection is supported by allowing
the same artifacts and agents to belong to different workspaces.

3 Core Primitives

After providing an overview of CArtAgO main components, in this section we
describe the basic abstract set of core API provided by the framework on the one
side to be used by agents (or agent programmers defining agent behaviour) to
interact within working environments, and on the other side for defining artifact
types, that is programming artifacts behaviour.

3.1 Agent Side

On the agent side, the API is represented by a set of primitives to control
agent bodies and that eventually result in executing actions inside the working
environment, making it possible basically to create and use artifacts, and perceive
artifact observable state and events. Table 1 provides an abstract description of
such primitives, grouped according to their functionalities:

CArtAgO: A Framework for Prototyping Artifact-Based Environments 73

Table 1. Actions available to agents to manage artifacts and workspaces

Artifact construction and createArtifact(Name,Template,Config,{WsID}):ArID
disposal disposeArtifact(ArID)

Artifact selection & use getArtifactID(Name,{WsID}):ArID
execOp(ArID,OpName,{Args},{SensorID})
sense({SensorID},{Pattern},{Timeout}):Perception
focus(ArID,SensorID)
unfocus(ArID,SensorID)

Artifacts inspection getFD(ArID): FDDescr
getOI(ArID): OIDescr
getUID(ArID): UIDDescr
getState(ArID): StateDescr

Sensor management linkSensor(SensorType,SensorConfig): SensorID
unlinkSensor({SensorID})

Workspaces management getWsID(WsName):WsID
createWS(WsName):WsID
disposeWS(WsID)
registerArtifact(ArID,WsID)
deregisterArtifact(ArID,WsID)
joinWS(WsID)
exitWS(WsID)

Artifacts construction & disposal — Basic primitives are provided to cre-
ate (createArtifact) and dispose (disposeArtifact) artifacts dynamically.
To create an artifact, a logic name must be specified, along with the Template

that identifies the type of the artifact to be created, the initial configuration
parameters needed for artifact creation and optionally the workspace where
the artifact should be created. The action can fail if the template is unknown
or the artifact instantiation is not completed due to some kind of problem
(e.g. wrong initial configuration).

Artifact discovery & use — These primitives constitute the core of agent /
artifact interactions, enabling an agent to use an artifact by executing op-
erations and observing artifact state and events. To execute an operation,
the action execOp is provided, specifying the artifact identifier, the operation
name, the parameters, and (optionally) the specific sensor where to collect
observable events generated by the artifact as a consequence of the oper-
ation execution. The action can fail either because the specified artifact is
not available, or because the operation cannot be executed since it is not
part of artifact usage interface. Action success means that the execution of
the specified operation has been successfully triggered. The identifier of an
existing artifact can be obtained by the getArtifactID primitive, specifying
the artifact name and (possibly) its location (workspace).

After triggering the operation, an agent can observe related events through
codesense primitives on the sensor specified in execOp. By executing sense

74 A. Ricci, M. Viroli, and A. Omicini

actions, an agent is made aware of the stimuli that are dynamically collected
by a sensor. In particular, the effect of the action is to fetch (remove) a
stimulus from the sensor and to return it to the agent as a perception. The
action fails if no stimuli are available. Different types of sensors can pro-
vide different semantics establishing the order in which events are fetched. A
time parameter can be optionally provided to indicate the duration for the
sensing action: if no events are available in the sensor within the specified
time-frame, the action fails. By default, the time-frame is zero.

In order to support forms of data-driven (or, equivalently, filter-driven)
sensing, a pattern parameter can be specified acting as a filter for fetching
(selecting) the perception. Conceptually, the pattern defines a set of percep-
tions: a perception is fetched if and only if is included in the set. Typically,
the pattern can be represented by a Boolean function, establishing—given a
perception—if either it is part or not of such a set. It is worth noting that
specifying a pattern in a sense action is different from creating sensors that
filter stimuli as they are collected. An available stimulus which is not fetched
by a sense action because not satisfying the pattern is not removed from the
sensor and can be possibly fetched by subsequent sense actions.

Finally, primitives for continuous observation are provided: by executing
a focus action, an agent becomes a permanent observer of the artifact whose
identifier is specified as a parameter. As a permanent observer, all the ob-
servable events generated by the artifact are automatically collected by the
sensor specified as second parameter, as they are generated; unfocus stops
the observation.

Artifacts inspection — In order to support a cognitive use of artifacts, a basic
set of primitive is provided to inspect the function description (getFD), the
operating instructions (getOI), the usage interface (getUID), and the dynamic
observable (exposed) state (getState) of the artifact.

