
Science of Computer Programming 57 (2005) 217–250
www.elsevier.com/locate/scico

Multi-paradigm Java–Prolog integration in tuProlog
Enrico Dentia,∗, Andrea Omicinib, Alessandro Riccib

aDEIS, Dipartimento di Elettronica, Informatica e Sistemistica, Alma Mater Studiorum, Università di Bologna,
Viale Risorgimento 2, 40136 Bologna, Italy

bDEIS, Dipartimento di Elettronica, Informatica e Sistemistica, Alma Mater Studiorum, Università di Bologna,
Via Venezia 52, 47023 Cesena, Italy

Received 20 February 2004; received in revised form 5 November 2004; accepted 1 February 2005
Available online 11 March 2005

Abstract

tuProlog is a Java-based Prolog engine explicitly designed to be minimal, dynamically
configurable, and support full and clean Prolog/Java integration. In this paper, we discuss the
tuProlog approach to Prolog/Java multi-paradigm integration. After tuProlog motivations and
requirements, we present some examples of bidirectional Prolog/Java integration and discuss the
model and architecture of the tuProlog system. Then, we focus on the specific issue of the access to
Java resources from tuProlog, discuss the essentials of its implementation, and compare it extensively
with many other relevant related approaches and systems.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Java; Prolog; Language integration; Reflection; Agent infrastructures

1. Motivations and requirements

tuProlog [6,26] is a Java-based framework providing support to logic-based technology
in the form of a Prolog virtual machine (VM henceforth) built on top of the standard Java
VM. Meant to work as the core technology for both Internet application components and
infrastructures, tuProlog is designed to feature the following key properties:

∗ Corresponding author. Tel.: +39 051 2093015; fax: +39 051 2093073.
E-mail addresses: enrico.denti@unibo.it (E. Denti), andrea.omicini@unibo.it (A. Omicini), a.ricci@unibo.it

(A. Ricci).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.02.001

http://www.elsevier.com/locate/scico


218 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

• Minimality. tuProlog is required to be as thin and light-weight as possible: to this end,
it is designed as a pure inferential engine, available as a Java class through a simple
interface. This feature is particularly relevant for use in small devices such as PDAs or
mobile phones, and as a support technology for Internet-based infrastructures.

• Dynamic configurability. tuProlog’s choice of minimality calls for a high degree of
configurability as its necessary counterpart. In particular, configurability should be
dynamic, so as to face the openness of most application environments such as the
Internet, and enable both static and dynamic configuration of components in a uniform
way. It should also be open, in the sense that nothing – no complex mechanisms, or
static declarations – should prevent or just make it difficult to define and enact new
add-ons.

• Full & clean Prolog/Java integration. While providing some form of integration
between Prolog and Java is today a must for practically any mainstream Prolog
engine [16], defining a full, bidirectional, easy-to-use integration scheme is a rather
more complex task. tuProlog’s aim is to provide access to Java resources (objects,
classes and packages) in a dynamic way, with no setup intricacies or static constraints.
Dually, tuProlog engines are meant to be exploited straightforwardly from the Java
code, yet with no setup intricacies or static pre-declarations. At the same time, a key
design requirement is that such integration does not mix the logic and the object-
oriented paradigms, nor should it alter in any way the very nature of either language –
neither Prolog, nor Java. This constraint is introduced not only for conceptual cleanness,
but because we believe that only a simple, non-intrusive integration scheme can actually
be used in an effective way, preserving and promoting the power of both paradigms and
technologies.

The accomplishment of the above requirements makes tuProlog an effective
enabling technology for the development of Internet components, applications, and
infrastructures [6]: indeed, it is the base building block for the TuCSoN [17] and LuCe [5]
coordination infrastructures.
In order to make tuProlog feature such properties, some non-trivial design and

development problems need to be solved. For instance, how can we provide run-time
linking and discharging of previously-unknown Java code representing well-formed
tuProlog libraries? Which patterns allow such a flexible run-time configurability, while
keeping the (uncoupled) development of linked libraries simple and natural? How can we
support the run-time creation and mutual interaction of Java objects (instances), without
knowing a priori the involved Java classes, and without affecting the minimality and
elegance of the core?
In this article, we report on how these requirements were successfully met in the

tuProlog project, by carefully designing a minimal Prolog core, along with a clean
and expressive extension mechanism which makes it possible to load/unload libraries
dynamically, including support for dynamic compilation. The core of this article is the
in-depth discussion of how tuProlog fruitfully combines Prolog and Java, by enabling
a seamless integration of the logic and object-oriented imperative paradigms, while
preserving orthogonality in the paradigm integration. Integration is promoted at two
different levels:



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 219

• at the system level, both Java and Prolog can be combined to build tuProlog libraries,
which can therefore be designed taking the best of the two worlds;

• at the application level, bidirectional Prolog/Java integration in tuProlog enables both
Java items to be accessed effectively and simply from a Prolog program, without static
pre-compilations or pre-declarations, and, conversely, Prolog engines to be dynamically
instantiated, configured and exploited from a Java program.

An intriguing aspect of the Java/Prolog synergy is that it enables and promotes new
expressive forms, that would not be possible in the Java world alone: as one example,
Prolog can easily provide the ability to control failure-driven loops via backtracking, where
the iterated operation could be performed by Java, thus de facto enriching Java programs
with non-determinism – yet maintaining the two paradigms clearly separated, since neither
language is ‘polluted’ by alien concepts from the other language paradigm.Moreover, since
Prolog is interpreted, while Java is compiled, a Prolog-driven Java program is somehow
close to a ‘semi-interpreted’ Java program, where Prolog can drive in an interpreted way
the computational flow of compiled Java actions.

2. Integration examples

Let us start by having a look at three simple examples, one for each of the three
main forms of Java/Prolog integration supported by tuProlog: Prolog from Java, Java
for Prolog, and Java from Prolog. Prolog from Java means the possibility of exploiting
Prolog engines as simple Java objects. Java for Prolog is concerned with using Java as
the implementation language for writing new tuProlog libraries. Java from Prolog refers
to the ability of manipulating Java objects from tuProlog programs in a straightforward
way. Altogether, they constitute what we mean as ‘full and clean Java/Prolog integration’,
which is tuProlog’s key feature with respect to other Java-based Prolog implementations
(comparisons are widely discussed in Section 6).

2.1. Prolog from Java

Exploiting Prolog engines as simple and self-contained Java objects makes it possible,
for instance, to embed high-level symbolic reasoning abilities in a Java software
component, as well as to bring non-determinism to the Java world in a non-intrusive,
controlled way, while maintaining the separation between the logic and the object-oriented
paradigms. For this purpose, it should be possible to create multiple independent engines,
each configured with its own set of theories and libraries. This leads to the following
requirements:

(1) Prolog engines should expose a minimal interface – i.e., just what is needed to load a
theory, load and unload libraries, and demonstrate goals;

(2) any static constraint or pre-declaration should be carefully avoided;
(3) an intuitive and simple mapping of the basic Prolog data types (terms, structures,

numbers, variables, . . . ) onto Java classes should be provided.

As an example of the desired immediacy, let us refer to Table 1, where a Java application
exploits a Prolog engine to perform a symbolic manipulation (computing the first derivative



220 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 1
Configuration and exploitation of a Prolog engine in Java (top), and the Prolog theory math.pl for symbolic
derivation and evaluation of math expressions (bottom)

1 Prolog engine = new Prolog();
2 Theory t = new Theory(new java.io.FileInputStream("math.pl"));
3 engine.setTheory(t);
4 SolveInfo answer = engine.solve("dExpr(sin(2*x)*cos(x), Der)");
5 Term derivative = answer.getTerm("Der");
6 Term newGoal = new Struct("evalExpr", derivative,

new Double(0.5), new Var("X"));
7 SolveInfo result = engine.solve(newGoal);
8 double value = ((Number)result.getTerm("X")).getDouble();

% math.pl
dExpr(T,DT) :- dTerm(T,DT).
dExpr(E+T,[DE+DT]) :- dExpr(E,DE), dTerm(T,DT).
dExpr(E-T,[DE-DT]) :- dExpr(E,DE), dTerm(T,DT).
dTerm(F,DF) :- dFactor(F,DF).
dTerm(T*F,[[DT*F]+[T*DF]]) :- dTerm(T,DT), dFactor(F,DF).
dTerm(T/F,[[F*DT]-[T*DF]]/[F*F]) :- dTerm(T,DT), dFactor(F,DF).
dFactor(x,1).
dFactor(N,0) :- number(N).
dFactor([E],DE) :- dExpr(E,DE).
dFactor(-E,-DE) :- dExpr(E,DE).
dFactor(sin(E), [cos(E)*DE] ) :- dExpr(E,DE).
dFactor(cos(E), [-sin(E)*DE] ) :- dExpr(E,DE).

evalExpr(T,V,R) :- evalTerm(T,V,R).
evalExpr(E+T,V,R) :- evalExpr(E,V,R1), evalTerm(T,V,R2),

R is R1+R2.
evalExpr(E-T,V,R) :- evalExpr(E,V,R1), evalTerm(T,V,R2),

R is R1-R2.
evalTerm(F,V,R) :- evalFactor(F,V,R).
evalTerm(T*F,V,R) :- evalTerm(T,V,R1), evalFactor(F,V,R2),

R is R1*R2.
evalTerm(T/F,V,R) :- evalTerm(T,V,R1), evalFactor(F,V,R2),

R is R1/R2.
evalFactor(x,V,V).
evalFactor(N,V,N) :- number(N).
evalFactor([E],V,R) :- evalExpr(E,V,R).
evalFactor(-E,V,R) :- evalExpr(E,V,R1), R is -R1.
evalFactor(sin(E),V,R) :- evalExpr(E,V,R1), R is sin(R1).
evalFactor(cos(E),V,R) :- evalExpr(E,V,R1), R is cos(R1).

of a function) which is much easier in Prolog than in Java. At the same time, the Java-
based nature of the application makes it possible to use the standard Java classes for
the other tasks, such as loading the Prolog theory from a file, possibly adding a GUI,
etc. So, a Prolog engine is created and configured by loading the proper Prolog theory
math.pl (lines 1–3), which defines predicates for symbolic derivation and expression



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 221

evaluation.1 Then, the derivative of the desired expression – possibly read from a GUI,
although here we assume the expression sin(2*x)*cos(x)– is computed (lines 4–5) and
evaluated for x=0.5 (lines 6–7), leaving the result in a standard Java variable (line 8). With
respect to the above requirements:

• The minimality of the tuProlog interface makes it possible to create and exploit a Prolog
engine by means of just the default constructor and two simple methods, setTheory
and solve; in turn, the minimality of Theory methods makes the creation of a new
theory from a text file straightforward.

