
Construenda est CArtAgO: Toward an Infrastructure for Artifacts in
MAS

Alessandro Ricci, Mirko Viroli, Andrea Omicini
DEIS, Alma Mater Studiorum, Università di Bologna

Via Venezia 52, 47023 Cesena, Italy
{a.ricci, mirko.viroli, andrea.omicini}@unibo.it

Abstract

Artifacts have been recently proposed as first-
class abstractions to model and engineer gen-
eral purpose computational environments for
Multi-Agent Systems. In this paper, we first
consider the role of infrastructures in support-
ing the artifact conceptual framework, dis-
cussing motivations and requirements, and
then we propose an abstract model and ar-
chitecture of a reference infrastructure for ar-
tifacts, here named CArtAgO.

1 Introduction

Artifacts have been recently proposed as first-class ab-
stractions to model and engineer computational en-
vironments in software Multi-Agent Systems (MASs)
[Ricci et al., 2005; Viroli et al., 2005]. The background
vision—which is shared with other recent approaches in
MAS literature (see [Weyns et al., 2005a] for a survey)—
is that the environment can play a fundamental role in
engineering MAS: on the one hand it is a suitable locus
where engineers can embed responsibilities, impacting
on MAS design and development; on the other hand it
is a source of structures and services that agents can
suitably use at runtime to support and improve their
activities, in particular social ones.

The artifact conceptual framework promotes a
methodology for modelling and engineering such com-
putational environments. Artifacts can be generally
conceived as function-oriented computational devices—
i.e. designed to provide some kind of function1—, that
agents can exploit to support their individual and col-
lective (social) activities [Ricci et al., 2005]. Such a view
directly impacts on the theories of interaction and ac-
tivities in agency: a MAS is conceived as an (open) set
of agents that develop their activities by (i) comput-
ing, (ii) communicating with each other, and (iii) us-
ing (constructing) shared artifacts, which embody their
computational environment. Generally speaking, arti-
facts can be either the target (outcome) of agent ac-
tivities, or the tools that agents use as media to sup-
port such activities, reducing the complexity of their

1The term function here should not be confused with its
meaning in programming languages, and should refer to the
meaning that is generally used in human sciences such as
sociology and anthropology, as well as in some recent work
in AI [Amant and Wood, 2005]

tasks. For instance, coordination artifacts [Omicini et
al., 2004] are artifacts providing coordination function-
alities (such as blackboards, tuple spaces or workflow
engines).

The conceptual and theoretical background of one
such framework stems from the theories developed in
the context of human science, in particular Activity
Theory [Nardi, 1996] and Distributed Cognition [Kirsh,
1999]. Also, this perspective shares the aims and the
principles developed in existing research work in Dis-
tributed Artificial Intelligence about theories of inter-
action [Agre, 1995]—in particular with the work of Phil
Agre and Horswill [Agre and Horswill, 1997]—, and in
Computer Supported Cooperative Work, with the no-
tion of embodied interaction by Dourish [Dourish, 2001].

From an engineering point of view, artifacts along
with agents become basic building blocks to design and
develop MASs (or applications as MASs): designers
can use agents to model autonomous activities, typi-
cally goal / task oriented, and artifacts to model struc-
tures, objects, typically passive and reactive entities
which are constructed, shared and used in the execu-
tion of such activities. The artifact abstraction provides
then a natural way to model object-oriented (OO) and
service-oriented abstractions (objects, components, ser-
vices) at the agent level of abstraction, bridging the
conceptual and semantic gaps between the paradigms.
As in the case of objects and services, artifacts expose
interfaces composed by operations that can be invoked
by agents—though relying on a different semantics.

In order to stress the validity of the artifact concep-
tual framework, and to extend and evolve it, we consider
useful to setup a first simple infrastructure—referred
here to as CArtAgO—to be concretely used for engi-
neering MAS applications exploiting such abstractions,
embodying the basic concepts related to artifacts.