Sensor management — Two basic primitives are provided to dynamically
link and unlink sensors to the agent body: linkSensor links a sensor of the
specified type and configuration to the body, returning the identifier to be
used to refer the sensor; unlinkSensor unlinks a previously linked sensor.

Workspace manipulation — Finally, a basic set of primitives is provided
to manipulate the logical topology of the environment, modelled through
workspaces. Such primitives range from joinWS and exitWS to join and leave
a workspace, to getWsID for getting a workspace identifier given its name,
createWS for directly creating a new workspace and disposeWS for completely
removing a workspace.

Since the same artifact can be part of multiple workspaces, some ba-
sic primitives are provided to register (registerArtifact) / de-register
(deregisterArtifact) an artifact in / from a workspace, specifying the
workspace id.

Most of these core services have been implemented in the prototype described
in Sect. 4.

CArtAgO: A Framework for Prototyping Artifact-Based Environments 75

Table 2. Basic primitives for artifact programming

Observable event generation genEvent({OpID},EventType,{EventContent})
genEventInWsp(EventType,{EventContent})

Operation management getOpID: OpID

Observable state management setObservableState(ObsStateName)
getObservableState:ObsStateName

3.2 Artifact Side

On the artifact side, CArtAgO provides a support to define new types of arti-
fact, defining artifact structure and behaviour. The specific programming model
adopted to implement in Java artifact types is described in detail in Sect. 4. Here
we report the basic set of abstract primitives which can be exploited when defin-
ing artifact behaviour (see Table 2), useful essentially for generating observable
events and switching artifact observable state.

Observable events can be generated as either related or not to the specific
execution instance of an operation. For the purpose, each operation triggered on
the artifact is labelled by a unique operation identifier (type OpId in the tables).
Such an identifier can be explicitly retrieved by the getOpId primitive during the
execution of the operation (as part of its execution body). Operation identifiers
are meant to be manageable as normal data structures, for instance, creating
list of operation identifiers and then generating events related to these operation
when necessary, during artifact functioning, across operation executions (this
aspect will be clarified by a concrete example described in Subsection 4.2).

An event can be then generated using the genEvent primitive by specifying
the operation identifier to which the event must be related, as observable effect
of this operation (and of the agent action that caused it). If no OpId is specified,
the event is considered related to the current operation triggered. The effect of
the execution of these primitives is the generation of an event which is eventually
collected by the sensor (if specified) of the agent that triggered the operation
and by all the agents that are observing—via focus—the artifact. To generate
event unrelated to a specific operation execution, the primitive getEventInWsp is
provided, which generates an event which is observed by all the agents focusing
on the artifact.

Finally, a couple of primitives are provided to manage the current observable
state of the artifact, in particular to set a new value with setObservableState,
specifying a label identifying one of the possible set of observable states defined
by the artifact type, and to retrieve current value with getObservableState.

Besides the events explicitly generated with the genEvent primitive, some other
kinds of event are automatically generated by the framework and made observ-
able to agents interacting with an artifact. In particular, an event is gener-
ated whenever the execution of an operation is completed, and whenever a new

76 A. Ricci, M. Viroli, and A. Omicini

observable state is set (details about the specific types of these events are pro-
vided when describing in next section).

4 A First Prototype

A first prototype implementing most of the functionalities described in the pre-
vious section has been developed in Java and is available for download at the
CArtAgO project web site1. Our objective was to set up a first framework for
prototyping and experimenting applications engineered upon the A&A meta-
model, and so designed in terms of set of agents—possibly with heterogeneous
models and architectures—situated in the same working environment, designed
in terms of specific kind of artifacts. The framework itself is not meant to define
or constrain the specific agent architecture adopted to define the behaviour of
the individual agents: conversely, the framework is meant to be integrated and
exploited with external agent frameworks or platforms, in particular with those
that adopt Java as underlying implementation language, extending them so as
to support the creation and use of artifact-based environment according to the
A&A perspective.

As an example, simpA (simple A&A programming environment) is a full-
fledged agent-oriented framework for prototyping general-purpose applications
based on CArtAgO. Basically, simpA provides a support for developing MAS
based on agents with an activity-oriented architecture, with a native support
for creating and using artifact-based working environment, engineered upon
CArtAgO. The interested reader is invite to refer to the simpA web site2.