• Throughout the application code, no static declarations exist in either Java or the
Prolog part: the whole application is just the 8-line Java source plus the Prolog theory.
Moreover, as an external text file, the Prolog theory can be changed without touching
the Java side at all.

• Prolog types are mapped onto suitable tuProlog Java classes: namely, Prolog terms
correspond to Term objects, Prolog structures to Struct objects, Prolog variables to
Var objects, and Prolog numbers to Number objects.

2.2. Java for Prolog

tuProlog allows Java to be exploited also as an implementation language for writing
new tuProlog libraries in a simple, disciplined way. By doing so:

• the intrinsic modularity of the Java class concept can be exploited to group conceptually-
related built-ins into the same library;

• the Java language features can be used to keep the Java/Prolog mapping as simple and
intuitive as possible, minimising the burden on developers in terms of both classes to
define and amount of code to write;

• valuable documentation, based on Java comments, can be automatically produced via
JavaDoc – a not-so-obvious issue in approaches that do not map a set of built-ins into a
Java class.

Following the conventions detailed in Section 4, Table 2 defines a new library
(StringLibrary) implementing the new Prolog predicate to_lower_case/2. To use the
new predicate, the engine just needs the proper .class file in its JVM’s classpath at run
time – no static information. So, the available predicates of an engine can be enriched
dynamically by just adding new .class files to its JVM’s classpath – a feature which is
particularly interesting when combined with tuProlog support for dynamic compilation.
Libraries can be loaded and unloaded dynamically: once loaded, the new predicates

remain available until the library is explicitly unloaded, and can be invoked just like any
other predicate. For instance, loading StringLibrary and invoking the new predicate
to_lower_case/2would look like2:

1 Square brackets are used instead of round parentheses to avoid clashes with the Prolog parser.
2 By default, the library name is equal to the class name; however, they may be different if the Java

implementation of the library specifies another name. This feature is useful to manage library versions, as shown
in Section 3.2.



222 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 2
Writing a new tuProlog library in Java

public class StringLibrary extends Library {
public boolean to_lower_case_2(Term source, Term dest){

String st = source.toString().toLowerCase();
return unify(dest, new Struct(st));

}
}

?- load_library(‘StringLibrary’, LibName).

yes. LibName / ‘StringLibrary’

?- to_lower_case(‘ABC’, LowercaseString).

yes. LowercaseString / abc

As a result, the (Prolog-based) language can be dynamically extended, accessing any Java
resource without requiring any special knowledge about the Java world: the two paradigms
are “mixed” and led to cooperate, but in such a (controlled) way that each language still
operates as usual on its own side.

2.3. Java from Prolog

The third form of integration is represented by the possibility of creating and interacting
with Java objects from Prolog programs. It should be clear that our goal is not to
model the object-oriented paradigm in the logic framework in general – which is a
complex issue, widely investigated in the literature – but just to be able to create
and use Java objects from the tuProlog language in a simple and dynamic way. More
precisely, the form of Java/Prolog integration we devise is intended to support both object
construction and interaction (method call) from a declarative context, while keeping the
two worlds/paradigms clearly separate. This means that we do not model the notions
of class and object as tuProlog abstraction: instead, we define some logic constructs
(namely, operators) whose side effect – outside the Prolog world – is the creation of, or
the interaction with, a Java object.
In this context, preserving the intrinsic dynamism of the Java world means maintaining

also for Prolog the Java feature that classes need be available only at runtime, when
requested, with no static pre-declarations or pre-compilations of any kind. Also, preserving
the agility of the Java language means that both object creation and method invocation
should be expressed and occur in tuProlog as similarly as possible to a standard Java
program, even if tuProlog does not provide directly the notions of object and object
reference.
So, in Table 3 the java_object/3 predicate performs instance creation, while the

special <-/2 and (<-,returns)/3 operators invoke methods on the object instance
represented by the Prolog term on their left – also retrieving the method result in the latter
case. As a result, a three-line Prolog program is all that is needed to open a Swing dialog
for file selection (a javax.swing.JFileChooser instance), show it on screen (line 3),
and retrieve the user-selected file (line 4), yet keeping a form of separation between the
two worlds. In tuProlog, Java objects only exist on the Java side, while the Prolog side



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 223

Table 3
Creating and exploiting a Java Swing object from tuProlog

1 choose_file(File) :-
2 java_object(’javax.swing.JFileChooser’, [], Dialog),
3 Dialog <- showOpenDialog(_),
4 Dialog <- getSelectedFile returns File.

Table 4
The visitor pattern in a multi-paradigm Java/Prolog approach

1 applyToAll(Iterator,Method):-
2 repeat, applyToOne(Iterator,Method).
3 applyToOne(Iterator,_):-
4 Iterator <- hasNext returns false,!.
5 applyToOne(Iterator,Method):-
6 Iterator <- next returns Obj, Obj <- Method, fail.

handles just standard Prolog atoms: the two worlds come to contact only in well-known,
controlled points, like the java_object/3, <-/2 and (<-, returns)/3 predicates shown
in the example. There, and only there, the Prolog atoms are interpreted as references to
underlying Java objects, and cause side effects in the Java world. So, the Prolog variable
Dialog is bound by java_object/3 to a system-generated Prolog atom, whose mapping
to the underlying JFileChooser instance comes to surface only when invoking methods
(lines 3–4). The Prolog variable File is bound to another system-generated Prolog atom,
whose mapping to the java.io.File object returned by getSelectedFile eventually
comes to surface only when the caller of choose_file/1 refers to it inside one of
tuProlog’s special predicates.
An extra value of the synergy between Prolog and Java is that new expressive forms are

now available that would not be possible in the Java world alone: in particular, although a
Java function is inherently deterministic, a Java program can be enriched de facto with non-
determinism by just having it call a non-deterministic Prolog predicate. Table 4 shows this
aspect by realising the visitor pattern: there, Prolog provides the ability to control failure-
driven loops via backtracking, tuProlog adds the chance to represent methods as first-class
objects and the integration with Java, and Java applies the operation. So, Java programs
can borrow non-determinism from the Prolog virtual machine, yet without mixing the logic
and the object-oriented paradigms: in fact, we explicitly excluded that non-deterministic
predicates could be implemented directly in Java, since this would alter the semantics of
both languages.
Moreover, a Java program that embeds a tuProlog engine features the intriguing

property of being ‘semi-interpreted’, in the sense that its behaviour can be modified not
only by changing and recompiling Java classes, as usual, but also by suitably changing the
Prolog theory – an external text file. As a result, provided that the hybrid application is
suitably engineered, the application behaviour can be changed without touching the Java
compiled classes. tuProlog support for dynamic compilation will provide one step further
towards dynamism and ‘interpreted-like’ behaviour.



224 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

3. The tuProlog system

In this Section, we first focus on the tuProlog core, discuss its structure with respect
to the issue of making Prolog engines exploitable as Java objects, and present the
corresponding Java interfaces. Then, we focus on dynamic configurability and discuss
how Java can be exploited as the implementation language for new libraries, presenting
tuProlog standard libraries (Section 3.2), and outlining how new libraries can be defined
and used (Section 3.3). We illustrate in particular how new libraries can be developed
exploiting either a Java-only, or a hybrid Java+ Prolog approach, and present the mapping
between Prolog entities and Java classes. Instead, the more complex issue of enabling
Prolog programs to dynamically create Java objects and interact with them in a simple yet
complete way will be addressed in detail in Section 4.

3.1. The Prolog core

The tuProlog core is a minimal inferential engine, providing just the basic inference and
unification mechanisms, and the basic Prolog operators: goal conjunction, cut, arithmetics,
term comparison, operator definition, clause database manipulation, predicate call – and
obviously true/0, fail/0, halt/0. A reflection-based extension mechanism enables
the core to dynamically add/remove any desired set of predicates, by loading/unloading
libraries.
The engine is implemented as the Java class Prolog (see Table 5): a Java application

can instantiate as many independent tuProlog engines as required, each configured in its
own way with respect to both the clause database (theory) and the required language
extensions (libraries). More precisely, the theory to be used for demonstrations can either
be set from scratch by the setTheory method, or just added to the existing theory via
the addTheory method: both take a Theory object as their argument, which can be built
from an input stream, a string, or a clause list (represented as a Struct object). The
current theory can be retrieved, in the form of a Theory instance, via the getTheory
method. Analogously, libraries can be loaded and unloaded via the loadLibrary and
unloadLibrarymethods, whose string argument is the name of the library to be loaded or
unloaded, respectively; an exception is thrown if the indicated library is invalid. A reference
to one of the currently-loaded libraries can be obtained via the getLibrarymethod, whose
result is a reference to (the abstract class) Library. Goal resolution is handled via the
solve, solveNext, and hasOpenAlternativesmethods. Both solve and solveNext
take a Java object representing a Prolog term as their argument, and return a SolveInfo
object which encapsulates information about the success or failure of the query, and, in
case of success, the solution found and the corresponding variable bindings. In the case of
solveNext, an exception is raised if no further solutions exist. An overloaded version of
solve takes a string argument representing the text of the goal: that string is then parsed to
build the corresponding Term, or an exception is raised if the string is malformed. Finally,
the haltedmethod returns true if the engine has stopped.
For the sake of concreteness, Table 6 shows a naïve console-based interpreter built on

top of a tuProlog engine. After creation, the engine is initialised with a theory built from
a text file (whose name is taken from the command line), then a classic read/solve loop is



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 225

Table 5
The main public methods of Prolog and SolveInfo classes

public class Prolog implements Serializable {
...
public void setTheory(Theory t) throws InvalidTheoryException {...}
public void addTheory(Theory t) throws InvalidTheoryException {...}
public Theory getTheory() {...}
public Library loadLibrary(String name)

throws InvalidLibraryException {...}
public void unloadLibrary(String name)

throws InvalidLibraryException {...}
public Library getLibrary(String name) {...}
public SolveInfo solve(Term goal) {...}
public SolveInfo solve(String goalAsString)

throws MalformedGoalException {...}
public boolean hasOpenAlternatives() {...}
public SolveInfo solveNext() throws NoMoreSolutionException {...}
public boolean halted() {...}

}

public class SolveInfo implements Serializable {
public boolean isSuccess() {...}
public Term getTerm() throws UnknownVarException {...}
public Term getSolution() throws NoSolutionException {...}

}

started. Whenever a new goal is read from the standard input, the engine’s solve method
is invoked: if multiple solutions exist, the repeated invocation of solveNext enables the
user to explore the open alternatives. When the halt predicate is eventually encountered,
the demonstration succeeds, and the current theory, possibly modified by user interactions,
is saved to file.