Infrastructures play an essential role for keeping ab-
stractions alive from design to runtime [Gasser, 2001].
Agent infrastructures (or middleware) typically provide
fundamental services for agent creation, management,
discovery and (direct) communication: well-known ex-
amples are RETSINA [Sycara et al., 2003] and JADE
[Bellifemine et al., 2001]. Analogously, CArtAgO is
meant to be exploited for creating and sustaining the
existence at runtime of computational environments en-
gineered in terms of artifacts, providing on the one side
basic services for agents to instantiate and use artifacts,
on the other side a flexible way for MAS engineers (and
possibly agents) to design and construct any useful kind



of artifact.
The objective of this paper is to define an abstract

model and architecture for CArtAgO, which can be suit-
ably exploited to drive a concrete reference implemen-
tation. Among the related works, worh mentioning are
Odell and Parunak’s general abstract model for en-
vironments [Odell et al., 2003], Weyns, Holvoet and
Schelfthout’s work on software architectures to design
environments in situated MAS [Weyns et al., 2005b] and
Ferber and Muller’s works on models for situated MAS
[Ferber and Müller, 1996]. A comprehensive survey can
be found in [Weyns et al., 2005a].

The abstract model and architecture of CArtAgO de-
scribed in the remainder of the paper have been devel-
oped by considering some few basic requirements that
we wanted for such an infrastructure: minimality and
extensibility—we aim at identifying a minimal core by
considering a first basic set of features and properties
identified in the artifact conceptual framework, to have
simple ways to construct, select, and use artifacts, but
easily extensible to support more advanced features not
considered in this paper, such as composition and on-
line management; neutrality—the infrastructure should
be as far as possible neutral with respect to agent mod-
els, architectures, platforms, in order to be integrated
and exploited with (existing) heterogeneous agent in-
frastructures; heterogeneity—the infrastructure should
be as far as possible open to different ways (models, lan-
guages, frameworks) adopted to implement artifacts. In
particular, it should be natural to reuse and wrap ex-
isting object-oriented and (web) services technologies,
enabling their explicit representation and flexible ex-
ploitation at the agent level.

2 CArtAgO Abstract Model

In this section we define an abstract model of the main
aspects on which CArtAgO is based, starting with a
model for actions and perceptions linking agents to their
computational environment, then introducing an ab-
stract model for artifacts—as basic bricks to engineer
such environments—, and finally for workspaces, as log-
ical contexts where artifacts and agents are situated.

2.1 Actions & Perceptions
As a premise to all the other aspects, the artifact frame-
work calls for introducing a model (and a theory) of
interaction different from the models generally adopted
in software agent infrastructures—typically based solely
on communicative acts—, and more similar to models
defined in autonomous / situated agents. Agents inter-
act with their computational environment by means of
suitable actions provided for artifact construction, se-
lection and usage, and by perceiving observable events
generated from such artifacts: we refer to such a kind
of actions here as pragmatic acts. Pragmatic and com-
municative actions constitute agent cognitive acts. The
conceptual foundation of this notion of actions is in-
spired by the notion of cognition as defined in theories
based on the concept of autopoiesis and structural cou-
pling [Varela, 1981]—developed in theories concerning
living systems, from biology to social sciences—where
actions and perceptions are strictly connected. From
this perspective, we consider agents as autopoietic en-
tities, which interact with their environment—and arti-

e

e

artifact

agents

Internet nodes

Workspaces

Figure 1: (left) Agents interact with artifacts by in-
voking operations on their usage interfaces and by per-
ceiving observable events generated by them. (right)
Agents and artifacts are situated in workspaces, spread
over network nodes.

facts in particular, as allopoietic entities— by executing
operations that result in both changes in the environ-
ment and in the agents executing the actions, as a form
of structural coupling. A primary example of action
is the execution of an operation on a specific artifact,
whose effects can be the generation of streams of events
distributed in time.