Based upon CArtAgO and simpA, simpA-WS is a framework for prototyp-
ing service-oriented application—in particular Web Service-based—in terms of
agents and artifacts. There, artifacts are used on the client side as interfaces for
user application agents to flexibly access and use Web Services, on the service
side as interfaces for service agents to get Web-service messages and requests
to be processed, and to provide responses. More information can be found at
the simpA-WS web site3. Working in the first real-world application examples,
simpA-WS is currently being investigated as an agent-based technology for pro-
totyping service-oriented applications in the context of logistics 4.

4.1 Prototype Overview

The framework is composed by four main parts:

API for setup working environments — The entry point class of the
framework is the Cartago class (sketched in Fig. 3), which mainly provides
static services to create or get the reference to existing working environments

1 CArtAgO web site: http://www.alice.unibo.it/projects/cartago
2 simpA web site: http://www.alice.unibo.it/projects/simpa
3 simpA-WS web site: http://www.alice.unibo.it/projects/simpaws
4 http://www.alice.unibo.it/projects/a4stil

CArtAgO: A Framework for Prototyping Artifact-Based Environments 77

public class Cartago {

public static synchronized ICartagoEnvironment
getInstance(String name){...}

public static synchronized ICartagoEnvironment
getInstance(String name, ICartagoLoggerManager logger){...}

public static String getVersion(){...}
}

Fig. 3. Entry point class for the CArtAgO framework. The class can be used to instan-
tiate and get the reference to working environment.

public interface ICartagoEnvironment {

IAgentBody getAgentBody(String name) throws AgentBodyAlreadyPresentException;
ArtifactId createArtifact(String name, Class template, ArtifactConfig param)

throws ArtifactAlreadyPresentException,
UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

ArtifactId createArtifact(String name, Class template)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

void registerLogger(ICartagoLogger logger);
void unregisterLogger(ICartagoLogger logger);

}

Fig. 4. Interface for working environments, providing services for creating agent bod-
ies, and for directly creating artifacts, useful to setup the initial configuration of the
environment

identified by a logic name. Once created or retrieved the reference to a work-
ing environment, it is possible to use the services provided by its interface—
ICartagoEnvironment, sketched in Fig. 4—to setup the environment possibly
creating an initial set of artifacts (besides the ones created dynamically by
agents), and to create agent bodies, for enabling agents participation to the
environment.

API for controlling agent bodies — From the agent point of view, the par-
ticipation and interaction within a working environment takes place through
an agent body. The creation of an agent body is provided as the getAgentBody

provided by a working environment. Such a creation is typically done during
agent initialisation. Once its agent body is created inside the environment,
the agent—here conceived as the agent “mind”—can control it by suitably
exploiting the IAgentBody interface implemented by the agent body, contain-
ing the core set of API described in Subsection 3.1. A sketch of the IAgentBody
interface is reported in Fig. 5. It is possible to recognise the primitives for cre-
ating and disposing artifacts, for executing operations, sensing perceptions,
managing sensors, and so on.

API for defining artifact types — A core part of the framework is given
by the support provided to define new kind of artifacts, programming their
structure and behaviour. We adopted a programming model that favours
rapid prototyping of artifacts, exploiting as much as possible the support

78 A. Ricci, M. Viroli, and A. Omicini

public interface IAgentBody {

ArtifactId createArtifact(String name, Class template, ArtifactConfig param)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

ArtifactId createArtifact(String name, Class template)
throws ArtifactAlreadyPresentException,

UnknownArtifactTemplateException,
ArtifactConfigurationFailedException;

void disposeArtifact(ArtifactId id) throws UnknownArtifactException;
ArtifactId getArtifactId(String name) throws UnknownArtifactException;

OpId execOp(ArtifactId id, Op op) throws OperationException;
OpId execOp(ArtifactId id, Op op, SensorId sid) throws OperationException;

Perception sense(SensorId sensorId)
throws NoPerceptionException;

Perception sense(SensorId sensorId, IPerceptionFilter p)
throws NoPerceptionException;

Perception sense(SensorId sensorId, int dt)
throws InterruptedException, NoPerceptionException;

Perception sense(SensorId sensorId, IPerceptionFilter p, int dt)
throws InterruptedException, NoPerceptionException;

void focus(ArtifactId aid, SensorId sid) throws SensorNotLinkedException;
void unfocus(ArtifactId aid);

SensorId linkSensor(AbstractSensor s);
void unlinkSensor(SensorId id) throws CartagoException;