3.2. Library-based configurability

The tuProlog engine is by design choice a minimal, purely-inferential core: so, there
are no technically built-in predicates, intended as predicates statically defined inside the
core. Our ‘built-in’ predicates are just predicates defined by some library, and are therefore
‘built-in’ only in the sense that, and only as long as, one of the currently-loaded libraries
provides a definition for them. So, should such a library be unloaded, the corresponding
‘built-in’ predicates become undefined, as if they never existed. Unlike most Prolog
systems, in tuProlog this also applies to the ISO predicates and evaluable functors [7]:
the I/O predicates are further separated, so as to enforce orthogonality between interaction
and computation. As a result, there are three standard libraries:

• BasicLibrary, which defines some basic predicates and functors usually found in
Prolog systems, including predicates to load/unload libraries (such as load_library),
with the only exception of I/O predicates;



226 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 6
A simple console-based Prolog interpreter written in Java using tuProlog

import alice.tuprolog.*;
import java.io.*;

public class Console {
public static void main (String args[]) throws Exception {

Prolog engine=new Prolog();
if (args.length>0)

engine.setTheory(new Theory(new FileInputStream(args[0])));
BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in));
while (true) { // interpreter main loop

String goal;
do { System.out.print("?- "); goal=stdin.readLine();
} while (goal.equals(""));
try {

SolveInfo info = engine.solve(goal);
if (engine.halted()) break;
else if (!info.isSuccess()) System.out.println("no.");
else if (!engine.hasOpenAlternatives())

System.out.print("yes. \n" + info + "\n");
else { // main case

System.out.println(info + " ?");
String answer = stdin.readLine();
while (answer.equals(";") && engine.hasOpenAlternatives()) {

info = engine.solveNext();
if (!info.isSuccess()) { System.out.println("no."); break; }
else { System.out.println(info + " ?");

answer = stdin.readLine();
} // endif

} // endwhile

if (!answer.equals(";"))
System.out.print("yes. \n" + info + "\n");

else if (!engine.hasOpenAlternatives())
System.out.println("no.");

} // end main case

} catch (MalformedGoalException ex) {
System.err.println("syntax error.");

} // end try

} // end main loop

if (args.length>1) {
Theory curTh = engine.getTheory(); // save current theory to file

new FileOutputStream(args[1]).write(curTh.toString().getBytes());
}

}
}

• IOLibrary, which provides the standard Prolog I/O predicates, such as write/1,
read/1, and nl/0;

• JavaLibrary, which defines all the predicates for Prolog/Java integration.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 227

Table 7
Writing a tuProlog library in Java: library name vs. class name

public class NewStringLibrary extends Library {
public String getName(){ return "StringLibrary"; }
...

}

The default engine is configured so as to load them only; however, an engine can be
configured in any other way, possibly with no built-ins at all, or with a different set of
built-ins, tailored to a specific application.
tuProlog also supports dynamic configurability: after the initial configuration, an engine

can be reconfigured by loading/unloading libraries on-the-fly, thus enriching/reducing the
set of available ‘built-ins’ by need. A library can be loaded into a running engine either
from Java, via the loadLibrary method, or from Prolog, via the load_library/2
predicate: in both cases, the only requirement is that the proper class file is in the current
JVM class path. A Java program loads a library into an engine by specifying the name
of the class implementing the library: the returned reference to the loaded library can
be used to unload the library later on. Analogously, a Prolog program loads a library by
calling load_library/2 with the fully-qualified name of the library class as the first
argument, and a variable as the second argument: if the predicate succeeds, this variable
is bound to the library name, and can be used later for unloading. So, for instance, a
Java program would load into engine the StringLibrary library defined in Table 2
by invoking engine.loadLibrary(‘StringLibrary’), while a Prolog program would
load it by calling load_library(‘StringLibrary’,Lib): the Lib variable is bound to
the library name – in this case, ‘StringLibrary’ again.
The choice of keeping the library name separate from the name of the class that imple-

ments the library makes it possible to define multiple versions of the same library, support-
ing the dynamic upgrade of a library implementation. A library can specify its name by
implementing the getName method: by default, the library name is assumed equal to the
class name. As an example, the NewStringLibrary class shown in Table 7 provides an
alternate implementation of StringLibrary: to replace the current one from Prolog, one
could just unload the old version and re-load the new version, like this:
?- unload_library(‘StringLibrary’), load_library(‘NewStringLibrary’, NewLib).

yes. NewLib / ‘StringLibrary’

Although tuProlog libraries are expressed in Java, they are not required to be
fully implemented in this language. In fact, Java-only libraries are the simplest case
(Section 3.3.1), but hybrid Java+ Prolog libraries are also possible, where a Prolog theory
is embedded into a Java string so that the two parts cooperate to define the overall library
behaviour (Section 3.3.2).

3.3. Developing libraries

This section presents the tuProlog approach to the definitions of new built-ins,
along with the consequent mapping of the main Prolog concepts as Java classes; the



228 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Term

Struct

Number

Var

Int Long

Float Double

Fig. 1. tuProlog taxonomy of Prolog entities in Java.

Table 8
Some examples of how to use tuProlog Java classes mapping Prolog terms

import alice.tuprolog.*;
...

1 Var varX = new Var("X"), varY = new Var("Y");
2 Struct atomP = new Struct("p");
3 Struct list = new Struct(atomP, varY); // should be [p|Y]

4 System.out.println(list); // prints the list [p|Y]

5 Struct fact = new Struct("p", new Struct("a"), new Int(5));
6 Struct goal = new Struct("p", varX, new Var("Z"));
7 boolean res = goal.unify(fact); // should be X/a, Z/5

8 System.out.println(goal); // prints the unified term p(a,5)

9 System.out.println(varX); // prints the variable binding X / a

10 Var varW = new Var("W");
11 res = varW.unify(varY); // should be Z=Y

12 System.out.println(varY); // prints just Y, since it is unbound

13 System.out.println(varW); // prints the variable binding W/Y

opposite – enabling Prolog programs to access Java resources – is a rather more critical
issue, and will be discussed in depth in Section 4.
In order to express Prolog predicates and evaluable functors in Java, we first have to

define a Java mapping for the main Prolog entities: Fig. 1 shows the adopted taxonomy,
which is rooted by the abstract class Term. This class provides common services such
as term unification, term parsing, term copying, etc.; its subclasses distinguish among
untyped terms (structures), numbers, and variables. Struct objects are characterised by
a functor name (a Java string) and a list of arguments, which are Terms themselves and
can be individually retrieved via the getTerm method. Prolog lists are a special case of
Struct objects, built from either two Terms (the list head and tail) or an array of Terms; by
convention, the default constructor builds the empty list. Number subclasses offer methods
such as intValue, longValue, etc. to retrieve the number value as a suitable primitive
Java value. Var objects are built from a Java string representing the variable name on the
Prolog side: the default constructor builds the Prolog anonymous variable.
Table 8 illustrates some examples of creating and handling Prolog data from a Java

program: variable creation (lines 1 and 10), list construction (lines 2–4), term construction
for p(a,5) and p(X,Y) (lines 5–6), term unification (lines 7–13). It is worth noting
that two different Var objects, even if built from the same Java name, always refer to
distinct Prolog variables, except when occurring inside the same term, in which case



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 229

they unify. So, multiple occurrences of an expression such as new Var("Y") outside the
same term do not refer to the same Prolog variable Y: rather, everything goes as if they
were renamed Y1 and Y2. To reference the same Prolog variable in multiple places, one
just has to repeatedly use the same Java identifier (e.g. varY in lines 1, 3, 11) instead
of creating new variables. In contrast, homonymous variables inside the same term, as
in new Struct(new Var("Y"), new Var("Y")), as expected in Prolog, represent the
same variable.

3.3.1. Java-only libraries
A tuProlog library exploits Java to define new predicates and/or evaluable functors.

Since Java does not support non-determinism, a Java-only library is inherently
deterministic: this is not to be seen as a limitation, but rather as a specific design choice to
prevent undesired mix of the two paradigms. If needed, non-determinism can be achieved
by building hybrid Java + Prolog libraries (Section 3.3.2), where it is confined inside the
Prolog world. New libraries must extend the base abstract class Library and define the
new built-ins according to a simple signature convention:

public boolean name _arity (Term a1, Term a2, ...) (for predicates)
public Term name _arity (Term a1, Term a2, ...) (for evaluable functors)

In fact, argument types can actually be any subclass of Term, such as Number; so, the actual
method signature could better be written as follows:

public boolean name _arity (<? extends Term> a1, ...)

public Term name _arity (<? extends Term> a1, ...)

where the syntax inspired to the Java with wildcards [10]. Independently of the syntax
used to describe it, however, the above convention is the key of tuProlog dynamic
configurability, since it enables the engine, given an unknown predicate or evaluable
functor, to guess the name of the Java class that implements it. In turn, this allows Java
reflection to load the library class and start using it immediately, avoiding any static pre-
declaration.
Table 9 (top) shows the definition of two new built-ins. The sum/2 evaluable functor

is implemented by method sum_2, whose arguments are two Number instances: the result
is returned as a suitable Int instance. Analogously, method println_1, implementing
predicate println/1, prints its argument and returns true to report success. To use these
built-ins, one just loads the library bytecode, either from Prolog via load_library/1
as in Table 9 (middle), or from Java via loadLibrary (not shown). This approach is
also compatible with inheritance: Table 9 (bottom) shows how to define a new library by
extending TestLibrary, thus adding two more built-ins, sub/2 and even/1.