As in the classic agent model [Russel and Norvig,
2003], agents perceive events through sensors, as col-
lectors of environment stimuli. In CArtAgO, sensors are
structures provided by the infrastructure that agents
can flexibly create and use to partition and control the
information flow perceived from artifacts, possibly pro-
viding specific functionalities such as buffering, filtering
and ordering, managing priorities. Sensing is the inter-
nal action that agents execute on their sensors to be-
come aware (perceive) of the events (stimuli) collected
by the sensors.

2.2 Artifacts
Artifacts are the basic bricks managed by CArtAgO in-
frastructure. In the following abstract model we define
some basic features and properties which are essential
in their construction, manipulation and use, indepen-
dently from the specific implementation models.

Identity
Each artifact has a logic name specified by the artifact
creator at the instantiation time, and an id, released by
the infrastructure, to univocally identify the artifact.
The logic name is an agile way for agents to refer and
speak about (shared) artifacts, while the id is required
to identify artifacts when executing actions on them.
The full name of an artifact includes also the name of
the workspace(s) where it is logically situated. Since an
artifact can be located in multiple workspaces, the same
artifact can be referenced by multiple full names.

Usage Interface & Events
Each artifact has a usage interface that agents exploit
in order to interact with it, i.e use it. A usage interface
is defined as a set of operations: agents interact with
artifacts by invoking operations and observing events
generated from them, perceived through sensors. An
operation is characterised by a name and a set of pa-
rameters. Parameters are meant to have a type, as well
as the event generated.

Differently from interfaces as found in OO or service-
oriented paradigms, operations in usage interfaces have
no return value: this aspect is modelled as observable



information (event) that can be perceived by agents af-
ter executing the operation. Also exceptions—as error
conditions generated during operations execution—are
modelled as observable events.2

The usage interface of an artifact can depend on its
state, analogously to GUI interfaces of applications: in
other words, an artifact can expose different set of oper-
ations according to its state. This is a simple and direct
way to structure the interface of artifacts, directly sup-
porting what is typically implemented as a pattern in
the context of object-oriented paradigm, where inter-
faces are typically fixed.

Function Description & Operating Instructions
In order to support a rational exploitation of artifacts by
intelligent agents, each artifact is equipped with a func-
tion description, i.e. an explicit description of the func-
tionalities it provides, and operating instructions, i.e. an
explicit description of how to use artifact to get its func-
tion, for instance in terms of the usage protocols that
the artifact support. Such information is meant to be
useful for cognitive agents that—by suitably inspecting
and understanding them—can (i) dynamically reason
about what artifacts can be selected to support their
activities, and (ii) use operating instructions to sup-
port activity execution, making easier to set up plans
and reason about expected behaviour of artifacts. We
consider such issues of foremost importance, at the core
of the notion of computational environments designed
to support the activities of agents—in particular cogni-
tive / rational agents. Actually, the research on these
aspects, in particular on formal models and languages
that can be used to specify function description and
operating instructions, and their injection in existing
agent reasoning architectures (such as BDI), is still in
its infancy: first work can be found in [Viroli and Ricci,
2004].

In CArtAgO we provide a minimal but enabling sup-
port to these issues, by modelling function description
and operating instructions as simple textual documents
that can be specified for any artifact by its designer,
providing basic services for their dynamic inspection.
We don’t fix the specific model and formal semantics
for such documents: just to promote a first naive form
of interoperability, we consider the use of XML as rep-
resentation language.

Observable State
Artifacts are stateful reactive entities, with a state that
can change according to the operations executed by
agents.3

As for artifacts in human society, we consider it useful
to explicitly define a notion of observable state, as dy-
namic information (such as sets of properties) exposed
by an artifact, that can be dynamically observed by

2It is worth remarking that operations are not methods as
defined in the OO case, since agents encapsulate their con-
trol flows. In the OO paradigm, the execution of a method
causes the control to flow with the data (parameters) from
the object invoking the method to the object owning the
method.