}

Fig. 5. Interface to control an agent body, including methods for triggering the
execution of agent actions for artifact creation (createArtifact), artifact disposal
(disposeArtifact), artifact discovery (getArtifactId), for triggering the execution
of operation (execOp), for sensing perceptions (sense), for continuously observing ar-
tifacts (focus, unfocus), and for managing sensors (linkSensor,unlinkSensor)

public abstract class Artifact {
...
protected final ArtifactId getId(){...}

protected final OpId getOpId(){...}
protected final OpRequestDescriptor getOpRequestDescriptor(){...}

protected final void genEvent(String type) {...}
protected final void genEvent(String type, Object content) {...}
protected final void genEvent(OpId id, String type)

throws InvalidOpIdException {...}
protected final void genEvent(OpId id, String type, Object content)

throws InvalidOpIdException {...}

protected final void genEventInWsp(String type, Object content) {...}

protected final void setObservableState(String state)
throws UnknownArtifactStateException {...}

protected final String getObservableState(){...}
}

Fig. 6. Base abstract class to define new artifact types. The basic set of primitives useful
for programming artifact observable behaviour (in particular to generate observable
events, to set and retrieve the observable state) are implemented as protected methods
of this class.

CArtAgO: A Framework for Prototyping Artifact-Based Environments 79

given by the Java object-oriented environment. Accordingly, an artifact type
can be defined by extending the basic Artifact class provided in the API:
at run-time, artifacts instances are instances of this class. A sketch of the
base class is shown in Fig. 6: the core set of the primitives described in
Subsection 3.2 are available as protected methods provided by the class.

The artifact internal state is defined in terms of instance fields of the class,
and the behaviour of operations can be defined by suitable instance methods
of the class. In particular an operation Op(Params) can be implemented by a
method of the kind:

@OPERATION(State1,State2,...) void Op(Params){...}

The annotation @OPERATION5 is used to explicitly state that what follows
is not to be interpreted as a normal method (meant to be invoked by other
objects) but rather as the body of an artifact operation. It is worth remarking
that methods representing operations have no return argument—a return
argument would be meaningless in CArtAgO abstract model, as well as in
the A&A general meta-model.

Currently, the concurrency model adopted for artifacts prevents operation
execution requests to be served sequentially, so that only one operation at
a time can be in execution on an artifact. Such a choice is quite effective in
avoiding basic problems related to concurrent use of artifacts by agents (and
in particular concurrent updates of artifact internal state). At the same time,
this choice limits quite strongly the concurrency in artifact use, so future
work will be devoted to explore further this issue.

As depicted in Fig. 6 and described in Subsection 3.2, observable events
can be generated in the body of an operation by a family of primitives of
the kind genEvent, specifying the event type, optionally an event content and
the operation identifier to which the event must be related (OpId parameter).
Events are collected by agent body sensors as stimuli, and then perceived
by agents through sense action. Fig. 6 also includes the primitives that
can be used to set and retrieve the current observable state of the artifact
(setObservableState and getObservableState, respectively).

The manual of the artifact, containing information about function descrip-
tion, the operating instructions, as well as the list of the observable states,
can be explicitly declared through the @ARTIFACT MANUAL annotation preced-
ing the artifact class declaration. If no states are declared, a single default
state is defined. Defined the list of the observable states, an artifact pro-
grammer can specify the shape of the usage interface in relationship to the
artifact observable state. This is possible by explicitly stating in the anno-
tation of an operation what are the observable states in which the operation
is meant to be visible (specifying @OPERATION({State1,State2,...})). If an
operation has no states declared, then the operation is meant to be visible
in all the states.

As a simple example, Fig. 7 shows the definition of an artifact type called
MyArtifact (on the left), and an example of artifact use by an agent (on

5 Annotations have been introduced along with the 5.0 version of Java.

80 A. Ricci, M. Viroli, and A. Omicini

\begin{verbatim}
@ARTIFACT_MANUAL(

states = {"stateA","stateB"},
start_state = "stateA",
oi = @OPERATING_INSTRUCTIONS("..."),
fd = @FUNCTION_DESCRIPTION("...")

) public class MyArtifact extends Artifact {

private int count;
private int max;

public CounterArtifact(int max){
this.max = max;
count = 0;

}

@OPERATION({"stateA"}) void op1() {
count++;
genEvent("new_value",count);
if (count >= max){

setObservableState("stateB");
}

}

@OPERATION({"stateA","stateB"}) void op2() {
genEvent("value",count);

}
}

...
ICartagoEnvironment env = Cartago.getInstance("...");
IAgentBody myBody = env.getAgentBody("...");

ArtifactId aid = myBody.getArtifactId("myArtifact");
SensorId sid = myBody.linkSensor(new DefaultSensor());