3.3.2. Hybrid Java + Prolog libraries
Since Java does not inherently support non-determinism, tuProlog libraries written

only in Java are necessarily deterministic. However, non-deterministic libraries – whose
predicates or evaluable functors can provide multiple solutions – can also be defined
in tuProlog, yet without mixing the two paradigms. The basic idea is, once again, to
add a non-deterministic Prolog layer on top of the deterministic Java layer, as done in



230 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 9
Declaration of TestLibrary (top), its use in tuProlog (middle), and library extension via inheritance (bottom)

import alice.tuprolog.*;
import alice.tuprolog.Number;
import alice.tuprolog.Float;

public class TestLibrary extends Library {
// builtin functor sum(A,B)

public Term sum_2(Number arg0, Number arg1){
return new Int(arg0.intValue() + arg1.intValue());

}
// builtin predicate println(Message)

public boolean println_1(Term arg0){
System.out.println(arg0);
return true;

}
public boolean invertCase_2(Struct input, Var output){

String out, in = input.toString();
if (Character.isUpperCase(in.charAt(0))){

out = in.toLowerCase();
} else out = in.toUpperCase();
return output.unify(new Struct(out));

}
public String getTheory(){

return "print_inverted(X) :- invertCase(X,Y), print(Y).\n";
}

}

test :-
load_library(’TestLibrary’),
N is sum(5,6),
println(N),
print_inverted(’test’).

public class DerivedTestLibrary extends TestLibrary {
public Term sub_2(Number arg0, Number arg1) {

return new Int(arg0.intValue() - arg1.intValue());
}
public boolean even_1(Number n) {

return (n.intValue() % 2 == 0);
}

}

Section 2 (Table 4); the difference is that now Prolog and Java are both exploited as library
implementation languages, inside the library and transparently to the final library user.
To make this possible, the tuProlog base class Library defines the getTheorymethod,

which is supposed to return (a string representation of) a Prolog theory: obviously, its
default implementation in Library just returns the empty string. When loading a library,
the tuProlog core always calls getTheory, too, and adds the provided theory to the
engine’s configuration. As a result, defining a hybrid Java+ Prolog library simply amounts



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 231

Table 10
A mixed Java + Prolog library obtained via inheritance

public class MyLibrary extends TestLibrary {
public String getTheory(){

return "print(X) :- println(X).\n" +
"print(X) :- invertCase(X,Y), print(Y).\n";

}
}

at expressing in Java the deterministic, low-level code of some suitable built-ins, and
redefine getTheory so as to return (a string representation of) a Prolog theory that
defines the non-deterministic public built-ins on top of the deterministic Java built-ins.
Table 10 shows a hybrid library where the theory expressed by getTheory defines the non-
deterministic predicate print/1 so that it provides infinite solutions, alternately printing
in upper and lowercase via the deterministic invertCase/2 and println/1 built-ins
inherited from TestLibrary.

4. Accessing the Java world in tuProlog

JavaLibrary, which is included in the default tuProlog engine, allows the Java world
to be accessed dynamically from tuProlog in a simple and straightforward way. In order
to maintain a clean separation between the two language paradigms, no notions of class
and object are directly introduced in tuProlog. Instead, JavaLibrary allows Java classes
and objects to be created, mapped upon Prolog terms, and used from tuProlog. Also, the
mapping between Java and Prolog entities is strictly confined within the scope of the
JavaLibrary constructs and operators – there and only there, some ground Prolog terms
are interpreted as either Java classes or objects. Anywhere else, all we have are standard
Prolog terms, with no special meaning at all.
Table 11 presents a JavaLibrary synopsis, providing the syntax and a short description

of its constructs and predicates. In the remainder of this section, we first shortly discuss the
main functions of such constructs (Section 4.1), then we provide the reader with a richer
set of examples (Section 4.2).

4.1. JavaLibrary constructs & predicates

Generally speaking, JavaLibrary provides tuProlog with predicates to:

(1) create new Java objects;
(2) invoke both instance and static methods, and retrieve their results;
(3) select the public fields of an object or the public static fields of a class;
(4) cast objects to the specific Java types;
(5) perform dynamic compilation of Java classes;
(6) establish a priori bindings between Java objects and Prolog ground terms.



232 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 11
Main JavaLibrary predicates

Functionality Predicate(s) Description

Object creation java_object(+ClassName, +ArgList, ?ObjRef )

Examples:
java_object(‘java.awt.Point’, [2,3], P)
java_object(‘java.lang.Integer’, [303], n)

Creates a Java object of class
ClassName by calling the con-
structor which matches the argu-
ments specified in ArgList. If
the predicates succeeds, ObjRef is
bound to a term representing the ob-
ject. ObjRef can be either a vari-
able or a ground term.

Array creation java_object(+ClassName [], [+Len ], ?ObjRef )

Example:
java_object(‘java.awt.Point’[], [100], V)

Specialises the java_object/3
predicate for array creation.

Method
invocation

TargetRef <- MethodName
TargetRef <- MethodName (+Arg0,+Arg1,...)
TargetRef <- MethodName returns Res
TargetRef <- MethodName (+Arg0,+Arg1,...)

returns Res
Example 1:
java_object(‘java.awt.Point’, [2,3], P),
P <- getX returns X
Example 2:
Intclass = class(‘java.lang.Integer’)
Intclass <- parseInt(‘200’) returns N

Invokes the method MethodName
on the object associated to the
TargetRef term, possibly pass-
ing arguments Arg0, Arg1, etc.,
and possibly binding the return
argument to the Res term.
To invoke static (class) meth-
ods, the compound term
class(ClassName ) should
be used as TargetRef .

Field access TargetRef . FieldName <- set(+Arg )
TargetRef . FieldName <- get(+Arg )

Accesses the public field
FieldName of object
TargetRef to set/get its
value to the value (or object
reference) denoted by Arg . For
static fields, the compound term
class(ClassName ) should be
used as TargetRef .

Array access
and management

java_array_set(+ArrayRef, +Pos, +Content )
java_array_get(+ArrayRef, +Pos, ?Content )
java_array_length(+ArrayRef, ?Length )

Example:
java_object(‘java.awt.Point’[], [100], A),
java_object(‘java.awt.Point’, [1,2], Point),
java_array_set(A, 0, Point)

Accesses position Pos of the array
bound to the ArrayRef term to
set/get the content of that position
to the value (or object reference)
associated to the Content term.
The third predicate retrieves the
array length and binds it to the
Length term.

Cast Arg as TypeName Forces argument Arg to be consid-
ered of type TypeName .

Dynamic class
compilation

java_class(+Source, +ClassName,
+PathList, ?ClassRef )

Dynamically compiles the source
text Source to define the new
class named ClassName .
PathList denotes the class
path to be used for compilation.
The compiled class, available as a
Class instance, is associated to
the ClassRef term.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 233

Object creation — tuProlog allows for Java object creation and reference via the
java_object/3 predicate, which follows the syntax of Table 11. For instance, the
following example

?- java_object(‘java.awt.Point’, [2,3], p1), p1 <- getX returns X.

yes. X / 2.0

creates a new Java object of class java.awt.Point with initial configuration [2,3],
and maps it on the Prolog constant p1, which can then be used as a reference for the
object within the subsequent subgoal. The lifetime of the above association is that of the
current Prolog demonstration: so, when the demonstration ends, the association between
p1 and the Java object goes out of scope, and the p1 term loses any special meaning.
For coherence with Prolog, the association between a Java object and the

corresponding Prolog term has a single-assignment semantics: so, in the example below,
if p1 already refers to a Java object, it cannot be used again for a new object creation:

?- java_object(‘java.awt.Point’, [2,3], p1),

java_object(‘java.awt.Point’, [4,3], p1).

no.

The subtle issue of whether the association between Prolog terms and Java objects
should survive backtracking (privileging either efficiency or Prolog style and coherence)
is left to the tuProlog designers and programmers, who can suitably set the
java_object_backtrackable flag to either true or false.

Method invocation — tuProlog makes method invocation straightforward by mimicking
the usual Java send-message schema via the <-/2 and the (<-, returns)/3 predicates,
according to the quite intuitive syntax in Table 11 (see also the Swing example of
Table 3 in Section 2.2). More precisely, the <-/2 predicate, which neglects any return
value, is thought for either void or boolean Java methods: in the latter case, it adopts the
corresponding success/failure semantics. Instead, (<-, returns)/3 predicate always
succeeds, and binds the result of method invocation to the third argument as appropriate.
In particular, Java types that can be mapped onto primitive Prolog data types (such
as numbers or strings) are directly unified with the corresponding Prolog value, while
Java objects are handled as object references in the same way of the first argument of
java_object/3.
In the example seen above, for instance,
?- java_object(‘java.awt.Point’, [2,3], p1), p1 <- getX returns X.

yes. X / 2.0

the Java method getX is invoked upon the newly-created Java object referred by term
p1 by using the homonymous Prolog constant getX as the second argument of the
(<-,returns)/3 predicate. Variable X is then bound to the value returned by the getX
method.

Field selection — The ternary constructs (., <- set)/3 and (., <- get)/3 are used to
access the public fields of an object or the public static fields of a class. According to
the specification in Table 11, set and get are not methods of some class, but keywords
of the ternary constructs: the former sets a public field to a specified value, the latter
retrieves the field value.



234 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Homologous constructs are provided by JavaLibrary for array access: in
conjunction with method invocation operators, such predicates make it possible to
compute over array elements, like in the example below:

?- java_object(’java.awt.Point[]’,[6], A),

java_object(’java.awt.Point’,[1,2],P1), java_array_set(A,0,P1),

java_object(’java.awt.Point’,[3,4],P2), java_array_set(A,1,P2),

java_array_get(A,0,P), P <- toString returns S.

yes. S / ‘java.awt.Point[x=1,y=2]’

Method overloading resolution — To resolve a method invocation, tuProlog first looks
for an exact match: if none is found, a compatible method is searched. For this purpose,
the is-assignable semantics3 is first considered: if it fails, compatibility via safe type
conversion of primitive types (int → long → double, int → float → double) is
tried. Nonetheless, it is sometimes necessary to explicitly cast arguments to match the
method signature: this is what the as infix operator is for.

Dynamic compilation — tuProlog dynamic configurability also means support for
dynamic compilation of Java classes, so that a new Java class can be created and
loaded in tuProlog from a source text. Syntactically, the task is carried out by the
java_class/4 predicate, which takes the source text of the class to be compiled as
its (string) argument, compiles it, and binds the result to a suitable instance of the Java
meta-class Class. The predicate fails if the source contains errors, or the class cannot
be located in the package hierarchy.

Predefined Object Bindings — Sometimes, it might be useful to pre-associate an
existing Java object to a selected Prolog atom, so that the tuProlog VM can use it to
reference the Java object directly: this is what the JavaLibrary register method is
for.

boolean register(Struct objectRef, Object obj )

throws InvalidObjectIdException

The existing Java object obj is thus associated to the Prolog atom objectRef ,
expressed in Java as an alice.tuprolog.Struct instance: the result is true if
everything is fine, false if the object obj is already registered under a different
objectRef , or an exception if the latter term is not ground. Table 12 shows how to
associate System.out to the Prolog atom stdout, so that a Prolog program can contain
the sentence:

stdout <- println(’What a nice message!’)

with no need to bind the stdout atom to a Java object explicitly. Of course, it still
remains true that, anywhere else in the tuProlog program, the stdout atom has no
special meaning, and is interpreted as any other Prolog atom.