3Actually, also time- and location- aware artifacts can be
considered, i.e. artifacts whose state can can change also also
in reaction to—respectively—time passing (e.g. a clock) and
artifact location changes.

AGENT CONTEXT LAYER

TRANSPORT LAYER TRANSPORT LAYER

WORKSPACE LAYER

ARTIFACT LAYER

-artifact factory
-operation execution
-event generation

-workspace creation, management
-tracking agents / artifacts inside ws

- enabling agent actions
- dispatching events to perception
channels

Figure 2: CArtAgO abstract architecture.

agents without necessarily interacting through its us-
age interface. Such an observable state includes also the
usage interface (description), whose shape can change
according to the state of the artifact, as mentioned pre-
viously. Analogously to function description and oper-
ating instructions, in this first model of CArtAgO we do
not consider specific models and semantics for describ-
ing artifact observable state, and we just consider a flat
textual representation.

2.3 Workspaces
Artifacts (and agents) are logically situated in
workspaces, which can be used to define the topology
of the computational environment. A workspace can
be defined as an open sets of artifacts and agents: ar-
tifacts can be dynamically added to or removed from
workspaces, agents can dynamically enter (join) or exit
workspaces. A workspace is typically spread over the
nodes of an underlying network infrastructure, such as
Internet. In CArtAgO each workspace is created by spec-
ifying a logic name and is univocally identified by an
id released by the infrastructure. Workspaces make it
possible to define topologies to structure agents and ar-
tifacts organization and interaction, in particular as a
scope for event generation and perception. On the one
side, a necessary condition for an agent to use an ar-
tifact is that it must exist in a workspace where both
are situated. On the other side, events generated by the
artifacts of a workspace can be observed only by agents
belonging to the same workspace.

Intersection and nesting of workspaces are supported
to make it possible to create articulated topologies.
In particular, intersection is supported by allowing
the same artifacts and agents to belong to different
workspaces.

3 An Abstract Architecture

Based on the previous abstract model, the abstract ar-
chitecture of CArtAgO can be described in terms of logic
layers, distinguishing the agent side and the artifact side
(see Figure 2).

On the agent side we have (top-down): an agent con-
text layer and a transport layer. The agent context layer
acts as a bridge between agents and CArtAgO compu-
tational environments, and is responsible for the alloca-
tion and management of agent contexts. The notion of



invokeOp(OpName,Args)
getFD
getOI

notifyEv(OID,EvDescr)
exposeState(StateDesc)
...

createAr(ArName,TemplID,Args)
invokeOp(ArID,OpName,Args)
getFD(ArID)
getOI(ArID)
...

CArtAGO infrastructure

Agent Infrastructure(s)

agent 
local context

sensors

CArtAgo

Artifacts

Agents

Figure 3: An overview of the interfaces realising the
services.

agent context is introduced to both explicitly represent
a temporal notion of session (working session) of a spe-
cific agent, and as a local computational environment
encapsulating CArtAgO structures that are private to
the individual agents, such as sensors. The agent con-
text acts as a bridge between the individual agent and
the environment where the agent plays, providing the
very basic interface to act inside CArtAgO, and in the
overall defining the basic set of actions and perceptions
allowed for such an agent. Agents contexts are useful to
explicitly model the dynamics of agent working sessions:
an agent starts its working session inside workspaces by
first obtaining its context, which is dynamically con-
structed by the infrastructure, configured according to
organisation and security issues (not dealt in this pa-
per), and then released to the agent. Then, by means
of the context the agent can execute actions and per-
ceive events. So, the agent context layer on the one
side provides the overall primitives (actions) to agents
for exploiting CArtAgO, on the other side it is responsi-
ble of the dispatching of events to agents, through the
perceptions channels in their agent contexts. The trans-
port layer below the agent context layer is responsible
of connecting agent contexts to workspaces and arti-
facts, dispatching actions, operations, events according
to the topology, exploiting the available network infras-
tructure(s).