BasicFilter myFilter1 = new BasicFilter({"new_value"});
BasicFilter myFilter2 =

new BasicFilter({"op_completed",
"state_changed"});

boolean state_changed = false;
while (!state_changed){

try {
myBody.execOp(aid,"op1",sid);

// operation triggered:
// sensing for one second for new_value events...
Perception p = myBody.sense(sid,myFilter1,1000);
log("current value: "+p.getContent());

// observing next observable event,
// which should be either
// op_completed or state_changed
Perception p = myBody.sense(sid,myFilter2,1000);

String type = p.getType();
if (type.equals("state_changed")){

state_changed = true;
}

} catch (NoPerceptionException ex){
// something wrong happened in the artifact
// or simply artifact too slow in executing the op...
break;

} catch (OperationNotAvailableException ex){
// inc was not part of artifact usage interface...
break;

}
}
...

Fig. 7. (Left) Complete definition of the MyArtifact type; (Right) A code fragment
showing an example of use of a MyArtifact artifact

the right). As declared in the artifact manual, artifacts of sfMyArtifact kind
have two possible observable states, labelled as stateA and sfstateB, with
the former functioning as starting state. In the stateA state, the usage in-
terface includes both the op1 and op2 operations, while in the stateB state
the usage interface includes only op2. The execution of the op1 operation
causes the update of an internal counter of the artifact, whose new value is
made observable by generating a new value event. When the internal counter
reaches a maximum value (provided with artifact initialisation), the artifact
changes its observable state from stateA to stateB. The execution of the op2

operation simply makes the current value of the internal counter observable,
by generating an event of the kind value. As far as the artifact use is con-
cerned, in the fragment—after creating an agent body inside the working
environment where the artifact is located—op1 operation is executed repeat-
edly, logging each time the value perceived by observing events generated
as a consequence of the operation execution, until a change of artifact state
is observed. In the example, two filters—instances of the class BasicFilter,

CArtAgO: A Framework for Prototyping Artifact-Based Environments 81

part of the utility class of CArtAgO—are used to select the perceptions. Using
BasicFilter, a stimulus is selected if and only if its type description matches
one of the descriptions provided as parameter of BasicFilter constructor
(implemented as array of strings).

Run-time environment and related tools — This is the part actually re-
sponsible of the life-cycle management of working environments at run-time.
Conceptually, it is the virtual machine where artifacts and agent bodies are
instantiated and managed that is responsible of executing operations on ar-
tifacts and collecting and routing observable events generated by artifacts.
Some tools are also made available in CArtAgO for on-line inspection of work-
ing environment state, in particular artifact state and behaviour, in terms
operation executed and events generated.

4.2 A Complete Example: Hello Philosophers!

To illustrate a simple but complete example of MAS application exploit-
ing artifact-based working environments, we consider the “Hello philosophers”
example—listed among the basic examples in CArtAgO distribution—, which is
used here analogously to the (in)famous “Hello world” example for traditional
programming languages.

The example refers to the well-known problem introduced by Dijkstra in the
context of concurrent programming to check the expressiveness of mechanisms
and abstractions introduced to coordinate set of cooperating / competing com-
puting agents. Briefly, the problem is about a set of N philosophers (typically
5) sharing N chopsticks for eating spaghetti, sitting at a round table (so each
philosopher share her left and right chopsticks with a friend philosopher on the
left and one on the right). The goal of each philosopher is to live a joyful life,
interleaving thinking activity, for which they actually do not need any resources,
to eating activity, for which they need to take and use both the chopsticks. The
goal of the overall philosophers society is to share the chopsticks fruitfully, and
coordinate the access to shared resources so as to avoid forms of deadlock or
starvation of individual philosophers—e.g. when all philosophers have one chop-
stick each. The social constraint of the society is that a chopstick cannot be used
simultaneously by more than one philosopher.

The problem can be solved indeed in many different ways. By adopting the
A&A perspective, it is natural to model the philosophers as cooperative agents
and the table—managing the set of chopsticks—as the coordination artifact that
agents share and use to perform their (eating) activities. It is easy to encapsulate
in the table artifact the enactment of the social policy that makes it possible
to satisfy both mutual exclusion for the access on the individual chopsticks, and
avoid deadlock situations.

Fig. 8 shows the complete application, with the table artifact implemented
upon CArtAgO, the agent philosophers directly implemented as flat Java threads,
without relying on a specific agent architecture.