Finally, Java exceptions are indeed a critical aspect, too, that should be dealt with
when mapping Java upon Prolog. Currently, given the mismatch between the two

3 This semantics is defined by the isAssignableFrom method of the Class meta-class of the Java reflection
API – please see Section 5 for details.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 235

Table 12
Pre-association of the Java static object System.out to the Prolog atom stdout

Prolog engine = new Prolog();
Library lib = engine.getLibrary("alice.tuprolog.lib.JavaLibrary");
JavaLibrary jlib = (alice.tuprolog.lib.JavaLibrary) lib;
jlib.register(new Struct("stdout"), System.out);

exception models, Java exceptions are simply mapped into a tuProlog failure: even
though conceptually correct, this prevents tuProlog from telling between ‘real’ failures
and exceptions. Of course, this is not the end of the story: further research is in progress in
order to define a semantically-sound approach for exception (and event) mapping between
Java and tuProlog.

4.2. Examples

As a first example, let us consider the Counter class defined in Table 13, along with its
tuProlog sample code. The first goal creates a Counter instance, called aNiceCounter,
and binds it to the Prolog atom myCounter. This is then used to call setValue(5), inc,
and getValue, that retrieves the current counter value (hopefully, 6) and binds it to the
Prolog variable Value, which is printed via the Prolog write/1 built-in predicate. Of
course, the call to getValue fails if Value is already bound to anything else than 6.
The name public field of myCounter is finally accessed, printed, and set to the new value
NicerCounter. The second goal demonstrates the invocation of a static method, calling
getVersion and printing its string result via the println(String)method of the static
object System.out. If an overloaded method is defined, the standard Java selection rules
apply. So, if the setValue(int)method is uncommented, a call such as setValue(5) is
bound to this method instead of the previous setValue(long), since 5 is interpreted as an
int constant. To have setValue(long) called, we should explicitly cast the argument to
long, in quite the same way as we would do in a Java program, via tuProlog as operator.
Table 3 is another example of exploiting a standard Java API from tuProlog: the Swing

JFileChooserobject is bound to the Prolog variable Dialog, which is then used to invoke
the required methods. Further similar examples using JDBC, RMI and CORBA can be
found in [6].
Table 14 shows an example of dynamic compilation, where the Prolog variable Source

is bound to an atom whose string representation is the source to be compiled. The
java_class/4 predicate dynamically compiles that source, taking as arguments (besides
the source text) the class name (Counter) needed to locate the class in the package
hierarchy, a list of class paths possibly required for making the compilation succeed (none
in this case), and the Prolog atom (counterClass) to which the new Class instance is to
be bound. Since the newly-compiled class is available as an instance of the Class meta-
class, object creation must be performed indirectly, via the newInstancemethod; the new
object, bound to the Prolog atom myCounter, is then used as desired – here, to set its
value to 5, read it back, and print it on the screen. The dynamic compilation feature is
particularly useful when combined with network access, allowing the text source of a class



236 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 13
The Counter class declaration (top) and its use in tuProlog (bottom)

public class Counter {
public String name;
private long value = 0;
public Counter() {}
public Counter(String aName) { name = aName; }
public void setValue(long val) { value = val; }
// public void setValue(int val) { value = val; }
public long getValue() { return value; }
public void inc() { value++; }
static public String getVersion() { return "1.0"; }

}

?- java_object(‘Counter’,[‘aNiceCounter’],myCounter),
myCounter <- setValue(5), % Variant: setValue(5 as long)

myCounter <- inc,
myCounter <- getValue returns Value, write(Value),
myCounter.name <- get(MyName), write(MyName),
myCounter.name <- set(‘NicerCounter’).

?- class(‘Counter’) <- getVersion returns Version,
class(‘java.lang.System’).out <- get(StdOut),
StdOut <- println(Version).

Table 14
Predicate java_class/4 performing dynamic compilation of Java code in tuProlog

test_dynamic_compilation:-
Source = ‘public class Counter { ... }’, % see Table 13
java_class(Source, ‘Counter’, [], counterClass),
counterClass <- newInstance returns myCounter,
myCounter <- setValue(5),
myCounter <- getValue returns Value,
write(Value).

to be downloaded and compiled on-the-fly: an example can be found in the tuProlog User
Manual [25].

5. Implementation essentials

In order to achieve the key features of tuProlog – core minimality, openness, dynamic
configurability, and straightforward Java integration –, the support for introspection, the
ability to represent parts of a Java program as data, and the possibility of loading/unloading
classes dynamically turned out to be crucial capabilities. This is why tuProlog implemen-
tation was rooted upon the Java reflection technology, which made it possible (i) to keep
the core light-weight, allowing the built-ins to be defined outside the core, (ii) to achieve
the required core openness and user-configurability, enabling built-ins to be discovered via
introspection, and (iii) to access Java from tuProlog in the most dynamic way.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 237

5.1. Dynamic extensibility and library support

tuProlog distinguishes the library load phase, the theory compilation phase, and the
demonstration phase. In the first, a library is loaded or unloaded; in the second, a theory is
compiled and the new built-ins are internally stored and bound; in the last, the new built-ins
are eventually used.

Library load — The first goal here is to build a Library instance representing the new
tuProlog library. This is easily done via the forName and newInstancemethods of the
Java reflection API:

Library lib = (Library) Class.forName(ClassName ).newInstance()

where ClassName is obviously the name of the new library. The next step is to
inspect the library methods, and look for those that adhere to the pattern defined
in Section 3.3.1. More precisely, for a method to be the definition of a built-in, the
following conditions must hold:
• the method name must end with _N , where N represents the built-in arity and
therefore must exactly match the number of method arguments;

• the method return type must be either boolean (for predicates) or Term (for
evaluable functors);

• each method argument must satisfy the is-assignable relationship (see Footnote 3)
with respect to Term – that is, each argument type must be either Term itself, or one
of its subclasses.

Again, the Java reflection API makes the job straightforward, in particular thanks to the
isAssignableFrommethod of the Class meta-class.

Theory compilation —When a theory is compiled, tuProlog verifies that each predicate
defined by the theory is actually implemented by some library (it does so by consulting
the hash table that stores all the recognised built-ins), and binds it to the corresponding
library method. Technically, the Struct instance that represents the built-in is bound
to a suitable BuiltIn instance, which encapsulates the reference to the implementing
method. Conversely, when a library is eventually unloaded, its predicates and evaluable
functors are removed from the hash table, and the link between the Struct and the
BuiltIn object is unbound.

Demonstration — When a built-in is called, the tuProlog engine determines the actual
parameters of the method to be invoked and invokes the method via reflection; on return,
the method result is cast to the proper type (boolean for predicates, Term for evaluable
functors), and made available as the predicate result. From the performance viewpoint,
it is worth noting that, although reflection is widely used, class introspection (its heavier
aspect) is used just once, in theory compilation: after that, the only run-time overhead
is that of indirect method invocation.

5.2. JavaLibrary implementation

Three of the JavaLibrary fundamental functionalities – object creation, method
invocation, and access to object fields – are based on Java reflection. Dynamic compilation,
instead, makes no use of the Java reflection API, even though it still exploits Class meta-
objects to represent classes.



238 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Object creation — Object creation, performed via java_object/3, is heavily based
on reflection: first, it is used to get the Class meta-object representing the provided
ClassName , then to retrieve the actual arguments, identify the proper constructor, create
the new instance, and bind it to the ObjectRef Prolog term. Retrieving the actual
arguments, in particular, deserves special attention, since it implies the ability both to
determine each argument class and value, and define a suitable Prolog mapping for the
Java null reference. With respect to the latter issue, we explicitly excluded to map null
onto a Prolog atom like null in order not to give a specific meaning to any Prolog atom:
accordingly, we mapped null to the Prolog anonymous variable, both because this has
already a special meaning in Prolog, and because its meaning recalls the same ‘any
value’ idea that a null actual argument usually expresses in Java.
For each argument Arg, tuProlog checks whether it denotes the Prolog anonymous

variable, an object, a primitive value, or the as type cast structure. In the first case,
the argument value is obviously null, and its class is assumed to be Object: so, the
argument class is set to the Object.class constant. If Arg denotes an object, the
value is the object itself, and its class is obtained via the getClass inspection method.
Instead, if Arg is a primitive value, the argument value is a newly-created instance of the
corresponding wrapper class (Integer, Double, etc.), and its class is Integer.TYPE,
Double.TYPE, etc., as appropriate. Finally, Arg can be an X as Type structure, which
is handled quite similarly. If Type is primitive, the argument is wrapped as above: if,
instead, it is the name of a class, the argument class is determined via the forName
reflection method, while the value is either X itself (in the case of an existing object) or
a newly-created number or string instance (in the case of a Prolog number or atom).
The third step is to choose the most appropriate constructor. To this end, we

first search an exactly-matching constructor, via the getConstructor method of
the reflection API; if none is found, all the public constructors are retrieved via
introspection and filtered by a ‘best-match’ algorithm, which is based once again
on the isAssignableFrom relationship – that is, each argument of the candidate
constructor must be assignable from the actual argument type (possibly modulo safe
type conversions). If, again, none is found, the object creation definitely fails, otherwise
we select the most specific constructor: by definition, constructor c1 is more specific
than c2 if, and only if, each argument A2 of c2 isAssignableFrom the corresponding
argument A1 of constructor c1, or the two arguments are compatible (modulo safe type
conversions).