On the artifact side we can identify (top-down): an
artifact layer, a workspace layer, and the same transport
layer. The artifact layer is responsible of artifacts man-
agement. On the one side, the layer acts as (i) artifact
factory, to create / dispose artifacts, and (ii) operation
executor, executing operations requested by agents on
artifacts; on the other side, it provides basic operations
to be exploited by artifacts to generate events and to
expose their observable state. The workspace layer is
responsible to manage workspaces (creation, disposal,
tracking agents and artifacts inside workspaces, etc.),
providing basic services that are exploited by specific
agent actions.

getContext(AgID,CtxDescr): CtxID
getWsID(WsName,{Location}):WsID
joinWS(WsID)
exitWS(WsID)
releaseContext(CtxID)

createAr(ArName,TemplID,[Args],{WsID}):ArID
getArID(ArName,{WsID}):ArID
registerAr(ArID,WsID)
deregisterAr(ArID,WsID)
disposeAr(ArID)

createSensor: SensorID
invokeOp(ArID,OpName,[Args],{SensorID}): OpID
sense({SensorID},Timeout): EventDescr

getFD(ArID): FdDescr
getOI(ArID): OIDescr
getUID(ArID): UIDDescr
getState(ArID): StateDescr

createWS(WsName,Location):WsID
addWSNode(WsID, Location)
removeWSNode(WsID, Location)
disposeWS(WsID)

Table 1: Actions available to agents to manage artifacts
and workspaces.

4 Basic Services
The abstract description of CArtAgO is completed by
defining the abstract specification of the core services
(API) provided by the infrastructure, on the one side
used by agents to work with artifacts, on the other side
useful for programming artifacts. Figure 3 shows the re-
lationships between the abstract architecture and such
interfaces.

4.1 Agent Side
Services are exploited by agents executing suitable cog-
nitive actions, whose execution yields immediately a re-
sult and possibly a stream of events distributed in time,
perceived by agents through their sensors. The abstract
specification of the basic core of actions is reported in
Table 1.

In order to start a working session, an agent must first
execute a getContext action, obtaining its local context,
enabling its participation to the computational environ-
ment. Once got a local context, an agent can join one
or more workspace(s), in order to create or use arti-
facts situated there. For this purpose, joinWS action
makes it possible to enter a workspace, by specifying the
workspace id, and exitWS to exit. getWsID action can
be executed to get the workspace identifier, specifying
the workspace name and possibly one of the (network)
nodes where the workspace is located.

The remainder of the actions are grouped according
to the basic aspects that characterise agent / artifact re-
lationships, i.e. artifact selection, use and construction.

Artifacts Selection
Agents can dynamically inspect the function descrip-
tion of an artifact to evaluate its possible usage in their
activities. For the purpose, a basic action getFD can
be used, specifying as a parameter the specific artifact
whose function description should be read.

An important and articulated issue to be considered
here—besides the retrieval of the function description of
a known artifact— is artifact discovery, i.e. how agents
can be aware of the available artifacts in their contexts
(workspaces). A natural way to design such a discov-
ery service accounts for instrumenting workspaces with
suitable infrastructure agents and artifacts, available by



default, with some conventional names. This solution is
common in agent infrastructures, with agent facilitators
(such as the directory facilitator). By adopting a min-
imal approach, we instrument each workspace with a
simple artifact called artifacts registry , which can
be used by agents to know what artifacts are actually
present in the workspace. artifacts registry could
provide also basic services for artifact searching and
match-making, by keeping track—beside the names and
the ids— also of the function descriptions and possibly
of the operating instructions. For flexible and articu-
lated discovery services a good design strategy accounts
for keeping artifacts registry simple and introduc-
ing a suitable facilitator agent which would interact with
agents requesting the services and use the registry ac-
cordingly.

Artifacts Use
These services account for using artifacts, i.e. invoking
operations and processing events.