The usage interface of the table artifact is composed by only two operations,
getChops and releaseChops, which can be used respectively to get two chopsticks

82 A. Ricci, M. Viroli, and A. Omicini

import alice.cartago.*;
import java.util.*;

public class Table extends Artifact {
private boolean[] chops;
private List<PendingReq> reqs;

public Table(int nchops){
chops = new boolean[nchops];
reqs = new LinkedList<PendingReq>();
for (int i = 0; i<chops.length; i++){

chops[i]=true;
}

}

@OPERATION void getChops(int c0, c1){
if (chops[c0] && chops[c1]){

chops[c0] = chops[c1] = false;
genEvent("chops_acquired");

} else {
PendingReq req =

new PendingReq(c0, c1, getOpId());
reqs.add(req);

}
}

@OPERATION void releaseChops(int c0, int c1){
chops[c0] = chops[c1] = true;
Iterator<PendingReq> it = reqs.listIterator();
while (it.hasNext()){

PendingReq r = it.next();
if (chops[r.c0] && chops[r.c1]){

it.remove();
chops[r.c0] = chops[r.c1] = false;
try {

genEvent(r.reqId,"chops_acquired");
} catch (Exception ex){}

}
}

}

private static class PendingReq {
public int c0,c1;
public OpId reqId;
public PendingReq(int c0, int c1, OpId id){

this.c0 = c0; this.c1 = c1; reqId = id;
}

}
}

public class HelloPhilosophers {
public static void main(String[] args) throws Exception {

String envName = "restaurant";
ICartagoEnvironment env = Cartago.getInstance(envName);
env.createArtifact("table",Table.class,new ArtifactConfig(5));
for (int i = 0; i<5; i++){

new Philosopher("philo-"+i,i, (i+1)%nphilo,envName).start();
}

}
}

import java.util.*;
import alice.cartago.*;

public class Philosopher extends Thread {
private int lchop, rchop;
private IAgentBody myBody;
private String name;

public Philosopher(String name, int c0, int c1,
String envName) throws Exception {

this.name=name;
lchop = c0;
rchop = c1;
ICartagoEnvironment env = Cartago.getInstance(envName);
myBody = env.getAgentBody(name);

}

public void run() {
try {

ArtifactId tableId = myBody.getArtifactId("table");
SensorId sid = myBody.linkSensor(new DefaultSensor());
Op getOp = new Op("getChops",lchop, rchop);
Op releaseOp = new Op("releaseChops",lchop, rchop);
IPerceptionFilter myFilter =

new BasicFilter("chops_acquired");
while (true){

myBody.execOp(tableId,getOp,sid);
try {

myBody.sense(sid,myFilter,5000);
eating();

} catch(NoPerceptionException ex) {
log("starved.");
break;

}
myBody.execOp(tableId,releaseOp);
thinking();

}
} catch (Exception ex){
}

}

private void eating(){...}
private void thinking() {...}
private void log(String msg){...}

}

Fig. 8. Dining philosophers interacting within through a CArtAgO working environ-
ment called restaurant. Philosophers agents are simply implemented upon flat Java
threads, while the table is implemented as a table artifact of class Table.

from the table and to give them back. The inner machinery of the table arti-
fact ensures mutual exclusion on the access on chopsticks (an artifact executes
one operation at a time, analogously to monitors) and deadlock avoidance (by
releasing the chopsticks only if both are available, enqueueing the pending re-
quests). It is worth noting the way in which observable events are generated: if
the chopsticks are available when an instance of getChops operation is triggered,
then the event chops acquired is immediately generated, through the genEvent

primitive; otherwise, the pending request is enqueued and the event is generated

CArtAgO: A Framework for Prototyping Artifact-Based Environments 83

as soon as the chopsticks become available with the execution of a releaseChops

operation.
On the agent side, a philosopher gets an agent body during its initialisation,

and then exploits it during its main activity—which is defined by the body of the
method run. It is worth remarking that here we adopted such a simplistic imple-
mentation for agents just to make the description of CArtAgO usage and integra-
tion with agent platforms as simple and concise as possible. The same example
using simpA agent framework can be found in simpA distribution. Agent main
activity accounts for repeatedly alternate eating and thinking sub-activities, us-
ing the table artifact to get (and release) the chopsticks. In particular, to get
the chopsticks the agent triggers the execution of the getChops operation on the
table artifact, specifying a sensor (previously linked to its body) to collect stim-
uli related to this action. Then, it pro-actively observes the sensor for 5 seconds
using the sense primitive, filtering stimuli that concern chops acquired events. If
no perception is sensed within 5 seconds, the philosopher starves and terminates.
Otherwise, it performs its eating activity and then, after eating, it releases the
chopsticks by executing a releaseChops operation on the table artifact, without
specifying any sensor (since, in this simple implementation, it is not interested
to observe the effects of such an action).