Method invocation and access to object fields — Both the operators for invoking a
method and accessing the public fields of an object or class are just syntactic sugar
around one single basic mechanism, embedded in the java_call_3method:

public boolean java_call_3(Term objID, Struct method, Term resID)

where method is obviously the method to be invoked, and resID its result, if any.
The behaviour of this method depends on the nature of the target entity objID,
which may be either an unstructured alphanumeric term, or a structure like class(C)
or .(ObjectRef,Field). An unstructured term denotes that objID represents a
reference to an object, class(C) indicates that the target is a class (i.e., a static method



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 239

is being invoked), while the latter corresponds to the access to a public field of an object
or to a public static field of a class.
In the first case, we retrieve the associated object, determine its class via reflection,

discover the value and type of the method arguments and finally look for a matching
method, in the same way as for constructors above; the method is then invoked and
its result (if it is non-void) is bound to resID.4 Of course, java_call_3 fails if the
object cannot be found, or the required method does not exist. If, instead, objID is a
class(C) structure, we use reflection to retrieve the class name, then we analyse the
method arguments, look up for it, and invoke the static method quite like above. In the
last case, method takes the form set(ContentID) or get(ContentID), and resID is
unused. We then check that ObjectRef denotes a valid object o, retrieve its class, and
obtain a meta-representation of the target field as a Fieldmeta-object, f. If ContentID
denotes a non-primitive object c, we perform field.set(o,c) or field.get(o), as
appropriate – binding the get result to ContentID . Instead, if the field type is primitive,
there is no object like c: so, the specific Fieldmethods (such as setInt, etc.) are used
instead of the generic set and get.

Dynamic compilation — Dynamic compilation exploits the standard Compiler class of
the Java run-time (which usually refers to the JIT compiler): the provided source is
compiled, and the resulting class immediately loaded into the tuProlog system.

6. Comparison with other approaches

The integration of (mainly functional and declarative) languages with ubiquitous
languages, such as Java, is a primary issue for several approaches in the literature.
Foreign Function Interface (FFI) is particularly relevant, especially in the context of mixed-
language, component-based programming [1]. In tuProlog, reflection was exploited as the
core mechanism for the FFI, and for dynamically extending the language with new libraries
developed in Java. In the following we discuss those two aspects, by comparing tuProlog
to two well-known, widely used systems: Jinni [22,24] – a Java-based Prolog system
whose approach is not far from tuProlog one – and SICStus Prolog Jasper library [20] – a
mainstream Prolog system not based on Java. Other systems will be shortly discussed in the
Related Work section: namely, K-Prolog JIPL library [11] and Lambada [8] as Java-based
Prolog systems, and Kawa [3,13], Jython [12], and MLj [2,15] as examples of Java-based,
non-Prolog systems.
To compare both expressiveness and performance, we take two examples as our main

references: the first tests the access to the Java world from Prolog (Tables 16 and 17),
whereas the second stresses the issue of Prolog extension via new libraries exploiting
Java (Tables 18–22). The latter example, in particular, is taken from the Jinni 2004 online
documentation [28] and is then implemented also in tuProlog via JavaLibrary, in Jasper,
and in tuProlog via an ad hoc library, so as to enable a full cross-comparison.

4 If objID is a string constant, method necessarily belongs to class String, so the process is optimised,
invoking the method directly.



240 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 15
The Jasper integration with Java: the version of StringLibrary, with both the Java and Prolog side (top), and
creating and exploiting a Java Swing object (bottom)

import se.sics.jasper.*;

public class StringLibrary {
static boolean toLowerCase(String source, SPTerm dest){

String st = source.toLowerCase();
try { dest.putString(st); } // putString is defined in SPTerm

catch (ConversionFailedException e1) { return false; }
catch (IllegalTermException e2) { return false; }
return true;

}
}

:- use_module(library(jasper)).

go(String, NewString, Result) :-
jasper_initialize([classpath([‘/my-jasper-examples’])], JVM),
jasper_call(JVM,

method(‘StringLibrary’, ‘toLowerCase’, [static]),
lib_to_lower_case(+string, -term, [-boolean]),
lib_to_lower_case(String, NewString, Result) ).

:- use_module(library(jasper)).

choose_file(File) :-
jasper_initialize([classpath([‘/my-jasper-examples’])], JVM),
jasper_new_object(JVM,

‘javax/swing/JFileChooser’, init, init, Dialog),
jasper_null(JVM, NullParent),
jasper_call(JVM,

method(‘javax/swing/JFileChooser’,‘showOpenDialog’,[instance]),
show_open_dialog(+object(‘javax/swing/JFileChooser’),

+object(‘java/awt/Component’), [-integer]),
show_open_dialog(Dialog, NullParent, Result)

),
jasper_call(JVM,

method(‘javax/swing/JFileChooser’,‘getSelectedFile’,[instance]),
get_selected_file(+object(‘javax/swing/JFileChooser’),

[-object(‘java/io/File’)]),
get_selected_file(Dialog, File)

).

6.1. Jinni

Jinni (Java INference and Networked Interactor) is a Prolog system with object and
agent-oriented extensions, available for the Java and .NET platforms [22,24,28]. Jinni
features a light-weight and multi-threaded compiler, and is intended to be used as a flexible
scripting tool for gluing together knowledge processors with Java and .NET components
in distributed applications.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 241

Table 16
Accessing Java from Prolog: tuProlog (top) and Jasper (bottom). See also Table 17

loop(0,_,_):- !.
loop(N,List,Rnd):-

java_call(Rnd,nextInt,X),java_call(Rnd,nextInt,Y),
java_object(‘java.awt.Point’, [X,Y], Obj),
java_call(List,add(Obj),_),
N1 is N-1, loop(N1, List, Rnd).

test(N) :-
class(‘java.lang.System’) <- currentTimeMillis returns T0,
java_object(‘java.util.ArrayList’, [], List),
java_object(‘java.util.Random’, [], Rnd),
loop(N, List, Rnd),
class(‘java.lang.System’) <- currentTimeMillis returns T1,
DT is T1-T0, stdout <- println(DT).

:- use_module(library(jasper)).

loop(0,_,_,_):- !.
loop(N,List,Rnd,JVM):-

jasper_call(JVM, method(‘java/util/Random’, ‘nextInt’,[instance]),
next_int(+object(‘java/util/Random’), [-integer]),
next_int(Rnd,X)),

jasper_call(JVM, method(‘java/util/Random’,‘nextInt’, [instance]),
next_int(+object(‘java/util/Random’), [-integer]),
next_int(Rnd,Y)),

jasper_new_object(JVM, ‘java/awt/Point’,
init(+integer,+integer), init(X,Y), Obj),

jasper_call(JVM, method(‘java/util/ArrayList’, ‘add’, [instance]),
add(+object(‘java/util/ArrayList’),

+object(‘java/lang/Object’), [-boolean]),
add(List,Obj,Res)),

N1 is N-1, loop(N1,List,Rnd,JVM).
test(N) :-

jasper_initialize([], JVM),
jasper_call(JVM, method(‘java/lang/System’, ‘currentTimeMillis’,

[static]),
current_time_millis([-long]),current_time_millis(T0)),

jasper_new_object(JVM,‘java/util/ArrayList’, init, init, List),
jasper_new_object(JVM,‘java/util/Random’, init, init, Rnd),
loop(N, List, Rnd, JVM),
jasper_call(JVM, method(‘java/lang/System’, currentTimeMillis’,

[static]),
current_time_millis([-long]), current_time_millis(T1)),

DT is T1-T0, write(DT), nl.

Generally speaking, Jinni provides a wider and deeper model for the integration between
the logic and object-oriented paradigms with respect to tuProlog: in fact, it supports both
the definition of new Java classes from the Prolog environment, and constructs to work
directly with objects and state in its extended logic environment. tuProlog intentionally



242 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 17
Accessing Java from Prolog (see also Table 16): Jinni (top) and performance comparison (bottom) for the query
test(N ): timings are in seconds

loop(0,_,_):-!.
loop(N,List,Rnd):-

invoke_java_method(Rnd,nextInt,X), invoke_java_method(Rnd,nextInt,Y),
new_java_object(‘java.awt.Point’(X,Y),Obj),
invoke_java_method(List,add(Obj),_),
N1 is N-1, loop(N1,List,Rnd).

test(N):-
ctime(T0),
new_java_object(‘java.util.ArrayList’,List),
new_java_object(‘java.util.Random’,Rnd),
loop(N,List,Rnd),
ctime(T1), DT is T1-T0,
new_java_class(‘java.lang.System’,S), get_java_field(S,out,Stdout),
invoke_java_method(Stdout,println(DT),_).

N (#iterations) tuProlog Jasper Jinni
100 0.07 0.03 0.06
1000 0.29 0.26 0.30
10000 2.94 2.55 3.21
50000 15.58 13.02 16.15
100000 31.88 25.91 32.32

does not provide such features, in order to keep the two linguistic paradigms clearly
separate: this is why Java resources can be accessed only by means of a special library,
and no ad hoc mechanisms are introduced in the logic core. Apart from that, both Jinni
and tuProlog enable Java resources to be accessed from the logic environment (via
special predicates in Jinni, via JavaLibrary predicates in tuProlog), and, conversely,
Prolog engines to be exploited from Java, via their own APIs. In particular, both systems
exploit Java reflection to have their predicates create objects, invoke methods and access
public fields. Another fundamental feature of tuProlog is the dynamic extensibility of
the language by means of libraries written in Java, which can define new predicates
and functors. In Jinni, this form of extensibility is meant to be achieved through the
direct exploitation of Java resources from the Prolog environment, with no need of new
libraries. The reference case study (Table 17) is the development of a library to create hash
dictionaries, enabling the insertion and removal of data elements hashed according to a
specific key.

6.2. Jasper

Jasper is the SICStus Prolog [20] bidirectional interface towards Java. Since SICStus is
not Java-based, Jasper exploits the Java Native Interface (JNI) to access the JVM packaged
in a dynamically-loaded library (such as a Windows DLL or a Unix .so shared object).



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 243

Table 18
Testing tuProlog extension via JavaLibrary (see also Tables 19–22)

hashtable:-
java_object(‘java.util.HashMap’,[],Map),
abolish (map(_)), assert(map(Map)).

put_data(Key,Data):-
map(Map), java_call(Map, put(Key,Data),_).

get_data(Key,Data):-
map(Map), java_call(Map, get(Key),Data).

remove_data(Key):-
map(Map), java_call(Map, remove(Key),_).

loop(0):-!.
loop(N):-

java_object_(‘java.lang.Integer’,[N],Data),
java_call(Data,toString,Key),
put_data(Key,Data), get_data(Key,_),remove_data(Key),
N1 is N-1, loop(N1).

test(N):-
hashtable,
class(‘java.lang.System’) <- currentTimeMillis returns T0,
loop(N),
class(‘java.lang.System’) <- currentTimeMillis returns T1,
DT is T1-T0, nl, write(DT), nl.