To execute an operation the action invokeOp is pro-
vided, specifying the artifact id, the operation name,
the parameters, possibly the specific sensor where to
collects events related to the operation execution (in-
cluding the possible results of the operation). If no sen-
sor is specified, then the events are collected in the de-
fault sensor of the agent. An identifier is generated by
the infrastructure to uniquely denote the invocation ex-
ecuted, in order to be possibly used by the agent to get
information about the state of this operation execution.
The invocation of an operation can fail, for instance due
to the unavailability of the artifact. This kind of fail-
ures should be distinguished from errors that can raise
when executing the operation on the artifact and that
depends on the specific semantics of the operation: such
errors are made observable to the agents as events.

Specific services are provided to manage sensors, in
particular to create a sensor (createSensor), to inspect
it in order to sense and process the events (sense). It
is worth remarking that sensors are meant to be local
to the individual agent, not-shared among agents, and
collected/managed in agent contexts.

Finally, in order to support a cognitive use of arti-
facts, actions are provided to inspect their operating
instructions (getOI ), their full usage interface (getUID)
and also their dynamic observable state (getState). The
results of these actions (if no errors occur) are machine-
readable documents—XML-based, for instance— con-
taining the specific description, according to some kind
of (formal) semantics.

It is worth remarking the strong difference between
communication taking places between agents through
speech acts and interaction taking place between agents
using artifacts: in particular, in the first case interaction
is at the knowledge level [Simon, 1996], in the latter case
the interaction is at the operational level, since specified
and constrained by artifact interface.

Artifacts Construction & Manipulation
Artifacts are meant to be created and manipulated dy-
namically. Artifact creation is realised by the action
createAr, specifying the logic name of the artifact, the
template to be used for driving its creation, param-
eters needed for artifact creation and optionally the
workspace id where the artifact should be created. The

getOpID: OpID
genEv(EventDescr)
genEv(OpID,EventDescr)
genEvWs(EventDescr)
exposeState(StateDescr)

Table 2: Basic services for artifact programming: ob-
servable event generation & observable state exposition.

action result—if no errors occur—is the artifact identi-
fier. The identifier of an existing artifact can be ob-
tained by getArID, specifying the artifact name and
(possibly) its location (workspace). By omitting the
location, current workspace(s) where the agent is situ-
ated are considered. An explicit action is provided to
dispose artifacts (disposeAr), specifying its id.

The same artifact can be part of multiple workspaces:
accordingly, basic actions are provided to register (regis-
terAr) / de-register (deregisterAr) an artifact in / from
a workspace, specifying the workspace ids.

Besides creating and manipulating artifacts, some
basic actions are provided to create and manage
workspaces, defining dynamically the topology of the
computational environment on top of network nodes.
Workspace action is realised by createWS action, spec-
ifying a name for the workspace and possibly a network
node where the workspace should be created, yielding
as a result a workspace identifier. Since a workspace
typically spans on multiple network nodes, addWSNode
action is provided to dynamically extend an existing
workspace on a specific network node. Conversely, re-
moveWSNode remove a workspace from the specified
network node. Workspace complete disposal is realised
by disposeWS action.

Actually, artifact management includes several im-
portant aspects—including artifact initial configuration
management, artifact online monitoring and debugging,
artifact dynamic behaviour tuning and adaptation—
which are not considered in this paper for lack of space.

4.2 Artifact Side
To support artifact programming CArtAgO provides
some basic primitives useful for event generation
(genEv) and (observable) state exposition (exposeState)
(see Table 2), to be exploited in the body of operations.

Each operation request served by the artifact is la-
belled by a unique operation identifier (type OpId in
the tables). An event can be then generated specifying
the operation identifier to which it must be related, as
observable effect of this operation (and of the agent ac-
tion that caused it). If no OpId is specified, the event
is considered related to the current operation request.
The event is then dispatched to the agent that invoked
the operation. An OpId can be retrieved by invoking
the primitive getOpID during the execution of the op-
eration (as part of its execution body). As a key aspect
for designing artifact interactive behaviour, operation
identifiers can be stored, collected, and flexibly used in
genEv primitives when necessary, during artifact func-
tioning, across operation executions.