5 Related Works

The approach based on artifacts shares the same engineering aims introduced
by Weyns and colleagues in [11], where they identify a general model and an
architecture that can be (re-)used to engineer environments in MAS, despite of
the specific application domain. The model presented by the authors is concern-
based : the environment is modelled as a set of modules that represent different
functional concerns of the environment. A similar focus, but in some sense less
general, can be found also in the work of Platon and colleagues [12], where a
general model for environments providing functionalities for over-hearing and
over-sensing is presented. Our notion of artifact could be compared at a first
glance with the notion of functional modules describe by Weyns and colleagues.
The main difference is that artifacts are conceived to be first-class abstractions
both for the engineers designing and programming agent environment and for
the agents using such an environment : agents do not perceive the environment as
a single entity providing a set of functionalities (which are internally engineered
upon a set of modules), but directly create, share, use, manipulate, destroy
artifacts, each designed to encapsulate some kind of function.

The model for perception and sensing described in the paper shares many
points with the model—more general—discussed in [9], introducing the notion
of active perceptions. Such a model decomposes perceptions into a succession
of three functionalities: sensing, interpreting and filtering. First, sensing maps
the state of the environment to a representation. The agent can select a set of
foci, that enable the agent to sense specific type of data in the environment. The
representation of the state is composed according to a set of perception laws, that

84 A. Ricci, M. Viroli, and A. Omicini

can be used by designers to enforce specific constraints on perceptions. Then,
agents interpret representations by means of descriptions, that are blueprints
that map representation onto percepts, modelled as expressions that can be
understood by the internal machinery of the agent. Finally, agents can select a
set of filters, to restrict the perceived data according to specific context relevant
selection criteria.

In our model, sensors and sense actions provide some of the functionalities
discussed above. In particular, by following the meaning introduced by the au-
thors, each sensor can be used as a specific focus: the idea is that an agent
can dynamically create and link to their body different kind of sensors, with
distinct features (such as buffering, filtering, etc), to partition the perceptions
from the environment, in our case related to artifacts (even if the model can be
extended to consider also perceptions directly related to other agents). Similar
to perceptual laws discussed above, sensor activity can be constrained according
to laws enforced by the organisational and physical context where the agent is
situated: this aspect will be explored in future work, with the introduction of an
explicit support for organisation modelling on top of workspaces (see Sect. 6).
Pattern-driven sensing described in Sect. 3 could be framed as a simplified form
of filtering as defined in active perceptions, with some points that concern also
interpretation: patterns act as simple filters that agents can specify to fetch in
a data-driven way the data collected by sensors, and require that an explicit
description is adopted for describing the events or stimuli posted to sensors.

Finally, the artifact abstraction and CArtAgO framework draw on the research
work on tuple centres as programmable tuple-based coordination media and
TuCSoN coordination model [13]. Artifacts can be framed as a generalisation of
the notion of tuple centre: more precisely, tuple centres can be conceived as a type
of coordination artifacts [8], as artifacts designed to encapsulate programmable
coordination services.

6 Concluding Remarks

In this paper we described CArtAgO, as a framework supporting the engineering
of artifact-based working environment in MAS. First we described the abstract
model and architecture of the framework, and then a first basic prototype tech-
nology implementing most of the core functionalities.

Among the issues not considered for lack of space—and that can be found in
the artifact conceptual framework—we mention here: (i) artifact composition—
support for linking together existing artifacts to dynamically compose complex
artifacts, by defining and exploiting artifact link interfaces ; (ii) artifact manage-
ment—support for inspecting, controlling, testing artifact state and behaviour,
by defining and exploiting artifacts management interface, besides usage inter-
face. Among the issues not currently faced in CArtAgO, and that will be part of
our future work, we mention here distribution, security, and organisation.

As far as distribution is concerned, currently in CArtAgO there is no explicit
account for the way in which workspaces—and possibly also artifacts—can be

CArtAgO: A Framework for Prototyping Artifact-Based Environments 85

distributed across multiple nodes of a networks. In current version, working en-
vironments are confined to a single CArtAgO virtual machine (node) and then
agents can create and use artifacts that live in their local environment. Distri-
bution is achieved by ad-hoc linking of artifacts, that is, by exploiting network
connections that makes it possible the low-level communication among artifacts
belonging to different workspaces and working environments. In future work
we will focus on extending the framework towards a full-fledged infrastructure,
providing a first-class support for such an aspect.