On the Java side, a set of classes represents the SICStus runtime system and Prolog
data types (such as SICStus, SPTerm, etc.). On the Prolog side, a library module makes
it possible not only to create objects, invoke methods, and manage object references,
but also to control the loading and unloading of the JVM via the jasper_initialize
and jasper_deinitialize predicates. The drawback is that the burden of handling
such details is upon users, who must explicitly create a reference to a JVM instance in
their Prolog program and pass it along to all the involved predicates. More generally,
Jasper users are required to be aware of several system-level details, ranging from the
lifetime of object references when using predicates like jasper_create_global_ref/3,
jasper_delete_global_ref/2, jasper_delete_local_ref/2, to the different
effects on foreign resources when loading a Prolog saved state via Java methods like
restore and load, to possible memory leaks when managing Prolog terms (SPTerms)
from Java, up to the need of specifying the position of some key library files (such as
jvm.dll or spnative.dll on a Windows system) in the operating system path for Jasper
to work – especially if the parent application is on the Java side.
Like tuProlog, Jasper enables its users both to access and handle Java resource from

Prolog, and to instantiate and control SICStus engines from Java; in Jasper, callbacks are
also possible, the level of nesting being limited only by the available memory. However,
since minimality was not among SICStus concerns, each instantiation of the SICStus class
corresponds to the activation of one independent copy of the SICStus run-time, which
is admittedly “a rather heavy-weight entity” [21, Ch. 10]. Moreover, since SICStus is
designed to be used mainly as an independent production system rather than a component



244 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 19
Testing Prolog extension via Java in Jasper (see also Table 18, 20–22)

:- use_module(library(jasper)).

hashtable(JVM):-
jasper_new_object(JVM, ‘java/util HashMap’, init, init, Map),
retractall(map(_)), assert(map(M)).

put_data(JVM,Key,Data):-
map(Map),
jasper_call(JVM,

method(‘java/util/HashMap’,‘put’,[instance]),
put(+object(‘java/util/HashMap’), +object(‘java/lang/Object’),

+object(‘java/lang/Object’), [-object(‘java/lang/Object’)]),
put(Key,Data,_)).

get_data(JVM,Key,Data):-
map(Map),
jasper_call(JVM,

method(‘java/util/HashMap’,‘get’,[instance]),
get(+object(‘java/util/HashMap’), +object(‘java/lang/Object’),

[-object(‘java/lang/Object’)]),
get(Map,Key,Data)).

remove_data(JVM,Key,Data):-
map(Map),
jasper_call(JVM,

method(‘java/util/HashMap’,‘remove’,[instance]),
remove(+object(‘java/util/HashMap’), +object(‘java/lang/Object’),

[-object(‘java/lang/Object’)]),
remove(Map,Key,_)).

loop(_,0):-!.
loop(JVM,N):-

jasper_new_object(JVM,
‘java/lang/Integer’, init(+integer), init(N), Obj),

jasper_call(JVM, method(‘java/lang/Integer’,‘toString’,[instance]),
to_string(+object(‘java/lang/Integer’),

[-object(‘java/lang/String’)]), to_string(Obj,S)),
put_data(JVM,S,Obj), get_data(JVM,S,_), remove_data(JVM,S,_),
N1 is N-1, loop(JVM,N1).

test(N):-
jasper_initialize([],JVM), hashtable(JVM),
jasper_call(JVM,method(‘java/lang/System’,‘currentTimeMillis’,[static]),

current_time_millis([-long]),current_time_millis(T0)),
loop(JVM,N),
jasper_call(JVM,method(‘java/lang/System’,‘currentTimeMillis’,[static]),

current_time_millis([-long]),current_time_millis(T1)),
DT is T1-T0, nl, write(DT), nl.

in a dynamic environment, the Prolog program to be loaded from the Java side must be
retrieved from a SICStus saved state, via the restore method: so, Jasper support for
dynamic configurability is quite limited.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 245

Table 20
Testing Prolog extension via Java in Jinni (see also Tables 18, 19, 21, 22)

hashtable:-
new_java_class(‘java.util.HashMap’,C),
new_java_object(C,void,JavaHashTable),
object<=JavaHashTable.

put_data(Key,Data):-
object=>T, invoke_java_method(T,put(Key,Data),_).

get_data(Key,Data):-
object=>T, invoke_java_method(T,get(Key),Data).

remove_data(Key):-
object=>T, invoke_java_method(T,remove(Key),_).

loop(0):-!.
loop(N):-

new_java_object(‘java.util.Integer’(N),Data),
invoke_java_method(Data,toString,Key),
put_data(Key,Data),get_data(Key,_), remove_data(Key),
N1 is N-1, loop(N1).

test(N):-
hashtable,
ctime(T0), loop(N), ctime(T1),
DT is T1-T0, nl, write(DT), nl.

With respect to the multi-paradigm integration, it should first be noted that Jasper
does not provide a real mapping on the Java side for the concepts of Prolog variable
and Prolog goal: in fact, Prolog variables are transposed on the Java side only as names
associated to a binding expressed as an SPTerm instance by means of a standard Java
Map object. Analogously, a goal in a Jasper query is just a conventional Java string. The
Jasper Query interface, instead, is similar to the tuProlog Prolog class, and provides
methods to open a query, get a solution, and retrieve further solutions: so, a Prolog top-level
in Jasper [21, Ch. 10] is not too different from the tuProlog console-based interpreter
(Table 6), although the Jasper choices discussed above make it a little more complex.
Moreover, Jasper also provides query methods with a ‘cut-fail’ semantics, as well as a
means to handle events and exceptions between Prolog and Java – an issue which is planned
to be addressed only in tuProlog 2.0.
From the expressiveness viewpoint, apart from Jasper’s need to load a JVM instance

explicitly, both Jasper and tuProlog support dynamic object creation and method
invocation, including static class methods. However, the jasper_call primitive requires
the user to specify the method to be called in a rather intricate way – first, the method class,
name, and qualifiers; then, its signature, expressed by a somehow unnatural convention;
finally, the actual arguments – in contrast to the tuProlog complete absence of pre-
declarations. Moreover, the above-cited Jasper type convention is currently unable to
express array types. Jasper Java/Prolog mapping is also a little complex: in particular,
Prolog terms are mapped onto SPTerm instances, whose class closely corresponds to



246 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

Table 21
Testing tuProlog extension via ad hoc libraries (see also Tables 18–20, 22)

package alice.test.tuprolog;
import alice.tuprolog.*;
import java.util.*;

public class HashLibrary extends Library {
private HashMap dict;
public boolean hashtable_0(){

dict = new HashMap();
return true;

}
public boolean put_data_2(Term key, Term obj){

dict.put(key.toString(),obj);
return true;

}
public boolean get_data_2(Term key, Term res){

Term result = (Term)dict.get(key.toString());
return unify(res,result);

}
public boolean remove_data_1(Struct key){

dict.remove(key.toString());
return true;

}
}

:- load_library(‘alice.test.tuprolog.HashLibrary’).

loop(0):-!.
loop(N):-

java_object(‘java.lang.Integer’,[N],Data), Key=N,
put_data(Key,Data), get_data(Key,_), remove_data(Key),
N1 is N-1,
loop(N1).

test(N):-
hashtable,
class(‘java.lang.System’) <- currentTimeMillis returns T0,
loop(N),
class(‘java.lang.System’) <- currentTimeMillis returns T1,
DT is T1-T0,
nl, write(DT), nl.

SICStus’ foreign interface for the C language.5 Finally, Jasper notation for fully-qualified
Java class names does not follow the Java standard: rather, it is inspired by the JVM internal
naming scheme (package and class names are separated by ‘/’ rather than ‘.’).

5 Actually, the SICStus manual does not present the SPTerm class in detail: the available methods have to be
inferred from the FFI for the C language.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 247

Table 22
Performance comparison for the query test(N ) (timing in seconds)

N (#iterations) tuProlog Jasper Jinni tuProlog+HashLibrary

100 0.07 0.05 0.07 0.03
1000 0.53 0.44 0.48 0.10
10000 5.47 4.43 5.41 1.07
50000 29.11 22.70 26.50 5.76
100000 60.92 45.51 48.64 12.08

For the sake of concreteness, Table 15 (top) presents the Jasper version of the tuProlog
StringLibrary shown in Table 2. While the Java side is quite straightforward and
similar to the tuProlog case, the Jasper/Prolog side clearly outlines the information
required by Jasper to call a Java method: the first of jasper_call arguments – a
method/3 term – specifies the class name, the method name and qualifier (static vs.
instance method), the second argument provides the method signature, while the third
specifies the actual parameters. Both last arguments are expressed as a Prolog term whose
name must mimic, adopting the Prolog conventions, the name of the corresponding Java
method, which is supposed to follow the standard Java conventions: so, for instance,
the toLowerCase method translates as the to_lower_case predicate. It is the user’s
responsibility to guarantee that the above conventions are respected. For what concerns
the specification of the method signature, the to_lower_case term embeds a term
(in the form +type or -type ) for each method argument, plus possibly one more
analogous term between square brackets for the method return type (which may be lacking
if the method is void). As a further example, Table 15 (bottom) presents the Jasper
version of the file chooser example shown in Table 3. The interesting part here is how
jasper_new_object specifies the instance creation: in particular, the first occurrence
of init represents the constructor signature (in general, it would be something like
init(formalArgumentList), with each argument being specified according to the
above syntax), while the second occurrence supplies the actual parameters (here, none;
in general, something like init(actualArgumentList)). The Prolog variable Dialog
embeds the reference to the newly-created object, and is later exploited to invoke instance
methods.

6.3. Overall comparison and benchmarks

Unlike Jasper, both 2P and Jinni aim to provide an agile and lightweight support for
Java/Prolog bidirectional integration; in particular, both make such a support available also
as a pure Java component, so that it can be used for the development of complex Java
applications (such as agent-based applications, coordination and mobility infrastructures,
etc.). The above deployability and lightness features are necessarily reduced in Jasper,
which is based on the (efficient) SICStus runtime rather than on Java. tuProlog also
provides a direct support for language extensibility, by allowing new built-in libraries to be
developed in Java; Jasper and Jinni support that feature indirectly, by providing access to
Java resources.