If order to model the generation of events which are
not directly related to any specific agent operation re-
quest, the primitive genEvWs is provided, generating
an event which is observed by all the agents residing in
the same workspace(s) of the artifact. Table 3 shows



artifact TupleSpace {
Bag<Tuple> tuples;
List<Query> pending_reqs;

operation out(Tuple t){
if (pending_reqs.isEmpty()){ tuples.add(t); }
else {

OpID id = remove_matching_req(pending_reqs,t);
if (id != null){ genEv(id,tuple_removed(t)); }

}
}
operation in(TupleTemplate tt){

Tuple t = remove_matching_tuple(tuples,tt);
if (t != null){ genEv(tuple_removed(t)); }
else {

OpId opId = getOpId();
pending_reqs.add(query(opId,tt);

}
}
operation rd(TupleTemplate tt){ ... }

}

Table 3: Pseudo-code of a simplified version of a tuple
space artifact. The out operation inserts a tuple in the
tuple space, in and rd respectively removes and reads
a tuple matching a tuple template.

the object-oriented / Java-like pseudo-code of a simpli-
fied version of a tuple space implemented as an artifact,
showing the use of genEv and getOpID primitives.

5 Concluding Remarks

In this paper we described in detail the abstract model
and architecture for a basic infrastructure for support-
ing artifacts in MAS, focussing on basic core issues.

Among the issues not considered for lack of space
we mention here: (i) artifact composition—support for
linking together existing artifacts to dynamically com-
pose complex artifacts, by defining and exploiting arti-
fact link interfaces; (ii) artifact management—support
for inspecting, controlling, testing artifact state and be-
haviour, by defining and exploiting artifacts manage-
ment interface, besides usage interface.

A possible roadmap for the development of the
project CArtAgO could finally be sketched as follows:
(i) setting up a first open-source Java-based reference
implementation, to be used with existing agent plat-
forms, such as JADE; (ii) developing some basic kind
of general purpose artifacts, in particular bridges wrap-
ping existing MAS coordination models / technologies,
such as TuCSoN tuple centres [Omicini and Zambonelli,
1999], and standard specification / technologies, such
as Web Services; (iii) establishing first models and on-
tology for defining function descriptions, operating in-
structions, and observable state description, possibly
reusing existing research efforts on service description
models and (standard) languages, such as OWL-S; (iv)
extending the basic model to consider also organisa-
tion and security issues, for instance defining role-based
models to explicitly define policies ruling agent access
and use of artifacts, according to their role.

References
[Agre and Horswill, 1997] Phil Agre and Ian Horswill. Lifeworld

analysis. Journal of Artificial Intelligence Reserach, 6:111–145,
1997.

[Agre, 1995] Phil Agre. Computational research on interaction and
agency. Artificial Intelligence, 72(1-2):1–52, 1995.

[Amant and Wood, 2005] Robert St. Amant and Alexander B. Wood.
Tool use for autonomous agents. In Manuela M. Veloso and Sub-
barao Kambhampati, editors, 20th National Conference on Arti-
ficial Intelligence / 17th Innovative Applications of Artificial In-
telligence Conference (AAAI/IAAI 2005), pages 184–189, Pitts-
burgh, PA, USA, 9–13 July 2005. AAAI Press / The MIT Press.

[Bellifemine et al., 2001] Fabio Bellifemine, Agostino Poggi, and
Giovanni Rimassa. JADE: a FIPA2000 compliant agent devel-
opment environment. In 5th International Conference on Au-
tonomous Agents (Agents 2001), pages 216–217, Montreal, Que-
bec, Canada, 28 May–1 June 2001. ACM Press.

[Dourish, 2001] Paul Dourish. Where the action is. The MIT Press,
2001.