Security and organisation are related issues, and call for the introduction of an
explicit support for organisation built on top of the basic CArtAgO abstractions,
which would be effective also to model security aspects such as access control.
By drawing on our previous research work about such aspects on TuCSoN infras-
tructure, in CArtAgO we plan to introduce a role-based model, inspired to RBAC
(Role-Based Access Control) architectures [14], such as RBAC-MAS [15]. Such
a model will be based on the notion of workplace. A workplace defines the set of
roles and related organisational rules or contracts being in force in a workspace.
The contracts defines, in particular, the norms and policies that rule agent ac-
cess to the artifacts belonging to the workspace. For example, depending on
the role(s) that an agent is playing inside the workplace, it may have or not
the permission to use some artifacts or to execute some specific operations on
some specific artifacts. So, workplaces would define an organisational layer—and,
consequently, a security layer—on top of workspaces.

Besides the above three main points, future work will be devoted also: (i) to
improve the development of the prototype, including all the missing features that
are currently part of the abstract model—such as the support for workspaces—
and future extensions—such as workplaces; (ii) to integrate existing services as
kinds of artifact, in order to be easily re-used when engineering applications on
top of CArtAgO: an example is given by artifacts wrapping TuCSoN tuple centres,
providing agent coordination facilities; (iii) to define suitable formal models
and ontology for describing function descriptions, operating instructions, and
observable state description, possibly reusing existing research efforts on service
description models and (standard) languages, such as OWL-S.

Finally, existing and ongoing research in environment for MAS will be impor-
tant to improve the theoretical foundation of CArtAgO, concerning the notion of
artifact and related concepts: for instance, the research work on active perceptions
can be important to improve and extend the model of sensing currently adopted.

References

1. Ricci, A., Viroli, M., Omicini, A.: Programming MAS with artifacts. In Bor-
dini, R.P., Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.: 3rd International
Workshop “Programming Multi-Agent Systems” (PROMAS 2005), AAMAS 2005,
Utrecht, The Netherlands (2005) 163–178

2. Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14 (2007)
49–60 Special Issue on Environments for Multi-agent Systems.

86 A. Ricci, M. Viroli, and A. Omicini

3. Viroli, M., Ricci, A., Holvoet, T., Shelfthout, K., Zambonelli, F.: Infrastructures
for the environment of multiagent systems. Autonomous Agents and Multi-Agent
Systems 14 (2007) 5–30 Special Issue on Environments for Multi-agent Systems.

4. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press (1996)

5. Kirsh, D.: Distributed cognition, coordination and environment design. In: Euro-
pean conference on Cognitive Science. (1999) 1–11

6. Agre, P.: Computational research on interaction and agency. Artificial Intelligence
72 (1995) 1–52

7. Amant, R.S., Wood, A.B.: Tool use for autonomous agents. In Veloso, M.M.,
Kambhampati, S., eds.: AAAI/IAAI’05 Conference, Pittsburgh, PA, USA, AAAI
Press / The MIT Press (2005) 184–189

8. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination
artifacts: Environment-based coordination for intelligent agents. In: AAMAS’04.
Volume 1., New York, USA, ACM (2004) 286–293

9. Weyns, D., Steegmans, E., Holvoet, T.: Towards active perception in situated
multiagent systems. Applied Artificial Intelligence 18 (2004) 867–883

10. Viroli, M., Ricci, A.: Instructions-based semantics of agent mediated interaction.
In: AAMAS’04. Volume 1., New York, USA, ACM (2004) 286–293

11. Weyns, D., Holvoet, T.: Formal model for situated multiagent systems. Funda-
menta Informaticae 63 (2004) 125–158

12. Platon, E., Honiden, S., Sabouret, N.: Oversensing with a softbody in the envi-
ronment: Another dimension of observation. In Kaminka, G.A., Pynadath, D.V.,
Geib, C.W., eds.: Workshop “Modeling Others from Observation” (MOO 2005),
IJCAI-05, Edinburgh, Scotland (2005)

13. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2 (1999) 251–269

14. Sandhu, R., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based control models.
IEEE Computer 29 (1996) 38–47

15. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation,
roles and contexts in MAS. Applicable Algebra in Engineering, Communication
and Computing 16 (2005) 151–178 Special Issue: Process Algebras and Multi-Agent
Systems.

	Introduction
	$CArtAgO$ Abstract Model and Architecture
	Agent Bodies
	Artifacts
	Workspaces

	Core Primitives
	Agent Side
	Artifact Side

	A First Prototype
	Prototype Overview
	A Complete Example: Hello Philosophers!

	Related Works
	Concluding Remarks