248 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

With respect to performance, it should first be observed that efficiency was not a
primary issue for tuProlog, which was not designed to be a commercial product; Jinni
and SICStus, instead, are well-known and efficient commercial systems, leaders in their
application domain (i.e., Java-based and non-Java Prolog systems, respectively). However,
the benchmarks indicate that tuProlog performance in Java/Prolog integration is very much
like the two other approaches. Quite interestingly, tuProlog performance significantly
improves when exploiting its capability to link libraries developed in Java.
The first benchmark (Tables 16 and 17) concerns the access and use of Java resources

from the Prolog environment, avoiding system-specific issues (e.g. special handling of
primitive types), and focusing on iterated object creation, method invocation, and field
access: the test creates a Java list and fills it with N Java AWT points with random
coordinates. The second benchmark (Tables 18–22) concerns the development and use of
a new library, defining a theory to create hash dictionaries, insert data elements, and later
remove them. The test gives an idea how effectively the language can be extended. All
tests were performed on a PowerMac G4 800 Mhz 1 Gb RAM, with Mac OS X 10.3.5
and JVM 1.4.2; the Prolog systems were Jinni 2004, tuProlog 1.2.1 and SICStus Prolog
(Jasper) 3.11.2. Each test was executed several times for each approach, and the lowest
timing results were considered.
The first test underlines the similarities between tuProlog and Jinni with respect

both to the agility and seamlessness in accessing the Java world, and to the related
performance, based on Java reflection. Interestingly, their performance is not too far from
Jasper, although the latter is compiled for the target platform rather than for the JVM6;
however, Jasper overhead for pre-declarations when creating objects and invokingmethods
is significant. The second test focuses on the extendibility of the declarative language by
means of a library developed in Java. In both Jinni and Jasper, developing such a library
means to write a simple theory, whose rules exploit java.util.HashMap objects; in
tuProlog, the problem can be faced in two ways – either (like Jinni and Jasper) by writing
a theory that accesses Java resources via JavaLibrary (Table 18), or by defining in Java a
specific tuProlog library (Table 21).
The two possible approaches available in tuProlog refer to two conceptually different

situations: one simply exploits a general mechanism to access Java resources and existing
libraries, while the other means to extend the language, without forcing users to adopt
a different programming paradigm. In the latter case, Prolog libraries are perceived by
users as collections of new built-in predicates and functors, possibly provided with a
Prolog theory: so, there is no need for the Prolog user to be aware of any object-oriented
construct, as well as of the Java world in general. In the former case, instead, awareness of
Java constructs is required. Quite interestingly, the latter approach seems to perform better
than the former (see Table 22): in fact, although the new built-ins are loaded dynamically,
invoking a library predicate turns out to be cheaper than invoking a method on a Java
object, since it requires fewer reflection steps (method lookup is avoided).

6 Obviously, the more the test includes Prolog code not accessing Java, the better Jasper performs, since it is
compiled directly for the target platform.



E. Denti et al. / Science of Computer Programming 57 (2005) 217–250 249

7. Related work and conclusions

Several Java-related and Java-based interpreters/compilers for foreign languages can be
found in the literature and on the Web [23]. Like tuProlog, some provide an API to exploit
the foreign language (mainly functional or declarative) from Java, and, conversely, to
access Java resources via a reflection-based FFI: examples are Jython [12] and Kawa [13].
The first is a Java-based open-source interpreter for the Python language [12], considered
well suited for embedded scripting, interactive experimentation, and rapid application
development. Jython provides a bidirection integrationwith Java, and represents the Python
basic data types as a hierarchy of Java classes. On the other hand, Kawa FFI is quite similar
to tuProlog and Jinni.
Among non-Java-based systems, K-Prolog JIPL [11] is a Prolog library whose approach

to Java access is similar to Jasper. Other non-Prolog systems, such as Lambada [8]
(a framework for inter-operability between Java and the Haskell functional language)
and Haskell systems in general [19,9] also exploit the JNI to support Java integration.
CIAO Prolog [4], instead, follows the idea of spawning a JVM as a stand-alone process,
interacting with Prolog via sockets. These choices were inadequate to address tuProlog key
requirements of minimality, dynamic configurability and easy deployability: in particular,
the second approach based on a separate Java process is too complex, requiring a
larger amount of resources and a more careful setup. In contrast, tuProlog setup is
straightforward, and its core package requires little resources, its size being only 200 KB
(JavaLibrary alone is just 30 KB).
Further approaches, such as MLj [15] (a compiler producing Java bytecode from

StandardML [2]), Haskell [27], and functional languages [14], compile a foreign language
source into JVM bytecode. Of course, applications and libraries developed in the foreign
language and compiled to bytecode are faster, since Java operations are often statically
resolved and inlined, avoiding reflection. Apart from the extra resources to produce
optimised bytecode, this approach requires off-line processing, so it seems unsuitable for
the dynamic and interactive environments for which tuProlog is intended.
In short, tuProlog enables both the features of a standard Prolog system to be brought

to the Java context, and vice versa. This makes it possible to exploit the power of symbolic
reasoning within Java applications, and, conversely, to exploit the wide collection of
Java resources in a Prolog environment “as is”. In addition, it also supports extensibility
of the Prolog-based language with special-purpose Prolog libraries efficiently written
in Java. Clearly, the benefits of a multi-paradigm approach are strictly dependent on
the integration model: in tuProlog, reflection techniques allowed an effective form of
bidirectional integration to be realised without complex tricky mechanisms, keeping the
core minimal yet dynamically configurable.
From the performance viewpoint, today software engineering techniques mostly

aim to address complexity through expressiveness and adequate abstractions, rather
than chasing efficiency and optimisation; in particular, efficiency is not a primary
issue in Internet applications when compared to adaptability, support for distribution,
heterogeneity, openness, and unpredictability. Nevertheless, a careful balance between the
use of reflection at the interface between core and libraries, and the use of pre-compiled
information acquired at theory/library load time makes tuProlog performance comparable



250 E. Denti et al. / Science of Computer Programming 57 (2005) 217–250

to other systems. tuProlog works as the basic brick of the TuCSoN [17] and LuCe [5]
agent infrastructures, as well as as a key component in both academic and industrial
projects. Current work is devoted to model exception and event handling inside
JavaLibrary, taking the ISO standard as the main reference, so as to enable the definition
of listeners for Java events in the form of tuProlog theories.

References
[1] N. Benton, A. Kennedy, Interlanguage working without tears: Blending SML with Java, ACM SIGPLAN

Notices 34 (9) (1999) 126–137.
[2] N. Benton, A. Kennedy, G. Russell, Compiling Standard ML to Java bytecodes, ACM SIGPLAN Notices

34 (1) (1999) 129–140.
[3] P. Bothner, Kawa: Compiling Scheme to Java, in: LISP Users Conference: LISP in the Mainstream (40th

Anniversary of LISP), Berkeley, CA, USA, 1998.
[4] The CIAO Prolog development system WWW site, http://www.clip.dia.fi.upm.es/Software/Ciao.
[5] E. Denti, A. Omicini, LuCe: a tuple-based coordination infrastructure for Prolog and Java agents,

Autonomous Agents and Multi-Agent Systems 4 (1–2) (2001) 139–141.
[6] E. Denti, A. Omicini, A. Ricci, tuProlog: A light-weight Prolog for Internet applications and infrastructures,

in: Ramakrishnan [18], pp. 184–198.
[7] P. Deransart, A. Ed-Dbali, L. Cervoni, Prolog: The Standard, Springer, 1996.
[8] S. Finne, E. Meijer, Lambada, Haskell as a better Java, Electronic Notes in Theoretical Computer Science

41 (1) (2000).
[9] S. Finne, E. Meijer, D. Leijen, S. Peyton Jones, Calling hell from heaven and heaven from hell, in:

International Conference on Functional Programming, ICFP’99, Paris, France, 1999, pp. 114–125.
[10] A. Igarashi, M. Viroli, On variance-based subtyping for parametric types, in: ECOOP 2002 — Object-

Oriented Programming, LNCS, vol. 2347, Springer-Verlag, 2002, pp. 441–469.
[11] JIPL: Java interface to Prolog, http://www.kprolog.com/jipl/.
[12] Jython home page, http://www.jython.org/.
[13] Kawa, the Java-based Scheme system, http://www.gnu.org/software/kawa/.
[14] G.Meehan, M. Joy, Compiling lazy functional programs to Java bytecode, Software Practice and Experience

29 (7) (1999) 617–645.
[15] MLj home page, http://www.dcs.ed.ac.uk/home/mlj/.
[16] A. Omicini, A. Natali, Object-oriented computations in logic programming, in: M. Tokoro, R. Pareschi

(Eds.), Object-Oriented Programming, LNCS, vol. 821, Springer, 1994, pp. 194–212.
[17] A. Omicini, F. Zambonelli, Coordination for Internet application development, Autonomous Agents and

Multi-Agent Systems 2 (3) (1999) 251–269.
[18] I. Ramakrishnan, Practical Aspects of Declarative Languages, LNCS, vol. 1990, Springer, 2001.
[19] C. Reinke, Towards a Haskell/Java connection, in: K. Hammond, T. Davie, C. Clack (Eds.), Implementation

of Functional Languages, LNCS, vol. 1595, Springer, 1999, pp. 200–215.
[20] SICStus Prolog home page, http://www.sics.se/ps/sicstus.html.
[21] SICStus Prolog User’s Manual, 2004.
[22] P. Tarau, Jinni: a lightweight Java-based logic engine for Internet programming, in: K. Sagonas (Ed.),

International Workshop on Implementation Technologies for Programming Languages based on Logic,
JICSLP’98, Manchester, UK, 1998, pp. 1–15.

[23] R. Tolksdorf, Programming languages for the Java virtual machine,
http://www.robert-tolksdorf.de/vmlanguages.html.

[24] S. Tyagi, P. Tarau, A most specific method finding algorithm for reflection based dynamic Prolog-to-Java
interfaces, in: Ramakrishnan [18], pp. 322–336.

[25] tuProlog home page, http://lia.deis.unibo.it/research/2P/.
[26] tuProlog at SourceForge, http://tuprolog.sourceforge.net.
[27] D. Wakeling, Mobile Haskell: Compiling lazy functional programs for the Java virtual machine,

in: C. Palamidessi, H. Glaser, K. Meinke (Eds.), Principles of Declarative Programming, LNCS, vol. 1490,
Springer, 1998, pp. 335–352.

[28] The world of Jinni, http://www.binnetcorp.com/Jinni/index.html.

http://www.clip.dia.fi.upm.es/Software/Ciao
http://www.kprolog.com/jipl/
http://www.jython.org/
http://www.gnu.org/software/kawa/
http://www.dcs.ed.ac.uk/home/mlj/
http://www.sics.se/ps/sicstus.html
http://www.robert-tolksdorf.de/vmlanguages.html
http://lia.deis.unibo.it/research/2P/
http://tuprolog.sourceforge.net
http://www.binnetcorp.com/Jinni/index.html