[Ferber and Müller, 1996] Jacques Ferber and Jean-Pierre Müller.
Influences and reaction: a model of situated multiagent systems.
In 2th International Conference on Multiagent Systems (IC-
MAS’96), pages 72–79, Kyoto, Japan, 1996. AAAI Press.

[Gasser, 2001] Les Gasser. MAS infrastructure: Definitions, needs,
and prospects. In Thomas Wagner and Omer Rana, editors, Infras-
tructure for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems, volume 1887 of LNAI, pages 1–11. Springer, 2001.

[Kirsh, 1999] David Kirsh. Distributed cognition, coordination and
environment design. In European conference on Cognitive Sci-
ence, pages 1–11, 1999.

[Nardi, 1996] B. A. Nardi. Context and Consciousness: Activity
Theory and Human-Computer Interaction. MIT Press, 1996.

[Odell et al., 2003] James J. Odell, H. Van Dyke Parunak, Mitch
Fleischer, and Sven Breuckner. Modeling agents and their envi-
ronment. In Fausto Giunchiglia, James Odell, and Gerhard Weiss,
editors, Agent-Oriented Software Engineering III, volume 2585 of
LNCS, pages 16–31. Springer, 2003.

[Omicini and Zambonelli, 1999] Andrea Omicini and Franco Zam-
bonelli. Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
September 1999.

[Omicini et al., 2004] Andrea Omicini, Alessandro Ricci, Mirko Vi-
roli, Cristiano Castelfranchi, and Luca Tummolini. Coordination
artifacts: Environment-based coordination for intelligent agents. In
3rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04), volume 1, pages 286–293, New
York, USA, 19–23July 2004. ACM.

[Ricci et al., 2005] Alessandro Ricci, Mirko Viroli, and Andrea
Omicini. Programming MAS with artifacts. In Rafael P. Bor-
dini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni,
editors, 3rd International Workshop “Programming Multi-Agent
Systems” (PROMAS 2005), pages 163–178, AAMAS 2005,
Utrecht, The Netherlands, 26 July 2005.

[Russel and Norvig, 2003] Stuart Russel and Peter Norvig. Artificial
Intelligence. A Modern Approach. Prentice All, New Jersey, 2nd
edition, 2003.

[Simon, 1996] Herbert A. Simon. The Sciences of the Artificial. The
MIT Press, 3rd edition, October 1996.

[Sycara et al., 2003] Katia Sycara, Massimo Paolucci, Martin van
Velsen, and Joseph Giampapa. The RETSINA MAS infrastructure.
Autonomous Agents and Multi-Agent Systems, 7(1-2), 2003.

[Varela, 1981] Francisco Varela. Describing the logic of the living:
The adequacy and limitations of the idea of autopoiesis. In Milan
Zeleny, editor, Autopoiesis: A Theory of Living Organization,
pages 36–48, North Holland, New York, 1981.

[Viroli and Ricci, 2004] Mirko Viroli and Alessandro Ricci.
Instructions-based semantics of agent mediated interaction.
In 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2004), volume 1, pages
286–293, New York, USA, 19–23July 2004. ACM.

[Viroli et al., 2005] Mirko Viroli, Andrea Omicini, and Alessandro
Ricci. Engineering MAS environment with artifacts. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, 2nd In-
ternational Workshop “Environments for Multi-Agent Systems”
(E4MAS 2005), pages 62–77, AAMAS 2005, Utrecht, The Nether-
lands, 26 July 2005.

[Weyns et al., 2005a] Danny Weyns, Van Dyke Parunak, Fabien
Michel, Tom Holvoet, and Jacques Ferber. Environments for mul-
tiagent systems, state-of-the-art and research challenges. In Envi-
ronments for Multiagent Systems, volume 3374 of LNCS. Springer
Verlag, 2005.

[Weyns et al., 2005b] Danny Weyns, Kurt Schelfthout, and Tom
Holvoet. Exploiting a virtual environment in a real-world applica-
tion. In 2nd International Workshop on Environments for Mul-
tiagent Systems (E4MAS), AAMAS’05, 2005.


